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Data Management for Multimedia Retrieval

Multimedia data require specialized management techniques because the
representations of color, time, semantic concepts, and other underlying
information can be drastically different from one another. The user’s sub-
jective judgment can also have significant impact on what data or features
are relevant in a given context. These factors affect both the performance
of the retrieval algorithms and their effectiveness. This textbook on mul-
timedia data management techniques offers a unified perspective on re-
trieval efficiency and effectiveness. It provides a comprehensive treat-
ment, from basic to advanced concepts, that will be useful to readers of
different levels, from advanced undergraduate and graduate students to
researchers and professionals.

After introducing models for multimedia data (images, video, audio,
text, and web) and for their features, such as color, texture, shape, and
time, the book presents data structures and algorithms that help store,
index, cluster, classify, and access common data representations. The au-
thors also introduce techniques, such as relevance feedback and collabo-
rative filtering, for bridging the “semantic gap” and present the applica-
tions of these to emerging topics, including web and social networking.

K. Selçuk Candan is a Professor of Computer Science and Engineering
at Arizona State University. He received his Ph.D. in 1997 from the Uni-
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ACM SIG Management of Data Conference (SIGMOD’06). In 2011, he
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K. Selçuk Candan
Arizona State University

Maria Luisa Sapino
University of Torino

www.Ebook777.com

http://www.ebook777.com


CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-88739-7

ISBN-13 978-0-511-90188-1

© K. Selcuk Candan and Maria Luisa Sapino 2010

2010

Information on this title: www.cambridge.org/9780521887397

This publication is in copyright. Subject to statutory exception and to the 

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy 

of urls for external or third-party internet websites referred to in this publication, 

and does not guarantee that any content on such websites is, or will remain, 

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (NetLibrary)

Hardback

http://www.cambridge.org/9780521887397
http://www.cambridge.org


Contents

Preface page ix

1 Introduction: Multimedia Applications and Data Management
Requirements 1

1.1 Heterogeneity 1
1.2 Imprecision and Subjectivity 8
1.3 Components of a Multimedia Database Management System 12
1.4 Summary 19

2 Models for Multimedia Data 20

2.1 Overview of Traditional Data Models 21
2.2 Multimedia Data Modeling 32
2.3 Models of Media Features 34
2.4 Multimedia Query Languages 92
2.5 Summary 98

3 Common Representations of Multimedia Features 99

3.1 Vector Space Models 99
3.2 Strings and Sequences 109
3.3 Graphs and Trees 111
3.4 Fuzzy Models 115
3.5 Probabilistic Models 123
3.6 Summary 142

4 Feature Quality and Independence: Why and How? 143

4.1 Dimensionality Curse 144
4.2 Feature Selection 145
4.3 Mapping from Distances to a Multidimensional Space 167
4.4 Embedding Data from One Space into Another 172
4.5 Summary 180

v



vi Contents

5 Indexing, Search, and Retrieval of Sequences 181

5.1 Inverted Files 181
5.2 Signature Files 184
5.3 Signature- and Inverted-File Hybrids 190
5.4 Sequence Matching 191
5.5 Approximate Sequence Matching 195
5.6 Wildcard Symbols and Regular Expressions 202
5.7 Multiple Sequence Matching and Filtering 204
5.8 Summary 206

6 Indexing, Search, and Retrieval of Graphs and Trees 208

6.1 Graph Matching 208
6.2 Tree Matching 212
6.3 Link/Structure Analysis 222
6.4 Summary 233

7 Indexing, Search, and Retrieval of Vectors 235

7.1 Space-Filling Curves 238
7.2 Multidimensional Index Structures 244
7.3 Summary 270

8 Clustering Techniques 271

8.1 Quality of a Clustering Scheme 272
8.2 Graph-Based Clustering 275
8.3 Iterative Methods 280
8.4 Multiconstraint Partitioning 286
8.5 Mixture Model Based Clustering 287
8.6 Online Clustering with Dynamic Evidence 288
8.7 Self-Organizing Maps 290
8.8 Co-clustering 292
8.9 Summary 296

9 Classification 297

9.1 Decision Tree Classification 297
9.2 k-Nearest Neighbor Classifiers 301
9.3 Support Vector Machines 301
9.4 Rule-Based Classification 308
9.5 Fuzzy Rule-Based Classification 311
9.6 Bayesian Classifiers 314
9.7 Hidden Markov Models 316
9.8 Model Selection: Overfitting Revisited 322
9.9 Boosting 324

9.10 Summary 326

10 Ranked Retrieval 327

10.1 k-Nearest Objects Search 328
10.2 Top-k Queries 337



Contents vii

10.3 Skylines 360
10.4 Optimization of Ranking Queries 373
10.5 Summary 379

11 Evaluation of Retrieval 380

11.1 Precision and Recall 381
11.2 Single-Valued Summaries of Precision and Recall 381
11.3 Systems with Ranked Results 383
11.4 Single-Valued Summaries of Precision-Recall Curve 384
11.5 Evaluating Systems Using Ranked and Graded Ground Truths 386
11.6 Novelty and Coverage 390
11.7 Statistical Significance of Assessments 390
11.8 Summary 397

12 User Relevance Feedback and Collaborative Filtering 398

12.1 Challenges in Interpreting the User Feedback 400
12.2 Alternative Ways of Using the Collected Feedback in Query

Processing 401
12.3 Query Rewriting in Vector Space Models 404
12.4 Relevance Feedback in Probabilistic Models 404
12.5 Relevance Feedback in Probabilistic Language Modeling 408
12.6 Pseudorelevance Feedback 411
12.7 Feedback Decay 411
12.8 Collaborative Filtering 413
12.9 Summary 425

Bibliography 427

Index 473

Color plates follow page 38



Free ebooks ==>   www.Ebook777.com

www.Ebook777.com

http://www.ebook777.com


Preface

Database and multimedia systems emerged to address the needs of very different
application domains. New applications (such as digital libraries, increasingly dy-
namic and complex web content, and scientific data management), on the other
hand, necessitate a common understanding of both of these disciplines. Conse-
quently, as these domains matured over the years, their respective scientific disci-
plines moved closer. On the media management side, researchers have been con-
centrating on media-content description and indexing issues as part of the MPEG7
and other standards. On the data management side, commercial database manage-
ment systems, which once primarily targeted traditional business applications, to-
day focus on media and heterogeneous-data intensive applications, such as digital
libraries, integrated database/information-retrieval systems, sensor networks, bio-
informatics, e-business applications, and of course the web.

There are three reasons for the heterogeneity inherent in multimedia applica-
tions and information management systems. First, the semantics of the information
captured in different forms can be drastically different from each other. Second,
resource and processing requirements of various media differ substantially. Third,
the user and context have significant impacts on what information is relevant and
how it should be processed and presented. A key observation, on the other hand,
is that rather than being independent, the challenges associated with the semantic,
resource, and context-related heterogeneities are highly related and require a com-
mon understanding and unified treatment within a multimedia data management
system (MDMS). Consequently, internally a multimedia database management sys-
tem looks and functions differently than a traditional (relational, object-oriented, or
even XML) DBMS.

Also acknowledging the fact that web-based systems and rich Internet appli-
cations suffer from significant media- and heterogeneity-related hurdles, we see a
need for undergraduate and graduate curricula that not only will educate students
separately in each individual domain, but also will provide them a common per-
spective in the underlying disciplines. During the past decade, at our respective in-
stitutions, we worked toward realizing curricula that bring media/web and database
educations closer. At Arizona State University, in addition to teaching a senior-level

ix



x Preface

“Multimedia Information Systems” course, one of us (Prof. Candan) introduced a
graduate course under the title “Multimedia and Web Databases.” This course of-
fers an introduction to features, models (including fuzzy and semistructured) for
multimedia and web data, similarity-based retrieval, query processing and optimiza-
tion for inexact retrieval, advanced indexing, clustering, and search techniques. In
short, the course provides a “database” view of media management, storage, and
retrieval. It not only educates students in media information management, but also
highlights how to design a multimedia-oriented database system, why and how these
systems evolve, and how they may change in the near future to accommodate the
needs of new applications, such as search engines, web applications, and dynamic
information-mashup systems. At the University of Torino, the other author of this
book (Prof. Sapino) taught a similar course, but geared toward senior-level under-
graduate students, with a deeper focus on media and features.

A major challenge both of us faced with these courses was the lack of an ap-
propriate textbook. Although there are many titles that address different aspects
of multimedia information management, content-based information retrieval, and
query processing, there is currently no textbook that provides an integrated look
at the challenges and technologies underlying a multimedia-oriented DBMS. Con-
sequently, both our courses had to rely heavily on the material we ourselves have
been developing over the years. We believe it is time for a textbook that takes an
integrated look at these increasingly converging fields of multimedia information
retrieval and databases, exhaustively covers existing multimedia database technolo-
gies, and provides insights into future research directions that stem from media-rich
systems and applications. We wrote this book with the aim of preparing students for
research and development in data management technologies that address the needs
of rich media-based applications. This book’s focus is on algorithms, architectures,
and standards that aim at tackling the heterogeneity and dynamicity inherent in real
data sources, rich applications, and systems. Thus, instead of focusing on a single or
even a handful of media, the book covers fundamental concepts and techniques for
modeling, storing, and retrieving heterogeneous multimedia data. It includes mate-
rial covering semantic, context-based, and performance-related aspects of modeling,
storage, querying, and retrieval of heterogeneous, fuzzy, and subjective (multimedia
and web) data.

We hope you enjoy this book and find it useful in your studies and your future
endeavors involving multimedia.

K. Selçuk Candan and Maria Luisa Sapino



1

Introduction

Multimedia Applications and
Data Management Requirements

Among countless others, applications of multimedia databases include personal and
public photo/media collections, personal information management systems, digital
libraries, online and print advertising, digital entertainment, communications, long-
distance collaborative systems, surveillance, security and alert detection, military,
environmental monitoring, ambient and ubiquitous systems that provide real-time
personalized services to humans, accessibility services to blind and elderly people,
rehabilitation of patients through visual and haptic feedback, and interactive per-
forming arts. This diverse spectrum of media-rich applications imposes stringent
requirements on the underlying media data management layer. Although most of
the existing work in multimedia data management focuses on content-based and
object-based query processing, future directions in multimedia querying will also
involve understanding how media objects affect users and how they fit into users’
experiences in the real world. These require better understanding of underlying
perceptive and cognitive processes in human media processing. Ambient media-rich
systems that collect diverse media from environmentally embedded sensors neces-
sitate novel methods for continuous and distributed media processing and fusion
schemes. Intelligent schemes for choosing the right objects to process at the right
time are needed to allow media processing workflows to be scaled to the immense
influx of real-time media data. In a similar manner, collaborative-filtering–based
query processing schemes that can help overcome the semantic gap between me-
dia and users’ experiences will help the multimedia databases scale to Internet-scale
media indexing and querying.

1.1 HETEROGENEITY

Most media-intensive applications, such as digital libraries, sensor networks, bioin-
formatics, and e-business applications, require effective and efficient data manage-
ment systems. Owing to their complex and heterogeneous nature, management,
storage, and retrieval of multimedia objects are more challenging than the man-
agement of traditional data, which can easily be stored in commercial (mostly rela-
tional) database management systems.

1



2 Introduction

Querying and retrieval in multimedia databases require the capability of com-
paring two media objects and determining how similar or how different these two
objects are. Naturally, the way in which the two objects are compared depends
on the underlying data model. In this section, we see that any single media object
(whether it is a complex media document or a simple object, such as an image) can
be modeled and compared in multiple ways, based on its different properties.

1.1.1 Complex Media Objects

A complex multimedia object or a document typically consists of a number of media
objects that must be presented in a coherent, synchronized manner. Various stan-
dards are available to facilitate authoring of complex multimedia objects:

� SGML/XML. Standard Generalized Markup Language (SGML) was accepted
in 1986 as an international standard (ISO 8879) for describing the structure of
documents [SGML]. The key feature of this standard is the separation of doc-
ument content and structure from the presentation of the document. The doc-
ument structure is defined using document type definitions (DTDs) based on a
formal grammar. One of the most notable applications of the SGML standard is
the HyperText Markup Language (HTML), the current standard for publishing
on the Internet, which dates back to 1992.

Extensible Markup Language (XML) has been developed by the W3C
Generic SGML Editorial Review Board [XML] as a follow-up to SGML. XML
is a subset of SGML, especially suitable for creating interchangeable, structured
Web documents. As with SGML, document structure is defined using DTDs;
however, various extensions (such as elimination of the requirement that each
document has a DTD) make the XML standard more suitable for authoring
hypermedia documents and exchanging heterogenous information.

� HyTime. SGML and XML have various multimedia-oriented applications. The
Hypermedia/Time-based Structuring Language (HyTime) is an international
multimedia standard (ISO 10744) [HyTime], based on SGML. Unlike HTML and
its derivatives, however, HyTime aims to describe not only the hierarchical and
link structures of multimedia documents, but also temporal synchronization be-
tween objects to be presented to the user as part of the document. The underly-
ing event-driven synchronization mechanism relies on timelines (Section 2.3.5).

� SMIL. Synchronized Multimedia Integration Language (SMIL) is a synchroniza-
tion standard developed by the W3C [SMIL]. Like HyTime, SMIL defines a lan-
guage for interactive multimedia presentations: authors can describe spatiotem-
poral properties of objects within a multimedia document and associate hyper-
links with them to enable user interaction. Again, like HyTime, SMIL is based
on the timeline model and provides event-based synchronization for multimedia
objects. Instead of being an application of SGML, however, SMIL is based on
XML.

� MHEG. MHEG, the Multimedia and Hypermedia Experts Group, developed a
hypermedia publishing and coding standard. This standard, also known as the
MHEG standard [MHEG], focuses on platform-independent interchange and
presentation of multimedia presentations. MHEG models presentations as a
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collection of objects. The spatiotemporal relationships between objects and the
interaction specifications form the structure of a multimedia presentation.

� VRML and X3D. Virtual Reality Modeling Language (VRML) provides a stan-
dardized way to describe interactive three-dimensional (3D) information for
Web-based applications. It soon evolved into the international standard for de-
scribing 3D content [Vrml]. A VRML object or world contains various media
(including 3D mesh geometry and shape primitives), a hierarchical structure that
describes the composition of the objects in the 3D environment, a spatial struc-
ture that describes their spatial positions, and an event/interaction structure that
describes how the environment evolves with time and user interactions. The
Web3D consortium led the development of the VRML standard and its XML
representation, X3D standard [X3D].

� MPEG7 and MPEG21. Unlike the standards just mentioned, which aim to de-
scribe the content of authored documents, the main focus of the MPEG7 (Multi-
media Content Description Interface) [MPEG7] is to describe the content of
captured media objects, such as video. It is a follow-up to the previous MPEG
standards, MPEG1, MPEG2, and MPEG4, which were mainly concerned with
video compression. Although primarily designed to support content-based re-
trieval for captured media, the standard is also rich enough to be applicable
to synthetic and authored multimedia data. The standard includes content-
based description mechanisms for images, graphics, 3D objects, audio, and
video streams. Low-level visual descriptors for media include color (e.g., color
space, dominant colors, and color layout), texture (e.g., edge histogram), shape
(e.g., contours), and motion (e.g., object and camera trajectories) descriptors.
The standard also enables description of how to combine heterogeneous me-
dia content into one unified multimedia object. A follow-up standard, MPEG21
[MPEG21], aims to provide additional content management and usage services,
such as caching, archiving, distributing, and intellectual property management,
for multimedia objects.

Example 1.1.1: As a more detailed example for nonatomic multimedia objects, let
us reconsider the VRML/X3D standard, for describing virtual worlds. In X3D, the
world is described in the form of a hierarchical structure, commonly referred to
as the scene graph. The nodes of the hierarchical structure are expressed as XML
elements, and the visual properties (such as size, color, and shine) of each node are
described by these elements’ attributes. Figure 1.1 provides a simple example of a
virtual world consisting of two objects. The elements in this scene graph describe the
spatial positions, sizes, shapes, and visual properties of the objects in this 3D world.
Note that the scene graph has a tree structure: there is one special node, referred to
as the root, that does not have any ancestors (and thus it represents the entire virtual
world), whereas each node except this root node has one and only one parent.

The internal nodes in the X3D hierarchy are called grouping (or transform)
nodes, and they bring together multiple subcomponents of an object and describe
their spatial relationships. The leaf nodes can contain different types of media (e.g.,
images and video), shape primitives (e.g., sphere and box), and their properties (e.g.,
transparency and color), as well as 3D geometry in the form of polyhedra (also
called meshes). In addition, two special types of nodes, sensor and script nodes,
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(a) (b)

(c)

Figure 1.1. An X3D world with two shape objects and the XML-based code for its hierarchical
scene graph: (a) X3D world, (b) scene graph, (c) X3D code. See color plates section.

can be used to describe the interactivity options available in the X3D world: sensor
nodes capture events (such as user input); script nodes use behavior descriptions
(written in a high-level programming language, for example, JavaScript) to modify
the parameters of the world in response to the captured events. Thus, X3D worlds
can be rich and heterogeneous in content and structure (Figure 1.2):

� Atomic media types: This category covers more traditional media types, such as
text, images, texture maps, audio, and video. The features used for media-based
retrieval are specific to each media type.
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Figure 1.2. The scene graph of a more complex X3D world.

� 3D mesh geometry: This category covers all types of polyhedra that can be repre-
sented using the X3D/VRML standard. Geometry-based retrieval is a relatively
new topic, and the features to be used for retrieval are not yet well understood.

� Shape primitives: This category covers all types of primitive shapes that are part
of the standard, as well as their attributes and properties.

� Node structure: The node structure describes how complex X3D/VRML objects
are put together in terms of the simpler components. Because objects and sub-
objects are the main units of reuse, most of the queries need to have the node
structure as one of the retrieval criteria.

� Spatial structure: The spatial structure of an object is related to its node structure;
however, it describes the spatial transformations (scaling and translation) that
are applied to the subcomponents of the world. Thus queries are based on spatial
properties of the objects.

� Event/interaction structure: The event structure of a world, which consists of sen-
sor nodes and event routes between sensor nodes and script nodes, describes
causal relationships among objects within the world.

� Behaviors: The scripting nodes, which are part of the event structure, may be
used for understanding the behavioral semantics of the objects. Because these
behaviors can be reused, they are likely to be an important unit of retrieval.
The standard does not provide a descriptive language for behaviors. Thus,
retrieval of behaviors is likely through their interfaces and the associated
metadata.

� Temporal structure: The temporal structure is specified through time sensors and
the associated actions. Consequently, the temporal structure is a specific type of
event structure. Because time is also inherent in the temporal media (such as
video and audio) that can be contained within an X3D/VRML object, it needs
to be treated distinctly from the general event structure.
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� Metadata: This covers everything associated with the objects and worlds (such
as the textual content of the corresponding files or filenames) that cannot be
experienced by the viewers. In many cases, the metadata (such as developer’s
comments and/or node and variable names) can be used for extracting informa-
tion that describes the actual content.

The two-object scene graph in Figure 1.2 contains an image file, which might be
used as a surface texture for one of the objects in the world; an audio file, which
might contain the soundtrack associated with an object; a video file, which might be
projected on the surface of one of the objects; shape primitives, such as boxes, that
can be used to describe simple objects; and 3D mesh geometry, which might be used
to describe an object (such as a human avatar) with complex surface description.
The scene graph further describes different types of relationships between the two
nodes forming the world. These include a composition structure, which is described
by the underlying XML hierarchy of the nodes constituting the X3D objects, and
events that are captured by the sensor nodes and the causal structure, described by
script nodes that can be activated by these events and can affect any node in the
scene graph. In addition, temporal scripts might be associated to the scene graph,
enabling the scene to evolve over time. Note that when considering the interaction
pathways between the nodes in the X3D (defined through sensors and scripts), the
structure of the scene graph ceases to be a tree and, instead, becomes a directed
graph.

Whereas an X3D world is often created and stored as a single file, in many other
cases the multimedia content may actually not be available in the form of a single
file created by a unique individual (or a group with a common goal), but might in
fact consist of multiple independent components, possibly stored in a distributed
manner. In this sense, the Web itself can be viewed as a single (but extremely large)
multimedia object. Although, in many cases, we access this object only a page (or an
image, or a video) at a time, search engines treat the Web as a complex whole, with
a dynamic structure, where communities are born and evolve repeatedly. In fact,
with Web 2.0 technologies, such as blogs and social networking sites, which strongly
tie the users to the content that they generate or annotate (i.e., tag), this vast object
(i.e., the entire Web) now also includes the end users themselves (or at least their
online representations).

1.1.2 Semantic Gap

It is not only the complex objects (described using hypermedia standards, such as
X3D, SMIL, MPEG7, or HTML) that may necessitate structured, nonatomic mod-
els for representation. Even objects of relatively simple media types, such as images
and video, may embed sub-objects with diverse local properties and complex spa-
tiotemporal interrelationships. For example, an experimental study conducted by
H. Nishiyama et al. [1994] shows that users are viewing paintings or images using
two primary patterns. The first pattern consists of viewing the whole image roughly,
focusing only on the layout of the images of particular interest. The second pat-
tern consists of concentrating on specific objects within the image. In a sense, we
can view a single image as a compound object containing many sub-objects, each



1.1 Heterogeneity 7

Figure 1.3. Any media object can be seen as a collection of channels of information; some
of these information channels (such as color and shape) are low-level (can be derived from
the media object), whereas others (such as semantic labels attached to the objects by the
viewer) are higher level (cannot be derived from the media object without external knowledge).
See color plates section.

corresponding to regions of the image that are visually coherent and/or semantically
meaningful (e.g., car, man), and their spatial relationships.

In general, a feature of a media object is simply any property of the object that
can be used for describing it to others. This can include properties at all levels, from
low-level properties (such as color, texture, and shape) to semantic features (such as
linguistic labels attached to the parts of the media object) that require interpretation
of the underlying low-level features at much higher semantic levels (Figure 1.3).
This necessity to have an interpretive process that can take low-level features that
are immediately available from the media and map to the high-level features that
require external knowledge is commonly referred to as the semantic gap.

The semantic gap can be bridged, and a multimedia query can be processed, at
different levels. In content-based retrieval, the low-level features of the query are
matched against the low-level features of the media objects in the database to iden-
tify the appropriate matches (Figure 1.4(a)). In semantic-based retrieval, either the
high-level query can be restated in terms of the corresponding low-level features for
matching (Figure 1.4(b)) or the low-level features of the media in the database can

(a) (b)

(c) (d)

Figure 1.4. Different query processing strategies for media retrieval: (a) Low-level feature
matching. (b) A high-level query is translated into low-level features for matching. (c) Low-
level features are interpreted for high-level matching. (d) Through relevance feedback, the
query is brought higher up in semantic levels; that is, it is increasingly better at representing
the user’s intentions.
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Figure 1.5. Multimedia query processing usually requires the semantic gap between what is
stored in the database and how the user interprets the query and the data to be bridged
through a relevance feedback cycle. This process itself is usually statistical in nature and,
consequently, introduces probabilistic imprecision in the results.

be interpreted (for example through classification, Chapter 9) to support retrieval
(Figure 1.4(c)). Alternatively, user relevance feedback (Figure 1.5 and Chapter 12)
and collaborative filtering (Sections 6.3.3 and 12.8) techniques can be used to rewrite
the user query in a way that better represents the user’s intentions (Figure 1.4(d)).

1.2 IMPRECISION AND SUBJECTIVITY

One common characteristic of most multimedia applications is the underlying un-
certainty or imprecision.

1.2.1 Reasons for Imprecision and Subjectivity

Because of the possibly redundant ways to sense the environment, the alternative
ways to process, filter, and fuse multimedia data, the diverse alternatives in bridging
the semantic gap, and the subjectivity involved in the interpretation of data and
query results, multimedia data and queries are inherently imprecise:

� Feature extraction algorithms that form the basis of content-based multimedia
data querying are generally imprecise. For example, a high error rate is encoun-
tered in motion-capture data and is generally due to the multitude of envi-
ronmental factors involved, including camera and object speed. Especially for
video/audio/motion streams, data extracted through feature extraction modules
are only statistically accurate and may be based on the frame rate or the position
of the video camera related to the observed object.

� It is rare that a multimedia querying system relies on exact matching. Instead,
in many cases, multimedia databases need to consider nonidentical but similar

www.Ebook777.com
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Table 1.1. Different types of queries that an image database may support

Find all images created by “John Smith”
Find all images that look like “query.gif”
Find top-5 images that look like “im ex.gif”
Find all images that look like “mysketch.bmp”
Find all images that contain a part that looks like “query.gif”
Find all images of “sunny days”
Find all images that contain a “car”
Find all images that contain a “car” and a man who looks like “mugshot.bmp”
Find all image pairs that contain similar objects
Find all objects contained in images of “sunny days”
Find all images that contain two objects, where the first object looks like “im ex.gif,”
the second object is something like a “car,” and the first object is “to the right of” the
second object; also return the semantic annotation available for these two objects
Find all new images in the database that I may like based on my list of preferences
Find all new images in the database that I may like based on my profile and history
Find all new images in the database that I may like based on access history of people
who are similar to me in their preferences and profiles

features to find data objects that are reasonable matches to the query. In many
cases, it is also necessary to account for semantic similarities between associated
annotations and partial matches, where objects in the result satisfy some of the
requirements in the query but fail to satisfy all query conditions.

� Imprecision can be due to the available index structures, which are often imper-
fect. Because of the sheer size of the data, many systems rely on clustering and
classification algorithms for sometimes imperfectly pruning search alternatives
during query processing.

� Query formulation methods are not able to capture the user’s subjective intention
perfectly. Naturally the query model used for accessing the multimedia database
depends on the underlying data model and the type of queries that the users will
pose (Table 1.1). In general, we can categorize query models into three classes:
– Query by example (QBE): The user provides an example and asks the system

to return media objects that are similar to this object.
– Query by description: The user provides a declarative description of the ob-

jects of interest. This can be performed using an SQL-like ad hoc query lan-
guage or using pictorial aids that help users declare their interests through
sketches or storyboards.

– Query by profile/recommendation: In this case, the user is not actively query-
ing the database; instead the database predicts the user’s needs based on his or
her profile (or based on the profiles of other users who have similar profiles)
and recommends an object to the user in a proactive manner.

For example, in Query-by-Example (QBE) [Cardenas et al., 1993; Schmitt et al.,
2005], which features, feature value ranges, feature combinations, or similarity
notions are to be used for processing is left to the system to figure out through
feature significance analysis, user preferences, relevance feedback [Robertson
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select image P, imageobject object1, object2 where 
           contains(P, object1) and contains(P, object2) and

(semantically_similar(P.semanticannotation, "Fuji Mountain") and
visually_similar(object1.imageproperties, "Fujimountain.jpg")) and
(semantically_similar(P.semanticannotation, "Lake") and
visually_similar(object2.imageproperties, "Lake.jpg")) and
above(object1, object2).

Figure 1.6. A sample multimedia query with imprecise (e.g., semantically similar(), visu-
ally similar(), and above()) and exact predicates (e.g., contains()).

and Spark-Jones, 1976; Rui and Huang, 2001] (see Figure 1.5), and/or collabora-
tive filtering [Zunjarwad et al., 2007] techniques, which are largely statistical and
probabilistic in nature.

1.2.2 Impact on Query Formulation and Processing

In many multimedia systems, more than one of the foregoing reasons for impreci-
sion coexist and, consequently, the system must take them into consideration col-
lectively. Degrees of match have to be quantified and combined, and results have to
be filtered and ordered based on these combined matching scores. Figure 1.6 pro-
vides an example query (in an SQL-like syntax used by the SEMCOG system [Li
and Candan, 1999a]) that brings together imprecise and exact predicates. Processing
this query requires assessment of different sources of imprecision and merging them
into a single value for ranking the results:

Example 1.2.1: Figure 1.7(a) shows a visual representation of the query in Fig-
ure 1.6. Figures 1.7(b), (c), (d), and (e) are examples of candidate images that may
match this query. The values next to the objects in these candidate images denote
the similarity values for the object-level matching. In this hypothetical example, the
evaluation of spatial relationships is also fuzzy (or imprecise) in nature.

The candidate image in Figure 1.7(b) satisfies object matching conditions, but its
layout does not match the user specification. Figures 1.7(c) and (e) satisfy the image
layout condition, but the features of the objects do not perfectly match the query
specification. Figure 1.7(d) has low structural and object matching. In Figure 1.7(b),
the spatial predicate and in Figure 1.7(d), the image similarity predicate for the lake,
completely fail (i.e., the degree of match is 0.0). A multimedia database engine must
consider all four images as candidates and must rank them according to a certain
unified criterion.

The models that can capture the imprecise and statistical nature of multimedia
data are many times fuzzy and probabilistic in nature. Probabilistic models (Sec-
tion 3.5) rely on the premise that the sources of imprecision in data and query
processing are inherently statistical and thus they commit onto probabilistic eval-
uation. Fuzzy models (Section 3.4) are more flexible and allow different seman-
tics, each applicable under different system requirements, to be selected for query
evaluation.
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Figure 1.7. Four partial matches to a given query: (a) Query, (b) Match #1, (c) Match #2,
(d) Match #3, (e) Match #4.

Therefore multimedia data query evaluation commonly requires fuzzy and prob-
abilistic data and query models as well as appropriate query processing mechanisms.
In general, we can classify multimedia queries into two classes based on the filtering
criterion imposed on the results by the user based on the matching scores:

� Range queries: Given a distance or a similarity measure, the goal of a range query
is to find matches in the database that are within the threshold associated with
the query. Thus, these are also known as similarity/distance threshold queries.
The query processing techniques for range queries vary based on the underlying
data model and available index structures, and on whether the queries are by
example or by description. The goal of any query processing technique, however,
is to prune the set of candidates in such a way that not all media data in the
database have to be considered to identify those that are within the given range
from the query point.

In the case of query by profile/feedback, the query, query range, and appro-
priate distance measure, as well as the relevant features (or the dimensions of
the space), can all be set and revised transparently by the system based on user
feedback as well as based on feedback that is provided by the users who are
identified as being similar to the user.

� Nearest neighbor queries: Unlike range queries, where there is a threshold on
the acceptable degree of matching, in nearest neighbor queries there is a thresh-
old on the number of results to be returned by the system. Thus, these are also
known as top-k queries (where k is the number of objects the user is interested
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in). Because the distance between the query and the matching media data is
not known in advance, pruning the database content so that not all data objects
are considered as candidates requires techniques different from range queries
(Chapter 10).

As in the case of range queries, in query by profile/feedback, the query, the
distance measure, and the set of relevant features can be set by the system based
on user feedback. In addition, the number of matches that the user is interested
in can be varied based on the available profile.

These query paradigms require appropriate data structures and algorithms to sup-
port them effectively and efficiently. Conventional database management systems
are not able to deal with imprecision and similarity because they are based on
Boolean logic: predicates used for formulating query conditions are treated as
propositional functions, which return either true or false. A naive way to process
multimedia queries is to transform imprecision into true or false by mapping val-
ues less than a cutoff to false and the remainder to true. With this naive approach,
partial results can be quickly refuted or validated based on their relationships to
the cutoff. Chaudhuri et al. [2004], for example, leverage user-provided cutoffs for
filtering, while maintaining the imprecision value for further processing. In general,
however, cutoff-based early pruning leads to misses of relevant results. This leads to
data models and query evaluation mechanisms that can take into account impreci-
sion in the evaluation of the query criteria. In particular, the data and query models
cannot be propositional in nature, and the query processing algorithms cannot rely
on the assumption that the data and queries are Boolean.

1.3 COMPONENTS OF A MULTIMEDIA DATABASE
MANAGEMENT SYSTEM

As described previously, multimedia systems generally employ content-based re-
trieval techniques to retrieve images, video, and other more complex media objects.
A complex media object might itself be a collection of smaller media objects, inter-
linked with each other through temporal, spatial, hierarchical, and user interaction
structures. To manage such complex multimedia data, the system needs specialized
index structures and query processing techniques that can scale to structural com-
plexities. Consequently, indexing and query processing techniques developed for
traditional applications, such as business applications, are not suitable for efficient
and effective execution of queries on multimedia data.

A multimedia data management system, supporting the needs of such diverse
applications, must provide support for specification, processing, and refinement of
object queries and retrieval of media objects and documents. The system must allow
users to specify the criteria for objects and documents to be retrieved. Both media
object and multimedia document retrieval tasks must be similarity-based. Further-
more, while searching for a multimedia object, the structure as well as various visual,
semantic, and cognitive features (all represented in different forms) have to be con-
sidered together.

Example 1.3.1: Let us reconsider the Extensible 3D (or X3D) language for describ-
ing virtual worlds [X3D]. Figure 1.8 offers an overview of some of the functionalities
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Figure 1.8. Components of a VRML/X3D database.

a VRML/X3D data management system would need to provide to its users
[Yamuna et al., 1999]. The first of these functionalities is data registration (1). Dur-
ing registration, if the input object is a newer version of an object already in the
repository, then the system identifies possible changes in the object content, elim-
inates duplicates, and reflects the changes in the repository. Next (2), the system
extracts features (salient visual properties of the object) and structure information
from the object and (3) updates the corresponding index and data structures to sup-
port content-based retrieval. Users access the system through a visual query inter-
face (4). Preferences of the users are gathered and stored for more accurate and
personalized answers. Queries provided using the visual interface are interpreted
(subcomponents are weighed depending on the user preferences and/or database
statistics) and evaluated (5) by a similarity-based query processor using (6) vari-
ous index and data structures stored in the system. The matches found are ranked
based on their degrees of similarity to the query and passed to the results manager
along with any system feedback that can help the user refine her original query (7).
The results are then presented to the user in the most appropriate form (8). The
visualization system, then, collects the user’s relevance feedback to improve results
through a second, more informed, iteration of the retrieval process (9).

We next provide an overview of the components of a multimedia data man-
agement system. Although this overview is not exhaustive, it highlights the major
differences between the components of a conventional DBMS and the components
of a multimedia data management system:

� Storage, analysis, and indexing: The storage manager of a multimedia data man-
agement system needs to account for the special storage requirements of dif-
ferent types of media objects. This component uses the characteristics of the
media objects and media documents to identify the most effective storage and in-
dexing plan for different types of media. A media characteristics manager keeps
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(a) (c)(b)

Figure 1.9. (a) A set of media objects and references between them, (b) logical links between
them are established, and (c) a navigation network has been created based on information
flow analysis.

metadata related with the known media types, including significant features, spa-
tial and temporal characteristics, synchronization/resource/QoS requirements,
and compression characteristics.

Given a media object, a feature/structure extractor identifies which features
are most significant and extracts them. The relative importance of these fea-
tures will be used during query processing. If the media object being processed
is complex, then its temporal, spatial, and interaction structures also have to
be extracted for indexing purposes. Not only does this enable users to pose
structure-related queries, but many essential data management functionalities,
such as object prefetching for interactive document visualization, result summa-
rization/visualization, and query processing for document retrieval, depend on
the (1) efficiency in representing structural information, (2) speed in comparing
two documents using their structures, and (3) capability of providing a meaning-
ful similarity value as a result of the comparison.

For large media objects, such as large text documents, videos, or a set of
hyperlinked pages, a summarization manager may help create compact repre-
sentations that are easier to compare, visualize, and navigate through. A mul-
timedia database management system may also employ mechanisms that can
segment large media content into smaller units to facilitate indexing, retrieval,
ranking, and presentation. To ensure that each information unit properly re-
flects the context from which it was extracted, these segmented information
units can be further enriched by propagating features between related informa-
tion units and by annotations that tag the units based on a semantic analysis of
their content [Candan et al., 2009]. Conversely, to support navigation within a
large collection of media objects, a relationship extractor may use association
mining techniques to find linkages between individual media objects, based on
their logical relationships, to create a navigable media information space (Fig-
ure 1.9).

Multimedia objects and their extracted information units need to be in-
dexed for quick reference based on their features and structures. An in-
dex/cluster/classification manager chooses the most appropriate indexing mech-
anism for the given media object. Because searching the entire database for a
given query is not always acceptable, indexing and clustering schemes reduce
the search space by quickly eliminating from consideration irrelevant parts of
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(a) (b)

Figure 1.10. (a) A set of media objects in a database (each point represents an object (closer
points correspond to media objects that are similar to each other). (b) Similar objects are
clustered together, and for each cluster a representative (lightly shaded point) is selected:
given a query, for each cluster of points, first its representative is considered to identify and
eliminate unpromising clusters of points.

the database based on the order and structure implicit in the data (Figure 1.10).
Each media object is clustered with similar objects to support pruning dur-
ing query processing as well as effective visualization and summarization. This
module may also classify the media objects under known semantic classes for
better organization, annotation, and browsing support for the data.

A semantic network of media, wherein media objects and their information
units are semantically tagged and relationships between them are extracted and
annotated, would benefit significantly from additional domain knowledge that
can help interpret these semantic annotations. Thus, a semantics manager might
help manage the ontologies and taxonomies associated with the media collec-
tions, integrate such metadata when media objects from different collections are
brought together, and use such metadata to help semantically driven query pro-
cessing and navigation support.

� Query and visualization specifications: A multimedia database management sys-
tem needs to allow users to pose queries for multimedia objects and documents.
A query specification module helps the user pose queries using query-by-
example or query-by-description mechanisms. Because of the visual characteris-
tics of the results, query specifications may also be accompanied with visualiza-
tion specifications that describe how the results will be presented to the user.

� Navigation support and personalized and contextualized recommendations: A
navigation manager helps the user browse through and navigate within the rich
information space formed by the multimedia objects and documents in the mul-
timedia database. The main goal of any mechanism that helps users navigate
in a complex information space is to reduce the amount of interaction needed
for locating a relevant piece of information. In order to provide proper naviga-
tional support to users, a guidance system must identify, as precisely as possible,
what alternatives to provide to the user based on the user’s current navigational
context (Figure 1.11). Furthermore, when this context changes, the system
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(a) (b) (c)

Figure 1.11. Context- and task-assisted guidance from the content user is currently accessing
(S) to the content user wishes to access (T): (a) No guidance, (b) Content-only guidance,
(c) Context-enriched guidance.

should adapt to this change by identifying the most suitable content that has
to be brought closer to the user in the new navigational context. Therefore,
the logical distance between where the user is in the information space and
where the user wishes to navigate to needs to be dynamically adjusted in real
time as the navigation alternatives are rediscovered based on user’s context (see
Figure 1.11). Such dynamic adaptation of the information space requires an
indexing system that can leverage context (sometimes provided by the user
through explicit interventions, such as typing in a new query), as well as the
logical and structural relationships between various media objects. An effec-
tive recommendation mechanism determines what the user needs precisely so
that the guidance that the system provides does not lead to unnecessary user
interaction.

� Query evaluator: Multimedia queries have different characteristics than the
queries in traditional databases. One major difference is the similarity- (or
quality-) based query processing requirement: finding exact matches is either un-
desirable or impossible because of imperfections in the media processing func-
tions. Another difference is that some of the user-defined predicates, such as the
media processing functions, may be very costly to execute in terms of the time
and system resources they require.

A multimedia data management system uses a cost- and quality-based query
optimizer and provides query evaluation facilities to achieve the best results at
the lowest cost. The traditional approach to query optimization is to use database
statistics to estimate the query execution cost for different execution plans and
to choose the cheapest plan found. In the case of a database for media objects
and documents, the expected quality of the results is also important. Since differ-
ent query execution plans may cause results with different qualities, the quality
statistics must also be taken into consideration. For instance, consider a multi-
media predicate of the form image contains object at(Image, Object, Coord),
which verifies the containment relationship between an image, an object, and
image coordinates. This predicate may have different execution patterns, each
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corresponding to a different external function, with drastically different result
qualities1:
– image contains object at(Image I, Object *O, Coord C) is likely to have high

quality as it needs only to search for an object at the given coordinates of a
given image.

– image contains object at(Image I, Object O, Coord *C), on the other hand, is
likely to have a lower quality as it may need to perform non-exact matches
between the given object and the objects contained within the given image to
find the coordinates of the best match.

In addition, query optimizers must take into account expensive user-defined
predicates. Different execution patterns of a given predicate may also have dif-
ferent execution costs.
– image contains object at(Image *I, Object O, Coord *C) may be very expensive,

as it may require a pass over all images in the database to check whether any
of them contains the given object.

– image contains object at(Image I, Object *O, Coord C) may be significantly
cheaper, as it only needs to extract an object at the given coordinates of the
given image.

The query evaluator of a multimedia data management system needs to create a
cost- and quality-optimized query plan and the index and access structures main-
tained by the index/cluster manager to process the query and retrieve results.
Because media queries are often subjective, the order of the results needs to re-
flect user preferences and user profiles. A result rank manager ensures that the
results of multimedia queries are ordered accordingly. Because a combination of
search criteria can be specified simultaneously, the matching scores results with
respect to each criterion must be merged to create the final ranking.

� Relevance feedback and user profile: As discussed earlier, in multimedia
databases, we face an objective-subjective interpretation gap (Li et al., 2001; Yu
et al., 1976):
– Given a query (say an image example provided for a “similarity” search in a

large image database), which features of the image objects are relevant (and
how much so) to the user’s query may not be known in advance.

– Furthermore, most of the (large number of) candidate matches may be only
marginally relevant to the user’s query and must be eliminated from consid-
eration for efficiency and effectiveness of the retrieval.

These challenges are usually dealt with through a user relevance feedback pro-
cess that enables the user to explore the alternatives and that learns what is rel-
evant to the user through the user feedback provided during this exploration
process (see Figure 1.5): (1) Given a query, using the available index structures,
the system (2) identifies an initial set of candidate results; since the number of
candidates can be large, the system presents a small number of samples to the
user. (3) This initial set of samples and (4) the user’s relevance/irrelevance in-
puts are used for (5) learning the user’s interests (in terms of relevant features),
and this information is provided as an input to the next cycle for (6) having the
retrieval algorithm suitably update the query or the retrieval/ranking scheme.

1 Arguments marked with “*” are output arguments; those that are not marked are input arguments.
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Figure 1.12. The system feedback feature of the SEMCOG multimedia retrieval system [Li
and Candan, 1999a]: given a user query, SEMCOG can tell the user how the data in the
database are distributed with respect to various query conditions. See color plates section.

Steps 2–6 are then repeated until the user is satisfied with the results returned by
the system.

Note that although the relevance feedback process can be leveraged on a per-
query basis, it can also be used for creating and updating a long-term interest
profile of the user.

� System support for query refinement: To eliminate unnecessary database accesses
and to guide the user in the search for a particular piece of information, a multi-
media database may provide support for query verification, system feedback, and
query refinement services.

Based on the available data and query statistics, a query verification and refine-
ment manager would provide users with system feedback, including an estimated
number of matching images, strictness of each query condition, and alternative
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query conditions (Figure 1.12). Given such information, users can relax or refor-
mulate their queries in a more informed manner. For a keyword-based query, for
instance, its hypernyms, synonyms, and homonyms can be candidates for replace-
ment, each with different penalties depending on the user’s preference. The sys-
tem must maintain aggregate values for terms to calculate expected result sizes and
qualities without actually executing queries. For the reformulation of predicates
(for instance, replacing color histogram match(Image1, Image2) with the predicate
shape histogram match(Image1, Image2)), on the other hand, the system needs to
consider correlations between candidate predicates as well as the expected query
execution costs and result qualities.

1.4 SUMMARY

In this chapter, we have seen that the requirements of a multimedia database man-
agement system are fundamentally different from those of a traditional database
management system. The major challenges in the design of a multimedia database
management system stem from the heterogeneity of the data and the semantic gap
between the raw data and the user. Consequently, the data and querying models as
well as the components of a multimedia database management system need to re-
flect the diversity of the media data and the applications and help fill the semantic
gap. In the next chapter, we consider the data and query models for multimedia data,
before discussing the multimedia database components in greater detail throughout
the remaining chapters of the book.
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Models for Multimedia Data

A database is a collection of data objects that are organized in a way that supports
effective search and manipulation. Under this definition, your personal collection of
digital photos can be considered a database (more specifically an image database)
if you feel that the software you are using to organize your images provides you
with mechanisms that help you locate the images you are looking for easily and
effectively.

Effective access, of course, depends on the data and the application. For exam-
ple, in general, you may be satisfied if the images in your collection are organized in
terms of a timeline or put into folders according to where they were taken, but for
an advertising agency which is looking for an image that conveys a certain feeling or
for a medical research center which is trying to locate images that contain a partic-
ular pattern, such a metadata-based organization (i.e., an organization not based on
the content of the image, but on aspects of the media object external to the visual
content) may not be acceptable. Thus, when creating a database, it is important to
choose the right organization model.

A data model is a formalism that helps specify the aspects of the data relevant
for their organization. For example, a content-based model would describe what type
of content (e.g., colors or shape) is relevant for the organization of the data in the
database, whereas a metadata-based model may help specify the metadata (e.g., date
or place) relevant for the organization. A model can also help specify which objects
can be placed into the database and which ones cannot. For example, an image data
model can specify that video objects cannot be placed in the database, or another
data model can specify that all the images in the collection need to be grayscale.
The constraints specified using the model and its idea for organizing the data are
commonly referred to as the schema of the database. Intuitively, the data model
is a formalism or a language in which the schema constraints can be specified. In
other words, a database is a collection of data objects satisfying the schema constraints
specified using the formalism provided by the underlying data model and organized
based on these constraints.

20
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2.1 OVERVIEW OF TRADITIONAL DATA MODELS

A media object can be treated at multiple levels of abstraction. For example, an
image you took last summer with your digital camera can be treated at a high level
for what it represents for you (e.g., “a picture at the beach with your family”), at a
slightly lower level for what it contains visually (e.g., “a lot of blues and some skin-
toned circles”), at a lower level as a matrix of pixels, or at an even lower level as a
sequence of bits (which can be interpreted as an image if one knows the correspond-
ing image format and the rules that image format relies on). Note that some of the
foregoing image models are closer to the higher, semantic (or conceptual) represen-
tation of the media, whereas others are closer to the physical representation. In fact,
for any media, one can consider a spectrum of models, from a purely conceptual to
a purely physical representation.

2.1.1 Conceptual, Logical, and Physical Data Models

In general, a conceptual model represents the application-level semantics of the ob-
jects in the database. This model can be specified using natural language or using
less ambiguous formalisms, such as the unified modeling language (UML [UML]),
or the resource description framework (RDF [Lassila and Swick, 1999]). A phys-
ical model, on the other hand, describes how the data are laid down on the disk.
A logical model, or the model used by the database management server (DBMS)
to organize the data to help search, can be close to the conceptual model or to the
physical model depending on how the organization will be used: whether the orga-
nization is to help end users locate data effectively or whether the organization is
to help optimize the resource usage. In fact, a DBMS can rely on multiple logical
models at different granularities for different purposes.

2.1.2 Relational Model

The relational data model [Codd, 1970] describes the constraints underlying the
database in terms of a set of first-order predicates, defined over a finite set of pred-
icate variables. Each relation corresponds to an n-ary predicate over n attributes,
where each attribute is a pair of name and domain type (such as integer or string).
The content of the relation is a subset of the Cartesian product of the corresponding
n value domains, such that the predicate returns true for each and every n-tuple in
the set. The closed-world assumption implies that there are no other n-tuples for
which the predicate is true. Each n-tuple can be thought of as an unordered set of
attribute name/value pairs. Because the content of each relation is finite, as shown
in Figure 2.1, an alternative visualization of the relation is as a table where each col-
umn corresponds to an attribute and each row is an n-tuple (or simply “tuple” for
short).

Schema and Constraints
The predicate name and the set of attribute names and types are collectively re-

ferred to as the schema for the relation (see Figure 2.1). In addition, the schema may
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Figure 2.1. A simple relational database with two relations: Employee (ssn, name, job) and
Student (ssn, gpa) (the underlined attributes uniquely identify each tuple/row in the corre-
sponding table).

contain additional constraints, such as candidate key and foreign key constraints, as
well as other integrity constraints described in other logic-based languages.

A candidate key is a subset of the set of attributes of the relation such that there
are no two distinct tuples with the same values for this set of attributes and there is
not a proper subset of this set that is also a candidate key. Because they take unique
values in the entire relation, candidate keys (or keys for short) help refer to indi-
vidual tuples in the relation. A foreign key, on the other hand, is a set of attributes
that refers to a candidate key in another (or the same) relation, thus linking the two
relations. Foreign keys help ensure referential integrity of the database relations;
for example, deleting a tuple referred to by a foreign key would violate referential
integrity and thus is not allowed by the DBMS.

The body of the relation (i.e., the set of tuples) is commonly referred to as the
extension of the relation. The extension at any given point in time is called a state of
the database, and this state (i.e., the extension) changes by update operations that
insert or delete tuples or change existing attribute values. Whereas most schema and
integrity constraints specify when a given state can be considered to be consistent
or inconsistent, some constraints specify whether or not a state change (such as the
amount of increase in the value a tuple has for a given value) is acceptable.

Queries, Relational Calculus, and SQL
In the relational model, queries are also specified declaratively, as is the case

with the constraints on the data. The tuple relational and domain relational calculi
are the main declarative languages for the relational model. A domain relational
calculus query is of the form

〈〈X1, . . . , Xm〉 | fdomain(X1, . . . , Xm)〉,
where Xi are domain variables or constants and fdomain(X1, . . . , Xm) is a logic formula
specified using atoms of the form

� (S ∈ R), where S ⊆ {X1, . . . , Xm} and R is a relation name, and
� (Xi op Xj) or (Xi op constant); here, op is a comparison operator, such

as = or <,

and using operators ∧, ∨, and ¬ as well as the existential (∃) and universal (∀)
quantifiers. For example, let us consider a relational database with two relations,
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Employee(ssn, name, job) and Student(ssn, gpa), as in Figure 2.1. The first of these
relations, Employee, has three attributes, and one of these attributes (ssn, which is
underlined) is identified as the key of the relation. The second relation, Student, has
two attributes, and one of these (ssn, which is underlined) is identified as the key.
The domain calculus formula

{〈name〉 | (salary ∈ Employee) ∧ (name ∈ Employee) ∧
(ssn ∈ Employee) ∧ (salary < 1000) ∧
(gpa ∈ Student) ∧ (gpa > 3.7) ∧ (ssn ∈ Student))}

corresponds to the query “find all student employees whose GPAs are greater than
3.7 and salaries are less than 1000 and return their names.”

A tuple relational calculus query, on the other hand, is of the form 〈t | ftuple(t)〉,
where t is a tuple variable and ftuple(t) is a logic formula specified using the same
logic operators as the domain calculus formulas and atoms of the form

� R(v), which returns true if the value of the tuple variable v is in relation R, and
� (v.a op u.b) or (v.a op constant), where v and u are two tuple variables, a and b

are two attribute names, and op is a comparison operator, such as = or <.

The two relational calculi are equivalent to each other in their expressive power;
that is, one can formulate the same query in both languages. For example,

{t.name | ∃t∃t2 Employee(t) ∧ (t.salary < 1000) ∧
Student(t2) ∧ (t2.gpa > 3.7) ∧ (t.ssn = t2.ssn)}

is a tuple calculus formulation of the preceding query.
The subset of these languages that returns finite number of tuples is referred to

as the safe relational calculus and, because infinite results to a given query are not
desirable, DBMSs use languages that are equivalent to this subset. The most com-
monly used relational ad hoc query language, SQL [SQL-99, SQL-08], is largely
based on the tuple relational calculus. SQL queries have the following general
structure:

select <attribute_list>
from <relation_list>
where <condition>

For instance, the foregoing query can be formulated in SQL as follows:

select t.name
from employee t, student t2
where (t.salary < 1000) and

(t2.gpa > 3.7) and
(t.ssn = t2.ssn)

Note the similarity between this SQL query and the corresponding tuple calculus
statement.
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Relational Algebra for Query Processing
Whereas the relational calculus gives rise to declarative query languages, an

equivalent algebraic language, called relational algebra, gives procedural (or exe-
cutional) semantics to the queries written declaratively. The relational algebra for-
mulas are specified by combining relations using the following relational operators:

� selection (σ): Given a selection condition, �, the unary operator σ�(R) selects
and returns all tuples in R that satisfy the condition �.

� projection (π): Given a set, A, of attributes, the unary operator πA(R) returns
a set of tuples, where each tuple corresponds to a tuple in R constrained to the
attributes in the set A.

� Cartesian product (×): Given two relations R1 and R2, the binary operator R1 ×
R2 returns the set of tuples

{t, u|t ∈ R1 ∧ u ∈ R2}.
In other words, tuples from R1 and R2 are pairwise combined.

� set union (∪): Given two relations R1 and R2 with the same set of attributes,
R1 ∪ R2 returns the set of tuples

{t |t ∈ R1 ∨ t ∈ R2}.
� set difference (\): Given two relations R1 and R2 with the same set of attributes,

R1 \ R2 returns the set of tuples

{t |t ∈ R1 ∧ t �∈ R2}.

This set of primitive relational operations is sometimes expanded with others,
including

� rename (ρ): Given two attribute names a1 and a2, the unary operator ρa1/a2 (R)
renames the attribute a1 of relation R as a2.

� aggregation operation (�): Given a condition expression, θ, a function f (such
as count, sum, average, and maximum), and a set, A, of attributes, the unary
operator θ�f,A(R) returns

f ({t[A]|t ∈ R ∧ θ(t)}).
� join (�): Given a condition expression, θ, R1 �θ R2 is equivalent to σθ(R1 × R2).

The output of each relational algebra statement is a new relation.
Query execution in relational databases is performed by taking a user’s ad hoc

query, specified declaratively in a language (such as SQL) based on relational cal-
culus, and translating it into an equivalent relational algebra statement, which es-
sentially provides a query execution plan. Because, in general, a given declarative
query can be translated into an algebraic form in many different (but equivalent)
ways, a relational query optimizer is used to select a query plan with small query
execution cost. For example, the preceding query can be formulated in relational
algebra either as

πname(σgpa>3.7(σsal<1000(Employee �Employee.ssn=Students.ssn Students)))
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or, equivalently, as

πname((σgpa>3.7(Students)) �Students.ssn=Employee.ssn (σsal<1000(Employee))).

It is the responsibility of the query optimizer to pick the appropriate query execution
plan.

Summary
Today, relational databases enjoy significant dominance in the DBMS market

due to their suitability to many application domains (such as banking), clean and
well-understood theory, declarative language support, algebraic formulation that
enables query execution, and simplicity (of the language as well as the data struc-
tures) that enables effective (though not always efficient) query optimization.

The relational model is close to being a physical model: the tabular form of the
relations commonly dictates how the relations are stored on the disk, that is, one
row at a time, though other storage schemes are also possible. For example, column-
oriented storage [Daniel J. Abadi, 2008; Stonebraker et al., 2005] may be more de-
sirable in data analysis applications where people commonly fetch entire columns
of large relations.

2.1.3 Object-Oriented and Object-Relational Models

As we mentioned previously, a major advantage of the relational model is its the-
oretical simplicity. Although this simplicity helps the database management system
optimize the services it delivers and makes the DBMS relatively easy to learn and
use, on the negative side, it may also prevent application developers from captur-
ing the full complexities of the real-world applications they develop. In fact, rela-
tional databases are not computationally complete: although one can store, retrieve,
and perform a very strictly defined set of computations, for anything complex (such
as analyzing an image) there is a need for a host language with higher expressive
power. Object-oriented data models, on the other hand, aim to be rich enough in
their expressive power to capture the needs of complex applications more easily.

Objects, Entities, and Encapsulation
Object-oriented models [Atkinson et al., 1989; Maier, 1991], such as ER [Chen,

1976], Extended ER [Gogolla and Hohenstein, 1991], ODMG [ODMG], and
UML [UML], model real-world entities, their methods/behaviors, and their rela-
tionships explicitly, not through tables and foreign keys. In other words, OODBs
map real world entities/objects to data structures (and associate unique identifiers
to each one of them1), their behaviors to functions, and relationships to object ref-
erences between separate entities (Figure 2.2). Each object has a state (the value
of the attributes); each object also has a set of (methods/interfaces) pairs to mod-
ify or manipulate the state. Consequently, object-oriented databases provide higher
computational power: the users can implement any function and embed it into the

1 Whereas the keys of a relation uniquely identify rows only in the corresponding relation, the unique
object identifiers identify the objects in the entire database.
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Employee

Salary
JobDescription

Promoted()
Demotes()
ChangeSalary()

Person

SSN
Name
Address

changeAddress()

Employer

companyName
Address

ChangeAddress()
works-for

is-a

Figure 2.2. A simple object-oriented data schema created using the UML syntax. Rectangles
denote the entities, and each entity has a set of attributes and functions (or behaviors) that
alter the values of these attributes. The edges between the entities denote relationships
between them (the IS-A relationship is a special one in that it allows inheritance of attribute
and functions: in this example, the employee entity would inherit the attributes and functions
of the person entity).

database as a behavior of an entity. These functions can then be used in queries. For
example,

SELECT y.author
FROM Novel y
WHERE y.isabout(‘‘war’’).

is a query posed in an object-oriented query language, OQL [Cattell and Barry,
2000]. In this example, isabout() is a user-defined function associated with objects of
type Novel. Given a topical keyword, it checks whether the novel is about that topic
or not, using content analysis techniques.

Object-oriented models also provide ways to describe complex objects and ab-
stract data types. Each object, except for the simplest ones, has a set of attributes and
(unlike relational databases where attributes can only contain values) each attribute
can contain another object, a reference to an object, or a set of other objects. Con-
sequently, object-oriented models enable creation of aggregation hierarchies where
complex objects are built by aggregating simpler objects (Figure 2.3(a)). Objects
that share the same set of attributes and methods are grouped together in classes.
Although each object belongs to some class, objects can migrate from one class to
another. Also, because each object has a unique ID, references between objects can
be implemented through explicit pointers instead of foreign keys. This means that
the user can navigate from one object to another, without having to write queries
that, when translated into relational algebra, need entire relations to be put together
using costly join operators.

Object-oriented data models also provide inheritance hierarchies, where one
type is a superclass or supertype of the other and where the attributes and meth-
ods (or behaviors) of a superclass can be inherited by a subclass (Figure 2.3(b)).
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(a) (b)

Figure 2.3. (a) A multimedia aggregation hierarchy and (b) a sample inheritance hierarchy (As
stand for the attributes and Ms stand for the methods or functions).

This helps application developers define new object types by using existing ones.
Figure 2.4 shows an example extended entity-relationship (EER) schema for a
X3D/VRLM database. The schema describes the relevant objects, attributes, and
relationships, as well as the underlying inheritance hierarchy.

Object-Relational Databases
Object-oriented data models are much higher level than relational models in

their expressive power; thus they can be considered almost as conceptual models.
This means that application developers can properly express the data needs of their
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ID Name Path
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Name
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ID String
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Figure 2.4. A sample extended entity-relationship (EER) schema for a X3D/VRLM database.
This schema describes the relevant entities (i.e., objects), their attributes, relationships, and
inheritance hierarchies.
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applications. Unfortunately, this also means that (because object-oriented models
are further away from physical models) they are relatively hard to optimize and, for
many users, harder to master.

Object-relational databases [Stonebraker et al., 1990] (also referred to as
extended-relational databases) aim to provide the best of both worlds, by either ex-
tending relational models with object-oriented features or introducing special row
(tuple) and table based data types into object-oriented databases. For example, the
SQL3 standard [SQL3, a,b] extends standard SQL with object-oriented features, in-
cluding user-defined complex, abstract data types, reference types, collection types
(sets, lists, and multisets) for creating complex objects, user-defined methods and
functions, and support for large objects.

2.1.4 Semi-Structured Models

Semi-structured data models, which were popularized by OEM [Papakonstantinou
et al., 1995] and which gained wider audience by the introduction of XML [XML],
aim to provide greater flexibility in the structure of the data. A particular challenge
posed by the relational and object-oriented (as well as object-relational) models is
that, once the schema is fixed, objects that do not satisfy the schema are not allowed
in the database. Although this ensures greater consistency and provides opportu-
nities for more optimal usage of the system resources, imposing the requirement
that all data need to have a schema has certain shortcomings. First of all, we might
not know the schema of the objects in the database in advance. Second, even if the
schemas of the objects are known in advance, the structures of different objects may
be different from each other. For example, some objects may have missing attributes
(a book without any figures, for example), or attributes may repeat an unspecified
number of times (e.g., one book with ten figures versus another with fifty).

Semi-structured data models try to address these challenges by (a) providing a
flexible modeling language (which easily handles missing attributes and attributes
that repeat an arbitrary number of times, as well as disjunction (i.e., alternatives)
in the data schema) and by (b) eliminating the requirement that the objects in the
database will all follow a given schema. That is why semi-structured data models are
sometimes referred to as schemaless or self-describing data models, as well.

Extensible Markup Language (XML) is a data exchange standard [XML] espe-
cially suitable for creating interchangeable, structured Web documents. In XML, the
document structure is defined using BNF-like document type definitions (DTDs)
that can be very flexible in terms of the structures that are allowable. For example,
the following XML DTD

<!ELEMENT article title, (section+)>
<!ATTLIST article venue CDATA #REQUIRED>
<!ELEMENT section (title,(subsection| CDATA )+)>
<!ELEMENT subsection (title,(subsubsection| CDATA )+)>
<!ELEMENT subsubsection (title, CDATA)>
<!ELEMENT title CDATA>
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states that

� an article consists of a title and one or more sections;
� all articles have a corresponding publication venue (or character sequence, i.e.,

CDATA);
� each section consists of a title and one or more subsections or character se-

quences;
� each subsection consists of a title and one or more subsubsections or character

sequences;
� each subsubsection consists of a title and character sequence; and
� title is a character sequence.

Furthermore, the XML standard does not require XML documents to have DTDs;
instead each XML document describes itself using tags. For example, the following
is an XML document:

<book>
<authors>

<author>K. Selcuk Candan</author>
<author>Maria Luisa Sapino</author>

</authors>
<title>
Multimedia Data Management Systems
</title>

...
</book>

Note that even though we did not provide a DTD, the structure of the document
is self-evident because of the use of open and close tags (such as 〈author〉 and
〈/author〉, respectively) and the hierarchically nested nature of the elements. This
makes the XML standard a suitable platform for semi-structured data description.

OEM is very similar to XML in that it also organizes self-describing objects in
the form of a hierarchical structure. Note that, although both OEM and XML allow
references between any elements, the nested structure of the objects makes them
especially suitable for describing tree-structured data.

Because in semi-structured data models the structure is not precise and is not
necessarily given in advance,

� users may want to ask queries about the structure;
� the system may need to evaluate queries without having precise knowledge

of the structure;
� the system may need to evaluate queries without having any prior knowledge

of the structure; and
� the system may need to answer queries based on approximate structural

matching.
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Figure 2.5. A basic relationship graph fragment; intuitively, each node in the graph asserts
the existence of a distinct concept, and each edge is a constraint that asserts a relationship
(such as IS-A).

These make management of semi-structured data different from managing rela-
tional or object-oriented data.

2.1.5 Flexible Models and RDF

All of the preceding data models, including semi-structured models, impose cer-
tain structural limitations on what can be specified and what cannot in a particular
model. OEM and XML, for example, are better suited for tree-structured data. A
most general model would represent a database, D, in the form of (a) a graph, G,
capturing the concept/entities and their relationships (Figure 2.5) and (b) associated
integrity constraints, IC, that describe criteria for semantic correctness. Resource
Description Framework (RDF [Lassila and Swick, 1999]) provides such a general
data model where, much as in object-oriented models, entities and their relation-
ships can be described. RDF also has a class system much like many object-oriented
programming and modeling systems. A collection of classes is called a schema. Un-
like traditional object-oriented data models, however, the relationships in RDF are
first class objects, which means that relationships between objects may be arbitrarily
created and can be stored separately from the objects. This nature of RDF is very
suitable for the dynamically changing, distributed, shared nature of multimedia doc-
uments and the Web.

Although RDF was originally designed to describe Web resources, today it is
used for describing all types of data resources. In fact, RDF makes no assumption
about a particular application domain, nor does it define the semantics of any par-
ticular application domain. The definition of the mechanism is domain neutral, yet
the mechanism is suitable for describing information about any domain. An RDF
model consists of three major components:

� Resources: All things being described by RDF expressions are called resources.
� Properties: A property is a specific aspect, characteristic, attribute, or relation

used to describe a resource. Each property has a specific meaning and defines its
permitted values, the types of resources it can describe, and its relationship with
other properties.

� Statements: A specific resource together with a property plus the value of that
property for that resource is an RDF statement (also called an RDF triple). The
three individual parts of a statement are called the subject, predicate, and object
of the statement, respectively.
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University
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Figure 2.6. A complex RDF statement consisting of three RDF triples.

Let us consider the page http://www.asu.edu (home page of the Arizona State Uni-
versity – ASU) as an example. We can see that this resource can be described using
various page-related content-based metadata, such as title of the page and keywords
in the page, as well as ASU-related semantic metadata, such as the president of ASU
and its campuses. The statement “the owner of the Web site http://www.asu.edu is
Arizona State University” can be expressed using an RDF, this statement consisting
of (1) a resource or subject (http://www.asu.edu), (2) a property name or predicate
(owner), and (3) a resource (university 1) corresponding to ASU (which can be fur-
ther described using appropriate property names and values as shown in Figure 2.6).
The RDF model intrinsically supports binary relations (a statement specifies a re-
lation between two Web resources). Higher arity relations have to be represented
using multiple binary relations.

Some metadata (such as property names) used to describe resources are gener-
ally application dependent, and this can cause difficulties when RDF descriptions
need to be shared across application domains. For example, the property location
can be called in some other application domain an address. Although the seman-
tics of both property names are the same, syntactically they are different. On the
other extreme, a property name may denote different things in different application
domains. In order to prevent such conflicts and ambiguities, the terminology used
by each application domain can be identified using namespaces. A namespace can
be thought of as a context or a setting that gives a specific meaning to what might
otherwise be a general term.

It is frequently necessary to refer to a collection of resources: for example, to
the list of courses taught in the Computer Science Department, or to state that a
paper is written by several authors. To represent such groups, RDF provides con-
tainers to hold lists of resources or literals. RDF defines three types of container
objects to facilitate different groupings: a bag is an unordered list of resources or
literals, a sequence is an ordered list of resources or literals, and an alternative is
a list of resources or literals that represent alternatives for the (single) value of a
property.

In addition to making statements about a Web resource, RDF can also be used
for making statements about other RDF statements. To achieve this, one has to
model the original statement as a resource. In other words, the higher order state-
ments treat RDF statements as uniquely identifiable resources. This process is called
reification, and the statement is called a reified statement.
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2.2 MULTIMEDIA DATA MODELING

Note that any one or combination of the foregoing models can be used for develop-
ing a multimedia database. Naturally, the relational data model is suitable to de-
scribe the metadata associated with the media objects. The object-oriented data
model is suitable for describing the application semantics of the objects properly.
The content of a complex-media object (such as a multimedia presentation) can
be considered semi-structured or self-describing as different presentations may be
structured differently and, essentially, the relevant structure is prescribed by the au-
thor of the presentation in the presentation itself. Lastly, each media object can be
interpreted at a semantic level, and this interpretation can be encoded using RDF.

On the other hand, as we will see, despite their diversity and expressive pow-
ers, the foregoing models, even when used together, may not be sufficient for de-
scribing media objects. Thus, new models, such as fuzzy, probabilistic, vector-based,
sequence-based, graph-based, or spatiotemporal models, may be needed to handle
them properly.

2.2.1 Features

The set of properties (or features) used for describing the media objects in a given
database is naturally a function of the media type. Colors, textures, and shapes are
commonly used to describe images. Time and motion are used in video databases.
Terms (also referred to as keywords) are often used in text retrieval. The features
used for representing the objects in a given database are commonly selected based
on the following three criteria:

� Application requirements: Some image database applications rely on color
matching, whereas in some other applications, texture is a better feature to rep-
resent the image content.

� Power of discrimination: Because the features will be used during query process-
ing to distinguish those objects that are similar to the user’s query from those that
are different from it, the features that are selected must be able to discriminate
the objects in the database.

� Human perception: Not all features are perceived equivalently by the user. For
example, some colors are perceived more strongly than the others by the human
eye [Kaiser and Boynton, 1996]. The human eye is also more sensitive to contrast
then colors in the image [Kaiser and Boynton, 1996].

In addition, the query workload (i.e., which features seem to be dominant in user
queries) and relevance feedback (i.e., which features seem to be relevant to a partic-
ular user or user groups) need also be considered. We will consider feature selection
in Section 4.2 and relevance feedback in Chapter 12.

2.2.2 Distance Measures and Metrics

It is important to note that measures used for comparing media objects are critical
for the efficiency and effectiveness of a multimedia retrieval system. In the following
chapters, we discuss the similarity/distance measures more extensively and discuss
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efficient implementation and indexing strategies based on these measures. Although
these measures are in many cases application and data model specific, there are cer-
tain properties of these measures that transcend the data model and media type. For
instance, given two objects, o1 and o2, a distance measure, � (used for determining
how different these two objects are from each other), is called metric if it has the
following properties:

� Distances are non-negative: �(o1, o2) ≥ 0
� Distance is zero if and only if the two objects are identical: (�(o1, o2) = 0) ↔

o1 = o2

� Distance function is symmetric: �(o1, o2) = �(o2, o1)
� Distance function satisfies triangular inequality: �(o1, o3) ≤ �(o1, o2) +

�(o2, o3)

Although not all measures are metric, metric measures are highly desirable. The
first three properties of the metric distances ensure consistency in retrieval. The last
property, on the other hand, is commonly exploited to prune the search space to
reduce the number of objects to be considered for matching during retrieval (Sec-
tion 7.2). Therefore, we encourage you to pay close attention to whether the mea-
sures we discuss are metrics or not.

2.2.3 Common Representations: Vectors, Strings, Graphs, Fuzzy
and Probabilistic Representations

As we discussed in Section 1.1, features of interest of multimedia data can be diverse
in nature (from low-level content-based features, such as color, to higher-level se-
mantic features that require external knowledge) and complex in structure. It is,
however, important to note that the diversity of features and feature models does
not necessarily imply a diversity, equivalent in magnitude, in terms of feature repre-
sentations. In fact, in general, we can classify the representations common to many
features into four general classes:

� Vectors: Given n independent properties of interest to describe multimedia ob-
jects, the vector model associates an n-dimensional vector space, where the ith
dimension corresponds to the ith property. Intuitively, the vector describes the
composition of a given multimedia data object in terms of its quantifiable prop-
erties. Histograms, for example, are good candidates for being represented in
the form of vectors. We discuss the vector model in detail in Section 3.1.

� Strings/Sequences: Many multimedia data objects, such as text documents, audio
files, or DNA sequences, are essentially sequences of symbols from a base al-
phabet. In fact, as we see in Section 2.3.6.4, strings and sequences can even be
used to represent more complex data, such as spatial distribution of features, in
a more compact manner. We discuss string/sequence models in Section 3.2.

� Graphs/Trees: As we have seen in the introduction section, most complex media
objects, especially those that involve spatiotemporal structures, object composi-
tion hierarchies, or object references and interaction pathways (such as hyper-
links), can be modeled as trees or graphs. We revisit graph and tree models in
Section 3.3.
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� Fuzzy and probabilistic representations: Vectors, strings/sequences, and graphs/
trees all assume that the media data have an underlying precise structure that
can be used as the common basis of representation. Many times, however, the
underlying regularity may be imprecise. In such a case, fuzzy or probabilistic
models may be more suitable. We discuss fuzzy models for multimedia in Sec-
tion 3.4 and probabilistic models in Section 3.5, respectively.

In the rest of this section, we introduce and discuss many commonly used content
features, including colors, textures, and shapes, and structural features, such as spa-
tial and temporal models. We revisit the common representations and discuss them
in more detail in Chapter 3.

2.3 MODELS OF MEDIA FEATURES

The low-level features of the media are those that can be extracted from the media
object itself, without external domain knowledge. In fact, this is not entirely correct.
However low level a feature is, it still needs a model within which it can be repre-
sented, interpreted, and described. This model is critical: because of the finite nature
of computational devices, each feature instance is usually allocated a fixed, and usu-
ally small, number of bits. This means that there is an upper bound on the number
of different feature instances one can represent. Thus, it is important to choose a
feature model that can help represent the space of possible (and relevant) feature
instances as precisely as possible. Furthermore, a feature model needs to be intuitive
(especially if it is used for query specification) and needs to support computation of
similarity and/or distance values between different feature instances for similarity-
based query processing. Because basic knowledge about commonly used low-level
media features can help in understanding the data structures and algorithms that
multimedia databases use to leverage them, in this section we provide an overview
of the most common low-level features, such as color, texture, and shape. Higher
level features, such as spatial and temporal models, are also discussed.

2.3.1 Color Models

A color model is a quantitative representation of the colors that are relevant in an
application domain. For the applications that involve human vision, the color model
needs to represent the colors that the human eye can perceive.

The human eye, more specifically the retina, relies on so-called rods and cones to
perceive light signals. Rods help with night vision, where the light intensity is very
low. They are able to differentiate between fine variations in the intensity of the
light (i.e., the gray levels), but cannot help with the perception of color. The cones,
on the other hand, come into play when the light intensity is high. The three types of
cones, R, G, B, each perceive a different color, red, green, and blue, respectively.2

Therefore, color perception is achieved by combining the intensities recorded by
these three different base colors.

2 The human eye is least sensitive to blue light.
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Figure 2.7. The RGB model of color.

RGB Model
Most recording systems (cameras) and display systems (monitors) use a similar

additive mechanism for representing color information. In this model, commonly
referred to as the RGB model, each color instance is represented as a point in a
three-dimensional space, where the dimensions correspond to the possible intensi-
ties of the red, blue, and green light channels. As shown in Figure 2.7, the origin
corresponds to the lack of any color signal (i.e., black), whereas the diagonal corner
of the resulting cube corresponds to the maximum signal levels for all three channels
(i.e., white). The diagonal line segment connecting the origin of the RGB color cube
to the white corner has different intensities of light with equal contributions from
red, green, and blue channels and, thus, corresponds to different shades of gray.

The RGB model is commonly implemented using data structures that allocate
the same number of bits to each color channel. For example, a 3-byte representa-
tion of color, which can represent 224 different color instances, would allocate 1 byte
each to each color channel and thus distinguish 256 (including 0) intensities of pure
red, green, and blue. An image would then be represented as a two-dimensional
matrix, where each cell in the dimension contains a 24-bit color instance. These
cells are commonly referred to as pixels. Given this representation, a 1,000 × 1,000
image would require 24 × 1,000 × 1,000 bits or 3 million bytes. When the space
available for representing (storing or communicating) images of this size is not as
large, the number of bits allocated for each pixel needs to be brought down.

This can be achieved in different ways. One solution is to reduce the precision of
the color channels. For example, if we allocate 4 bits per color channel as opposed
to 8 bits, this would mean that we can now represent only 23×4 = 212 = 4,096 differ-
ent color instances. Although this might be a sufficient number of distinct colors to
paint an image, because the color cube is partitioned regularly under the foregoing
scheme, this might actually be wasteful. For example, consider an image of the sea
taken on a bright day. This picture would be rich in shades of blue, whereas many
colors such as red, brown, and orange would not necessarily appear in the image.
Thus, a good portion of the 4,096 different colors we have might not be of use, while
all the different shades of blue that we would need might be clustered under a single
color instance, thus resulting in an overall unpleasant and dull picture.

An alternative scheme to reduce the number of bits needed to represent color
instances is to use a color table. A color table is essentially a lookup table that maps
from a less precise color index to a more precise color instance. Let us assume that
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we can process all the pixels in an image to identify the best 4,096 distinct 24-bit
colors (mostly shades of the blue in the preceding example) needed to paint the pic-
ture. We can put these colors into an array (i.e., a lookup table) and, for each pixel in
the image, we can record the index of the corresponding color instance in the array
(as opposed to the 24-bit representation of the color instance itself). Whenever this
picture is to be displayed, the display software (or hardware) can use the lookup ta-
ble to convert the color indexes to the actual 24-bit RGB color instances. This way,
at the expense of an extra 4,096 × 3 � 12,000 bytes, we can obtain a detailed and
pleasant-looking picture. A commonly used algorithm for color table generation is
the median-cut algorithm, where the R, G, and B channels of the image are consid-
ered in a round-robin fashion and the color table is created in a hierarchical manner:

(i) First, all the R values in the entire image are sorted, the median value
is found, and all color instances3 with R values smaller than this median
are brought together under index “0” and all color instances with R values
larger than the median are collected under index “1”.

(ii) Then, the resulting two clusters (indexed “0” and “1”) of color instances are
considered one at a time and the following is performed for both X = 0 and
X = 1.
� Let the current cluster index be “X”. In this step, the median value for

the color instances in the given cluster is found, and all color instances
with G values smaller than this median are brought together under index
“X0” and all color instances with G values larger than the median are
collected under index “X1”.

(iii) Next, the four resulting clusters (indexed “00”, “01”, “10”, and “11”) are
considered (and each partitioned into two with respect to B values) one-by-
one.

(iv) The above steps are repeated until the required number of clusters are
obtained.

Through the foregoing process, the color indexes are built one bit at a time by
splitting the color instances into increasingly finer color clusters. The process is
continued until the length of the color index matches the application requirements.
For instance, in the previous example, the min-cut partitioning will be repeated to
the depth of 12 (i.e., each one of the R, G, B channels contributes to the partitioning
decision on four different occasions).

A third possible scheme one can use for reducing the number of bits needed to
encode the color instances is to rely on the properties of human perception. As we
mentioned earlier, the eye is not as sensitive to all color channels equally. Some col-
ors are more critical in helping differentiate objects than others.4 Therefore, these
colors need to be maintained more precisely (i.e., using a higher number of bits)
than the others which may not contribute much to perception. We discuss this next.

3 Nondistinct: that is, if the same color instance occurs twice in the image, then the color instance is
counted twice.

4 In fact, in Section 4.2, we discuss the use of this “ease-of-perception” property of the features in
indexing.
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YRB, YUV, and YIQ Models
It is known that the human eye is more sensitive to contrast than to color. There-

fore, a color model that represents grayscale (or luminance) as an explicit compo-
nent, rather than a combination of RGB, could be more effective in creating reduced
representations without negatively affecting perception. The luminance or the
amount of light (Y) in a given RGB-based color instance is computed as follows:

Y = 0.299R + 0.587G + 0.114B.

This reflects the human eye’s color and light perception characteristics: the blue
color contributes less to the perception of light than red, which itself contributes
less than green.

Given the luminance component, Y, and two of the existing RGB channels, say
R and B, we can create a new color space YRB that can represent the same colors as
the RGB, except that when we need to reduce the size of the bit representation, we
can favor cuts in the number of bits of the R and B color components and preserve
the Y (luminance) component intact to make sure that the user is able to perceive
contrast well.

An alternative representation, YUV, subtracts the luminance component from
the color components (and scales the result appropriately):

U = 0.492(B − Y)

V = 0.877(R − Y)

This ensures that a completely black-and-white picture has no R and B components
that need to be stored or communicated through networks. In contrast, the U and V
components reflect the chrominance of the corresponding color instance precisely.

Further studies showed that the human eye does not prefer either U (blue
minus luminance) or V (red minus luminance) strongly against the other. On the
other hand, the eye is shown to be less sensitive to the differences in the purple-
green color range as opposed to the differences in the orange-blue color range. Thus,
if these purple-green and orange-blue components can be used instead of the UV
components, this can give a further opportunity for reducing the bit representation,
without much affecting the human perception of the overall color instance. This is
achieved simply by rotating the U and V components by 33◦:

I = −0.492(B − Y)sin33◦ + 0.877(R − Y)cos33◦

Q = 0.492(B − Y)cos33◦ + 0.877(R − Y)sin33◦

In the resulting YIQ model of color, the eye is least sensitive to theQ component
and most sensitive to the Y component (Figure 2.8).

CIE, CIELAB, and HSV
The YUV and YIQ models try to leverage the human eye’s properties to sepa-

rate dimensions that contribute most to the color perception from those that con-
tribute less.

The CIELAB model, on the other hand, relies on the characteristics of the hu-
man perception to shape the color space. In particular, the CIELAB model relies on
Weber’s law (also known as the Weber–Fechner law) of perception of stimuli. This
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Figure 2.8. The relationship between UV and IQ chrominance components. See color plates
section.

law, dating to the middle of the nineteenth century, observes that humans perceive
many types of stimuli, such as light and sound, in logarithmic scale. More specifi-
cally, the same amount of change in a given stimulus is perceived more strongly if
the original value is lower.

The CIELAB model builds upon a color space called CIE, consisting of three
components, X, Y, and Z. One advantage of the CIE over RGB is that, as in the
YUV and YIQ color models, the Y parameter corresponds to the brightness of a
given color instance. Furthermore, the CIE space covers all the chromaticities vis-
ible to the human eye, whereas the RGB color space cannot do so. In fact, it has
been shown that no three-light source can cover the entire spectrum of chromatici-
ties described by CIE (and perceived by the human eye).

The CIELAB model transforms the X, Y, and Z components of the CIE model
into three other components, L, a, and b, in such a way that in the resulting Lab
color space, any two changes of equal amplitude result in an equal visual impact.5

In other words, the distance in the space quantifies differences in the perception of
chromaticity and luminosity (or brightness); i.e., the Euclidean distance,√

(L1 − L2)2 + (a1 − a2)2 + (b1 − b2)2,

between color instances 〈L1, a1, b1〉 and 〈L2, a2, b2〉 gives the perceived different be-
tween them. Given X, Y, Z components of the CIE model and given the color in-
stance 〈Xw, Yw, Zw〉 corresponding to the human perception of the white color, the
L, a, and b, components of the CIELAB color space are computed as follows:

L = 116 f
(

Y
Yw

)
− 16

a = 500
[

f
(

X
Xw

)
− f

(
Y

Yw

)]

b = 200
[

f
(

Y
Yw

)
− f

(
Z

Zw

)]
,

5 There is a variant of this model, where two other components, a∗ and b∗, are used instead of a and b.
We ignore the distinction and the relevant details.
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(a) (b)

<Scene>
<Transform translation=’-1 0 -6’>
<Shape>
<Appearance>

<Material
ambientIntensity=’0.800’
shininess=’0.800’
diffuseColor=’3 0 0’/>

</Appearance>
<Box size=’1 1 1’/>
</Shape>
</Transform>
<Transform translation=’-3 0 -6’>

<Transform rotation=’3 1 3 3’>
<Shape>
<Appearance>

<Material
ambientIntensity=’0.800’
shininess=’0.600’
diffuseColor=’0 0 1’/>

</Appearance>
<Cone height=’2.000’ bottomRadius=’1.000’/>

</Shape>
</Transform>

</Transform>
<Viewpoint

fieldOfView=’1’
position=’-5 -1 1’
orientation=’-0.2 -0.2 -0.7 -.4’/>

</Scene>

(c)

Figure 1.1. An X3D world with two shape objects and the XML-based code for its hierarchical
scene graph: (a) X3D world, (b) scene graph, (c) X3D code.

Figure 1.3. Any media object can be seen as a collection of channels of information; some
of these information channels (such as color and shape) are low-level (can be derived from
the media object), whereas others (such as semantic labels attached to the objects by the
viewer) are higher level (cannot be derived from the media object without external knowledge).



Figure 1.12. The system feedback feature of the SEMCOG multimedia retrieval system [Li
and Candan, 1999a]: given a user query, SEMCOG can tell the user how the data in the
database are distributed with respect to various query conditions.
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Figure 2.8. The relationship between UV and IQ chrominance components.
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Figure 2.9. (a) The CIELAB model of color and (b) the hexconic HSV color model.
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Figure 2.10. A color histogram example (only the dimensions corresponding to the “red” and
“blue” color dimensions are shown). (a) According to this histogram there are 46,274 pixels
in the image that fall in the ranges of [51, 101] in terms of “red” and [153, 203] in terms
of “blue” color. (b) In the array or vector representation of this histogram, each position
corresponds to a pair of red and blue color ranges.



(a) (b) (c)

(d) (e) (f)

Figure 2.11. (a) A relatively smooth and directional texture; (b) a coarse and granular texture;
(c) an irregular but fractal-like (with elements self-repeating at different scales) texture; (d) a
regular, nonsmooth, periodic texture; (e) a regular, repeating texture with directional elements;
and (f) a relatively smooth and uniform texture.

(a) (b)

Figure 2.13. (a) Mountain ridges commonly have self-repeating triangular shapes. (b) This is
a fragment of the texture in Figure 2.11(c).

(a) (b) (c) (d)

Figure 2.16. Sample images with dominant shapes.



Figure 2.17. (a) An image with a single region. (b) Clustering-based segmentation uses
a clustering algorithm that identifies which pixels of the image are similar to each other
first, and then finds the boundary on the image between different clusters of pixels.
(c) Region growing techniques start from a seed and grow the region until a region boundary
with pixels with different characteristics is found (the numbers in the figure correspond to
the distance from the seed).

(a) (b)

Figure 2.18. (a) Gradient values for the example in Figure 2.17 and (b) the topographical
surface view (darker pixels correspond to the highest points of the surface and the lightest
pixels correspond to the watershed) – the figure also shows the quickest descent (or water
drainage) paths for two flood starting points.

(a) (b) (c)

Figure 2.19. (a) The eight direction codes. (b) (If we start from the leftmost pixel) the
8-connected chain code for the given boundary is “02120202226267754464445243.”
(c) Piecewise linear approximation of the shape boundary.



(a) (b)

Figure 2.20. (a) Time series representation of the shape boundary. The parameter t repre-
sents the angle of the line segment from the center of gravity of the shape to a point on the
boundary; essentially, t divides 360◦ to a fixed number of equi-angle segments. The resulting
x(t) and y(t) curves can be stored and analyzed as two separate time-dependent functions
or, alternatively, may be captured using a single-complex valued function z(t) = x(t) + iy(t).
(b) Bitmap representation of the same boundary.

Figure 2.44. The IFQ visual interface of the SEMCOG image and video retrieval system [Li and
Candan, 1999a]: the user is able to specify visual, semantic, and spatiotemporal predicates,
which are automatically converted into an SQL-like language for fuzzy query processing.



(a) (b)

(c) (d)

Figure 4.18. (a) Find two objects that are far apart to define the first dimension. (b) Project
all the objects onto the line between these two extremes to find out the values along this
dimension. (c) Project the objects onto a hyperplane perpendicular to this line. (d) Repeat
the process on this reduced hyperspace.

Figure 5.9. The NFA that recognizes the sequence “SAPINO” with a total of up to two insertion,
deletion, and substitution errors.



(a) (b)

Figure 7.4. (a) Row- and (b) column-order traversals of 2D space.

(a) (b)

Figure 7.5. (a) Row-prime- and (b) Cantor-diagonal-order traversals of 2D space.



(a) (b) (c)

Figure 7.6. Hilbert curve: (a) First order, (b) Second order, (c) Third order.

Figure 7.7. Z-order traversal of 2D space.
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(a) (b)

Figure 7.8. (a) A range query in the original space is partitioned into (b) two regions for
Z-order curve based processing on a 1D index structure.

(a) (b) (c)

(d) (e) (f)

Figure 8.5. Max-a-min approach: (a) given a number of clusters, first (b,c,d,e) leaders that are
sufficiently far apart from each other are selected, and then (f) the clustering is performed
using the single-pass scheme.
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Figure 12.1. User relevance feedback process.

(a) (b)

Figure 12.2. (a) A query and results and (b) the user’s relevance feedback.
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(a) (b)

(c) (d)

(e) (f)

Figure 12.3. Alternative mechanisms for relevance feedback based adaptation: (a) Query
rewriting, (b) query range modification, (c) modification of the distance function, (d) feature
reweighting, (e) feature insertion/removal, and (f) reclassification (the numbers next to the
matching data objects indicate their ranks in the result).
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Figure 2.9. (a) The CIELAB model of color and (b) the hexconic HSV color model. See color
plates section.

where

f (s) = s1/3 for s > 0.008856

f (s) = 7.787s + 16
116

otherwise.

The first thing to note in the preceding transformation is that the L, a, and b com-
ponents are defined with respect to the “white” color. In other words, the CIELAB
model normalizes the luminosities and chromaticities of the color space with respect
to the color instance that humans perceive as white.

The second thing to note is that L is a normalized version of luminosity. It takes
values between 0 and 100: 0 corresponds to black, and 100 corresponds to the color
that is perceived as white by humans. As in the YUV model, the a and b components
are computed by taking the difference between luminosity and two other color com-
ponents (normalized X and Z components in this case). Thus, a and b describe the
chromaticity of the color instance, where

√
a2 + b2 gives the total energy of chroma

(or the amount of color) and tan−1 b
a (i.e., the angle that the chroma components

form) is the hue of the color instance: when b = 0, positive values of a correspond
to red hue and negative values correspond to green hue; when a = 0, positive values
of b correspond to yellow and negative values correspond to blue (Figure 2.9(a)).

A similar color space, where the spectrum (value) of gray from black to white is
represented as a vertical axis, the amount of color (i.e., saturation) is represented as
the distance from this vertical, and the hue is represented as the angle, is the HSV
(hue, saturation, and value) color model. This color model is commonly visualized
as a cylinder, cone or hexagonal cone (hexcone, Figure 2.9(b)). Like CIELAB, the
HSV color space aims to be more intuitive and a better representative of the human
perception of color and color differences. Unlike CIELAB, which captures colors
in the XYZ color space, however, the HSV color model captures the colors in the
RGB color space.

Color-Based Image Representation Using Histograms
As we have seen, in almost all models, color instances are represented as com-

binations of three components. This, in a sense, reflects the structure of the human
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retina, where color is perceived through three types of cones sensitive to different
color components.

An image, then, can be seen as a two-dimensional matrix of color instances (also
called pixels), where each pixel is represented as a triple. In other words, if X, Y, Z
denote the sets of possible discrete values for each color component, then a digital
image, I, of w width and h height is a two-dimensional array, where for all 0 ≤
x ≤ w − 1 and 0 ≤ y ≤ h − 1, I[x, y] ∈ X × Y× Z. Matching two images based on
their color content for similarity-based retrieval, then, corresponds to comparing
the triples contained in the corresponding arrays.

One way to achieve this is to compare the two arrays (without loss of generality,
assuming that they are of the same size) by comparing the pixel pairs at the same
array location for both images and aggregating their similarities or dissimilarities
(based on the underlying color model) into a single score. This approach, however,
has two disadvantages. First of all, this may be very costly, especially if the images
are very large: for example, given a pair of 1,000 × 1,000 images, this would require
1,000,000 similarity/distance computations in the color space. A second disadvan-
tage of this is that pixel-by-pixel matching of the images would be good for looking
for almost-exact matches, but any image that has a slightly different composition
(including images that are slightly shifted or rotated) would be identified as mis-
matches.

An alternative representation that both provides significant savings in matching
cost and also reduces the sensitivity of the retrieval algorithms to rotations, shift,
and many other deformations is the color histogram. Given a bag (or multiset), B, of
values from a domain, D, and a natural number, n, a histogram partitions the values
in domain D into n partitions and, then, for each partition, records the number of
values in B that fall into the corresponding range. A color histogram does the same
thing with the color instances in a given image: given n partitions (or bins) of the
color space, the color histogram counts for each partition the number of pixels of
the image that have color instances falling in that partition. Figure 2.10 shows an
example color histogram and refers to its vector representation.

In Section 3.1, and later in Chapter 7, we discuss the vector model of media
data, how histograms represented as vectors can be compared against each other,
and how they can be efficiently stored and retrieved. Here, we note that a color
histogram is a compact and nonspatial representation of the color information. In
other words, the pixels are associated with the color partitions without any regard
to their localities; thus all the location information is lost in the process. In a sense,
the color histogram is especially useful in cases where the overall color distribution
of the given image is more important for retrieval than the spatial localities of the
colors.

2.3.2 Texture Models

Texture refers to certain locally dominant visual characteristics, such as direction-
ality (are the lines in the image pointing toward the same direction? which way
do the lines in the image point?), smoothness (is the image free from irregularities
and interruptions by lines?), periodicity (are the lines or other features occurring in
the image recurring with a predetermined frequency?), and granularity (sandiness,
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(a) (b)

Figure 2.10. A color histogram example (only the dimensions corresponding to the “red” and
“blue” color dimensions are shown). (a) According to this histogram there are 46,274 pixels
in the image that fall in the ranges of [51, 101] in terms of “red” and [153, 203] in terms
of “blue” color. (b) In the array or vector representation of this histogram, each position
corresponds to a pair of red and blue color ranges. See color plates section.

opposite of smoothness), of parts of an image (Figure 2.11). As a low-level feature,
texture is fundamentally different from color, which is simply the description of the
luminosity and chromaticity of the light corresponding to a single point, or pixel, in
an image.

The first major difference between color and texture is that, whereas it is pos-
sible to talk about the color of a single pixel, it is not possible to refer to the

(a) (b) (c)

(d) (e) (f)

Figure 2.11. (a) A relatively smooth and directional texture; (b) a coarse and granular texture;
(c) an irregular but fractal-like (with elements self-repeating at different scales) texture; (d) a
regular, nonsmooth, periodic texture; (e) a regular, repeating texture with directional elements;
and (f) a relatively smooth and uniform texture. See color plates section.
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(a) (b)

Figure 2.12. (a) Can you guess the luminosities of the missing pixels? (b) A random field
probabilistically relates the properties of pixels to spatially close pixels in the image: in
this figure, each node corresponds to a pixel, and each edge corresponds to a conditional
probability distribution that relates the visual property of a given pixel node to the visual
property of another one.

texture of a single pixel. Texture is a collective feature of a set of neighboring pixels
in the image. Second, whereas there are standard ways to describe color, there is
no widely accepted standard way to describe texture. Indeed, any locally dominant
visual characteristic (even color) can be qualified as a texture feature. Moreover,
being dominant does not imply being constant. In fact, a determining characteris-
tic for most textures is the fact that they are nothing but patterns of change in the
visual characteristics (such as colors) of neighboring pixels, and as thus, describing
a given texture (or the pattern) requires describing how these even lower-level fea-
tures change and evolve in the two-dimensional space of pixels that is the image.
As such textures can be described best by models that capture the rate and type of
change.

Random Fields
A random field is a stochastic (random) process, where the values generated

by the process are mapped onto positions on an underlying space (see Sections 3.5.4
and 9.7 for more on random processes and their use in classification). In other words,
we are given a space, and each point in the space takes a value based on an underly-
ing probability distribution. Moreover, the values of adjacent or even nearby points
also affect each other (Figure 2.12(a)). We can see that this provides a natural way
for defining texture. We can model the image as the stochastic space, pixels as the
points in this space, and the pixel color values as the values the points in the space
take (Figure 2.12(b)). Thus, given an image, its texture can be modeled as a ran-
dom field [Chellappa, 1986; Cross and Jain, 1983; Elfadel and Picard, 1994; Hassner
and Sklansky, 1980; Kashyap and Chellappa, 1983; Kashyap et al., 1982; Mao and
Jain, 1992]. Essentially, random field-based models treat the image texture as an in-
stance or realization of a random field. Conversely, modeling a given texture (or a
set of texture samples) involves finding the parameters of the random process that
is most likely to output the given samples (see Section 9.7 for more on learning the
parameters of random processes).

Fractals
As we further discuss in Section 7.1.1, a fractal is a structure that shows self-

similarity (more specifically, a fractal presents similar characteristics independent
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(a) (b)

Figure 2.13. (a) Mountain ridges commonly have self-repeating triangular shapes. (b) This is
a fragment of the texture in Figure 2.11(c). See color plates section.

of the scale; i.e., details at smaller scales are similar to patterns at the larger scales).
As such, fractals are commonly used in modeling (analysis and synthesis) of natural
structures, such as snowflakes, branches of trees, leaves, skin, and coastlines, which
usually show such self similarity (Figure 2.13). A number of works describe image
textures (especially natural ones, such as the surface of polished marble) using frac-
tals. Under this texture model, analyzing an image texture involves determining the
parameters of a fractal (or iterated function system) that will generate the image
texture by iterating a basic pattern at different scales [Chaudhuri and Sarkar, 1995;
Dubuisson and Dubes, 1994; Kaplan, 1999; Keller et al., 1989].

Wavelets
A wavelet is a special type of fractal, consisting of a mother wavelet function and

its scaled and translated copies, called daughter wavelets. In Section 4.2.9.2, we dis-
cuss wavelets in further detail. Unlike a general-purpose fractal, wavelets (or more
accurately, two-dimensional discrete wavelets) can be used to break any image into
multiple subimages, each corresponding to a different frequency (i.e., scale). Con-
sequently, wavelet-based techniques are suitable for studying frequency behavior
(e.g., change, periodicity, and granularity) of a given texture at multiple granu-
larities [Balmelli and Mojsilovic, 1999; Feng et al., 1998; Kaplan and Kuo, 1995;
Lumbreras and Serrat, 1996; Wu et al., 1999] (Figure 2.14).

Texture Histograms
Whereas texture has diverse models, each focusing on different aspects and char-

acteristics of the pixel structure forming the image, if we know the specific textures
we are interested in, we can construct a texture histogram by creating an array of
specific textures of interest and counting and recording the amount, confidence, or
area of these specific textures in the given image.

Because most textures can be viewed as edges in the image, an alternative to this
approach is to use edge histograms [Cao and Cai, 2005; Park et al., 2000]. An edge
histogram represents the frequency and the directionality of the brightness (or lumi-
nosity) changes in the image. Edge extraction operators, such as the Canny [Canny,
1986] or the Sobel [Sobel and Feldman, 1968], look for pixels corresponding to
significant changes in brightness and, for each identified pixel they report the
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x = 0 to x = 125 x = 0 to x = 125 x = 0 to x = 125

(a) original data (b) original data (c) original data

low freq. to high freq. low freq. to high freq. low freq. to high freq.

(d) wavelet signature (e) wavelet signature (f) wavelet signature

Figure 2.14. Wavelet-based texture signature for one-dimensional data. (a) Data with a high
frequency pattern have nonnegligible high-frequency values in its wavelet signature. (b) Data
with lower frequency, on the other hand, have highest values at low-frequency entries in the
corresponding wavelet signature. (c) If the data are composed of both low-frequency and
high-frequency components, the resulting signature has nonnegligible values for both low
and high frequencies. (All the plots are created using the online Haar wavelet demo available
at http://math.hws.edu/eck/math371/applets/Haar.html.)

magnitude and the direction of the brightness change. For example, the Sobel oper-
ator computes the convolution of the matrices

δx =

−1 0 +1
−2 0 +2
−1 0 +1


 and δy =


+1 +2 +1

0 0 0
−1 −2 −1




around each image pixel to compute the corresponding degree of change along the
x and y directions, respectively. Given δx and δy values for a pixel, the corresponding
magnitude of change (or gradient) can be computed as

√
δ2

x + δ2
y, and the angle of

the gradient (i.e., direction of change) can be estimated as tan−1
( δy

δx

)
(Figure 2.15).

Once the rate and direction of change is detected for each pixel, noise is elimi-
nated by removing those pixels that have changes below a threshold or do not have
pixels showing similar changes nearby. Then, the edges are thinned by maintain-
ing only those pixels that have large change rates in their immediate neighborhood
along the corresponding gradient. After these phases are completed, we are left with
those pixels that correspond to significant brightness changes in the image. At this
point, the number of edge pixels can be used to quantify the edginess or smoothness
of the texture. The sizes of clusters of edge points, on the other hand, can be used to
quantify the granularity of the texture.

Once the image pixels and the magnitudes and directions of their gradients are
computed, we can create a two-dimensional edge histogram, where one dimension
corresponds to the degree of change and the other corresponds to the direction of



2.3 Models of Media Features 45

(a)

100 x (-1) 0 x 10 x 0( )

0 x 2100 x (-2) 100 x 0

100 x 0 100 x 10 x (-1)

100 x 1

0 x0

0 x 10 x 2

100 x0 100 x 0

100 x (-2) 100 x ( -1)0 x (-1)

84.282)()−200 −200( 2 2 = + 

450

01  
45

−200

−200
tan =

 
 −1 0

(b) δx = −200 (c) δy = −200 (d)

Figure 2.15. Convolution-based edge detection on a given image: (a) the center of the edge
detection operator (small matrix) is aligned one by one with each and every suitable pixel in
the image. (b,c) For each position, the x and y Sobel operators are applied to compute δx

and δy. (d) The direction and length of the gradient to the edge at the given image point are
computed using the corresponding δx and δy.

change. In particular, we can count and record the number of edge pixels corre-
sponding to each histogram value range. This histogram can then be used to repre-
sent the overall directionality of the texture. Note that we can further extend this
two-dimensional histogram to three dimensions, by finding how far apart the edge
pixels are from each other along the change direction (i.e., gradient) and recording
these distances along the third dimension of the histogram. This would help capture
the periodicity of the texture, that is, how often the basic elements of the texture
repeat themselves.

2.3.3 Shape Models

Like texture, shape is a low-level feature that cannot be directly associated to a sin-
gle pixel. Instead it is a property of a set of neighboring pixels that help differentiate
the set of pixels from the other pixels in the image. Color and texture, for example,
are commonly used to help segment out shapes from their background in the given
image. The three sample images in Figures 2.16(a) through (c) illustrate this: in all
three cases, the dominant shapes have colors and textures that are consistent and
different from the rest of the image. Thus, in all three cases, color and texture can
be used to segment out the dominant shapes from the rest of the image. The sample
image in Figure 2.16(d), on the other hand, is more complex: although the dominant
human shape shows a marked difference in terms of color and texture from the rest
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(a) (b) (c) (d)

Figure 2.16. Sample images with dominant shapes. See color plates section.

of the image, the colors and textures internal to the shape are not self-consistent.
Therefore, a naive color- and texture-based segmentation process would not iden-
tify the human shape, but instead would identify regions that are consistently red,
white, brown, and so forth. Extracting the human shape as a consistent atomic unit
requires external knowledge that can help link the individual components, despite
their apparent differences, into a single human shape. Therefore, the human shape
may be considered as a high-level feature.

There are various approaches to the extraction of shapes from a given image.
We discuss a few of the prominent schemes next.

Segmentation
Segmentation methods identify and cluster together those neighboring image

pixels that are visually similar to each other (Figure 2.17). This can be done using
clustering (such as K-means) and partitioning (such as min-cut) algorithms discussed
later in Chapter 8 [Marroquin and Girosi, 1993; Tolliver and Miller, 2006; Zhang
and Wang, 2000]. A commonly used alternative is to grow homogeneous regions
incrementally, from seed pixels (selected randomly or based on some criteria, such
as having a color well-represented in the corresponding histogram) [Adams and
Bischof, 1994; Ikonomakis et al., 2000; Pavlidis and Liow, 1990].

(a) (b) (c)

Figure 2.17. (a) An image with a single region. (b) Clustering-based segmentation uses
a clustering algorithm that identifies which pixels of the image are similar to each other
first, and then finds the boundary on the image between different clusters of pixels.
(c) Region growing techniques start from a seed and grow the region until a region boundary
with pixels with different characteristics is found (the numbers in the figure correspond to
the distance from the seed). See color plates section.
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(a) (b)

Figure 2.18. (a) Gradient values for the example in Figure 2.17 and (b) the topographical
surface view (darker pixels correspond to the highest points of the surface and the lightest
pixels correspond to the watershed) – the figure also shows the quickest descent (or water
drainage) paths for two flood starting points. See color plates section.

Edge Detection and Linking
Edge linking–based methods observe that boundaries of the shapes are gener-

ally delineated from the rest of the image by edges. These edges can be detected
using edge detection techniques introduced earlier in Section 2.3.2. Naturally, edges
can be found at many places in an image, not all corresponding to region bound-
aries. Thus, to differentiate the edges that correspond to region boundaries from
other edges in the image, we need to link the neighboring edge pixels to each other
and check whether they form a closed region [Grinaker, 1980; Montanari, 1971;
Rosenfeld et al., 1969].

Watershed Transformation
Watershed transformation [Beucher and Lantuejoul, 1979] is a cross between

edge detection/linking and region growing. As in edge-detection–based schemes,
the watershed transformation identifies the gradients (i.e., degree and direction of
change) for each image pixel; once again, the image pixels with the largest gradi-
ents correspond to region boundaries. However, instead of identifying edges by sup-
pressing those pixels that have smaller gradients (less change) than their neighbors
and linking them to each other, the watershed algorithm treats the gradient image
(i.e., 2D matrix where cells contain gradient values) as a topographic surface such
that (a) the pixels with the highest gradient values correspond to the lowest points
of the surface and (b) the pixels with the lowest gradients correspond to the high-
est points or plateaus. As shown in Figure 2.18, the algorithm essentially floods the
surface from these highest points or plateaus (also called catchment basins), and the
flood moves along the directions where the descent is steepest (i.e., the change in
the gradient values is highest) until it reaches the minimum surface point (i.e., the
watershed).

Note that, in a sense, this is also a region-growing scheme: instead of starting
from a seed point and growing the region until it reaches the boundary where the
change is maximum, the watershed algorithm starts from the pixels where the gradi-
ent is minimum, that is, the catchment basin, and identifies pixels that shed or drain
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Figure 2.19. (a) The eight direction codes. (b) (If we start from the leftmost pixel) the
8-connected chain code for the given boundary is “02120202226267754464445243.”
(c) Piecewise linear approximation of the shape boundary. See color plates section.

to the same watershed lines. The watershed lines are then treated as the bound-
ary of the neighboring regions, and all pixels that shed to the same watershed lines
are treated as a region [Beucher, 1982; Beucher and Lantuejoul, 1979; Beucher and
Meyer, 1992; Nguyen et al., 2003; Roerdink and Meijster, 2000; Vincent and Soille,
1991].

Describing the Boundaries of the Shapes
Once the boundaries of the regions are identified, the next step is to describe

their boundary curves in a way that can be stored, indexed, queried, and matched
against others for retrieval [Freeman, 1979, 1996; Saghri and Freeman, 1981]. The
simplest mechanism for storing the shape of a region is to encode it using a string,
commonly referred to as the chain code. In the chain code model for shape bound-
aries, each possible direction between two neighboring edge pixels is given a unique
code (Figure 2.19(a)). Starting from some specific pixel (such as the leftmost pixel of
the boundary), the pixels on the boundary are visited one by one, and the directions
in which one traveled while visiting the edge pixels are noted in the form of a string
(Figure 2.19(b)). Note that the chain code is sensitive to the starting pixel, scaling,
and rotation, but is not sensitive to translation (or spatial shifts) in the image.

In general, the length of a chain code description of the boundary of a shape is
equal to the number of pixels on the boundary. It is, however, possible to reduce the
size of the representation by storing piecewise linear approximations of the bound-
ary segments, rather than storing a code for each pair of neighboring pixels. As
shown in Figure 2.19(c), each linear approximation of the boundary segment can
be represented using its length, its slope, and whether it is in positive x direction
(+) or negative x direction (−). Note that finding the best set of line segments that
represent the boundary of a shape requires application of curve segmentation algo-
rithms, such as the one presented by Katzir et al. [1994], that are able to identify the
end points of line segments in a way minimizes the overall error [Lowe, 1987].

When the piecewise linear representation is not precise or compact enough,
higher degree polynomial representations or B-splines can be used instead of the
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Figure 2.20. (a) Time series representation of the shape boundary. The parameter t repre-
sents the angle of the line segment from the center of gravity of the shape to a point on the
boundary; essentially, t divides 360◦ to a fixed number of equi-angle segments. The resulting
x(t) and y(t) curves can be stored and analyzed as two separate time-dependent functions
or, alternatively, may be captured using a single-complex valued function z(t) = x(t) + iy(t).
(b) Bitmap representation of the same boundary. See color plates section.

linear approximations of boundary segments [Saint-Marc et al., 1993]. Alternatively,
the shape boundary can be represented in the form of a time series signal (Fig-
ure 2.20(a)), which can then be analyzed using spectral transforms such as Fourier
transform (Section 4.2.9.1) and wavelets (Section 4.2.9.2) [Kartikeyan and Sarkar,
1989; Persoon and Fu, 1986]. As shown in Figure 2.20(b), the boundary of a re-
gion (or sometimes the entire region itself) can also be encoded in the form of a
bitmap image. An advantage of this representation is that, since the bitmap consists
of long sequences of 0s and 1s, it can be efficiently encoded using run-length encod-
ing (where a long sequence of repeated symbols is replaced with a single symbol and
the length of the sequence; for example, the string “110000000001111” is replaced
with “2:1;9:0;4:1”) or quadtrees (Section 7.2.2). This compressibility property makes
this representation attractive for low-bandwidth data exchange scenarios, such as
object-based video compression in MPEG-4 [Koenen, 2000; MPEG4].

Shape Histograms
As in color and texture histograms, shape histograms are constructed by count-

ing certain quantifiable properties of the shapes and recording them into a histogram
vector. For example, if the only relevant features are the 8 directional codes shown
in Figure 2.19(a), a shape histogram can be constructed simply by counting the num-
ber of 0s, 1s, . . . , 7s in the chain code and recording these counts into a histogram
with 8 bins.

Other properties of interest which are commonly used in constructing shape
histogram vectors include perimeter length, area, width, height, maximum diameter,
circularity, where

circularity = 4π area

perimeter length2 ,
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number of holes, and number of connected components (for complex shapes that
may consist of multiple components).

A number of other important shape properties are defined in terms of the mo-
ments of an object. Let x̄ and ȳ denote the x and y coordinates of the center of grav-
ity of the shape. Then, given two nonnegative integers, p and q, the corresponding
central moment, µp,q, of this shape is defined as

µp,q =
∑

i

∑
j

(i − x̄)p( j − ȳ)qs(i, j),

whereas s(i, j) is 1 if the pixel 〈i, j〉 is in the shape and is 0, otherwise. Given this
definition, the orientation (i.e., the angle of the major axis of the shape) is defined as

orientation = 1
2

tan−1
(

2µ1,1

µ2,0 − µ0,2

)
.

Eccentricity (a measure of how much the shape deviates from being circular) of the
object is defined as

eccentricity = (µ0,2 − µ2,0)2 + 4µ1,1

area
,

whereas the spread of the object is defined as

spread = µ2,0 + µ0,2.

Hough Transform
Hough transform and its variants [Duda and Hart, 1972; Hough, 1962; Kimme

et al., 1975; Shapiro, 2006; Stockman and Agrawala, 1977] are voting-based schemes
for locating known, parametric shapes, such as lines and circles, in a given image.

Like most shape detection and indexing algorithms, Hough transform also starts
with an edge detection step. Consider for example the edge detection process de-
scribed in Section 2.3.2. This process associates a “magnitude of change” and an
“angle of change” to each pixel in the image. Let us assume that this edge detec-
tion process has identified that the pixel 〈xp, yp〉 is on an edge. Let us, for now, also
assume that the shapes we are looking for are line segments. Although we do not
know which specific line segment the pixel 〈xp, yp〉 is on, we do know that the line
segment should satisfy the line equation

yp = m xp + a,

or the equivalent equation

a = yp − xp m,

for some pair of m and a values. This second formulation is interesting, because it
provides an equation that relates the possible values of a to the possible values of m.
Moreover, this equation is also an equation of a line, albeit not on the (x, y) space,
but on the (m, a) space.

Although this equation alone is not sufficient for us to determine the specific m
and a values for the line segment that contains our edge pixel, if we consider that all
the pixels on the same line in the image will have the same m and a values, then we
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may be able to recover the m and a values for this line by treating all these pixels
collectively as a set of mutually supporting evidences. Let us assume that 〈xp,1, yp,1〉,
〈xp,2, yp,2〉, . . . , 〈xp,k, yp,k〉 are all on the same line in the image. These pixels give us
the set of equations

a = yp,1 − xp,1 m,

a = yp,2 − xp,2 m,

. . . . . . . . . . . . . . . . . .

a = yp,k − xp,k m,

which can be solved together to identify the m and a values that define the underly-
ing line.

The preceding strategy, however, has a significant problem. Although this would
work in the ideal case where the x and y values on the line are identified precisely,
in the real world of images where the edge pixel detection process is highly noisy, it
is possible that there will be small variations and shifts in the pixel positions. Con-
sequently, the given set of equations may not have a common solution. Moreover,
if the set of edge pixels are not all coming from a single line but are from two or
more distinct line segments in the image, then even if the edge pixels are identi-
fied precisely, the set of equations will not have a solution. Thus, instead of trying
to simultaneously solve the foregoing set of equations for a single pair of m and
a, the Hough transform scheme keeps a two-dimensional accumulator matrix that
accumulates votes for the possible m and a values.

More precisely, one dimension of the accumulator matrix corresponds to the
possible values of m and the other corresponds to possible values of a. In other
words, as in histograms, each array position of the accumulator corresponds to a
range of m and a values. All entries in the accumulator are initially set to 0. We con-
sider each equation one by one. Because each equation of the form a = yp,i − xp,i m
defines a line of possible m and a values, we can easily identify the accumulator en-
tries that are on this line. Once we identify those accumulator entries, we increment
the corresponding accumulator values by 1. In a sense, each line, a = yp,i − xp,i m,
on the (m, a) space (which corresponds to the edge pixel 〈xp,i, yp,i〉) votes for possi-
ble m and a values it implies. The intuition is that, if there is a more or less consistent
line segment in the image, then (maybe not all, but) most of its pixels will be aligned
and they will all vote for the same m and a pair. Consequently, the corresponding ac-
cumulator entry will accumulate a large number of votes. Thus, after we process the
votes implied by all edge pixels in the image, we can look at the accumulator matrix
and identify the m and a pairs where the accumulated votes are the highest. These
will be the m and a values that are most likely to correspond to the line segments
in the image. Note that a disadvantage of this scheme is that, for vertical line seg-
ments, the slope m would be infinity, and it is hard to design a bounded accumulator
for the unbounded (m, a) space. Because of this shortcoming, the following alterna-
tive equation for lines is commonly preferred when building Hough accumulators
to detect lines in images:

l = x cos � + y sin �,

where l is the distance between the line and the origin and � is the angle of the
vector from the origin to the closest point. The corresponding (l,�) space is more
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effective because both l and � are bounded (l is bounded by the size of the image
and � is between 0 and 2π).

If we are looking for shapes other than lines, we need to use equations that define
those shapes as the bases for the transformations. For example, let us assume that
we are looking for circles and that the edge detection process has identified that the
pixel 〈xp, yp〉 is on an edge. To look for circles, we can use the circle equation,

(xp − a)2 + (yp − b)2 = r2.

This equation, however, may be costly to use because it has three unknowns a, b,
and r (the center coordinates and the radius) and is nonlinear. The alternative circle
representation

xp = a + r cos(�),

yp = b+ r sin(�),

where � is the angle of the line from the center of the circle to the point 〈xp, yp〉 on
the circle, is likely to be more efficient. But this formulation requires the gradient �

corresponding to point p. Fortunately, because the edge detection algorithm process
described in Section 2.3.2 provides a gradient angle for each edge point 〈xp, yp〉, we
can use this value, �p , in the foregoing equations. Consequently, leveraging this
edge gradient, the equations can be transformed to

a = xp − r cos(�p) and

b = yp − r sin(�p).

or equivalently to

b = a tan(�p) − xp tan(�p) + yp .

This final formulation eliminates r and relates the possible b and a values in the form
of a line on the (a, b) space. Thus, a vote accumulator similar to the one for lines of
images can be used to detect the centers of circles in the image. Once the centers are
identified, the radii can be computed by reassessing the pixels that voted for these
centers.

Finally, note that the Hough transform can be used as a shape histogram in two
different ways. One approach is to use the accumulators to identify the positions
of the lines, circles, and other shapes in the image and create histograms that report
the numbers and other properties of these shapes. An alternative approach is to skip
the final step and use the accumulators themselves as histograms or signatures that
can be compared to one another for similarity-based retrieval.

2.3.4 Local Feature Descriptors (Set-Based Models)

Consider the situation in Figure 2.21, where three observation planes are used for
tracking a mobile vehicle. The three cameras are streaming their individual video
frames into a command center where the frame streams will be fused into a single
combined stream that can then be used to map the exact position and trajectory of
the vehicle in the physical space. Because in this example the three cameras them-
selves are independently mobile, however, the images in the individual frames need
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Figure 2.21. A multicamera observation system.

to be calibrated and aligned with respect to each other by determining the corre-
spondences among salient points identified in the individual frames. In such a sit-
uation, we need to extract local descriptors of the salient points of the images to
support matching. Because images are taken from different angles with potentially
different lighting conditions, these local descriptors must be as invariant to image
deformations as possible.

The scale-invariant feature transform (SIFT) [Lowe, 1999, 2004] algorithm, which
is able to extract local descriptors that are invariant to image scaling, translation,
rotation and also partially invariant to illumination and projections, relies on a four-
stage process:

(i) Scale-space extrema detection: The first stage of the process identifies can-
didate points that are invariant to scale change by searching over multi-
ple scales and locations of the given image. Let L(x, y, σ), of a given image
I(x, y), be a version of this image smoothed through convolution with the
Gaussian, G(x, y, σ) = (1/2πσ2)e−(x2+y2)/2σ2

:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y).

Stable keypoints, 〈x, y, σ〉, are detected by identifying the extrema of the
difference image D(x, y, σ), which is defined as the difference between the
versions of the input image smoothed at different scales, σ and kσ (for some
constant multiplicative factor k):

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ).

To detect the local maxima and minima of D(x, y, σ), each value is com-
pared with its neighbors at the same scale as well as neighbors at images up
and down one scale.

Intuitively, the Gaussian smoothing can be seen as a multiscale repre-
sentation of the given image, and thus the differences between the Gaus-
sian smoothed images correspond to differences between the same image
at different scales. Thus, this step searches for those points that have largest
or smallest variations with respect to both space and scale.
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(ii) Keypoint filtering and localization: At the next step, those candidate points
that are sensitive to noise are eliminated. These include those points that
have low contrast or are poorly localized along edges.

(iii) Orientation assignment: At the third step, one or more orientations are as-
signed to each remaining keypoint, 〈x, y, σ〉, based on the local image prop-
erties. This is done by computing orientation histograms for the immediate
neighborhood of each keypoint (in the image with the closest smoothing
scale) and picking the dominant directions of the local gradients. In case
there are multiple dominant directions, then multiple keypoints, 〈x, y, σ, o〉
(each with a different orientation, o), are created for the given keypoint,
〈x, y, σ〉. This redundancy helps improve the stability of the matching pro-
cess when using the SIFT keypoint descriptors computed in the next step.

(iv) Keypoint descriptor creation: In the final step of SIFT, for each keypoint, a
local image descriptor that is invariant to both illumination and viewpoint
is extracted using the location and orientation information obtained in the
previous steps.

The algorithm samples image gradient magnitudes and orientations
around the keypoint location, 〈x, y〉, using the scale, σ, of the keypoint to
select the level of the Gaussian blur of the image. The orientation, o, as-
sociated to the keypoint helps achieve rotation invariance by enabling the
keypoint descriptors (coordinates of the descriptor and the gradient orien-
tations) to be represented relative to o. Also, to avoid sudden changes in
the descriptor with small changes in the position of the window and to give
less emphasis to gradients that are far from the center of the descriptor, a
Gaussian weighing function is used to assign a weight to the magnitude of
each sample point.

As shown in Figure 2.22, each keypoint descriptor is a feature vector
of 128 (= 4 × 4 × 8) elements, consisting of 16 gradient histograms (one
for each cell of a 4 × 4 grid superimposed on a 16-pixel by 16-pixel region
around the keypoint) recording gradient magnitudes for eight major orien-
tations (north, east, northeast, etc.). Note that, because a brightness change
in which a constant is added to each image pixel will not affect the gradient
values, the descriptor is invariant to affine changes in illumination.

Mikolajczyk and Schmid [2005] have shown that, among the various available lo-
cal descriptor schemes, including shape context [Belongie et al., 2002], steerable
filters [Freeman and Y, 1991], PCA-SIFT [Ke and Sukthankar, 2004], differen-
tial invariants [Koenderink and van Doom, 1987], spin images [Lazebnik et al.,
2003], complex filters [Schaffalitzky and Zisserman, 2002], and moment invari-
ants [Gool et al., 1996], SIFT-based local descriptors perform the best in the con-
text of matching and recognition of the same scene or object observed under dif-
ferent viewing conditions. According to the results presented by Mikolajczyk and
Schmid [2005], moments and steerable filters perform best among the local descrip-
tors that have lower number of dimensions (and thus are potentially more efficient
to use in matching and retrieval). The success of the SIFT algorithm in extract-
ing stable local descriptors for object matching and recognition led to the devel-
opment of various other local feature descriptors, including the speeded-up robust



2.3 Models of Media Features 55

Figure 2.22. 128 (= 4 × 4 × 8) gradients which collectively make up the feature vector cor-
responding to a single SIFT keypoint.

features (SURF) [Bay et al., 2006] and gradient location and orientation histogram
(GLOH) [Mikolajczyk and Schmid, 2003, 2005] techniques, which more or less fol-
low the same overall approach to feature extraction and representation as SIFT.

2.3.5 Temporal Models

Multimedia documents (or even simple multimedia objects, such as video streams)
can be considered as collections of smaller objects, synchronized through temporal
and spatial constraints. Thus, a high-level understanding of the temporal seman-
tics is essential for both querying and retrieval, as well as for effective delivery of
documents that are composed of separate media files that have to be downloaded,
coordinated, and presented to the clients, according to the specifications given by
the author of the document.

2.3.5.1 Timeline-Based Models
There are various models that one can use to describe the temporal content of a
multimedia object or a synthetic multimedia document. The most basic model that
addresses the temporal needs of multimedia applications is the timeline (or axes-
based) model (Figure 2.23). In this model, the user places events and actions on a
timeline.

Basic Timeline Model
Figure 2.23(a) shows the temporal structure of a multimedia document according

to the timeline model. The example document in this figure consists of five media
objects with various start times and durations. Note that this representation assumes
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Figure 2.23. (a) Specification of a multimedia document using the timeline model and (b) its
representation in 2D space.

that no implicit relationships between objects are provided. Therefore, the temporal
properties of the objects can be represented as points in a 2D space, where one of
the dimensions denotes the start time and the other denotes the duration. In other
words, the temporal properties of each presentation object, oi, in document, D, is a
pair of the form 〈si, di〉, where

� si denotes the presentation start time of the object and
� di denotes the duration of the object.

The temporal properties of the multimedia document, D, is then the combination
of the temporal properties of the constituent multimedia objects. Figure 2.23(b),
for example, shows the 2D point-based representation of the temporal document in
Figure 2.23(a).

Because of its simplicity, the timeline model formed the basis for many aca-
demic and commercial multimedia authoring systems, such as the Athena Muse
project [Bolduc et al., 1992], Macromedia Director [MacromediaDirector], and
QuickTime [Quicktime]. MHEG-5, prepared by the Multimedia and Hypermedia
information coding Expert Group (MHEG) as a standard for interactive digital tele-
vision, places objects and events on a timeline [MHEG].

Extended Timeline Model
Unfortunately, the timeline model is too inflexible or not sufficiently expres-

sive for many applications. In particular, it is not flexible enough to accommodate
changes when specifications are not compatible with the run-time situations for the
following reasons:

� Multimedia document authors may make mistakes.
� When the objects to be included in the document are not known in advance, but

instantiated in run-time, the properties of the objects may vary and may not be
matching the initial specifications.

� User interactions may be inconsistent with the initial temporal specifications.
� The presentation of the multimedia document may not be realizable as specified

because of resource limitations of the system.

Hamakawa and Rekimoto [1993] provide an extension to the timeline model
that uses temporal glues to allow individual objects to shrink or stretch as
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Figure 2.24. (a) Representation of objects in extended timeline model. (b) 2D representation
of the corresponding regions.

required. Candan and Yamuna [2005] define a flexible (or extended) timeline
model as follows: As in the basic timeline model, in the extended timeline model
each presentation object has an associated start time and a duration. However,
instead of being scalar values, these parameters are represented using ranges.
This means that the presentation of an object can begin anytime during the valid
range, and the object can be presented for any duration within the correspond-
ing range. Furthermore, each object also has a preferred start time and a pre-
ferred duration (Figure 2.24(a)). Objects in a document, then, correspond to re-
gions, instead of points, in a 2D temporal space (Figure 2.24(b)). More specifically,
Candan and Yamuna [2005] define flexible presentation object, o, as a pair of the
form 〈S{smin,spref ,smax}, D{dmin,dpref ,dmax}〉, where S{smin,spref ,smax} is a probability density func-
tion for the start time of o such that

∀x<smin
S{smin,spref ,smax}(x) = ∀x>smax

S{smin,spref ,smax}(x) = 0

∀xS{smin,spref ,smax}(x) ≤ S{smin,spref ,smax}(spref ).



Free ebooks ==>   www.Ebook777.com
58 Models for Multimedia Data
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Figure 2.25. Start times of two flexible objects and the corresponding probability distribu-
tions.

D{dmin,dpref ,dmax} is a probability density function for the duration of o with similar prop-
erties. Figure 2.25 visualizes the start times of two example flexible objects. Intu-
itively, the probability density functions describe the likelihood of the start time and
the duration of the object for taking specific values. These functions return 0 beyond
the minimum and maximum boundaries, and they assign the maximum likelihood
value for the preferred points. Note that document authors usually specify only the
minimum, maximum, and preferred starting points and durations; the underlying
probability density function is picked by the system based on how strict or flexible
the user is about matching the preferred time.

Note that although the timeline-based models provide some flexibility in the
temporal schedule, the objects are still tied to a timeline. In cases where the tem-
poral properties (such as durations) of the objects are not known in advance, how-
ever, timeline-based models cannot be applied effectively: if the objects are shorter
than expected, this may result in gaps in the presentations, whereas if they are too
long, this may result in temporal overflows. A more flexible approach to specify-
ing the temporal properties of multimedia documents is to tie the media objects to
each other rather than to a fixed timeline using logical and constraint-based models.
There are two major classes of such formalisms for time: instant- and interval-based
models. In instant-based models, focus is on the (instantaneous) events and their
relationships. Interval-based models, on the other hand, recognize that many tem-
poral constructs (such as a video sequence) are not instantaneous, but have temporal
extents. Consequently, these focus on intervals and their relationships in time.

2.3.5.2 Instant-Based Logical Models
In instant-based models, the properties of the world are specified and verified at
points in time. There are three temporal relationships that can be specified between
instants of interest: before, =, and after [Vilain and Kautz, 1986].

The temporal properties of a complex multimedia document, then, can be spec-
ified in terms of logical formulae involving these three predicates and logical con-
nectives (∧, ∨, and ¬).

Difference Constraints
One advantage of the instant-based model is that the three instant based tem-

poral relationships can also be written in terms of simple, difference constraints
[Candan et al., 1996a,b]: let e1 and e2 be two events, then the constraints of the form
(e1 − e2 < δ1) can be used to describe instant-based relationships between these
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two events. For instance, the statement “event, e1, occurs at least 5 seconds before
e2” can be described as (e1 − e2 < −5) ∨ (e1 − e2 = −5). Thus, under certain condi-
tions this model enables efficient, polynomial time solutions. Instant-based models
and their difference constraint representation are leveraged in many works, includ-
ing the CHIMP system [Candan et al., 1996a,b], the Firefly system by Buchanan
and Zellweger (1993a,b) and works by Kim and Song [1995, 1993] and Song et al.
[1996].

Situation and Event Calculi
Other logical formalism that describe the instant-based properties of the world

include situation calculus and the event calculus. Situation calculus [Levesque et al.,
1998] views the world in terms of actions, fluents, and situations. In particular, val-
ues of the fluents (predicates or functions that return properties of the world at a
given situation) change as a consequence of the actions. A finite sequence of actions
is referred to as a situation; in other words, the current situation of the world is the
history of the actions on the world. The rules governing the world are described
in second-order logics [Vaananen, 2001] using formulae that lay down the precondi-
tions and effects of the actions and certain other facts and properties that are known
about the world.

Event calculus [Kowalski and Sergot, 1986] is a related logical formalism de-
scribing the properties of the world in terms of fluents and actions. Unlike the sit-
uational calculus, however, the properties of the world are functions of the time
points (HoldsAt(f luent, time point)). Actions also occur at specified time points
(Happens(action,time point)), and their effects are reflected to the world after a
specified period of time.

Causal Models
Because it allows modeling effects of actions, the event calculus can be consid-

ered as a causal model of time. A more recent causal approach to modeling the syn-
chronization and user interaction requirements of media in distributed hypermedia
documents is presented by Gaggi and Celentano [2005]. The model deals with cases
in which the actual duration of the media is not known at the design time. Synchro-
nization requirements of continuous media (such as video and audio files) as well as
noncontinuous media (such as text pages and images) are expressed through various
causal synchronization primitives:

� a plays with b: The activation of any of the two specified media a and b causes
the activation of the other, and the (natural) termination of the first media (a)
forces the termination of the second (b).

� a activates b: The natural termination of the first media (a) triggers the playback
or display of the second media (b).

� a terminates b: When the first media (a) is forced to terminate, a forced termina-
tion is triggered on the second media (b).

� a is replaced by b: if the two media a and b can use the same resources (channel) to
be delivered, this synchronization rule specifies that the activation of the second
object (b) preempts the first one, that is, it triggers its forced termination. The
channel resource used by a is made available to the second media (b).
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Figure 2.26. The thirteen binary relationships between pairs of intervals.

� a has priority over b with behavior α: the activation of the first object (a) forces
the second media (b) to release the channel it occupies, to make it available for
a, if needed. According to the specified behavior (α), the interrupted media b
can be paused and waiting to be resumed, or terminated.

Notice that the underlying hypothesis of this approach is that the actual duration of
the media is known only at run time, given the fact that media are distributed on the
Web, and their download and delivery times also depend on the available network
resources. Therefore, Gaggi and Celentano [2005] rely on event-driven causal rela-
tionships between media. This also facilitates specification of the desired behavior
in the cases of user interaction events.

2.3.5.3 Interval-Based Logical Models
Interval-based temporal data management was introduced by Allen [1983] and
studied by many researchers [Adali et al., 1996; Snoek and Worring, 2005]. Unlike
an instant, which is given by a time point, an interval is defined by a pair of time
points: its start and end times. Since the pair is constrained such that the end time is
always larger than or equal to the start time, specialized index structures (such as in-
terval trees [Edelsbrunner, 1983a,b] and segment trees [Bentley, 1977] can be used
for searching for intervals that intersect with a given instant or interval. Allen [1983,
1984] provides thirteen qualitative temporal relationships (such as before, meets, and
overlaps) that can hold between two intervals (Figure 2.26). A set of axioms (repre-
sented as logical rules) help deduce new relationships from the initial interval-based
specifications provided by the user. For example, given intervals, I1, I2, and I3, the
following two rules are axioms available for inferring relationships that were not
initially present in the specifications:

� before(I1, I2)∧before(I2, I3) → before(I1, I3),
� meets(I1, I2)∧during(I2, I3) → overlaps(I1, I3)∨during(I1, I3)∨meets(I1, I3).
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Further axioms help the system reason about properties, processes, and events. For
example, given predicates p and q (such as media active() or media paused()), de-
scribing the properties of multimedia objects, the axioms

� holds(p, I) ↔ ∀i(in(i, I) → holds(p, i))
� holds(and(p, q), I) ↔ holds(p, I) ∧ holds(q, I)
� holds(not(p), I) ↔ ∀i(in(i, I) → ¬holds(p, i))

can be used to reason about when these properties hold and when they do not hold.
Such axioms, along with additional predicates and rules that the user may specify,
enable a logical description of multimedia semantics.

Note that while the binary temporal relationships (along with logical connec-
tives, ∧, ∨, and ¬) are sufficient to describe complex situations, they fall short when
more than two objects have to be synchronized by a single, atomic temporal rela-
tion. Consider, for example, a set {o1, o2, o3} of three multimedia objects that are to
be presented simultaneously. Although this requirement can be specified using the
conjunction of pairwise relationships that has to hold,

equal(o1, o2) ∧ equal(o2, o3) ∧ equal(o1, o3),

this approach is both expensive (requires larger constraints than needed) and also
semantically awkward: the user’s intention is not to state that there are three pairs
of objects, each with an independent synchronization requirement, but to state that
these three objects form a group that has a single synchronization requirement asso-
ciated with it. This distinction becomes especially important when user requirements
have to be prioritized and some constraints can be relaxed to address cases where
user specifications are unsatisfiable in run-time conditions because of resource limi-
tations. In such a case, an n-ary specification language (for example equal(o1, o2, o3))
can capture user’s intentions more effectively. Little and Ghafoor [1993]
propose an interval-based conceptual model that can handle n-ary relationships
among intervals. This model extends the definitions of before, meets, overlaps, starts,
equals, contains, and finished by to capture situations with n objects to be atomically
synchronized.

Schwalb and Dechter [1997] showed that, when there are no disjunctions, inter-
val based formalisms are, in fact, equivalent to the instant-based formalisms. On the
other hand, in the presence of disjunctions in the specifications, the interval-based
formalisms are more expressive than the instant-based models. van Beek [1989] pro-
vides a sound and complete algorithm for instant-based point algebra. Aspvall and
Shiloach [1980] and Dechter et al. [1991] present graph theoretical solutions for the
various instances of the temporal constraint satisfaction problem. Vilain and Kautz
[1986] show that determining the satisfiability of interval-based assertions is NP-
Hard. Interval scripts [Pinhanez et al., 1997], a methodology proposed to describe
user interactions and sensor activities in an interactive system, benefits from a re-
striction on the allowed disjunction combinations in rendering the problem more
manageable [Pinhanez and Bobick, 1998].
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Figure 2.27. Four-level description of the temporal content of videos [Li and Candan, 1999a]:
(a) Object level, (b) Frame level, (c) Simple action level, (d) Composite action level.

2.3.5.4 Hybrid Models
Instant-based and interval-based formalisms are not necessarily exclusive and can
be used together. For example, Li and Candan [1999a] describe the content of videos
using a four-level data model (Figure 2.27):

� Object level: At the lowest level of the hierarchy, the information modeled is the
semantics and image contents of the objects in the video. Example queries that
can be answered by the information at this level include “Retrieve all video clips
that contain an object similar to the example image” and “Retrieve all video clips
that contain a submarine.”

� Frame level: At the second level of the hierarchy, the concept of a video frame
is introduced. The additional information maintained at this level are spatial re-
lationships among objects within a frame and other meta-information related to
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frames, such as “being a representative frame for a shot or a preextracted ac-
tion” and frame numbers (a representative or key frame of a shot is the frame
that describes the content of a shot the best). An example query that can be an-
swered by the information at this level is “Retrieve all video clips that contain a
frame in which there are a man and a car and the man is to the right of the car.”

� Simple action level: The next level of the hierarchy introduces the concept of
time, that is, the temporal relationships between individual frames. The tem-
poral relationships are added to the model through implication of frame num-
bers. Because each frame corresponds to distinct time points within the video,
the temporal relationships introduced at this level are instant based. Multiple
frames with temporal relationships construct actions. For example, an action of
“a torpedo launch from a submarine” can be defined as a three-frame sequence:
a frame with a submarine, followed by a frame with a submarine and a torpedo,
followed by a frame with only a torpedo. Another example of an action, “a man
moving to the right,” can be defined as a frame in which there is a man on the left
followed by a frame with a man on the right side. Actions are defined as video
frame sequences that have associated action semantics. The sequence of frames
associated with an action definition is called an extent.

An example query that can be answered by the information at this level is
“Retrieve all video clips that contain two frames where the first frame contains a
submarine and a torpedo and the second frame contains an explosion, and these
two frames are at most 10 seconds apart.” Two more complicated queries that
can be answered by the information modeled at this level are “Retrieve all video
clips that contain an action of torpedo launch from a submarine” and “Retrieve
all video clips that contain an extent in which a man is moving to the right.”

� Composite action level: This level introduces the concept of composite actions. A
composite action is a combination of multiple actions with instant- or interval-
based time constraints. For example, a composite action of “a submarine com-
bat” can be represented with combinations of actions “submarine moving to the
right,” “submarine moving to the left,” “a torpedo launch from a submarine,”
“explosion,” and interval-based time constraints associated with these actions.

Other logic- and constraint-based approaches for document authoring and presen-
tation include Özsoyog̃lu et al. [Hakkoymaz and Özsoyoglu, 1997; Hakkoymaz et al.,
1999; Özsoyoĝlu et al., 1996], and Vazirgiannis and Boll [1997]. Adali et al. [1996],
Del Bimbo et al. [1995], and others used temporal logic in retrieval of video data.
More recently, Adali et al. [1999], Baral et al. [1998], de Lima et al. [1999], Escobar-
Molano et al. [2001], Mirbel et al. [1999], Song et al. [1999], and Wirag [1999]
introduced alternative models, interfaces, and algebras for multimedia document
authoring and synchronization.

2.3.5.5 Graph-Based Temporal Models
Although logic- and constraint-based specifications are rich in expressive power,
there are other more specialized models that can be especially applicable when
the goal is to describe synchronization requirements of multimedia documents.
These include the Petri nets model and its variations, time-flow graphs, and timed
automata.
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Figure 2.28. An interval-based OCPN graph for a multimedia document with three objects.
Each place contains information about the duration of the object.

Timed Petri Nets
A Petri net is a concise graph-based representation and modeling language to

describe the concurrent behavior of a distributed system. In its simplest form, a
Petri net is a bipartite, directed graph that consists of places, transitions, and arcs
between places and transitions. Each transition has a number of input places and a
number of output places. The places hold tokens, and the distribution of the tokens
is referred to as the marking of the Petri net. A transition is enabled when each of
its input places contains at least one token. When a transition fires, it eliminates a
number of tokens from its input places and puts a number of tokens to its output
places. This way, the markings of the Petri net evolve over time. More formally,
a Petri net can be represented as a 5-tuple (S, T, F, M0, W), where S denotes the
set of places, T denotes the transitions, and F is the set of arcs between the places
and transitions. M0 is the initial marking (i.e., the initial state) of the system. W
is the arc weights, which describes how many tokens are consumed and created
when the transitions fire. Petri nets allow analysis of the various properties of the
system, including reachability (i.e., whether a particular marking can be reached
or not), safety/boundedness (i.e., whether the places may contain too many tokens),
and liveliness (i.e., whether the system can ever reach a situation where no transition
is enabled).

Timed Petri nets (TPN) extend the basic Petri net construct with timing in-
formation [Coolahan and Roussopoulos, 1983]. In particular, Little and Ghafoor
[1990] propose an interval-based multimedia model, called Object Composition
Petri Nets (OCPN, Figure 2.28), based on the timed Petri net model. In OCPN,
each place has a duration (and possibly resources) associated with it. In effect, the
places denote the multimedia objects (and other intervals of interest) and the tran-
sitions denote the synchronization specifications. Unlike the basic Petri net formal-
ism, where the transitions can fire asynchronously and nondeterministically, when-
ever they are enabled, the transition firing in OCPNs is deterministic: a transition
fires immediately when each of its input places contains an available token. Be-
cause the places have durations, however, a token put into a place is not imme-
diately available, but locked, for the duration associated with the place. A further
restriction imposed on OCPNs is that each place has one incoming arc, and one
outgoing arc.6 This means that only one transition governs the start of each object.
Little and Ghafoor [1990] showed that each of the thirteen pair-wise relationships

6 This type of Petri nets are also referred to as marked graphs [Commoner et al., 1971].
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between intervals depicted in Figure 2.26 can be composed using the OCPN formal-
ism. Note that although OCPN can be used to describe interval-based specifications
based on Allen’s formalism, its expressive power is limited; for example, it is not
able to describe disjunctions.

Other relevant extensions of timed Petri nets, especially for imprecise multime-
dia data, include fuzzy-timing Petri nets (such as Fuzzy-Timing Petri-Net for Mul-
timedia Synchronization, FTNMS [Zhou and Murata, 1998], and stochastic Petri
nets [Balbo, 2002], which add imprecision to the durations associated to the places
or to the firing of the transitions. Also, whereas most Petri net–based models assume
that the system proceeds without any user intervention, the Dynamic Timed Petri
Net (DTPN) model, by Prabharakan and Raghavan, enables user inputs to alter the
execution of the Petri net by, for example, preempting an object or by changing its
duration temporarily or permanently [Prabhakaran and Raghavan, 1994].

Time Flow Graph
Timed Petri Nets are not the only graph-based representations for interval-based

reasoning. Li et al. [1994a,b] propose a Time-Flow Graph (TFG) model that also
is based on intervals. Unlike timed Petri nets, however, TFG is able to represent
(n-ary) temporal relationships between intervals, without needing advance knowl-
edge about their durations. In the TFG model, temporal relationships are split
into two main groups: parallel and sequential relationships. A time-flow graph is
a triple {�N, Nt, Ed}, where �N is the set of nodes corresponding to the intervals
and nodes that describe parallel relations, Nt, are the transit nodes that describe
sequential relationships, and Ed is a set of directed edges, which connect nodes
in �N and Nt.

Timed Automata
Timed automata [Alur and Dill, 1994] extend finite automata with timing con-

straints. In particular, they accept the so-called timed words. A timed word (σ, τ)
is an input to a timed automaton, where σ is a sequence of symbols (representing
events) and τ is a monotonically increasing sequence of time values. Intuitively, if
σi is an event occurrence, then τi is the time of occurrence of this event. When the
automaton makes a state transition, the next state depends on the event as well as
the time of the input relative to the times of the previously read symbols. This is
implemented by associating a set of clocks to the automaton. A clock can be reset
to 0 by any state transition, and the reading of a clock provides the time elapsed
since the last time it was reset. Each transition has an associated clock constraint, δ,
inductively defined as

δ := x ≤ c|c ≤ x|¬δ|δ1 ∧ δ2,

which determines whether the transition can be fired or not. Here x is a clock and c
is a constant. Note that, effectively, clock constraints evaluate differences between
the current time and the times of one or more of the past state transitions and allow
the new transition occur only if the current time satisfies the associated difference
constraints.

logO [Sapino et al., 2006] is an example system that relies on timed automata for
representing temporal knowledge. Unlike many of the earlier formalisms that aim to
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help content creators to declaratively synthesize multimedia documents, logO tries
to analyze and represent (i.e., learn) temporal patterns underlying a system from
its event logs. For this purpose, logO represents the trace of a system using a timed
finite state automaton, described by a 5-tuple AUT = 〈S, s0, Sf , TR, next〉:

� S is the set of observed states of the system. Each state is a pair of the form
〈id, AM〉, where id is a globally unique identifier of the state, and AM is the set
media that are active in the state.

� s0 is the initial state, s0 = 〈id0,∅〉.
� The set of final states is the singleton Sf = {sf = 〈idf ,∅〉}.
� TR is the set of symbols that label possible state transitions. A transition label

is a pair 〈ev, inst〉, where ev is an event and inst is the time instant in which the
event occurs. Examples of events include the activation of a new media, or the
end of a previously active one.

� next : S × TR → S is the transition function. Intuitively, if a transition from the
state s to the state s′ occurs, the new state s′ is obtained from s by taking into
account the events occurring at time instant inst and updating the set of active
media by reflecting the changes on the media affected by such events. In par-
ticular, those media that have terminated or have been stopped at time instant
inst will not appear in the set of active media in s′, whereas the media that are
starting at the same time are inserted in the set of active media in s′.

The trace automaton created using a single sequence of events is a chain of
states. It recognizes a single word, which is exactly the sequence of records appear-
ing in the log. Thus, to construct an automaton representing the underlying structure
of the system, logO merges related trace automata created by parsing the system
logs. In general, logO relies on two alternative schemes for merging:

� History-independent merging: In this scheme, each state in the original au-
tomata is considered independently of its history. Thus, to implement history-
independent merging, an equivalence relation (≡log), which compares the active
media content of two given states, si and sj, is necessary for deciding which states
are compatible for being merged. The merge algorithm produces a new automa-
ton in which the media items in the states are (representatives of) the equiva-
lence classes defined by the ≡log relation. The label of the edge connecting any
two states si and sj includes (i) the event that induced the state change from a
state equivalent to si to a state equivalent to sj in any of the merged automata, (ii)
the duration associated to the source state, and (iii) the number of transitions, in
the automata being merged, to which (i) and (ii) apply.

The resulting automaton may contain cycles. Note that the transition label
includes the counting of the number of logged instances where a particular tran-
sition occurred in the traces. The count labels on the transitions provide infor-
mation regarding the likelihood of each transition. In a sense, the resulting trace
automaton is a timed Markov chain, where the transitions from states have not
only expected trigger times, but also associated probabilities. Therefore, given
the current state, the next state transition is identified probabilistically (as in
Markov chains, see Section 3.5.4 for more details) and the corresponding state
transition is performed at the time associated with the chosen state transition.
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� History-dependent merging: In this scheme, two states are considered identical
only if their active media content as well as their histories (i.e., past states in the
chains) are matching. Thus, the equivalence relation, ≡log, compares not only the
active media content of the given states si and sj but also requires their histories,
histi and histj, to be considered identical for merging purposes. In particular, to
compare two histories, logO uses an edit distance function (see Section 3.2.2 for
more detail on edit distance). Unlike history-independent merging, the resulting
merged automaton does not contain any cycles; the same set of active media can
be represented as different states, if the set is reached through differing event
histories.

2.3.5.6 Time Series
Most the of the foregoing temporal data models are designed for describing au-
thored documents or temporal media, analyzed for events [Scher et al., 2009; West-
ermann and Jain, 2007] using media processing systems, such as MedSMan [Liu
et al., 2005, 2008], ARIA [Peng et al., 2006, 2007, 2010], and others [Nahrstedt and
Balke, 2004; Gu and Nahrstedt, 2006; Gu and Yu, 2007; Saini et al., 2008], which im-
plement complex analysis tasks by coupling sensing, feature extraction, fusion, and
classification operations and other stream processing services. In most sensing and
data capture applications, however, before the temporal analysis phase the data is
available simply as a raw stream (or sequence) of sensory values. For example, as
we discuss later in this chapter, audio data can often be viewed as a 1D sequence of
audio signal samples. Similarly, a sequence of tuples describing the surface pressure
values captured by a set of floor-based pressure sensors or a sequence of motion
descriptors [Divakaran, 2001; Pawar et al., 2008] encoded by a motion detector are
other examples of data streams. Such time series data can often be represented as
arrays of values, tuples, or even matrices (for example when representing the tempo-
ral evolution of the Web or a social network, each matrix can capture a snapshot of
the node-to-node hyperlinks or user-to-user friendship relationships, respectively).
Time series of matrices are often represented in the form of tensors, which are es-
sentially arrays of arbitrary dimensions. We will discuss tensors in more detail in
Section 4.4.4. Alternatively, when each data element can be discretized into a sym-
bol from a finite alphabet, a time series can be represented, stored, and analyzed in
the form of a sequence or string (see Chapter 5).

The alphabet used for discretizing a given time series data is often application
specific: for example, a motion application can discretize the capture data into a
finite set of motion descriptors. Alternatively, one can rely on general purpose dis-
cretization algorithms, such symbolic aggregate approximation (SAX) [Lin et al.,
2003], to convert time series data into a discrete sequence of symbols. Consider a
time series, T = t1, t2, . . . , tl of length l, where each ti is a value. In SAX, this time
series data is first normalized so that the mean of the amplitude of values is zero and
the standard deviation is one and then the sequence is approximated using a piece-
wise aggregate approximation (PAA) scheme, where T is reduced into an alternative
series, T = t1, t2, . . . , tw, of length w < l as follows:

ti = w

l

l
w

i∑
j= l

w
(i−1)+1

tj
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Table 2.1. SAX symbols and the corresponding value ranges

Symbol A B C D
Range -inf ∼ -1.64 -1.64 ∼ -1.28 -1.28 ∼ -1.04 -1.04 ∼ -0.84

Symbol E F G H
Range -0.84 ∼ -0.67 -0.67 ∼ -0.52 -0.52 ∼ -0.39 -0.39 ∼ -0.25

Symbol I J K L
Range -0.25 ∼ -0.13 -0.13 ∼ 0 0 ∼ 0.13 0.13 ∼ 0.25

Symbol M N O P
Range 0.25 ∼ 0.39 0.39 ∼ 0.52 0.52 ∼ 0.67 0.67 ∼ 0.84

Symbol Q R S T
Range 0.84 ∼ 1.04 1.04 ∼ 1.28 1.28 ∼ 1.64 1.64 ∼ inf

Lin et al. [2003] showed that, once normalized as above, the amplitudes in most time
series data have Gaussian distributions. Thus a set of pre-determined breakpoints,
shown in Table 2.1, can be used for mapping the normalized data into symbols of
an alphabet such that each symbol is equi-probable. Moreover, for ease of indexing
and search, the PAA representation maps the longer time series into a shorter one
in such a way that the loss of information is minimal.

2.3.5.7 Temporal Similarity and Distance Measures
Because multimedia object retrieval may require similarity comparison of tem-
poral structures, a multimedia retrieval system must employ suitable temporal
comparison measures [Candan and Yamuna, 2005]. Consider, for example, the five
OCPN documents shown in Figure 2.29. In order to identify which of the temporal
documents in Figures 2.29(b) to (e) best matches the temporal document specified
in Figure 2.29(a), we need to better understand the underlying model and the user’s
intention.

o1

o3

o2

10s 15s

25s

o1

o3

o2

20s 30s

50s

o1

o3

o2

10s 25s

35s

(a) (b) (c)

o3

o2

10s 15s

25s

o4

o1 o2

10s 15s

(d) (e)

Figure 2.29. Five OCPN documents. Can we rank documents (b) to (e) according to their
similarity to (a)? Hints: (b) has all object durations multiplied by 2, (c) has two objects with
different and one object with the same duration as (a), (d) has all object durations intact,
but one of the object IDs is different, and (e) has a missing object.
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One way to perform similarity-based retrieval based on temporal features is to
represent the temporal requirements (such as a temporal query) in the form of a
fuzzy logic statement (Section 3.4) that can be evaluated against the data to obtain a
temporal similarity score. A number of multimedia database systems, such as SEM-
COG [Li and Candan, 1999a], rely on this approach. An alternative approach is to
rely on the specific properties of the underlying temporal model to develop more
specialized similarity/distance measures. In the rest of this section, we consider dif-
ferent models and discuss measures appropriate to each.

Temporal Distance – Timeline Model
As introduced earlier in Section 2.3.5, the timeline model allows users to place

objects on a timeline with respect to the starting time of the presentation. It is one
of the simplest models and is also the less expressive and less flexible.

One advantage of the timeline model is that a set of events placed on a timeline
can be seen as a sequence, and thus temporal distance between two sets of events
can be computed using edit-distance–based measures (such as dynamic time warp-
ing, DTW [Sakoe, 1978]), where the distance between two sequences is defined as
the minimum amount of edit operations needed to convert one sequence to the
other. We discuss edit-distance computation in greater detail in Section 3.2.2. Here,
we provide an edit-distance–like distance measure for comparing temporal similar-
ity/distance under the timeline model.

scale. The first issue that needs to be considered when comparing two multi-
media documents specified using a timeline is the durations of the documents. Tem-
poral scaling is useful when users are interested in comparing temporal properties
in relative, instead of absolute, terms. Let σ be the temporal scaling value applied
when comparing two documents, D1 and D2. If the users would like the document
similarity/distance to be sensitive to the degree of scaling, then we need to define a
scaling penalty, ϒ(σ), as a function of the scaling value.

temporal difference between a pair of media objects. Recall from
Figure 2.23(b) that the temporal properties of presentation objects mapped onto a
timeline can be represented as points in a 2D space. Consequently, after the doc-
uments are scaled with scaling degree, σ, the temporal distance, �(oi, oj, σ), be-
tween two objects oi ∈ D1 and oj ∈ D2, can be computed based on their start times
(si and sj after scaling) and durations (di and dj after scaling) using various dis-
tance measures, including the Minkowski distance ([ | si − sj |γ + | di − dj |γ ]

1
γ ),

the Euclidean distance ([ | si − sj |2 + | di − dj |2 ]
1
2 ), or the city block distance

([ | si − sj | + | di − dj | ]).
unmapped objects. An object mapping between the two documents may fail

to map some objects that are in D1 to any objects in D2 and vice versa. These
unmapped objects must be taken into consideration when calculating the similar-
ity/distance between two multimedia documents. In order to deal with such un-
mapped objects, we can map each unmapped object, oi = 〈si, di〉, to a null object,
o∗

i = 〈si, 0〉. The temporal distance values, �(oi, o∗
i ) and �(o∗

i , oi), depend on the
position of si and di. Figure 2.30 shows an example where some objects in the docu-
ments are mapped to virtual objects in the others.
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o11 o12 o13

o31 o32

D3

D1

o21 o22 o23 o24

D2

Figure 2.30. Three multimedia documents and the corresponding mappings. The dashed
circles and lines show missing objects and the corresponding missing matchings.

object priorities and user preferences. In some cases, different media
objects in the documents may have different priorities; that is, some media objects
are more important than the others and their temporal mismatches affect the overall
result more significantly. Let us denote the priority of the object o as pr(o). Given
two objects oi ∈ D1 and oj ∈ D2, we can calculate the priority, pr(oi, oj), of the pair
based on the priorities of both objects using various fuzzy merge functions, such as
the arithmetic average ( pr(oi)+pr(oj)

2 , Section 3.4.2).
combining all into a distance measure. Given two objects oi ∈ D1 and

oj ∈ D2, we can define the prioritized temporal distance between the pair of objects,
oi and oj, as follows:

pr(oi, oj) × �(oi, oj, σ).

In other words, if the objects are important, then any mismatch in their temporal
properties counts more.

Let σ be a scaling factor and ϒ(σ) be the corresponding scaling penalty, and
let µ be an object-to-object mapping from document D1 to document D2. Then,
the overall temporal distance between multimedia documents D1 and D2 can be
computed as

�timeline,σ,µ(D1, D2) = ϒ(σ) +
∑

〈oi,oj〉∈µ

pr(oi, oj) × �(oi, oj, σ).

Let σ′ and µ′ be the scaling value and the mapping such that the value of
�timeline,σ,µ(D1, D2) is smallest; that is,

〈σ′, µ′〉 = argmin
〈σ,µ〉

�timeline,σ,µ(D1, D2).

Then, we can define the timeline-based distance between the temporal documents
D1 and D2 as

�timeline(D1, D2) = �timeline,σ′,µ′(D1, D2).

Note that this definition is similar to the definition of edit distance, where the edit
cost is defined in terms of the minimum-cost edit operations to convert one string
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Minimum start time

Preferred start time

Maximum start time

start time of O1

start time of O2

Figure 2.31. Start times of two identical flexible objects (note that the minimum, preferred,
and maximum start times of both objects are identical). The two small rectangles, on the
other hand, depict a possible scenario where the two objects start at different times.

to the other; in this case the edit operations involve temporal scaling and temporal
alignment of the media objects in two documents.

Temporal Distance – Extended (Flexible) Timeline Model
As mentioned in Section 2.3.5, the basic timeline model is too rigid for many

applications. This means that the presentation of the object cannot accommodate
unexpected changes in the presentation specifications or in the available system re-
sources. Consequently, various extensions to the timeline model have been pro-
posed [Hamakawa and Rekimoto, 1993] to increase document flexibility. In this
section, we use the extended timeline model introduced in Section 2.3.5.1, where a
flexible presentation object, o, is described using a pair of probability density func-
tions, 〈S{smin,spref ,smax}, D{dmin,dpref ,dmax}〉.

Similar to the simple timeline model, the main component of the distance mea-
sure is the temporal distance between a pair of mapped media objects. However,
in this case, when calculating the distance, |Si − Sj|, between the start times and the
distance, |Di − Dj|, between durations, we need to consider that they are based on
probability distributions. One way to do this is to compare the corresponding prob-
ability distribution functions using the KL-distance or chi-square test, introduced in
Section 3.1.3 to assess how different the two distributions are from each other. This
would provide an intentional measure: if two distributions are identical, this means
that the intentions of the authors are also identical; thus the distance is 0.

On the other hand, when defining the distance extensionally (based on what
might be observed when these documents are played), since the start time of a flex-
ible object can take any value between the corresponding smin and smax, this has to
be taken into consideration when comparing the start times and durations of two
objects. The reason for this is that even though the descriptions of the start times
of two objects might be identical in terms of the underlying probability distribu-
tions, when presented to the user, these two objects do not need to start at the same
time. For example, although their descriptions are identical, the actual start times
of two objects, o1 and o2, shown in Figure 2.31 have a distance value larger than 0.
Hence, although intentionally speaking the distance between the start times should
be 0, the observed difference might be nonzero. Consequently, even when a flexible
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document is compared with itself, the document distance may be nonzero. There-
fore, we can define the distance between start times of two objects oi and oj as

| si − sj | =
∫ si,max

si,min

∫ sj,max

sj,min

Si{si,min,si,pref ,si,max}(x) ×

Sj{sj,min,sj,pref ,sj,max}(y) × |x − y| dxdy.

The distance between the durations of the objects oi and oj can be defined similarly
using the duration probability functions instead of the start probability functions.
The rest of the formulation is similar to that of the simple timeline model described
in Section 2.3.5.7.

Temporal Distance/Similarity – Constraint-Based Models
In general, the temporal characteristics of a complex multimedia object can be

abstracted in terms of a temporal constraint, described using logical formulae over
a 4-tuple 〈C, I, E,P〉, where

� C = {C1, . . .} is an infinite set of temporal constants,
� I = {I1, . . . , Ii} is a set of interval variables,
� E = {E1, . . . , Ee} is a set of event variables,
� P = {P1, . . . , Pp} is a set of predicates, where each Pi takes a set of intervals from

I, a set of events from E , and a set of constants from C, and evaluates to true or
false.

Example 2.3.1: Let C = {Z+}, I = {int(o1), int(o2)}, E = {presst, presend, st(o1),
st(o2), end(o1), end(o2)}. The following constraint might specify temporal properties
of a presentation schedule7:

T = (before(int(o1), int(o2))) ∧
((0 ≤ st(o1) − presst ≤ 3) ∨ (0 ≤ st(o2) − presst ≤ 20)) ∧
(presend = end(o2)).

Given this constraint-based view of temporal properties of multimedia documents,
we can define temporal similarity and dissimilarity as follows:

� Temporal similarity: A temporal specification is satisfiable only if there is a vari-
able assignment such that the corresponding formula evaluates to true. If there
are multiple assignments that satisfy the temporal specification, then the prob-
lem has, not one, but a set of solutions. In a sense, the semantics of the doc-
ument is described by the set of presentation solutions that the corresponding
constraints allow. In the case of the timeline model, each solution set contains
only one solution, whereas more flexible models may have multiple solutions
among which the most suitable is chosen based on user preferences or resource
requirements. For example, Figure 2.32(a) shows the solution sets of two doc-
uments, D1 and D2. Here, C is the set of solutions that satisfy both documents,

7 In this example, the events in E and intervals in I are not independent; for instance, the beginning of
the interval int(o1) corresponds to the event st(o1). These require additional constraints, but we ignore
these for the simplicity of the example.
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const1 const2

A
BC

const2’const1’

const2const1

(a) (b)

Figure 2.32. Constraint-based (a) similarity and (b) dissimilarity.

whereas A and B are the sets of solutions that belong to only one of the docu-
ments. We can define the temporal similarity of the documents D1 and D2 as

similarity(D1, D2) = |C|
|A| + |B| + |C| .

� Temporal dissimilarity: The similarity semantics given above, however, has some
shortcomings: if an inflexible model (such as the very popular timeline model)
is used, then (because there is only one solution for a given set of constraints),

|C|
|A+B+C| will evaluate only to 1 or 0; that is, two documents either will match per-
fectly or will not match at all. It is clear that such a definition is not useful for
similarity-based retrieval. Furthermore, it is possible to have similar documents
that do not have any common solutions, yet they may differ only in very sub-
tle ways. A complementary notion of dissimilarity (depicted in Figure 2.32(b))
captures these cases more effectively:
– Let us assume that two documents D1 and D2 are consistent. Because there

exists at least one common solution, these documents are similar to each other
(similarity = 1.0).

– If the solution spaces of these two documents are disjoint, then we can modify
(edit) the constraints of these two documents until their solution sets overlap.

Based on this, we can define the dissimilarity between these two documents as
the minimum extension required in the sizes of the solution sets for the docu-
ments to have a common solution:

dissimilarity(D1, D2) = (|A′| + |B′|) − (|A| + |B|),
where A′ and B′ are the new solution sets.

The two measures just given are complementary: one captures the degree of simi-
larity between mutually consistent documents and the other captures the degree of
dissimilarity between mutually inconsistent documents.

Let us consider two temporal documents, D1 and D2, and their constraint-based
temporal specifications, C(D1) and C(D2). As described previously, if these docu-
ments represent nonconflicting intentions of their authors, then when the two con-
straints, C(D1) and C(D2), are combined, the resulting set of constraints should not
contain any conflicts; that is, the combined set of constraints should be satisfiable.
Figure 2.33 shows two temporal documents, an object-to-object mapping between
these two documents, and the corresponding merged document. In this example, the
combined temporal specification is not satisfiable: there is a conflict caused by the
existence of the unmapped object. Given an object mapping, µ, the temporal conflict
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D1 D2
o1 is mapped to o4

o3 is mapped to o5

et(o1)st(o1)
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Figure 2.33. (a) Two temporal specifications (st denotes the start time and et denotes the
end time of an object) and (b) the corresponding combined specification. Note that the
object o2 in document D1 does not exist in document D2 (i.e., its duration is 0); therefore
the resulting combined specification has a conflict.

distance between two documents, D1 and D2, can be defined as

�conflict(D1, D2)µ = total number of conflicts in(C(Dµ

(1,2))), (2.1)

where C(Dµ

(1,2)) denotes the constraints corresponding to the combined document.
A disadvantage of this measure, however, is that it is in general very expensive
to compute. It is shown that in the worst case, the number of conflicts in a docu-
ment is exponential to the size of the document (in terms of objects and constraints)
[Candan et al., 1998]. Therefore, this definition may not be practical.

Candan et al. [1998] showed that, under certain conditions, it is easier to find an
optimal set of constraints to be relaxed (i.e., removed) to eliminate all conflicts than
to identify the total number of conflicts in the constraints. Therefore, it is possible
to use this minimum number of constraints that need to be removed to achieve
consistency as an indication of the reasons of conflicts. Based on this, the relaxation
distance between two documents, D1 and D2, is defined as

�relaxation(D1, D2)µ = cost of constraints removed(C(Dµ

(1,2))). (2.2)

The cost (or the impact) of the constraints removed may be computed based on
their number or user-specified priorities.

2.3.6 Spatial Models

Many multimedia databases, such as those indexing faces or fingerprints, need
to consider predefined features and their spatial relationships for retrieval
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Figure 2.34. Whereas some features of interest in a fingerprint image can be pinpointed to
specific points, others span regions of the fingerprint.

(Figure 2.34). Spatial predicates and operations can be broadly categorized into two
based on whether the information of interest is a single point in space or has a spa-
tial extent (e.g., a line or a region). The predicates and operators that are needed to
be supported by the database management system depend on the underlying spatial
data model and on the applications’ needs (Table 2.2). Some of the spatial operators
listed in Table 2.2, such as union and intersection, are set oriented; in other words,
their outcome is decided based on the memberships of the points that they cover
in space. Some others, such as distance and perimeter, are quantitative and may de-
pend on the characteristics (e.g., Euclidean) of the underlying space. Table 2.2 also
includes topological relationships between contiguous regions in space. Spatial data
can be organized in different ways to evaluate the above predicates. In this section,
we cover commonly used approaches for representing spatial information in multi-
media databases.

2.3.6.1 Fields and Their Directional and Topological Relationships
In field-based approaches to spatial information management, space is described in
terms of three complementary aspects [Worboys et al., 1990]:

� A spatial framework, which is a finite grid representing the space of interest;
� Field functions, which map the given spatial framework to relevant attribute do-

mains (or features); and
� Field operations, which map subsets of fields onto other fields (e.g., union, inter-

section). For local field operations, the value of the new field depends only on
the values of the input fields (e.g., color of a given pixel in an image). For focal
field operations, the value of the new field depends on the neighborhood of the
input fields (e.g., image texture around a given pixel). Zonal operations perform
aggregation operations on the attributes of a given field (e.g., average intensity
of an image segment).

Field-based representations can be used to describe feature locales and image seg-
ments.

Example 2.3.2 (Feature Locales): Let us be given an image, I. The two-dimensional
grid defined by the pixels of this image is a spatial framework.
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Table 2.2. Common spatial predicates and operations

Name Input 1 Input 2 Output

Topological
predicates

contains, covers, covered by, disjoint,
equal, inside, meet, and overlap

region region {true,
false}

inside, outside, on-boundary, corner region point {true,
false}

touches, crosses line region {true,
false}

endpoint, on point line {true,
false}

Directional
predicates

north, east, south, west, northeast,
northwest, southeast, southwest

region,
point,
line

region,
point,
line

{true,
false}

Quantitative/
measurement
operations

distance region,
point,
line

region,
point,
line

numerical
value

length line numerical
value

perimeter region numerical
value

area region numerical
value

center region point
Data
set/search
operations

nearest region,
point,
line

region,
point, line

Set operations intersection region,
line

region,
line

region,
line, point

union region region region

difference region region region

Let F be the set of features of interest; for example, “red” ∈ F . This feature set
is an attribute domain and “red” is an attribute of the field.

Let the tile [Li and Drew, 2003] associated with a feature, f ∈ F , be a contiguous
block of pixels having the feature f . For example, the set of pixels belonging to a
red balloon in the scene may be identified as a “red” tile by the system. Let a locale
be the set of tiles in the image all representing the same feature f . Each locale is a
field on the spatial framework, defined by image, I.

Image processing functions, such as returnLocale(“red”, I), are the so-called field
functions.

Feature extraction functions, such as centroid(), eccentricity(), size(), texture(),
and shape(), can all be represented as zonal field operations.

Example 2.3.3 (Image Segments): Note that a locale is not necessarily connected,
locales are not necessarily disjoint, and not all pixels in the image belong to a locale.

Unlike feature locales, image segments (obtained through an image segmenta-
tion process – see Section 2.3.3) are usually connected, segments are disjoint, and
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Figure 2.35. (a) The nine directions between two regions (0 means “at the same
place”) [Chang, 1991]. (b) An image with three regions and their relationships (for con-
venience, the relationships are shown only in one direction). (c) The corresponding 9DLT
matrix.

the set of segments extracted from the image usually cover the entire image. De-
spite these differences, segments can also be represented in the form of fields.

Because field-based representations are very powerful in describing many com-
monly used spatial features, such as feature locales and image segments, in the rest
of this section we present representations of directional and topological relation-
ships between fields identified in an image.

Nine-Directional Lower-Triangular (9DLT) Matrix
Chang [1991] classifies the directional relationship between a given pair of image

regions into nine classes as shown in Figure 2.35. Given these nine directional rela-
tionships, all directional relationships between n regions on a plane can be described
using an n × n matrix, commonly referred to as the nine-directional lower-triangular
(9DLT) matrix (Figures 2.35(a) and (b)).

UID-Matrix
Chang et al. [2000a] encode the topological relationships between each and ev-

ery pair of objects in a given image explicitly using a UID-matrix. More specifically,
Chang et al. [2000a] consider the 169 (= 13 × 13) unique relationships between pairs
of objects (13 interval relationships along each axis of the image) and assigns a
unique ID (or UID) to each one of these 169 unique relationships. Given an image
containing n objects, an n × n UID-matrix, enumerating the spatial relationships
between all pairs of objects in the image, is created using these UIDs.8

In general, however, the use of the UIDs for representing spatial reasoning suf-
fers from the need to make UID-based table lookups to verify which relationships
are compatible with each other. The need for table lookups can, on the other hand,
be eliminated if UIDs are encoded in a way that enables verification of compatibili-
ties and similarities between different spatial relationships. Chang and Yang [1997]
and Chang et al. [2001], for instance, encoded the unique IDs corresponding to the

8 This is similar to the 9DLT-matrix. The 9DLT representation captures the nine directional relation-
ships between a pair of regions, and given an image with n objects, an n × n 9DLT-matrix is used to
encode the directional information in the image.
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169 possible relationships as products of prime numbers. As an example consider
the “<” relationship shown later in Table 2.3. Chang and Yang [1997] compute the
UID corresponding to this relationship as 2 × 47; in fact, each and every spatial re-
lationship that would imply some form of “disjointness” is required to have 2 as a
factor in its unique ID and no relationship that implies “intersection” is allowed to
have 2 as a factor of its UID. Consequently, the mod 2 operation can be used to
quickly verify whether two regions are disjoint or not. The other prime numbers
used for computing UIDs are also assigned to represent fundamental topological
relationships between regions.

The so-called PN strategy for picking the prime numbers, described by Chang
and Yang [1997], requires 20 bits per relationship in the matrix. The GPN strategy
presented by Chang et al. [2001] reduces the number of required bits to only 11 per
relationship. Chang et al. [2003] propose an alternative encoding scheme that uses
a different bit pattern scheme. Although this scheme requires 12 bits (instead of
the 11 required by GPN) for each relationships, spatial reasoning can be performed
using bitwise-and/bitwise-or operations instead of the significantly more expensive
modulo operations required by PN and GPN. Thus, despite its higher bit length, this
strategy has been shown to require much shorter time for query processing than the
prime number-based strategies, PN and GPN.

Note that reducing the number of bits required to represent each relationship
is not the only way to reduce the storage cost and the cost of comparisons that
need to be performed for spatial reasoning. An alternative approach is to reduce
the number of relationships to be considered: given an image with n objects, all
the matrix-based representations discussed earlier need to maintain O(n2) relation-
ships; Petraglia et al. [2001], on the other hand, use certain equivalence and transi-
tivity rules to identify relationships that are redundant (i.e., can be inferred by the
remaining relationships) to reduce the number of pairwise relationships that need
to be explicitly maintained.

Nine-Intersection Matrix
Egenhofer [1994] describes topological relationships between two regions on a

plane in terms of their interiors (o), boundaries (δ), and exteriors (−). In particular,
it proposes to use the so-called nine-intersection matrix representation

 o1
o ∩ o2

o o1
o ∩ δo2 o1

o ∩ o2
−

δo1 ∩ o2
o δo1 ∩ δo2 δo1 ∩ o2

−

o1
− ∩ o2

o o1
− ∩ δo2 o1

− ∩ o2
−




for capturing the 29 = 512 different possible binary topological relationships9 be-
tween a given pair, o1 and o2, of objects. These 512 binary relationships include
eight common ones: contains, covers, covered by, disjoint, equals, inside, meets, and
overlaps. For example, if the nine-intersection matrix has the form

≥ 1 ≥ 1 ≥ 1
0 ≥ 1 ≥ 1
0 0 ≥ 1


 ,

9 Each binary topological relationship corresponds to one of the 29 subsets of the elements in the nine-
intersection matrix.
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Figure 2.36. A sample spatial orientation graph.

we say that o1 covers o2. Similarly, the statement, o1 overlaps o2, can be represented
as 

≥ 1 ≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 1




using the nine-intersection matrix.
The nine-intersection matrix can be extended to represent more complex topo-

logical relationships between other types of spatial entities, such as between regions,
curves, polygons, and points. In particular, the definitions of interior and exterior
need to be expanded (or replaced by “not applicable”) when dealing with curves and
points. For example, the definition of inside will vary depending on whether one
considers the region encircled by a closed polygon to be its interior or its exterior.

2.3.6.2 Points, the Spatial Orientation Graph, and the Plane-Sweep Technique
Whereas field-based approaches to organization are common because of their sim-
plicity, more advanced image and video models apply object-based representa-
tions [Li and Candan, 1999a; MPEG7], which describe objects (based on their spa-
tial as well as nonspatial properties) and their spatial positions and relationships.
Also, field-based approaches are not directly applicable when the spatial data are
described (for example using X3D [X3D]) over a real-valued space that is not always
efficient to represent in the form of a grid. In this section, we present an alternative,
point-based, model to represent spatial knowledge.

Spatial Orientation Graph
Without loss of generality,10 let us consider a 2D space [0, 1] × [0, 1] and a set,

F = {〈 f, x, y〉 | f ∈ features ∧ 0 ≤ x, y ≤ 1} of feature points, where features is a fi-
nite set of features of interest. The spatial orientation graph [Gudivada and Ragha-
van, 1995] one can use for representing this set of points is an edge-labeled clique
(i.e., a complete undirected graph), G(V, E, λ), where each vi ∈ V corresponds to
a f i ∈ F and for each edge 〈vi, vj〉 ∈ E, λ(〈vi, vj〉) is equal to the slope of the line
segment between vi and vj (Figure 2.36):

λ(〈vi, vj〉) = xi − xj

yi − yj
= xj − xi

yj − yi
.

10 The algorithms discussed in this section can be extended to spaces with a higher number of dimensions
or to spaces where the spaces have different, even discrete spans.
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(a) (b) (c) (d)

Figure 2.37. Converting a region into a set of points: (a) minimum bounding rectangle,
(b) centroid, (c) line sweep, and (d) corners.

Given two spatial orientation graphs, G1 and G2, whether G1 directionally matches
G2 can be decided by comparing the extent to which the edges of the two graphs
conform to each other.

Plane Sweep
If the features are not points but regions (as in Figure 2.39) in 2D space, how-

ever, point-based representations cannot be directly applied. One way to address
this problem is to convert each regional feature into a set of points collectively de-
scribing the region and then apply the algorithms described earlier to the union
of all the points obtained through this process. Figure 2.37 illustrates four possible
schemes for this purpose. (a) In the minimum bounding rectangle scheme, the cor-
ners of the tightest rectangle containing the region are used as the feature points.
This scheme may overestimate the sizes of the regions. (b) In the centroid scheme,
only a single data point corresponding to the center mass of the region is used as the
feature point. Although this approach is especially useful for similarity and distance
measures that assume that there is only one point per feature, it cannot be used
to express topological relationships between regions. (c) The line sweep method
moves a line11 along one of the dimensions and records the intersection between
the line and the boundary of the region at predetermined intervals. This scheme
helps identify points that tightly cover the region, but it may lead to a large number
of representative points for large regions.

A fourth alternative (d) is to identify the corners of the region and use these
corners to represent the region. Corners and other intersections can be computed
either by traversing the periphery of the regions or by modifying the sweep algo-
rithm to move continuously and look for intersections among line segments in the
2D space. Whenever the sweep line passes over a corner (i.e, the mutual end point
of two line segments) or an intersection, the algorithm records this point. To find all
the intersections on a given sweep line efficiently, the algorithm keeps track of the
ordering of the line segments intersecting this sweep line (and updates this ordering
incrementally whenever needed) and checks only neighbors at each iteration (Fig-
ure 2.38). This scheme, commonly referred as the plane sweep technique [Shamos
and Hoey, 1976], runs in O((n + k)logn) time, where n is the number of line seg-
ments and k is the number of intersections, whereas a naive algorithm that compares
all line segments against each other to locate intersections would require O(n2) time.

11 Although this example shows a vertical sweep, in many cases horizontal and vertical sweeps are used
together to prevent omission of data points along purely vertical or purely horizontal edges.
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Figure 2.38. Plane sweep: Line segment LS1 need to be compared only against LS2 for
intersection, but not for LS3.

2.3.6.3 Exact Retrieval Based on Spatial Information
Exact query answering using spatial predicates involves describing the data as a set
of facts and the query as a logical statement or a constraint and checking whether
the data satisfy the query or not [Chang and Lee, 1991; Sistla et al., 1994, 1995].
Specific cases of the exact retrieval problem can be efficient to solve. For exam-
ple, if we are using the 9DLT matrix representation to capture spatial information,
then an exact match between two images can be verified by performing a matrix
difference operation and checking whether the result is the 0 matrix or not [Chang,
1991]. In general, however, given a query and a large database, the search for exact
matches by comparing query and image representation pairs one by one can be very
costly.

Punitha and Guru [2006] present an exact search technique, which requires only
O(log|M|) search time, where M is the set of all spatial media (e.g., images) in the
database. In this scheme, each object in a given image is represented by its cen-
troid. Let F = {〈f, x, y〉 | f ∈ features ∧ 0 ≤ x, y ≤ 1} be a set of object centroids,
where features is a finite set of features of interest. The algorithm first selects two dis-
tinct objects, 〈fp, xp, yp〉 and 〈fq, xq, yq〉, that are farthest away from each other and
fp < fq.12 The line joining 〈xp, yp〉 to 〈xq, yq〉 is treated as the line of reference and its
direction from 〈xp, yp〉 is selected as the reference direction.13 In particular, given

α = tan−1
(

yq − yp

xq − xp

)
, and

β = sin−1

(
yq − xq√

(yq − yp)2 + (xq − xp)2

)
,

the reference direction, θr, is computed as

θr =



α + π if α < 0 ∧ β > 0
α − π if α > 0 ∧ β < 0

α otherwise.

The reference direction, θr, is used for eliminating sensitivity to rotations: After any
rotation, the furthest objects in the image will stay the same and, furthermore, the

12 This is only to have a consistent method of selecting the direction of the line joining these two
centroids.

13 If there are multiple object pairs that have the same (largest) distance and the same (lowest) feature-
labeled centroid, then the candidate directions of reference are combined using vector addition into a
single direction of reference.
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relative positions of the other objects with respect to this pair will be constant. Thus,
given two identical images, except that one of them is rotated, the spatial orientation
graphs resulting after the respective directions of reference are taken into account
will be the same. To achieve this effect, given two distinct objects, 〈f i, xi, yi〉 and
〈f j, xj, yj〉, the corresponding spatial orientation, θi j, is chosen as the direction of the
line joining 〈xi, yi〉 to 〈xj, yj〉 relative to the direction of reference, θr.

Let N be the number of distinct spatial orientation edges in the graph (in the
worst case N = O(|F |2)). Instead of storing N direction triples (i.e., edges) in the
spatial orientation graph explicitly, one can compute a unique key for each edge and
combine these into a single key for quick image lookup. Given a spatial orientation
edge, labeled θi j, from f i to f j, Punitha and Guru [2006] compute the corresponding
unique key, kij as follows:

kij = D ((f i − 1)|F | + (f j − 1)) + (Cij − 1).

Here, D is the number of distinct angles the system can detect (i.e., D = 2π
ε

, where
ε is the angular precision of the system) and Cij is the discrete angle corresponding
to θi j. Given all N key values belonging to the spatial orientation graph of the given
image, Punitha and Guru [2006] compute the mean, µ, and the standard deviation, σ,
of the set of key values and stores the triple, 〈N, µ, σ〉 as the representative signature
of the image. Punitha and Guru [2006] showed that given two distinct images (i.e.,
two distinct spatial orientation graphs), the corresponding 〈N, µ, σ〉 triples are also
different. Thus these triples can be used for indexing the images, and exact searches
on this index can be performed using a basic binary search mechanism [Cormen
et al., 2001] in O(log|M|) time, where M is the set of all spatial media (e.g., images)
in the database.

For more complex scenarios that also include topological relationships in addi-
tion to the directional ones, the problem of finding exact matches to a given user
query is known to be NP-complete [Tucci et al., 1991; Zhang, 1994; Zhang and Yau,
2005]. Thus, although in some specific cases, the complexity of the problem can be
reduced using logical reduction techniques [Sistla et al., 1994], in general, given spa-
tial models rich enough to capture both directional and topological relationships
(also considering that end users are most often interested in partial matches as
well), most multimedia database systems choose to rely on approximate matching
techniques.

2.3.6.4 Spatial Similarity
Retrieving data based on similarity of the spatial distributions (e.g., Figure 2.39) of
the features requires data structures and algorithms that can support spatial simi-
larity (or difference) computations. One method of performing similarity-based re-
trieval based on spatial features is to describe spatial knowledge in the form of rules
and constraints that can be evaluated for consistency or inconsistency [Chang and
Lee, 1991; Sistla et al., 1994, 1995].

Another alternative is to represent spatial requirements in the form of proba-
bilistic or fuzzy constraints that can be evaluated against the data to obtain a spa-
tial matching score. Although the definitions of the spatial operators and predicates
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(a) (b)

Figure 2.39. (a,b) Two images, both with two objects: B is to the right of A in both images;
on the other hand, while B overlaps with A in the vertical direction in the first image, it is
simply below A in the other. How similar are the object distributions of these two images?

discussed in the previous section are all exact, they can be extended with probabilis-
tic, fuzzy, or similarity-based interpretations:

� Many shape, curve, or object extraction schemes (such as Hough transforms;
[Duda and Hart, 1972]) provide only probabilistic guarantees.

� Some topological relationships are more similar to each other than the others
(e.g., similarity between two topological relationships may, for example, be com-
puted based on comparisons between nine-intersection matrices).

� Some distances or angles may be relatively insignificant for the given application,
and objects may be returned as matches even if they do not satisfy the user-
specified distance and/or direction criteria perfectly.

A third alternative is to rely on the properties of the underlying spatial model
to develop more specific spatial similarity/distance measures. In this section, we first
focus on the case where features of the objects in the space can be represented as
points. We then extend the discussion to the cases where the objects are of arbitrary
shape.

Without loss of generality,14 let us consider a 2D space [0, 1] × [0, 1] and a set,
F = {〈f, x, y〉 | f ∈ features ∧ 0 ≤ x, y ≤ 1} of feature points, where features is a fi-
nite set of features of interest.

Spatial Orientation Graph and Similarity Computation
As we have seen in Section 2.3.6.2, the spatial information in a media object,

such as an image, can be represented using spatial orientation graphs. Gudivada and
Raghavan [1995] provide an algorithm that computes the similarity of two spatial
orientation graphs, G1 and G2. This algorithm assumes that each feature occurs only
once in a given image; that is;

((vi, vj ∈ V) ∧ (f i = f j)) → (vi = vj).

For each ek ∈ E1, the algorithm finds the corresponding edge el ∈ E2 (because each
feature occurs only once per image, there is at most one such pairing edge). For

14 The algorithms discussed in this section can be extended to spaces with a higher number of dimensions
or to spaces that have different, even discrete, spans.
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each such pair of edges in the two spatial orientation graphs, the overall spatial
orientation graph similarity value is increased by(

1 + cos(ek, el)
2

)
100
|E1| ,

where cos(ek, el) is the cosine of the smaller angle between ek and el. The first term
ensures that if the angle between the two edges is 0, then this pair contributes
the maximum value ((1 + 1)/2 = 1) to the overall similarity score; on the other
hand, if the edges are perpendicular to each other, then their contribution is lower
((1 + 0)/2 = 0.5). The second term of the foregoing equation ensures that the max-
imum overall matching score is 100. The total similarity score is then

sim(G1, G2) =
∑

ek∈E1 ∧el∈E2∧match(ek,el)

(
1 + cos(ek, el)

2

)
100
|E1| .

Note that, because of the division by |E1| in the second term, the overall similarity
score is not symmetric. If needed, this measure can be rendered symmetric simply
by computing sim(G2, G1) by considering the edges in E2 first, searching each edge
in E1 for pairing, and, finally, averaging the two similarity scores sim(G1, G2) and
sim(G2, G1).

Assuming that given an edge in one graph, the corresponding edge in the other
graph can be found in constant time, the complexity of the algorithm is quadratic in
the number of features and linear in the number of edges; i.e. O(|E1| + |E2|).

2D-String
The preceding scheme has a major shortcoming that makes it less useful in most

applications: it assumes that each feature occurs only once. Relaxing the assumption
that the features occurs only once, however, significantly increases the complexity
of the algorithm. The 2D-string approach [Chang et al., 1987; Chang and Jungert,
1986] to spatial similarity search reduces the complexity of the matching by first
mapping the given spatial distribution, F = {〈f, x, y〉 | f ∈ features ∧ 0 ≤ x, y ≤ 1},
of features in the 2D space into a string. This is achieved by ordering the feature
points first in the horizontal direction (i.e., increasing x) and then in the vertical di-
rection (i.e., increasing y). Each ordering is converted into a corresponding string
by combining the feature names with symbols “<” and “=” that highlight the pair-
wise relationships of feature points that are neighboring along the given direction.
For example, in Figure 2.40(a), the six features a through f are ordered along the
horizontal direction as follows:

e < a = c < f < b < d;

therefore the horizontal spatial information in this image is represented using the
string “e<a=c<f<b<d” (the tie between a and c, which are equal, is broken arbitrarily).
In the same example, the six features are ordered vertically as

a = b < c < d < e < f ;

thus the corresponding string “a=b<c<d<e<f” represents this vertical ordering. Once
the horizontal and vertical strings are generated, the two strings are combined into
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(a) (b)

Figure 2.40. (a,b) Two images, each with six features and the corresponding 2D strings.

a single string of the form “(e<a=c<f<b<d;a=b<c<d<e<f)” that represents the spatial
relationships of the feature points along both horizontal and vertical directions.

Now let us consider the two images in Figures 2.40(a) and (b), which
have the same features, but with slightly different spatial distributions. Chang
and Jungert [1986] quantify the degree of matching between these two im-
ages by comparing the corresponding 2D strings, “(e<a=c<f<b<d;a=b<c<d<e<f)” and
“(e<c<a<b=f<d;a<b<c<d<f<e)”. More specifically, Chang and Jungert [1986] propose
a similarity matching algorithm that ranks the feature symbols in the two sub-strings
based on the number of < symbols that precede each feature symbol and compares
these rankings. The algorithm first creates a feature compatibility graph, where fea-
ture f i is connected to feature f j if there are two corresponding feature instances
similarly ranked in both strings. Finally, the number of objects in the largest subset
of mutually compatible features is returned as the similarity between the two strings.

Identification of a maximal compatible set of objects, however, requires costly
maximal clique search in the compatibility graph (this task is known to be NP-
complete). A much cheaper alternative to the use of maximal cliques is to compare
the given pair of 2D strings directly using the so-called edit-distance measures that
are commonly used for approximate string matching (see Section 3.2.2).

2D �R-String
Note that the 2D strings generated using the approach just discussed are highly

sensitive to rotations, and this can be a significant shortcoming for many applica-
tions. An alternative scheme, suitable to use when the matching needs to be less
sensitive to rotations, is the 2D �R-String [Gudivada, 1998]. Given an image, the
corresponding 2D �R-String [Gudivada, 1998] is created by imposing a total order
of feature points by sweeping a line segment originating from the center of the space
and noting the feature points met along the way (and if two points occur along the
same angle, breaking the ties based on their distances from the center). For exam-
ple, for the feature point distribution in Figure 2.41(a), the corresponding 2D �R-
String obtained by starting the sweep at � = 0 would be “dbacef”. For the slightly
rotated feature distribution in Figure 2.41(b), on the other hand, the corresponding
2D �R-String obtained by starting the sweep at � = 0 is “bacefd”.

Note that the two strings created in the preceding example are quite similar, but
they are not exactly equal. This highlights the fact that 2D �R-strings obtained by
always starting the sweep at � = 0 are not completely robust against rotations. This
is corrected by first identifying a feature point shared by both images and starting
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(a) (b)

Figure 2.41. (a) 2D �R-String obtained by starting the sweep at � = 0 is “dbacef”; (b) 2D
�R-String obtained by starting the sweep at � = 0 is “bacefd”.

the sweep from that point. In the foregoing example, if we pick the feature point a
as the starting point of the sweep in both of the example images, then we will obtain
the same string, “acefdb”, for both images.

The basic 2D �R-string scheme is also sensitive to translation: if the features in
an image are shifted along some direction, because the center of the image moves
relative to the data points, the string would be affected from this shift. Once again,
this is corrected by picking the pivot, around which the sweep rotates, relative to the
data points (e.g., the center of mass,〈∑

〈f i,xi,yi〉∈F xi

|F | ,

∑
〈f i,xi,yi〉∈F yi

|F |

〉
,

of all data points), instead of picking a pivot centrally located relative to the bound-
aries of the space.

2D E-String
So far, we have only considered point-based features; if the features are not

points but regions in the 2D space (as in Figure 2.39), the preceding techniques
cannot be directly applied for computing spatial similarities. The 2D E-string
scheme [Jungert, 1988] tries to address this shortcoming.

To create a 2D E-string, we first project each feature region onto the two axes
of the 2D space to obtain the corresponding intervals (Figure 2.42(a)). Then, a to-
tal order is imposed on each set of intervals projected onto a given dimension of
the space (e.g., by using the starting points of the intervals) and a string represent-
ing these intervals is created as in the basic 2D-string scheme. Note that unlike
a pair of points on a line, which can be compared against each other using only
“=” and “<”, a pair of intervals requires a larger number of comparison operators
(Table 2.3). Thus, the number of symbols used to construct 2D E-strings is larger
than the number of symbols used for constructing point-based 2D-strings.

2D G-String, 2D C-String, and 2D C+-String
One major disadvantage of the 2D E-string mechanism is that the resulting

strings are more complex because of the existence of new interval-based opera-
tors. The 2D G-string approach [Chang et al., 1989] tries to resolve this problem
by cutting regions into non-overlapping sub-objects in such a way that each sub-
object is either before, after, or equal to the sub-objects of the other regions (Fig-
ure 2.42(b)). This eliminates the need for complex interval comparison operators
and enables the construction of strings in a way analogous to the basic 2D-string
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A
B

A overlaps B

BA

B

A<A=B<B

A

(b)(a)

Figure 2.42. (a) The 2D E-String projects objects onto the axes of the space to obtain
the corresponding intervals; these intervals are then compared using interval comparison
operators, (b) the 2D G-string scheme cuts the objects into non-overlapping sub-objects so
that the “<” and “=” operators are sufficient (the figure shows only the vertical strings).

mechanism, with “<” and “=” symbols (though “=” in this case means interval
equality).

Despite the resulting simplicity, the 2D G-string approach can be increasingly
costly for images with lots of objects: During the construction of the 2D G-string,
in the worst case, each object may be partitioned at the begin and end points of the
other objects in the image. Thus, if an image contains n objects, each object may
be partitioned into as many as 2n sub-objects, resulting in O(n2) sub-objects to be
included in the string. This significant increase in the length of the strings can render
string comparisons very expensive for practical use. The 2D C-string [Lee and Hsu,
1992] and 2D C+-string [Huang and Jean, 1994] schemes reduce the length of the
strings by performing the cuts only at the end points of the overlapping objects, not
both start and end points. This reduces the number of cuts needed (each object may
be partitioned up to n pieces instead of up to 2n). However, because certain non-
equality overlaps are allowed by the cutting strategy, interval comparison operators
other than “<” and “=” may also be needed during the string construction.

2D B-String, 2D Bε-String, and 2D Z-String
The 2D B-String scheme [Lee et al., 1992] avoids cuts entirely and, instead, rep-

resents the intervals along the horizontal and vertical axes of the space using only
their start and end points. Thus, each interval is represented using only two points

Table 2.3. Thirteen possible relationships between two intervals A and Ba

Symbol Relationship Description

A < B A before B; B after A end(A) < begin(B)
A = B A equals B (begin(A) = begin(B)) ∧ (end(A) = end(B))
A ‖ B A meets B; B met by A end(A) = begin(B)
A & B A contains B; B contained by A (begin(A) < begin(B)) ∧ (end(A) > end(B))
A [ B A started by B; B starts A (begin(A) = begin(B)) ∧ (end(A) > end(B))
A ] B A finished by B; B finishes A (begin(A) < begin(B)) ∧ (end(A) = end(B))
A / B A overlaps B; B overlapped by A begin(A) < begin(B) < end(A) < end(B)

a See Section 2.3.5.3 for the use of these operators in interval-based temporal data management.
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and, once again, “<” and “=” operators are sufficient for constructing 2D strings.
The 2D Bε-string scheme [Wang, 2001] also uses an encoding based on the end
points of the intervals. However, unlike the 2D B-string scheme, which uses “<”
and “=” operators, the 2D Bε-string introduces dummy objects into the space to
obtain a total order that eliminates the need for using any explicit operator symbols
in the string (“<” is implied). Also, unlike the 2D B-string scheme that relies on
the original 2D-String scheme for similarity search, Wang [2001] proposes a longest
common subsequence (LCS)-based similarity function, which has O(pq) time and
space cost for matching two strings of length p and q.

The 2D Z-string [Lee and Chiu, 2003] scheme also avoids cuts completely and
thus results in strings of length O(n) for spaces containing n regions. Instead of cre-
ating cuts, the 2D Z-string combines regions into groups demarcated by “(” and “)”
symbols. Along each dimension, the 2D Z-string first finds those regions that are
dominating: given a set of regions that have the same end point along the given di-
rection, the one that has the smallest beginning point is the dominating region for
the given set. In other words, the dominating region is finished by all the regions it
dominates (along the given dimension).

The dominating regions are found by scanning the begin and end points along
the chosen dimension starting from the lowest value. If a dominating region is found
and there is no other region partially overlapping this region along the chosen di-
mension, then this dominating region and all the regions dominated by it are com-
bined into a template region. If there are any partially overlapping regions, these
regions (as well as regions covered by them) are merged with the dominating region
(and the regions covered by it) into a single template region. The template region
combination algorithm presented in Lee and Chiu [2003] operates on the regions
being combined into a template in a consistent manner, thus ensuring that there
are no ambiguities in the string construction process. Because no region is cut, the
length of the resulting string is O(n).

2D-PIR and Topology Neighborhood Graph
2D-PIR [Nabil et al., 1996] combines Allen’s interval operators (see Sec-

tion 2.3.5.3), the 2D-strings discussed previously, and topological relationships (see
Section 2.3.6) into a unified representation. As in the case of the 2D E-string,
the regions are projected onto the axes of the 2D space and the correspond-
ing x- and y-intervals are noted. A 2D-PIR relationship between two regions is
defined as a triple 〈δ, χ,ψ〉, where δ is a topological relationship from the set
{disjoint, meets, contains, inside, overlaps, covers, equals, covered-by}, whereas χ and
ψ are each one of the thirteen interval relationships (see Figure 2.26), along x and
y axes, respectively. A 2D-PIR graph is a directed graph, G(V, E, λ) where V is the
set of regions in the given 2D space and E is the set of edges, labeled by 2D-PIR
relationships between the end points of the edges. λ() is a function that associates
relationship labels to edges.

The degree of similarity between two 2D-PIR graphs is computed based on
the degrees of similarity between the corresponding 2D-PIR relationships in both
graphs. To support computation of the similarity of a given pair of 2D-PIR re-
lationships, 〈δi, χi, ψi〉 and 〈δj, χj, ψj〉, Nabil et al. [1996] propose similarity met-
rics suitable for comparing the topological and interval relationships. In particular,
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(a)

(b)

Figure 2.43. Topology and interval neighborhood graphs [Nabil et al., 1996]: (a) Topology
neighborhood graph, (b) Interval neighborhood graph.

Nabil et al. [1996] introduce a topological neighborhood graph, where two topolog-
ical relationships are neighbors if they can be directly transformed into one another
by continuously deforming (scaling, moving, rotating) the corresponding objects.
Figure 2.43(a) shows this topological neighborhood graph. For example, the rela-
tionships disjoint and touch are neighbors in this graph, because they can be trans-
formed to each other by moving disjoint objects until they touch (or by moving apart
objects that are touching to each other to make them disjoint). Nabil et al. [1996] also
define a similar graph for interval relationships (Figure 2.43(b)).

Given a topological or interval neighborhood graph, the distance, �, between
two relationships is defined as the shortest distance between the corresponding
nodes in the graph. The distance between two 2D-PIR relationships, 〈δi, χi, ψi〉 and
〈δj, χj, ψj〉, is computed using the Euclidean distance metric:

�(〈δi, χi, ψi〉, 〈δj, χj, ψj〉) =
√

�(δi, δj)2 + �(χi, χj)2 + �(ψi, ψj)2.

Finally, the distance between two 2D-PIR graphs, G1(V1, E1) and G2(V2, E2), is de-
fined as the sum of the distances between the corresponding 2D-PIR relationships in
both graphs. Note that this definition does not associate any penalty to regions that
are missing in one or the other space, but penalizes the relationship mismatches for
region pairs that occur in both spaces.

The 2D-PIR scheme deals with rotations and reflections by essentially re-
rotating one of the spaces until the spatial properties (i.e., x and y intervals) of a
selected reference object in both spaces are aligned. The 2D-PIR graphs are revised
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based on this rotation, and the degree of matching is computed only after the trans-
formation is completed.

SIMDTC and SIML

Like 2D-PIR, in order to support similarity assessments under transformations,
such as scaling, translation, and rotation, the SIMDTC technique [El-Kwae and
Kabuka, 1999] aligns regions (objects) in one space with the matching objects in the
other space. To correct for rotations, SIMDTC, introduces a rotation correction angle
(RCA) and computes similarity between two spaces as a weighted sum of the num-
ber of common regions and the closeness of directional and topological relationships
between region pairs in both spaces. In SIMDTC, directional spatial relationships be-
tween objects in an image are represented as edges in a spatial orientation graph
as in [Gudivada and Raghavan, 1995] (Figure 2.36); directional similarity is com-
puted based on the angular alignments of the corresponding objects in both spaces.
Let G1 and G2 be two spatial orientation graphs (see Section 2.3.6.4 for the formal
definition of a spatial orientation graph). El-Kwae and Kabuka [1999] show that, if
G1 and G2 are two spatial orientation graphs corresponding to two spaces with the
same spatial distribution of objects, but where the objects on G2 are rotated by some
fixed angle, then this rotation angle can be computed as θRCA:

θRCA = −tan−1

∑
(ei∈E1)∧(ej∈E2)∧(ei∼ej) sin(ei, ej)∑
(ei∈E1)∧(ej∈E2)∧(ei∼ej) cos(ei, ej)

,

where ei ∼ ej means that the edges correspond to the same object pair in their re-
spective spaces, and sin(ei, ej) and cos(ei, ej) are the sine and cosine of the (smallest)
angle between these two edges.15

Like the 2D G-string technique, SIMDTC is applicable to only those images which
have only one instance of a given object. SIML [Sciascio et al., 2004], on the other
hand, removes this assumption. For each image, SIML extracts all the angles be-
tween the centroids of the objects, and for a given object it computes the maximum
error between the corresponding angles. The distance is then defined as the maxi-
mum error for all groups of objects.

2.3.7 Audio Models

Audio data are often viewed as 1D continuous or discrete signals. In that sense,
many of the feature models, such as histograms or DCT (Section 4.2.9.1), appli-
cable to 2D images have their counterparts for audio data as well. Unlike images,
however, audio can also have domain-specific features that one can leverage for
indexing, classification, and retrieval. For example, a music audio object can be
modeled based on its pitch, chroma, loudness, rhythm, beat/tempo, and timbre fea-
tures [Jensen, 2007].

Pitch represents the perceived fundamental (or lowest) frequency of the audio
data. Whereas frequency can be analyzed and modeled using frequency analysis

15 Note that this is similar to the concept of reference direction introduced in Section 2.3.6.3.
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(such as DCT) of the audio data, perceived frequency requires psychophysical ad-
justments. For frequencies lower than about 1 kHZ, the human ear hears tones with
a linear scale, whereas for frequencies higher than this, it hears in a logarithmic
scale. Mel (or melody) scale [Stevens et al., 1937] is a perceptual scale of pitches
that adjusts for this. More specifically, given an audio signal with frequency, f , the
corresponding mel scale is computed as [Fant, 1968]

m = 1000
log102

log10(1 + f
1000

).

Bark scale [Sekey and Hanson, 1987] is a similar perceptual scale which transforms
the audible frequency range from 20 Hz to 15500 Hz into 24 scales (or bands). Most
audio (especially music and speech) feature analysis is performed in mel or bark
scale rather than the original frequency scale.

Chroma represents how a pitch is perceived (analogous to color for light): pitch
perception is periodic; two pitches, p1 and p2, where p1/p2 = 2c for some integer c
are perceived as having a similar quality or chroma [Bartsch and Wakefield, 2001;
Shepard, 1964].

Loudness measures the sound level as a ratio of the power of the audio signal
with respect to the power of the lowest sound that the human ear can recognize.
In particular, if we denote this lowest audible power as P⊥, then the loudness of
the audio signal with P power is measured (in decibels, dB) as 10log10( P

P⊥
). Phon

and sone are two related psychophysical measures, the first taking into account the
frequency response of the human ear in adjusting the loudness level based on the
frequency of the signal and the second quantifying the perceived loudness instead
of the audio signal power. Experiments with volunteers showed that each 10-dB
increase in the sound level is perceived as doubling the loudness; approximately,
each 0.25 sone corresponds to one such doubling (i.e., 1 sone � 40 dB).

Beat (or tempo) is the perceived periodicity of the audio signal [Ellis, 2007]. Beat
analysis can be complicated, because the same audio signal can be periodic at mul-
tiple levels and different listeners may identify different levels as the main beat.
The analysis is often performed on the onset strength signal, which represents the
loudness and time of onsets, that is, the points where the amplitude of the signal
rises from zero [Klapuri, 1999]. The tempo (in beats per minute or BPM) can be
computed by splitting the signal to its Fourier frequency spectra (Section 4.2.9.1)
and picking the frequency(s) with the highest amplitudes [Holzapfel and Stylianou,
2008]. An alternative approach, in lieu of Fourier-based spectral analysis, is to com-
pute the overlapping autocorrelations for blocks of the onset strength signal. Auto-
correlation of a signal gives the similarity/correlation16 of the signal with itself for
different amount of temporal shifts (or lags); thus, the size of shift that provides the
highest self-similarity corresponds to the period with which the sound repeats it-
self. Ellis [2007] measures tempo by taking the autocorrelation of the onset strength
signal for various lags and finding the lag that leads to the largest autocorrelation
value.

16 See Section 3.5.1.2 for a more precise definition of correlation.
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Rhythm is the repeated patterns in audio. Thus, while also being related to the
periodicity of the audio, it is a more complex measure than pitch and tempo and
captures the periodicity of the audio signal as well as its texture [Desain, 1992]. As
in beat analysis, the note onsets determine the main characteristics of the rhythm.
Jensen [2007] presents a rhythmogram feature, which detects the onsets based on
the spectral flux of the audio signal which measures how quickly the power spec-
trum of the signal changes. As in beat detection, the rhythmogram is extracted by
leveraging autocorrelation. Instead of simply picking the lags that provide largest
autocorrelation in the spectral flux, the rhythmogram associates an autocorrelation
vector to each time instance describing how correlated the signal is with its vicinity
for different lags or rhythm intervals. In general, autocorrelation is thought to be
a better indicator of rhythm than the frequency spectra one can obtain by Fourier
analysis [Desain, 1992].

Timbre is harder to define as it is essentially a catch-all feature that represents
all characteristics of an audio signal, except for pitch and loudness [McAdams and
Bregman, 1979]. Jensen [2007] creates a timbregram by performing frequency spec-
trum analysis around each time point and creating an amplitude vector for each
frequency band (normalized to bark scale to be aligned with the human auditory
system).

2.4 MULTIMEDIA QUERY LANGUAGES

Unlike traditional data models, such as relational and object-oriented, multimedia
data models are highly heterogeneous and address the needs of very different ap-
plications. Here, we provide a sample of major multimedia query languages and
compare and contrast their key functionalities (see Table 2.4 for a more extensive
list):

VideoSQL/OVID
Oomoto and Tanaka [1993] propose VideoSQL, one of the earliest query lan-

guages for accessing video data, as part of their OVID video-object database system.
Being one of the earliest multimedia query languages, it has certain limitations; for
example, it does not support spatiotemporal predicates over the video data. The
SQL-like language provides a SELECT clause, which helps the user specify the cat-
egory of the resulting video object as being continuous (consisting of a single contin-
uous video frame sequence), incontinuous, or AnyObject. The FROM clause is used
to specify the name of the video database. The WHERE clause allows the user to
specify conditions over attribute value pairs of the form [attribute] is [value | video
object], [attribute] contains [value | video object], and definedOver [video sequence |
video frame]. The last predicate returns video objects that are included in the given
video frame sequence.

QBIC
QBIC [Flickner et al., 1995; Niblack et al., 1993] allows for querying of images

and videos. Images can be queried based on their scene content or based on objects,
that is, parts of a given image identified to be coherent units. Videos are stored in
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Table 2.4. Multimedia query language examples

System/Language/Team Properties

QPE [Chang and Fu, 1980] A relational query language for formulating queries on pictorial
as well as conventional relations. An early application of the
query-by-example idea to image retrieval

PICQUERY [Joseph and
Cardenas, 1988] and
PICQUERY+ [Cardenas
et al., 1993]

An early image querying system. PICQUERY is a high-level query
language that also supports a QBE-like interface. PICQUERY+
extends this with abstract data types, imprecise or fuzzy
descriptors, temporal and object evolutionary events, image
processing operators, and visualization constructs.

OVID/VideoSQL [Oomoto
and Tanaka, 1993]

An SQL-like language for describing object containment queries
in video sequences.

QBIC [Flickner et al., 1995;
Niblack et al., 1993]

An image database, where queries can be posed on image
objects, scenes, shots, or their combinations and can include
conditions on color, texture, shape, location, camera and object
motion, and textual annotations. Queries are formulated in the
form of visual examples or sketches.

AV [Gibbs et al., 1993] An object-oriented model for describing temporal and flow
composition of audio and video data.

MQL [Kau and Tseng, 1994] A multimedia query language that supports complex object
queries, version queries, and nested queries. The language
supports a contain predicate that enables pattern matching on
images, voice, or text.

NRK-GM [Hjelsvold and
Midtstraum, 1994]

A data model for capturing video content and structure. Video is
viewed as a hierarchy of structural elements (shots, scenes).

AVS [Weiss et al., 1994] An algebraic approach to video content description. The video
algebra allows nested temporal and spatial combination of
video segments.

OCPN [Day et al., 1995a,b;
Iino et al., 1994]

Object Composition Petri-Net (OCPN) is a spatiotemporal
synchronization model that allows authoring of multimedia
documents and creation of media object hierarchies.

MMSQL [Guo et al., 1994] An SQL-based query language for multimedia data, including
images, videos, and sounds. While most querying is based on
metadata, the language also provides mechanisms for
combining media for presentation purposes.

SCORE [Aslandogan et al.,
1995; Sistla et al., 1995]

A similarity based image retrieval system with an
entity-relationship (ER) based representation of image content

Chabot [Ogle and
Stonebraker, 1995]

An image retrieval system which allows basic semantic
annotations: for example, queries can include pre-defined
keywords, such as Rose Red, associated to various ranges of
the color spectrum.

WS-QBE [Schmitt et al.,
2005]

A query language for formulating similarity-based, fuzzy
multimedia queries. Visual, declarative queries are interpreted
through a similarity domain calculus.

(Continued)
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Table 2.4 (Continued)

System/Language/Team Properties

TVQL [Hibino and
Rundensteiner, 1995,
1996]

A query language specifically focusing on querying trends in
video data (e.g., events of type B frequently follow events of
type A).

Virage [Bach et al., 1996] A commercial image retrieval system. Virage provides an
SQL-like query language that can be extended by user-defined
data types and functions.

VisualSeek [Smith and
Chang, 1996]

An image retrieval system that provides region-based image
retrieval: users can specify how color regions will be placed with
respect to each other.

SMDS [Marcus and
Subrahmanian, 1996]

A formal multimedia data model where each media instance
consists of a set of states (e.g., video clips, audio tracks), a set
of features, their properties, and relationships. The model
supports query relaxation, and the language allows for
specification of constraints that allow for synchronized
presentation of query results

MMQL [Arisawa et al., 1996] MMQL models video data in terms of physical and logical cuts,
which can contain entities. In the underlying AIS data model,
entities correspond to real-world objects and relationships are
modeled as bidirectional functions.

CVQL [Kuo and Chen, 1996] A content-based video query language for video databases. A
set of functions help the description of the spatial and temporal
relationships (such as location and motion) between content
objects or between a content object and a frame. Macros help
capture complex semantic operations for reuse.

AVIS [Adali et al., 1996] One of the first video query languages that includes a model,
not only based on the visual content but also on semantic
structures of the video data. These structures are expressed
using a Boolean framework based on semantically meaningful
constructs, including real objects, objects’ roles, activities, and
events.

VIQS [Hwang and
Subrahmanian, 1996]

An SQL-like query language that supports searches for
segments satisfying a query criterion in a video collection. Query
results are composed and visualized in the form of
presentations.

VISUAL [Balkir et al., 1996,
2002]

An object-oriented, icon-based query language focusing on
scientific data. Graphical objects represent the relationships of
the application domain. The language supports relational,
nested, and object-oriented models.

SEMCOG/VCSQL [Li and
Candan, 1999a; Li et al.,
1997b,c]

An image and video data model supporting retrieval using both
content and semantics. It supports video retrieval at object,
frame, action, and composite action levels. While the user
specifies the query visually using IFQ, a corresponding
declarative VCSQL query is automatically generated and
processed using a fuzzy engine. The system also provides
system feedback to the user to help query reformulation and
exploration
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System/Language/Team Properties

MOQL [Li et al., 1997a]
VisualMOQL [Oria et al.,
1999]

An object-oriented multimedia query language based on ODMG’s
Object Query Language (OQL). The language introduces three
predicate expressions: spatial expression, temporal expression,
and contains predicate. Spatial and temporal expressions
introduce spatiotemporal objects, functions, and predicates.
The contains predicate checks whether a media object contains
a salient object defined as an interesting physical object. The
language also provides presentation primitives, such as spatial,
temporal, and scenario layouts.

KEQL [Chu et al., 1998] A query language focusing on biological media. It is based on a
data model with three distinct layers: a representational layer
(for low-level features), a semantic layer (for hierarchical,
spatial, temporal, and evolutionary semantics), and a
knowledge layer (representing metadata about shape, temporal,
and evolutionary characteristics of real-world objects). In
addition to standard predicates, KEQL supports conditions over
approximate and conceptual terms.

GVISUAL [Lee et al., 2001] A query language specifically focusing on querying multimedia
presentations modeled as graphs. Each presentation stream is
a node in the presentation graph and edges describe sequential
or concurrent playout of media streams. GVISUAL extends
VISUAL [Balkir et al., 1996, 2002] with temporal constructs.

CHIMP/VIEW [Candan et al.,
2000a]

A system/language focused on visualization of multimedia
query results in the form of interactive multimedia
presentations. Since, given a multimedia query, the number of
relevant results is not known in advance and temporal, spatial,
and streaming characteristics of the objects in the results are
not known, the presentation language is based on virtual
objects that can be instantiated with any number of physical
objects and can scale in space and time.

SQL/MM [Melton and
Eisenberg, 2001];
[SQL03Images;
SQL03Multimedia]

SQL/MM, standardized as ISO/IEC 13249, defines packages of
generic data types to enable multimedia data to be stored and
manipulated in an SQL database. For example, ISO/IEC
13249-5 introduces user-defined types to describe image
characteristics, such as height, width, and format, as well as
image features, such as average color, color histogram,
positional color, and texture.

MMDOC-QL [Liu et al., 2001] An XML-based query language for querying MPEG-7 documents.
In addition to including support for media and spatiotemporal
predicates based on the MPEG-7 descriptors, MMDOC-QL also
supports path predicates to support structural queries on the
XML document structure itself.

MP7QF [Gruhne et al.,
2007]

An effort for providing standardized input and output query
interfaces to MPEG-7 databases. The query interface supports
conditions based on MPEG-7 descriptors, query by example, and
query by relevance feedback.
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terms of their visually coherent contiguous frame sequences (referred to as shots),
and for each shot a representative frame is extracted and indexed. Motion objects
are extracted from shots and indexed for motion-based queries. Queries can be
posed on image objects, scenes, shots, or their combinations and can include con-
ditions on color, texture, shape, location, camera and object motion, and textual
annotations. QBIC queries are formulated through a user interface that lets users
provide visual examples or sketches.

SCORE
The SCORE [Aslandogan et al., 1995; Sistla et al., 1995] similarity-based im-

age retrieval system uses a refined entity-relationship (ER) model to represent the
contents of images. It calculates similarity between the query and an image in the
database based on the query specifications and the ER representation of the im-
ages. SCORE does not support direct image matching, but provides an iconic user
interface that enables visual query construction.

Virage
Virage [Bach et al., 1996] is one of the earliest commercial image retrieval sys-

tems. The query model of Virage is mainly based on visual (such as color, shape,
and texture) features. It also allows users to formulate keyword-based queries, but
mainly at the whole-image level. Virage provides an SQL-like query language that
can be extended by user-defined data types and functions.

VisualSeek
VisualSeek [Smith and Chang, 1996] mainly relies on color information to re-

trieve images. Although VisualSeek is not directly object-based, it provides region-
based image retrieval: users can specify how color regions will be placed with respect
to each other. VisualSeek provides mechanisms for image and sketch comparisons.
VisualSeek does not support retrieval based on semantics (or other visual features)
at the image level or the object level.

VCSQL/SEMCOG
SEMCOG [Li and Candan, 1999a] models images and videos as compound ob-

jects each containing a hierarchy of sub-objects. Each sub-object corresponds to
image regions that are visually or semantically meaningful (e.g., a car). SEMCOG
supports image retrieval at both whole-image and object levels and using seman-
tics as well as visual content. Using a construct called extent objects, which can span
multiple frames and which can have time-varying visual representations, it extends
object-based media modeling to video data. It supports video retrieval at object,
frame, action, and composite action levels. It provides a visual query interface,
IFQ, for object-based image and video retrieval (Figure 2.44). Query specification
for image retrieval consists of three steps: (1) introducing objects in the target im-
age, (2) describing objects, and (3) specifying objects’ spatial relationships. Tempo-
ral queries are visually formulated through instant- and interval-based predicates.
While the user specifies the query visually using IFQ, a corresponding declarative
VCSQL query is automatically generated. IFQ and VCSQL support user-defined
concepts through combinations of visual examples, terms, predicates, and other
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Figure 2.44. The IFQ visual interface of the SEMCOG image and video retrieval system [Li and
Candan, 1999a]: the user is able to specify visual, semantic, and spatiotemporal predicates,
which are automatically converted into an SQL-like language for fuzzy query processing. See
color plates section.

concept definitions [Li et al., 1997c]. The resulting VCSQL query is executed by
the underlying fuzzy query processing engine. The degree of relevance of a candi-
date solution to the user query is calculated based on both object (semantics, color,
and shape) matching and image/video structure matching. SEMCOG also provides
system feedback to the user to help query reformulation and exploration.

SQL/MM
SQL/MM [Melton and Eisenberg, 2001; SQL03Images; SQL03Multimedia] is

an ISO standard that defines data types to enable multimedia data to be manip-
ulated in an SQL database. It standardizes class libraries for full-text and docu-
ment processing, geographic information systems, data mining, and still images. The
ISO/IEC 13249-5:2001 SQL MM Part5:StillImage standard is commonly referred
to as the SQL/MM Still Image standard. The SI StillImage type stores collections
of pixels representing two-dimensional images and captures metadata, such as im-
age format, dimensions (height and width), and color space. The image processing
methods the standard provides include scaling, cropping, rotating, and creating a
thumbnail image for quick display. A set of data types describe various features of
images. The SI AverageColor type represents the “average” color of a given image.
The SI ColorHistogram type provides color histograms. The SI PositionalColor type
represents the location of specific colors in an image, and the SI Texture type repre-
sents information, such as coarseness, contrast, and direction of granularity. These
data types enable one to formulate SQL queries inspecting image features. Most
major commercial DBMS vendors, including Oracle, IBM, and Microsoft, and In-
formix support the SQL/MM standard in their products.
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MP7QF
The work in Gruhne et al. [2007] is an effort by the MPEG committee to provide

standardized input and output query interfaces to MPEG-7 databases. In addition
to supporting queries based on the MPEG-7 feature descriptors and description
schemes as well as the XML-based structure of the MPEG-7 documents, the query
interface also supports query conditions based on query by example, and query by
relevance feedback, which takes into account the results of the previous retrieval.
Query by relevance feedback allows user to identify good and bad examples in a
previous set of results and include this information in the query.

2.5 SUMMARY

The data and query models introduced in this section highlighted the diversity of
information available in multimedia collections. As the list of languages presented
in the previous section shows, although there have been many attempts, especially
during the 1990s, to develop multimedia query languages, there are currently no
universally accepted standards for multimedia querying. This is partly due to the
extremely diverse nature of the multimedia data and partly due to the heterogene-
ity in the way multimedia data can be queried and visualized. For example, while
the query by relevance feedback mechanism proposed as part of MP7QF [Gruhne
et al., 2007] extends the querying paradigm from one-shot ad hoc queries to itera-
tive browsing-style querying, it also leaves aside many of the functionalities of the
earlier languages for the sake of simplicity and usability.

The multitude of facets available for interpreting multimedia data is a challenge
not only in the design of query languages, but also for the algorithms and data struc-
tures to be used for processing, indexing, and retrieving multimedia data. In the next
chapter, however, we see that, although a single multimedia object may have many
features that need to be managed, most of these features may be represented using
a handful of common representations.
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Common Representations
of Multimedia Features

Most features can be represented in the form of one (or more) of the four com-
mon base models: vectors, strings, graphs/trees, and fuzzy/probabilistic logic-based
representations.

Many features, such as colors, textures, and shapes, are commonly represented
in the form of histograms that quantify the contribution of each individual property
(or feature instance) to the media object. Given n different properties of interest, the
vector model associates an n-dimensional feature vector space, where the ith dimen-
sion corresponds to the ith property. Thus, each vector describes the composition of
a given multimedia data object in terms of its quantifiable properties.

Strings, on the other hand, are commonly used for representing media of se-
quential (or temporal) nature, when the ordinal relationships between events are
more important than the quantitative differences between their occurrences. As we
have seen in Section 2.3.6.4, because of their simplicity, string-based models are also
used as less complex representations for more complex features, such as the spatial
distributions of points of interest.

Graphs and trees are used for representing complex media, composed of other
smaller objects/events that cannot be ordered to form sequences. Such media in-
clude hierarchical data, such as taxonomies and X3D worlds (which are easily rep-
resented as trees), and directed/undirected networks, such as hypermedia and social
networks (where the edges of the graph represent explicit or implicit relationships
between media objects or individuals).

When vectors, strings, trees, or graphs are not sufficient to represent the under-
lying imprecision of the data, fuzzy or probabilistic models can be used to deal with
this complexity.

In the rest of this chapter, we introduce and discuss these common representa-
tions in greater detail.

3.1 VECTOR SPACE MODELS

The vector space model, proposed by Salton et al. [1975], for information re-
trieval is arguably the simplest model for representing multimedia data. In
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Figure 3.1. Vector space representation of an object, with three features, with values f1 = 5,
f2 = 7, and f3 = 3.

this model, a vector space is defined by a set of linearly independent basis vectors
(i.e., dimensions), and each data object is represented by a vector in this space
(Figure 3.1). Intuitively, the vector describes the composition of the multimedia
data in terms of its (independent) features. Histograms, for example, are good can-
didates for being represented in the form of vectors. Given n independent (nu-
meric) features of interest that describe multimedia objects, the vector model as-
sociates an n-dimensional vector space, Rn, where the ith dimension corresponds
to the ith feature. In this space, each multimedia object, o, is represented as a
vector, �vo = 〈w1,o, w2,o, . . . , wn,o〉, where wi,o is the value of the ith feature for the
object.

3.1.1 Vector Space

Formally a vector space, S, is a collection of mathematical objects (called vectors),
with addition and scalar multiplication:

Definition 3.1.1 (Vector space): The set S is a vector space iff for all �vi , �vj,
�vk ∈ S and for all c, d ∈ R, the following axioms hold:

� �vi + �vj = �vj + �vi

� (�vi + �vj) + �vk = �vj + (�vi + �vk)
� �vi + �0 = �vi (for some �0 ∈ S)
� �vi + ( �−vi) = �0 (for some �−vi ∈ S)
� (c + d)�vi = (c�vi) + (d�vi)
� c(�vi + �vj) = c�vi + c�vj

� (cd)�vi = c(d�vi)
� 1.�vi = �vi

The elements of S are called vectors.

Although a vector space can be defined by enumerating all its members, especially
when the set is infinite, an alternative way to describe the vector space is needed. A
vector space is commonly described through its basis:
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Definition 3.1.2 (Linear independence and basis): Let V = { �v1, �v2, . . . , �vn} be
a set of vectors in a vector space S. The vectors in V are said to be linearly
independent if(

n∑
i=1

ci �vi = �0
)

←→ c1 = c2 = · · · = cn = 0.

The linearly independent set V is said to be a basis for S if for every vector,
�u ∈ S, there exist constants c1 through cn such that

�u =
n∑

i=1

ci �vi.

Intuitively, the basis, V, spans the space S and is minimal (i.e., you cannot remove
any vector from V and still span the space S).

Definition 3.1.3 (Inner product and orthogonality): The inner product,1 “·”,
on a vector space S is a function S × S → R such that

� �u · �v = �v · �u,
� (c1�u + c2�v) · �w = c1(�u · �w) + c2(�v · �w), and
� ∀�v �=�0 �v · �v > 0.

The vectors �u and �v are said to be orthogonal if

�u · �v = 0.

An important observation is that a collection, V = { �v1, �v2, . . . , �vn}, of mutually or-
thogonal vectors are linearly independent; thus can be used to define an (orthogo-
nal) basis if they also span the vector space S.

Definition 3.1.4 (Norms and orthonormal basis): A norm (commonly de-
noted as ‖ · ‖) is a function that measures the length of vectors. A vector, �v,
is said to be normalized if ‖�v‖ = 1. A basis, V = { �v1, �v2, . . . , �vn}, of the vector
space S is said to be orthonormal if

∀�vi, �vj �vi · �vj = δi,j,

such that if i = j, δi,j = 1 and 0 otherwise.2

The most commonly used family of norms are the p-norms. Given a vector �v =
〈w1, . . . , wn〉, the p-norm is defined as

‖�v‖p =
(

n∑
i=1

|wi|p
) 1

p

.

At the limit, as p goes to infinity, this gives the max-norm

‖�v‖∞ = max
i=1...n

{|wi|} .

1 The dot product on R
n is an inner product function.

2 This is commonly referred to as the Kronecker delta.
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Figure 3.2. (a) Query processing in vector spaces involves mapping all the objects in the
database and the query, q, onto the same space and (b) evaluating the similarity/difference
between the vector corresponding to q and the individual objects in the database.

3.1.2 Linear and Statistical Independence of Features

Within the context of multimedia data, feature independence may mean different
things. First of all, two features can be said to be independent if the occurrence of
one of the features in the database is not correlated with the occurrence of the other
feature. Also, two features may be dependent or independent, based on whether
the users are perceiving the two features to be semantically related or not. In a
multimedia database, independence of features from each other is important for
two major reasons:

� First, the interpretation (or computation) of the similarity or difference between
the objects (i.e., vectors in the space) usually relies on the orthogonality of the
features mapped onto the basis vectors of the vector space. In fact, many of
the multidimensional/spatial index structures (Chapter 7) that are adopted for
efficient retrieval of multimedia data assume orthogonality of the basis of the
vector space. Also correct interpretation of the user’s relevance feedback often
requires the feature independence assumption.

� Second, as we discuss in Section 4.2, it is easier to pick the most useful dimen-
sions of the data for indexing if these dimensions are not statistically correlated.
In other words, statistical independence (or statistical orthogonality) of the di-
mensions of the feature space helps with feature selection.

In Section 3.5.1.2, we discuss the effects of the independence assumption and
ways to extract independent bases in the presence of features that are not truly
independent in the linear, statistical, or semantic sense.

3.1.3 Comparison of Objects in the Vector Space

Given a n-dimensional feature space, S, query processing involves mapping all the
objects in the database and the query onto this space and then evaluating the similar-
ity/difference between the vector corresponding to the query and the vectors rep-
resenting the data objects (Figure 3.2). Thus, given a vector, �vq = 〈q1, q2, . . . , qn〉,
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Figure 3.3. Euclidean distance between two points.

representing the user query and a vector �vo = 〈o1, o2, . . . , on〉, representing an ob-
ject in this space, retrieval involves computing a similarity value, sim( �vq, �vo), or a
distance value, �( �vq, �vo), using these two vectors.

As with the features themselves, the similarity/distance function that needs to be
used when comparing two vectors, �vq and �vo, also depends on the characteristics of
the application. Next, we list commonly used similarity and distance functions for
comparing vectors.

� Minkowski distance: The Minkowski distance of order p (also referred to as p-
norm distance or Lp metric distance) is defined as

�Mink,p( �vq, �vo) =
(

n∑
i=1

|qi − oi|p
)1/p

.

The Euclidean distance (Figures 3.3 and 3.4(b)),

�Euc( �vq, �vo) = �Mink,2( �vq, �vo) =
(

n∑
i=1

|qi − oi|2
)1/2

,

commonly used for measuring distances between points in the 3D space we are
living in, is in fact the Minkowski distance of order 2. Another special case

Y

= dX+dY

dX

dY

X

dX

∆
Y

= (dX2+dY2) 1/2

dX

dY

X

dX

∆

(a) (b)

Figure 3.4. (a) Manhattan (1-norm or L1) and (b) Euclidean (2-norm or L2) distances in
2D space.
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f2 o2=<6,6,6>

q =<3,3,3>

o1=<3 2 3>o1=<3,2,3>

f1

f3

Figure 3.5. Under cosine similarity, q is more similar to o2 than to o1, although the Euclidean
distance between �vq and �vo1 is smaller than the Euclidean distance between �vq and �vo2 .

(preferred in multimedia databases because of its computational efficiency) is
the Manhattan (or city block) distance (Figure 3.4(a)):

�Man( �vq, �vo) = �Mink,1( �vq, �vo) =
n∑

i=1

|qi − oi| .

The Manhattan distance is commonly used for certain kinds of similarity evalua-
tion, such as color-based comparisons. Results from computer vision and pattern
recognition communities suggest that it may capture human judgment of image
similarity better than Euclidean distance [Russell and Sinha, 2001].

At the other extreme, the ∞-norm distance (also known as the Chebyshev
distance) is also efficient to compute:

�Mink,∞( �vq, �vo) = lim
p→∞

(
n∑

i=1

|qi − oi|p
)1/p

= max
i=1...n

{|qi − oi|} .

The Minkowski distance has the advantage of being a metric. Thus, functions
in this family make it relatively easy to index data relying on multi-dimensional
indexing techniques designed for spatial data (Chapter 7).

� Cosine similarity: Cosine similarity is simply defined as the cosine of the angle
between the two vectors:

simcosine( �vq, �vo) = cos( �vq, �vo).

If the angle between two vectors is 0 degrees (in other words, if the two vectors
are overlapping in space), then their composition is similar and, thus, the cosine
similarity measure returns 1, independent of how far apart the corresponding
points are in space (Figure 3.5). Because of this property, the cosine similarity
function is commonly used, for example, in text databases, when compositions
of the features are more important than the individual contributions of features
in the media objects.

� Dot product similarity: The dot product (also known as the scalar product) is
defined as

simdot prod( �vq, �vo) = �vq · �vo =
n∑

i=1

qioi.
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Figure 3.6. Two data sets in a two-dimensional space. In (a) the data are similarly distributed
in F1 and F2, whereas in (b) the data are distributed differently in F1 and F2. In particular,
the variance of the data is higher along F1 than F2.

The dot product measure is closely related to the cosine similarity:

simdot prod( �vq, �vo) = �vq · �vo = | �vq|| �vo|cos( �vq, �vo) = | �vq|| �vo|simcosine( �vq, �vo).

In other words, the dot product considers both the angle and the lengths of the
vectors. It is also commonly used for cheaply computing cosine similarity in ap-
plications where the vectors are already prenormalized to unit length.

� Intersection similarity: Intersection similarity is defined as

sim∩( �vq, �vo) =
∑n

i=1 min(qi, oi)∑n
i=1 max(qi, oi).

Intersection similarity has its largest value, 1, when all the terms of �vq are iden-
tical to the corresponding terms of �vo. Otherwise, the similarity is less than 1. In
the extreme case, when qis are very different from ois (either oi very large and
qi very small or qi very large and oi very small), then the similarity will be close
to 0.

The reason why this measure is referred to as the intersection similarity is
because it considers to what degree �vq and �vo overlap along each dimension. It is
commonly used when the dimensions represent counts of a particular feature in
the object (as in color and texture histograms).

When applied to comparing sets, the intersection similarity is also known as
the Jaccard similarity coefficient: given two sets, A and B, the Jaccard similarity
coefficient is defined as

simjaccard(A, B) = |A ∩ B|
|A ∪ B| .

A related set comparison measure commonly used for comparing sets is the Dice
similarity coefficient, computed as

simdice(A, B) = 2|A ∩ B|
|A| + |B| .

� Mahalanobis distance: The Mahalanobis distance extends the Euclidean dis-
tance, by taking into account data distribution in the space. Consider the data
sets shown in Figure 3.6(a) and (b). Let us assume that we are given two new
data objects, A and B, and we are asked to determine whether A or B is a
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Figure 3.7. A data set in which features F1 and F2 are highly correlated and the direction
along which the variance is high is not aligned with the feature dimensions.

better candidate to be included in the cluster3 of objects that make the data set.
In the case of Figure 3.6(a), both points are equidistant from the boundary and
the data are similarly distributed along F1 and F2; thus there is no reason to pick
one versus the other. In Figure 3.6(b), on the other hand, the data are distributed
differently in F1 and F2. In particular, the variance of the data is higher along F1

than F2. This implies that the distortion of the cluster boundary along F1 will
have a smaller impact on the shape of the cluster than the same distortion of
the cluster boundary along F2. This can be taken into account by modifying the
distance definition in such a way that differences along the direction with higher
variance of data receive a smaller weight than differences along the direction
with smaller variance.

Given a query and an object vector, the Euclidean distance

�Euc( �vq, �vo) =
(

n∑
i=1

|qi − oi|2
)1/2

between them can be rewritten in vector algebraic form as

�Euc( �vq, �vo) =
√

( �vq − �vo)T( �vq − �vo) =
√

( �vq − �vo)T I ( �vq − �vo),

where I is the identity matrix. One way to assign weights to the dimensions of the
space to accommodate the differences in their variances is to replace the identity
matrix, I, with a matrix that captures the inverse of these variances.

This can be done, to some degree, by replacing the “1”s in the identity ma-
trix by 1/σ2

i , where σ2
i is the variance along the ith dimension. However, this

would not be able to account for large variations in data distribution that are
not aligned with the dimensions of the space. Consider, for example, the data
set shown in Figure 3.7. Here, features F1 and F2 are highly correlated, and the
direction along which the variance is high is not aligned with the feature dimen-
sions. Thus, the Mahalanobis distance takes into account correlations in the
dimensions of the space by using (the inverse of) the covariance matrix, S, of the
space in place of the identity matrix4:

�Mah( �vq, �vo) =
√

( �vq − �vo)TS−1( �vq − �vo).

3 As introduced in Section 1.3, a cluster is a collection of data objects, which are similar to each other.
We discuss different clustering techniques in Chapter 8.

4 See Section 3.5.1.2 for a detailed discussion of covariance matrices.
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Figure 3.8. A feature space defined by three color features: F1 = red, F2 = pink, and F3 =
blue; features F1 and F2 are perceptually more similar to each other than they are to F3.

The values at the diagonal of S are the variances along the corresponding dimen-
sions, whereas the values at off-diagonal positions describe how strongly related
the corresponding dimensions are (in terms of how objects are distributed in the
feature space).

Note that when the covariance matrix is diagonal (i.e., when the dimensions
are mutually independent as in Figure 3.6(b)), as expected, the Mahalanobis dis-
tance becomes similar to the Euclidean distance:

�Mah( �vq, �vo) =
(

n∑
i=1

|qi − oi|2
σ2

i

)1/2

.

Here σ2
i is the variance along the ith dimensions over the data set. Consequently,

the Mahalanobis distance is less dependent on the scale of feature values. Be-
cause the Mahalanobis distance reflects the distribution of the data, it is com-
monly used when the data are not uniformly distributed. It is particularly useful
for data collections where the data distribution varies from cluster to cluster;
we can use a different covariance matrix when computing distances to different
clusters of objects. It is also commonly used for outlier detection as it takes into
account and corrects for the distortion that a given point would cause on the
local data distribution.

� Quadratic distance: The definition of quadratic distance [Hafner et al., 1995] is
similar to that of the Mahalanobis distance,

�Mah( �vq, �vo) =
√

( �vq − �vo)TA( �vq − �vo),

except that the matrix, A, in this case denotes the similarity between the features
represented by the dimensions of the vector space as opposed to their statistical
correlation. For example, as shown in Figure 3.8, if the dimensions of the feature
space correspond to the bins of a color histogram, [ai,j] would correspond to
the (perceptual) similarity of the colors represented by the corresponding bins.
These similarity values would be computed based on the underlying color model
or based on the user feedback.

Essentially, the quadratic distance measure distorts the space in such a
way that distances across dimensions that correspond to features that are
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perceptually similar to each other are shorter than the distances across dimen-
sions that are perceptually different from each other.

� Kullback-Leibler divergence: The Kullback-Leibler divergence measure (also
known as the KL distance) takes a probabilistic view and measures the so-called
relative entropy between vectors interpreted as two probability distributions:

�KL( �vq, �vo) =
n∑

i=1

qi log
qi

oi
.

Note that, because the KL distance is defined over probability distributions,∑n
i=1 qi and

∑n
i=1 oi must both be equal to 1.0.

The KL distance is not symmetric and, thus, is not a metric measure, though a
modified version of the KL distance can be used when symmetricity is required:

�KL′( �vq, �vo) = 1
2

(
n∑

i=1

qi log
qi

oi

)
+ 1

2

(
n∑

i=1

oi log
oi

qi

)
.

Alternatively, a related distance measure, known as the Jensen-Shannon diver-
gence,

�JS( �vq, �vo) = �KL

(
�vq,

�vq + �vo

2

)
+ �KL

(
�vo,

�vq + �vo

2

)
,

which is known to be the square of a metric [Endres and Schindelin, 2003], can
be used when a metric measure is needed.

� Pearson’s chi-square test: Like the Kullback-Leibler divergence, the chi-square
test also interprets the vector probabilistically and measures the degree of fit be-
tween one vector, treated as an observed probability distribution, and the other
(treated as the expected distribution). For example, if we treat the query as the
expected distribution and the vector of the object we are comparing against the
query as the observed frequency distribution, then we can perform the Pearson’s
chi-square fitness test by computing the following score:

χ2 =
n∑

i=1

oi − qi

qi
.

The resulting χ2 value is then interpreted by comparing against a chi-square dis-
tribution table for n − 1 degrees of freedom (n being the number of dimensions
of the space). If the corresponding value listed in the table is less than 0.05, the
corresponding probability distributions are not statistically related and oi is not
a match for qi.

� Signal-to-noise ratio: The signal-to-noise ratio (SNR) is the ratio of the power
of a signal to the power of the noise in the environment. Intuitively, the SNR
value measures how noise-free (i.e., close to its intended form) a signal at the
receiving end of a communication channel is. Treating the query vector, �vq, as
the intended signal and the difference, �vq − �vo as the noise signal, the signal-to-
noise ratio between them is defined as

simSNR( �vq, �vo) = 20log10

√∑n
i=1 q2

i√∑n
i=1(qi − oi)2

.
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The SNR is especially useful if the difference between the query and the objects
in the database is very small, that is, when we are trying to differentiate between
objects using slight differences between them.

In summary, the various similarity and distance measures defined over vector spaces
compute the degree of matching between a given query and a given object (or be-
tween two given objects) based on different assumptions made about the nature of
the data and the interpretation of the feature values that correspond to the dimen-
sions of the space.

3.2 STRINGS AND SEQUENCES

To illustrate the use of sequences in multimedia, let us consider an application where
we are interested in capturing and indexing users’ navigation experiences5 [Adali
et al., 2006; Blustein et al., 2005; D. Dasgupta and F. A. Gonzalez, 2001; Debar et al.,
1999; Fischer, 2001; Gemmell et al., 2006; Jain, 2003b; Mayer et al., 2004; Sapino
et al., 2006; Sridharan et al., 2003] within a hypermedia document.

3.2.1 Example Application: User Experience Sequences

User experiences can often be represented in the form of sequences of events [Can-
dan et al., 2006]:

Definition 3.2.1 (User experience): Let D be a domain of events and A be a
set of events from this domain. A user experience, ei, is modeled as a finite
sequence ei,0 · ei,1 · . . . · ei,n, where ei,j ∈ A.

For example, user experience “navigating in a website” can be modeled as a se-
quence of Web pages seen by a user:

<www.asu.edu> <www.asu.edu/colleges> <www.fulton.asu.edu/fulton> . . .
. . . <sci.asu.edu>.

The user experience itself does not always have a predefined structure known
to the system, although it might implicitly be governed by certain domain-specific
rules (such as the hyperlinks forming the website). Capturing the appropriate events
that form a particular domain and discovering the relationships between these state-
ments is essential for any human-centric reasoning and recommendation system.
In particular, an experience-driven recommendation system needs to capture the
past states of the individual and the future states that the individual wishes to
reach. Given the history and future goals, the system needs to identify appropriate

5 Modeling user experiences is crucial for enabling the design of effective interaction tools [Fischer,
2001]. Models of expected user or population behavior are also used for enabling prefetching and
replication strategies for improved content delivery [Mayer et al., 2004; Sapino et al., 2006]. Record-
ing and indexing individuals’ various experiences also carry importance in personal information man-
agement [Gemmell et al., 2006], experiential computing [Jain, 2003a,b], desktop information manage-
ment [Adali and Sapino, 2005], and various arts applications [Sridharan et al., 2003].
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propositional statements to provide to the end user as a recommendation. Candan
et al. [2006] define a popularity query as follows:

Definition 3.2.2 (Popularity query): Let D be a domain and A be a set of
propositional statements from this domain. Let E be an experience collection
(possibly representing experiences of a group of individuals). A popularity
query is a sequence, q, of propositional statements and wildcard characters
from A ∪ {“ � ”, “//”} executed over the database, E . Here, “ � ” is a wildcard
symbol that matches any label in A, and the wildcard “//” corresponds to an
arbitrary number of “�”s. The query processor (recommendation engine) re-
turns matches in the order of frequency or popularity.

For example, in the context of navigation within a website, the wildcard query

q :=
(
〈www.asu.edu〉 // 〈sci.asu.edu〉

)
is asking about how users of the ASU website are commonly navigating from the
ASU main page to the School of Computing and Informatics’s home page. The
answer to this query will be a list of past user navigations from www.asu.edu to
sci.asu.edu, ranked in terms of their popularities.

Note that, when comparing sequences, exact alignment of elements is often not
required. For example, when counting navigation sequences for deriving popularity-
based recommendations, there may be minor deviations between different users’
navigational experiences (maybe because the Web content is dynamically created
and personalized for each individual). Whether two experiences are going to be
treated as matching or not depends on the amount of difference between them; thus,
this difference needs to be quantified. This is commonly done through edit distance
functions, which quantify the minimum number of symbol insertions, deletions, and
substitutions needed to convert one sequence to the other.

3.2.2 Edit Distance Measures

Given two sequences, the distance between them can be defined in different ways
depending on the applications requirements. Because they measure the cost of
transformations (or edits) required to convert one sequence into the other, the dis-
tance measures for sequences are commonly known as the edit distance measures.

� The Hamming distance [Hamming, 1950], �Ham, between two equi-length se-
quences is defined as the number of positions with different symbols, that is, the
number of symbol substitutions needed to convert one sequence to the other.
The Hamming distance is metric.

� The episode distance, �episode, only allows insertions, each with cost 1. This dis-
tance measure is not symmetric and thus it is not a metric.

� The longest common subsequence distance, �lcs, allows both insertions and dele-
tions, both costing 1. This is symmetric, but is not guaranteed to satisfy triangular
equality; thus it is also not metric.

� The Kendall tau distance, �kt, (also known as the bubble-sort distance) between
two sequences is the number of pairwise disagreements (i.e., the number of
swaps) between two sequences. The Kendall tau distance, a metric, is applied
mostly when the two sequences are equi-length lists and each symbol occurs at
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most once in a sequence. For example, two list objects, each ranked with respect
to a different criterion, can be compared using the Kendall tau distance.

� The Levenshtein distance, �Lev [Levenshtein, 1966], another metric, is more gen-
eral: it is defined as the minimum number of symbol insertions, deletions, and
substitutions needed to convert one sequence to the other. An even more gen-
eral definition of Levenshtein distance associates heterogeneous costs to inser-
tions, deletions, and substitutions and defines the distance as the minimum cost
transition from one sequence to the other. The cost associated with a given edit
operation may be a function of (a) the type of operation, (b) the symbols in-
volved in the editing, or (c) the positions of the symbols involved in the edit
operation. Other definitions also allow for more complex operations, such as
transpositions of adjacent or nearby symbols or entire subsequences [Cormode
and Muthukrishnan, 2002; Kurtz, 1996]. The Damerau-Levenshtein distance
[Damerau, 1964], �DL, is an extension where swaps of pairs of symbols are also
allowed as atomic operations. Note that if the only operation allowed is substi-
tution, if the cost of substitution is independent of the characters involved, and
if the strings are of equal length, then the Levenshtein distance is equivalent to
the Hamming distance.

In Section 5.5, we discuss algorithms and index structures for efficient approxi-
mate string and sequence search in greater detail.

3.3 GRAPHS AND TREES

Let D be a set of entities of interest; a graph, G(V, E), defined over V = D describes
relationships between pairs of objects in D. The elements in the set V are referred
to as the nodes or vertices of the graph. The elements of the set E are referred to
as the edges, and they represent the pairwise relationships between the nodes of the
graph. Edges can be directed or undirected, meaning that the relationship can be
nonsymmetric or symmetric, respectively. Nodes and edges of the graph can also be
labeled or nonlabeled. The label of an edge, for example, may denote the name of
the relationship between the corresponding pair of nodes or may represent other
metadata, such as the certainty of the relationship or the cost of leveraging that
relationship within an application.

As we discussed in Section 2.1.5, knowledge models (such as RDF) that produce
the greatest representation flexibility reduce the knowledge representation into a set
of simple subject-predicate-object statements that can easily be captured in the form
of relationship graphs (see Figures 2.5 and 2.6). Thus, thanks to this flexibility, the
use of graphs in multimedia data modeling and analysis is extensive; for example,
graph-based models are often used to represent many diverse aspects of multimedia
data and systems, including the following:

� Spatio-temporal distribution of features in a media object (Figure 2.36)
� Media composition (e.g., order) of a multimedia document (Figure 2.28)
� References/citations/links between media objects in a hypermedia system or

pages on the Web (Figure 1.9)
� Semantic relationships among information units extracted from documents in a

digital library (Figure 3.9)
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Figure 3.9. An example graph: semantic relationships between information units extracted
from a digital library.

� Explicit (e.g., “friend”) or implicit (e.g., common interest) relationships among
individuals within a social network (Section 6.3.4)

A tree, T(V, E), is a graph with a special, highly restricted structure: first of all, if
the edges are undirected, each pair of vertices of the tree are reachable from each
other through one and only one path (i.e., a sequence of edges); if the edges are
directed, on the other hand, the tree does not contain any cycles (i.e., no vertex
is reachable from itself through a non-empty sequence of edges), there is one and
only one vertex (called root) that is not reachable from any other vertex but that
can reach each other vertex (through a corresponding unique edge path). In a rooted
tree, on any given path, the vertices closer to the root are referred to as the ancestors
of the nodes that are further away (i.e., descendants). A vertex that does not have
a descendant is referred to as a leaf, whereas others are referred to as the internal
vertices. A pair of ancestor-descendant nodes that are connected by a single edge
is referred to as a parent-child pair, and the children of the same parent vertex are
called siblings of each other. A tree is called an ordered tree if it is rooted and
the order among siblings (nodes under the same parent node) is also given. An
unordered tree is simply a rooted tree.

Examples of data types that can be represented using trees include the following:

� Hierarchical multimedia objects, such as virtual worlds created using the X3D
standard (Figure 1.1), where complex objects are constructed by clustering sim-
pler ones
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Figure 3.10. A fragment from the Yahoo CS hierarchy [Yahoo].
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Figure 3.11. A fragment of a concept taxonomy for the domain “information theory.”

� Semistructured and hierarchical XML data (without explicit object references;
Section 2.1.4)

� Taxonomies that organize concepts into a hierarchy in such a way that more
general concepts are found closer to the root (Figures 3.10 and 3.11)

� Navigation hierarchies for content, such as threads in a discussion board (Fig-
ure 3.12), that are inherently hierarchical in nature

3.3.1 Operations on Graphs and Trees

Common operations on graph structured data include the following [Cormen et al.,
2001]:

� Checking whether a node is reachable from another one
� Checking whether the graph contains a cycle or not
� Searching for the shortest possible paths between a given pair of vertices in the

graph
� Extracting the smallest tree-structured subgraphs connecting all vertices (mini-

mum spanning trees) or a given subset of the vertices (Steiner trees)
� Identification of subgraphs where any pair of nodes are reachable from each

other (connected components)

Tue May 25, 2008 9:21 amVander, Ryanbuzz proj.
Thu May 27, 2008 7:53 pmTrue, ThomasRe: buzz proj.
Sat May 29, 2008 2:08 pmVander, RyanRe: buzz proj.
Sun May 30, 2008 6:10 pmGrain, RobertRe: buzz proj.
Sun May 30, 2008 10:23 pmVander, RyanRe: buzz proj.
Thu May 27, 2008 3:04 pmRodriguez, LuisaAssignment 4
Thu May 27, 2008 7:57 pmTrue, ThomasReport for Assig. 4

Candan, Kasim Re: Report for Assig. 4
Fri May 28, 2008 10:41 pmAtilla, JohnAssignment #4
Mon May 31, 2008 12:19 amCandan, KasimRe: Assignment #4
Sat May 29, 2008 11:00 pmRoosewelt, DanielQuestions on #5
Mon May 31, 2008 12:23 amRe: Questions on #5 Candan, Kasim
Mon May 31, 2008 10:34 pmRay, LuisaRe: Questions on #5
Tue Jun 1, 2008 12:23 amHome, ChrisRe: Questions on #5
Tue Jun 1, 2008 11:39 amTrue, ThomasReport Length
Wed Jun 2, 2008 1:39 amCandan, KasimRe: Report Length
Tue Jun 1, 2008 9:14 pmBird, SarahAssignment # 6

Mon May 31, 2008 12:07 am

Figure 3.12. A thread hierarchy of messages posted to a discussion board.
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� Identification of the largest possible subgraphs such that each vertex in the
subgraph is reachable from each other vertex through a single edge (maximal
cliques)

� Partitioning of the graph into smaller subgraphs based on various conditions
(graph coloring, edge cuts, vertex cuts, and maximal-flow/minimum-cut)

Some of these tasks, such as finding the shortest paths between pairs of vertices,
have relatively fast solutions, whereas some others, such as finding maximal cliques
or Steiner trees, have no known polynomial time solutions (in fact they are known
to be NP-complete problems [Cormen et al., 2001]). Although some of these tasks
(such as finding the paths between two nodes or partitioning the tree based on
certain criteria) are also applicable in the case of trees, because of their special
structures, many of these problems are much easier to compute for trees than for
arbitrary graphs. Therefore, tree-based approximations (such as spanning trees) are
often used instead of their graph counterparts to develop efficient, but approximate,
solutions to costly graph operations.

3.3.2 Graph Similarity and Edit Distance

Let G1(V1, E1) and G2(V2, E2) be two node-labeled graphs.

� Graph isomorphism: A graph isomorphism from G1 to G2 is a bijective (i.e.,
one-to-one and onto) mapping from the nodes of G1 to the nodes of G2 that
preserves the structure of the edges. A subgraph isomorphism from G1 to G2 is
similarly defined as an isomorphism of G1 to a subgraph of G2. Both approximate
graph isomorphism and subgraph isomorphism are known to be NP-complete
problems [Yannakakis, 1990].

� Common subgraphs: A subgraph common to G1 and G2 is said to be maximal
if it cannot be extended to another common subgraph. The maximum common
subgraph of G1(V1, E1) and G2(V2, E2) is the largest possible common subgraph
of G1 and G2. The maximum common subgraph problem is also NP-complete
[Ullmann, 1976].

As in the case of symbol sequences, we can define an edit distance between two
graphs as the least-cost sequence of edit operations that transforms G1 into G2.
Commonly used graph edit operations include substitution, deletion, and insertion
of graph nodes and edges. However, unlike in the case of strings and sequences,
the graph edit distance problem is known to be NP-complete. In fact, even ap-
proximating the graph edit distance is very costly; the edit-distance problem is
known to be APX-hard (i.e., there is no known polynomial time approximation
algorithm) [Bunke, 1999]. Bunke [1999] shows that the graph isomorphism, sub-
graph isomorphism, and maximum common subgraph problems are special in-
stances of the graph edit distance computation problem. For instance, the maxi-
mum common subgraph, Gm, of G1 and G2 has the property that �gr edit(G1, G2) =
|G1| + |G2| − 2|Gm|.

We discuss graph edit distances and algorithms to compute them in greater detail
in Chapter 6.
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3.3.3 Tree Similarity and Edit Distance

Let T(V, E) be a tree, that is, a connected, acyclic, undirected graph. T is called a
rooted tree if one of the vertices/nodes is distinguished and called the root. T is
called a node-labeled tree if each node in V is assigned a symbol from an alphabet �.
T is called an ordered tree if it is rooted and the order among siblings (nodes under
the same parent node) is also given. An unordered tree is simply a rooted tree.

Given two ordered labeled trees, T1 and T2, T1 is said to match T2 if there is a
one-to-one mapping from the nodes of T1 to the nodes of T2 such that (a) the roots
map to each other; (b) if vi maps to vj, then the children of vi and vj map to each
other in left-to-right order; and (c) the label of vi is equal to the label of vj. Note that
exact matching can be checked in linear time for ordered trees. T1 is said to match T2

at node v if there is a one-to-one mapping from the nodes of T1 to the nodes of the
subtree of T2 rooted at v. The naive algorithm (which checks for all possible nodes
v of T2) takes O(nm) time where n is the size of T1 and m is the size of T2, whereas
there are O(n

√
m) algorithms that leverage suffix trees (see Section 5.4.2 for suffix

trees) for quick access to subpaths of T1.
As in the case of strings, given appropriate definitions of insertion, deletion,

and swap operations, one can define corresponding edit-distance measures between
trees. Unlike the case for strings, however, computing edit distances for trees may be
expensive. Although the matching problem is relatively efficient for ordered trees,
the problem quickly becomes untractable for unordered trees. In fact, for unordered
trees, the matching problem is known to be NP-hard [Kilpelainen and Mannila,
1995]. We discuss tree edit distances and algorithms to compute them in Chapter 6
in greater detail.

3.4 FUZZY MODELS

Vectors, strings, and graphs can be used for multimedia query processing only when
the data and query can both be represented as vectors, strings, or graphs. This, how-
ever, is not always the case. Especially when the query is not provided as an example
object, but formulated using declarative means, such as the logic-based query lan-
guages described in Section 2.1, we need an alternative mechanisms to measure the
degree of matching between the query and the media objects in the database. Fuzzy
and probabilistic models, described in this section, serve this purpose.

3.4.1 Fuzzy Sets and Predicates

Fuzzy data and query models for multimedia querying are based on the fuzzy set
theory and fuzzy logic introduced by Zadeh in the mid-1960s [Zadeh, 1965]. A fuzzy
set, F , with domain of values D is defined using a membership function, µF : D →
[0, 1]. A crisp (or conventional) set, C, on the other hand, has a membership function
of the form µC : D → {0, 1} (i.e., for any value in the domain, the value is either in
the set or out of it). When for an element d ∈ D, µC(d) = 1, we say that d is in C
(d ∈ C); otherwise we say that d is not in C (d /∈ C). Note that a crisp set is a special
case of fuzzy sets.

A fuzzy predicate corresponds to a fuzzy set: instead of returning Boolean
(true = 1 or false = 0) values as in propositional functions, fuzzy predicates return
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Table 3.1. Min and products semantics for fuzzy logical operators

Min semantics Product semantics

µPi∧P j (x) = min{µi(x), µ j(x)} µPi∧P j (x) =
µi(x) × µ j(x)

max{µi(x), µ j(x), α} α ∈ [0, 1]

µPi∨P j (x) = max{µi(x), µ j(x)} µPi∨P j (x) =
µi(x)+µ j(x)−µi(x)×µ j(x)−min{µi(x), µ j(x), 1−α}

max{1 − µi(x), 1 − µ j(x), α}
µ¬Pi (x) = 1 − µi(x) µ¬Pi (x) = 1 − µi(x)

membership values (or scores) corresponding to the members of the fuzzy set. In
multimedia databases fuzzy predicates are used for representing the assessments of
the imprecisions and imperfections in multimedia data. Such assessments can take
different forms [Peng and Candan, 2007]. For example, if the data are generated
through a sensor/operator with a quantifiable quality rate (for instance, a function
of the available sensor power), then a scalar-valued assessment of imprecision may
be applicable. These are referred to as type-1 fuzzy predicates [Zadeh, 1965], which
(unlike propositional functions that return true or false) return a membership value
to a fuzzy set. In this simplest case, the quality assessment of a given object, o, is
modeled as a value 0 ≤ qa(o) ≤ 1.

A more general quality assessment model would take into account the uncertain-
ties in the assessments themselves. These types of predicates, where sets have grades
of membership that are themselves fuzzy, are referred to as type-2 fuzzy predicates
[Zadeh, 1975]. A type-2 primary membership value can be any continuous range in
[0, 1]. Corresponding to each primary membership there is a secondary membership
function that describes the weights for the instances in the primary membership. For
example, the quality assessment of a given object o can be modeled as a normal dis-
tribution of qualities, N(qexp, var), where qexp is the expected quality and var is the
variance of possible qualities (see Section 3.5). Given this distribution, we can assess
the likelihood of possible qualities for the given object based on the given observa-
tion (for instance, the quality value qexp is the most likely value). Although the type-2
models can be more general and use different distributions, the specific model using
the normal distribution is common because it relies on the well-known central limit
theorem. This theorem states that the average of the samples tends to be normally
distributed, even when the distribution from which the average is computed is not
normally distributed.

3.4.2 Fuzzy Logical Operators

Fuzzy statements about multimedia data combine fuzzy predicates using fuzzy logi-
cal operators. Like the predicates, fuzzy statements also have associated scores. Nat-
urally, the meaning of a fuzzy statement (i.e., the score of the whole clause, given the
constituent predicate scores) depends on the semantics chosen for the fuzzy logical
operators, not (¬), and(∧), and or(∨), used for combining the predicates.

3.4.2.1 Min, Product, and Average
Table 3.1 shows popular min and product fuzzy semantics used in multimedia query-
ing. These two semantics (along with some others) have the property that binary
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Table 3.2. Properties of triangular-norm and triangular-conorm functions

T-norm binary function N (for ∧) T-conorm binary function C (for ∨)

Boundary
conditions

N(0, 0) = 0, N(x, 1) = N(1, x) = x C(1, 1) = 1, C(x, 0) = C(0, x) = x

Commutativity N(x, y) = N(y, x) C(x, y) = C(y, x)

Monotonicity x ≤ x′, y ≤ y′ → N(x, y) ≤ N(x′, y′) x ≤ x′, y ≤ y′ → C(x, y) ≤ C(x′, y′)

Associativity N(x, N(y, z)) = N(N(x, y), z) C(x, C(y, z)) = C(C(x, y), z)

conjunction and disjunction operators are triangular norms (t-norms) and triangu-
lar conorms (t-conorms). Intuitively, t-norm functions reflect or mimic the (bound-
ary, commutativity, monotonicity, and associativity) properties of the corresponding
Boolean operations (Table 3.2). This ensures that fuzzy systems behave like regular
crisp systems (based on Boolean logic) when they are fed with precise information.

Although the property of capturing Boolean semantics is desirable in many ap-
plications of fuzzy logic, for multimedia querying this is not necessarily the case. For
instance, the partial match requirement, whereby an object might be returned as a
match even if one of the criteria is not satisfied (e.g., Figure 1.7(a) and (c)) inval-
idates the boundary conditions: even if a media object does not satisfy one of the
conditions in the query, we may still want to consider it as a candidate if it is the best
match among all the others in the database. In addition, monotonicity is too weak a
condition for multimedia query processing: intuitively, an increase in the score of a
given query criterion should result in an increase in the overall score; yet the mono-
tonicity condition in Table 3.2 requires an overall increase only if the scores of all of
the query criteria increase.

These imply that the min semantics, which gives the highest importance on the
lowest scoring predicate, may not be always suitable for multimedia workloads.
Other fuzzy semantics commonly used in multimedia systems (as well as other re-
lated domains, including information retrieval) include the arithmetic6 and geomet-
ric average semantics shown in Table 3.3. Note that the merge functions in this table
are n-ary: that is, instead of being considered a pair at a time, more than two criteria
can be combined using a single operator.

Average-based semantics do not satisfy the requirements of being a t-norm: in
particular, both arithmetic and geometric average fail to satisfy the boundary con-
ditions. Furthermore, neither is associative (a desirable property for query process-
ing and optimization). Yet, both are strictly increasing (i.e., the overall score in-
creases even if only a single component increases). In fact, the min semantics is
known [Dubois and Prade, 1996; Fagin, 1998; Yager, 1982] to be the only semantics
for conjunction and disjunction that preserves logical equivalence (in the absence
of negation) and is monotone at the same time. These, and the query processing
efficiency it enables because of its simplicity [Fagin, 1996, 1998], make the min se-
mantics a popular choice despite its significant semantic shortcomings.

6 Arithmetic average semantics is similar to the dot product–based similarity calculation in vector spaces
(discussed in Section 3.1.3): intuitively, each predicate is treated as an independent dimension in an n-
dimensional vector space (where n is the number of predicates) and the merged score is defined as the
dot-product distance between the complete truth, 〈1, 1, . . . , 1〉, and the given values of the predicates,
〈µ1(x), . . . , µn(x)〉.
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Table 3.3. N-ary arithmetic average and geometric average semantics

µP1∧···∧Pn (x) µ¬Pi (x) µP1∨···∨Pn (x)

µ1(x) + · · · + µn(x)
n

1 − µ1(x) 1 − (1 − µ1(x)) + · · · + (1 − µn(x))
n

(µ1(x) × · · · × µn(x))
1
n 1 − µ1(x) 1 − ((1 − µ1(x)) × · · · × (1 − µn(x)))

1
n

Next, we compare various statistical properties of these semantics and evaluate
their applicability to multimedia databases. The statistical properties are especially
important to judge the effectiveness of thresholds set for media retrieval.

3.4.2.2 Properties of the Common Fuzzy Operators
An understanding of the score distribution of fuzzy algebraic operators is essen-
tial in optimization and processing of multimedia queries. Figure 3.13, for exam-
ple, visualizes the behavior of three commonly used fuzzy conjunction operators
under different binary semantics. Figure 3.13 depicts the geometric averaging
method, the arithmetic averaging mechanism [Aslandogan et al., 1995], and the min-
imum function as described by Zadeh [1965] and Fagin [1996, 1998]. As can be seen
here, both the arithmetic average and minimum have linear behaviors, whereas the
geometric average shows nonlinearity. Moreover, the arithmetic average is the only
one among the three that returns zero only when all components are zero. Con-
sequently, the arithmetic average is the only measure among the three that can
differentiate among partial matches that have at least one failing subcomponent
(Figure 3.14).

The average score, or the relative cardinality, of a fuzzy set with respect to its
domain is defined as the cardinality of the fuzzy set divided by the cardinality of its
domain. For a fuzzy set S with a scoring function µ(x), where the domain of values
for x ranges between 0 and 1 (Figure 3.15), we can compute this as∫ 1

0 µ(x)dx∫ 1
0 1 dx

.

Intuitively, average score of a fuzzy operator measures the value output by the oper-
ator in the average case. Thus, this value is important in understanding the pruning
effects of different thresholds one can use for retrieval. Table 3.4 lists the average
score values for alternative conjunction semantics. Note that, if analogously defined,

Figure 3.13. Visual representations of various binary fuzzy conjunction semantics: The hori-
zontal axes correspond to the values between 0 and 1 for the two input conjuncts, and the
vertical axis represents the resulting scores according to the corresponding function.
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Semantics Score Rank Score Rank Score Rank Score Rank

min 0.50 1–2 0.00 3–4 0.50 1–2 0.00 3–4

product 0.40 1 0.00 3–4 0.25 2 0.00 3–4

arithmetic 0.76 1 0.65 3 0.66 2 0.43 4
average

geometric 0.74 1 0.00 3–4 0.63 2 0.00 3–4
average

Figure 3.14. Comparison of different conjunction semantics: the table revisits the partial
match example provided earlier in Figure 1.7 and illustrates the ranking behavior for different
fuzzy conjunction semantics.

the relative cardinality of the crisp conjunction would be

µ(false∧false) + µ(false∧true) + µ(true∧false) + µ(true∧true)

|{(false ∧ false), (false ∧ true), (true ∧ false), (true ∧ true)}| = 1
4
.

This reconfirms the intuition that the min semantics (Figure 3.13(c)) is closer to the
crisp conjunction semantics. The arithmetic and geometric average semantics, on
the other hand, tend to overestimate scores.

Figure 3.16 visualizes the score distribution of the geometric average and the
minimum functions for a statement with conjunction of three fuzzy predicates. As
visualized in this figure, higher scores are confined to a smaller region in the min
function. This implies that, as intuitively expected, given a threshold, the min func-
tion is most likely to eliminate more candidates than the geometric average.

3.4.3 Relative Importance of Query Criteria

A particular challenge in multimedia querying is that the query processing scheme
needs to reflect the specific needs and preferences of individual users. Thanks to its
flexibility, the fuzzy model enables various mechanisms of adaptation. First of all, if
the user’s relevance feedback focuses on a particular attribute in the query, the way

1

0 1 x

µ(x)

(a) (b)

Figure 3.15. Example: cardinalities for (a) the continuous domain [0, 1] and (b) the corre-
sponding fuzzy set are computed by measuring the area under the corresponding score
curves [Candan and Li, 2001].



120 Common Representations of Multimedia Features

Table 3.4. Average scores of various scoring semantics [Candan and Li, 2001]

Arithmetic average Min Geometric average∫ 1
0

∫ 1
0

x + y
2

dydx∫ 1
0

∫ 1
0 dydx

= 1
2

∫ 1
0

∫ 1
0 min{x, y}dydx∫ 1

0

∫ 1
0 dydx

= 1
3

∫ 1
0

∫ 1
0

√
x × y dydx∫ 1

0

∫ 1
0 dydx

= 4
9

the fuzzy score of the corresponding predicate is computed can change based on the
feedback. Second, the semantics of the fuzzy logic operator can be adapted based
on the feedback of the user. A third mechanism through which the user’s feedback
can be taken into account is to enrich the merge function, used for merging the fuzzy
scores, with weights that regulate the importances of the individual predicates.

3.4.3.1 Measuring Relative Importance
One way to measure the relative importance of criteria in a merge function is to eval-
uate the size of the impacts any changes in the scores of the individual predicates
would have on the overall score. Thus, the relative importance of the predicates in
a fuzzy statement can be measured in terms of the corresponding partial derivatives
(Figure 3.17 and Table 3.5). Under this interpretation of relative importance, when
product or geometric average semantics is used, the overall score is most impacted
by the changes of the component that has the smallest score. This implies that, al-
though the components with high scores have larger contributions to the final score
in absolute terms, improving a currently poorly satisfied criterion of the query is the
strategy with the most significant impact on the overall score. This makes intuitive
sense because improving the lowest matched criterion of the query would cause a
significant improvement in the overall degree of matching.

Although the min semantics has a similar behavior in terms of the relative im-
portance of its constituents (i.e., improvements of the smaller scoring components
have larger impacts), in terms of contribution to the overall score the only compo-
nent that matters is the one with the smallest score. This is rather extreme, in the
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Figure 3.16. (a) Geometric averaging versus (b) minimum with three predicates. Each axis
corresponds to an input predicate, and the gray level represents the value of the combined
score (the brighter the gray, the higher the score).
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Figure 3.17. The relative impact of the individual criteria in a scoring function can vary based
on the scores of the individual predicates.

sense that, given the two configurations 〈x1 = 0.1, x2 = 0.2〉 and 〈x1 = 0.1, x2 = 0.9〉,
the overall combined score under the min(x1, x2) function is identical, 0.1.

When the arithmetic average semantics is used for combining scores, on the
other hand, the relative importance is constant (and identical) independent of the
scores of the individual components. When using the weighted arithmetic average
(µ(x1, x2) = w1x1 + w2x2), the relative importance of the individual components is
simply captured by the ratio of their weights.

3.4.3.2 Fagin’s Generic Importance Weighting Function
Fagin proposed three intuitive conditions that any function used for capturing rela-
tive importance of query criteria should satisfy [Fagin and Maarek, 2000; Fagin and
Wimmers, 1997]:

� If all weights are equal, the overall score should be equal to the case where no
weights are assigned to any of the query criteria.

� If one of the weights is zero, the subquery can be dropped without affecting the
rest.

� The weighted scoring function should increase or decrease continuously as the
weights are changed.

Fagin also proposed a generic function that satisfies these three desiderata
[Fagin and Maarek, 2000; Fagin and Wimmers, 1997]. Let Q be a query with m
criteria and let θ1 through θm denote the weights the user assigns to the individual
query criteria. Without loss of generality, let us also assume that θ1 + · · · + θm = 1
and θ1 ≥ · · · ≥ θm ≥ 0. Finally, let f () be a function (such as min, max, product, or

Table 3.5. Relative importance, dµ(x1,x2)
dx1

/
dµ(x1,x2)

dx2
, of individual criteria under

different scoring semantics

Arithm. Weighted Arithm. Product Geometric
avg. avg. Min (α = 1) average

1
w1

w2

{∞ if x1 ≤ x2

0 if x1 > x2

}
x2

x1

1
2 x−1/2

1 x1/2
2

1
2 x1/2

1 x−1/2
2

= x2

x1
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average) representing the underlying fuzzy query semantics. Then, Fagin’s generic
importance weighting function can be written as

f (θ1,θ2,...,θm)(x1, x2, . . . , xm) = (θ1 − θ2)f (x1)

+ 2(θ2 − θ3)f (x1, x2)

+ 3(θ3 − θ4)f (x1, x2, x3)

+ · · ·
+ (m− 1)(θm−1 − θm)f (x1, x2, . . . , xm−1)

+mθmf (x1, x2, . . . , xm).

To see why f (θ1,θ2,...,θm)() satisfies the three desiderata, consider the following:

� When all weights are equal, we have θ1 = θ2 = · · · = θm = 1
m . Then,

f ( 1
m , 1

m ,..., 1
m )(x1, x2, . . . , xm) = (

1
m

− 1
m

)f (x1)

+ 2(
1
m

− 1
m

)f (x1, x2)

+ · · ·
+ (m− 1)(

1
m

− 1
m

)f (x1, x2, . . . , xm−1)

+m
1
m

f (x1, x2, . . . , xm)

= f (x1, x2, . . . , xm).

Thus, the overall score is equal to the case where no weights are assigned to any
of the query criteria.

� If one of the weights is zero, then θm = 0. Thus,

f (θ1,θ2,...,θm−1,0)(x1, x2, . . . , xm) = (θ1 − θ2)f (x1)

+ 2(θ2 − θ3)f (x1, x2)

+ 3(θ3 − θ4)f (x1, x2, x3)

+ · · ·
+ (m− 1)(θm−1 − 0)f (x1, x2, . . . , xm−1)

+m 0 f (x1, x2, . . . , xm)

= f (θ1,θ2,...,θm−1)(x1, x2, . . . , xm−1);

that is, the mth subquery can be dropped without affecting the rest.
� If f() is continuous, then f (θ1,θ2,...,θm) is a continuous function of the weights, θ1

through θm.

Let us, for example, consider the arithmetic average function, that is, avg(x1, x2) =
x1+x2

2 . We can write the weighted version of this function as

avg(θ1,θ2)(x1, x2) = (θ1 − θ2)avg(x1) + 2θ2avg(x1, x2)

= (θ1 − θ2)x1 + 2θ2
x1 + x2

2
= θ1x1 + θ2x2;
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that is, given that θ1 + θ2 = 1.0, avg(θ1,θ2)() is equal to the weighted average func-
tion. Thus, as one would intuitively expect, the importance of the individual query
criteria, measured in terms of the partial derivatives of the scoring function, is
δavg(x1,x2)

δx1
= θ1 and δavg(x1,x2)

δx2
= θ2, respectively.

However, the importance order implied by Fagin’s generic scheme and that
implied by the partial derivative–based definition of importance are not always
consistent. For instance, let us consider the weighted version of the product scoring
function:

product(θ1,θ2)(x1, x2) = (θ1 − θ2)product(x1) + 2θ2product(x1, x2)

= (θ1 − θ2)x1 + 2θ2(x1 × x2).

In this case, the importance of the individual query criteria, measured in terms of
the partial derivatives of the scoring function, is

δproduct(θ1,θ2)(x1, x2)

δx1
= (θ1 − θ2) + 2θ2x2

and
δproduct(θ1,θ2)(x1, x2)

δx2
= 2θ2x1,

respectively. Note, however, that even if θ1 ≥ θ2, we have
δproduct(θ1 ,θ2)(x1,x2)

δx1
≥

δproduct(θ1 ,θ2)(x1,x2)
δx2

if and only if

(θ1 − θ2) + 2θ2x2 ≥ 2θ2x1.

In other words, unless

x1 − x2 ≤ θ1 − θ2

2θ2
,

the importance order implied by Fagin’s generic scheme and that implied by the
partial derivative–based definition of importance are not consistent. Therefore, this
generic weighting scheme should be used carefully because its semantics are not
always consistent with an intuitive definition of importance.

3.5 PROBABILISTIC MODELS

Unlike fuzzy models, which can capture a large spectrum of application require-
ments based on the different semantics one can assign to the fuzzy logical opera-
tors, probabilistic approaches to data and query modeling are applicable mainly in
those cases where the source of imprecision is of a statistical nature. These cases
include probabilistic noise in data collection, sampling (over time, space, or pop-
ulation members) during data capture or processing, randomized and probabilis-
tic algorithms (such as Markov chains and Bayesian networks; see Section 3.5.4
and Section 3.5.3) used in media processing and pattern detection, and probabilis-
tic treatment of the relevance feedback [Robertson and Spark-Jones, 1976] (Chap-
ter 12). Thus, in multimedia databases, probabilities can be used for representing,
among other things, the likelihood of:

� A feature extraction algorithm having identified a target pattern in a given media
object
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� An object of interest being contained in a cluster of objects
� A given user finding a given media object relevant to her interests

Whereas the simplest probabilistic models associate a single value between 0 and
1 to each attribute or tuple in the database, more complete models represent the
score in the form of an interval of possible values [Lakshmanan et al., 1997] or more
generally in terms of a probability distribution describing the possible values for
the attribute or the tuple [Pearl, 1985]. Consequently, these models are able to cap-
ture more realistic scenarios, where the imprecision in data collection and process-
ing prevents the system from computing the exact precision of the individual media
objects, but (based on the domain knowledge) allows it to associate probability dis-
tributions to them.

3.5.1 Basic Probability Theory

Given a set, S, of discrete outcomes of a given observation (also referred to as a
random variable), the probability distribution of the observation describes the prob-
abilities with which different outcomes might be observed (Table 3.6). In particular,
a probability function (also called the probability mass function), f (x) : S → [0, 1]
associates a value of probability to each possible outcome in S. In particular,

∑
x∈S

f (x) = 1;

that is, the sum of all probabilities of all possible outcomes is 1. The probability
function f () is also commonly referred to as P() (i.e., P(x) = f (x)).

When given a continuous (and thus infinite) space of possible observations, a
cumulative distribution function, F , is used instead: F(x) returns the probability,
P(X ≤ x), that the observed value will be less than or equal to x. Naturally, as x
gets closer to the lower bound of the space, F(x) approaches (in a decreasing fash-
ion) 0, whereas, as x gets closer to the upper bound of the space, F(x) approaches
1 (in an increasing fashion). For cumulative distribution functions that are differen-
tiable, dF(x)

d(x) gives the probability density function, which describes how quickly the
cumulative distribution function increases at point x.

In discrete spaces, the probability density function is equal to the probability
mass function. In continuous spaces, on the other hand, the probability mass func-
tion is equal to 0 for any given domain value. Thus, in general, f () is used to denote
the probability density function in continuous spaces and the probability density/
mass function in discrete spaces.

3.5.1.1 Mean, Variance, and Normal Distribution
Given a space of possible observations and a corresponding probability density func-
tion f (x), the expected value (or the mean) E(X) of the observation is defined as

E(X) = µ =
∫ upperbound(S)

lowerbound(S)
xf(x)dx.
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Table 3.6. Various common probability distributions and their applications in multimedia
systems

Distribution Definition Applications

Uniform
(discrete)

f (X, n) = 1
n

Estimating the likelihood of a given
outcome, when all n outcomes are
equally likely.

Bernoulli
(discrete)

f (X, p) =
{

p if X = 1
1 − p if X = 0

}
Estimating the likelihood of
success or failure for an
observation with a known, constant
success rate p.

Binomial
(discrete)

f (X = k, n, p) = (n
k

)
pk(1 − p)n−k Estimating the number, k, of

successes in a sequence of n
independent observations, each
with success probability of p.

Multinomial
(discrete)

f (X1 = k1, . . . , Xm = km, n, p1, . . . , pm)

= n!
k1! · · · km!

pk1
1 · · · pkm

m , if
∑m

i=1 km = n; and

= 0, otherwise

Generalization of the binomial
distribution to more than two
outcomes.

Negative
binomial
(discrete)

f (X = 〈k, r〉, p) = (k+r−1
k

) · pr · (1 − p)k Estimating the number of
observations, with success
probability p, required to get r
successes and k failures.

Geometric
(discrete)

f (X = k, p) = p(1 − p)k−1 Estimating the number, k, of
observations needed for one
success in a sequence of
independent observations, each
with success probability p.

Poisson
(discrete)

f (X = k, λ) = λke−λ

k!
Estimating the number, k, of events
(with a known average occurrence
rate of λ) occurring in a given
period.

Zipfian
(discrete)

f (X = k, α) = 1/kα∑n
r=1 1/rα

Estimating the frequency for some
event as a function of its rank, k, (α
is a constant close to 1). Used
commonly to model popularity.

Uniform
(continuous)

f (X, a, b) = 1
b − a

Estimating the likelihood of an
outcome for an observation with a
continuous range, [a, b], of equally
likely outcomes.

Exponential
(continuous)

f (X = t, λ) =
{

λe−λt t ≥ 0,

0 t < 0.

}
Estimating the interarrival times for
processes that are themselves
Poisson.

Gamma
(continuous)

f (X = t, α, λ) = tα−1λαe−λ t∫∞
0 xα−1e−xdx

for α, t > 0 Continuous counterpart of negative
binomial dist.

Normal, also
known as
Gaussian
(continuous)

f (X = t, µ, σ ) = 1

α
√

2π
exp(− 1

2 ( t−µ

α
)2);

−∞ < t < ∞
(Based on the central limit theorem)
The mean of a sample of a set of
mutually independent random
variables is normally distributed
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Given this, the variance of the observations, measuring the degree of spread of the
observations from the expected value, is defined as

Var(X) = E[(X − µ)2] = E(X2) − (E(X))2.

Naturally, the mean and variance can be used to roughly describe a given probability
distribution. A more complete description, on the other hand, can be achieved by
using more moments of the random variable X, that is, the powers of (X − E(X)).
The variance is the second moment of X.

Although there are different probability distributions that describe different
phenomena (Table 3.6), the normal distribution plays a critical role in many mul-
timedia applications because of the central limit theorem, which states that the av-
erage of a large set of samples tends to be normally distributed, even when the
distribution from which the average is computed is not normally distributed. Con-
sequently, the average quality assessment of objects picked from a large set can
be modeled as a normal distribution of qualities, N(µ, σ), where µ is the expected
quality and σ2 is the variance of the qualities. Thus, the normal distribution is com-
monly applied when modeling phenomena where many small, independent effects
are contributing to a complex observation. The normal distribution is also com-
monly used for modeling sampling-related imprecision (involving capture devices,
feature extraction algorithms, or network devices) because the central limit theo-
rem implies that the sampling distribution (i.e., the probability distribution under
repeated sampling from a given population) of the mean is also approximately nor-
mally distributed.

In general, such complex statistical assessments of data precision might be hard
to obtain. A compromise between lack of detailed statistics and need for a proba-
bilistic model that provides more than the mean is usually found by representing the
range of values (e.g., the possible qualities for objects captured by a sensor device)
with a lower and an upper bound and assuming a uniform distribution within the
range [Cheng et al., 2007].

3.5.1.2 Conditional Probability, Independence, Correlation, and Covariance
Conditional (or a posteriori) probability, P(X = a|Y = b), is the probability of the
observation a, given the occurrence of some other observation, b:

P(X = a|Y = b) = P(X = a ∧ Y = b)
P(Y = b)

.

In contrast, the marginal (or prior) probability of an observation is its probability
regardless of the outcome of another observation.

A simplifying assumption commonly relied upon in many probabilistic models
is that the individual attributes of the data (and the corresponding predicates) are
independent of each other:

P(X = a ∧ Y = b) = P(X = a)P(Y = b).

www.Ebook777.com
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When the independence assumption holds, the probability of a conjunction can be
computed simply as the product of the probabilities of the conjuncts.7 However,
in the real world, the independence assumption does not always hold (in fact, it
rarely holds). Relaxing the independence assumption or extending the model to
capture nonsingular probability distributions [Pearl, 1985] both necessitate more
complex query evaluation algorithms. In fact, as we discuss in the next subsection,
when available, knowledge about conditional probability (and other measures of
dependencies, such as correlation and covariance) provides strong tools for pre-
dicting useful properties of a given system. The correlation coefficient ρ(X, Y),
for example, measures the linearity of the relationship between two observations
represented by the random variables, X and Y, with expected values µX and µY,
respectively:

ρ(X, Y) = E((X − µX)(Y− µY))
σXσY

.

It thus can be used to help estimate the dependence between two random variables.
Note, however, that correlation is not always a good measure of dependence (be-
cause it focuses on linearity): while the correlation coefficient between two variables
that are independent is always 0, a 0 correlation does not imply independence in a
probabilistic sense.

The nominator of the correlation coefficient, by itself, is referred to as the co-
variance of the two random variables X and Y,

Cov(X, Y) = E((X − µX)(Y− µY)),

and is also used commonly for measuring how X and Y vary together.

3.5.2 Possible-Worlds Interpretation of Uncertainty

As we mentioned earlier, in multimedia databases, a probabilistic “observation”
can stand for different aspects of the data in different contexts: for example, the
likelihood of a feature extraction algorithm having identified a target pattern in
a given media object or a given user finding a given media object relevant to
her interests based on her profile both can be represented using probabilistic
observations.

Often, databases that contain uncertain or probabilistic data represent such
knowledge with existence or truth probabilities associated with the tuples or attribute
values in the database [Green and Tannen, 2006]. Dalvi and Suciu [2004] for exam-
ple, associate a probability value, between 0 and 1, to each tuple in the database: this
value expresses the probability with which the given tuple belongs to the uncertain
relation. Sarma et al. [2006] compare various models of uncertainty in terms of their
expressive power. In the rest of this section, we focus on the probabilistic database
model, based on the so called probabilistic or-set-tables (or p-or-set-tables).

7 Note that, under these conditions, the probabilistic model is similar to the fuzzy product semantics.
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3.5.2.1 Probabilistic Relations
In the simplest case, we can model uncertain knowledge in a multimedia database in
the form of a probabilistic relation, Rp(K, A), where K is the key attribute, A is the
value attribute, and P is the probability associated with the corresponding key-value
pair. For example,

Might Enjoyp

K A (P)

〈 Selcuk, “Wax Poetic” 〉 yes (0.86)
〈 Selcuk, “Wax Poetic” 〉 no (0.14)
〈 Selcuk, “Jazzanova” 〉 yes (0.72)
〈 Selcuk, “Jazzanova” 〉 no (0.28)
〈 Maria Luisa, “Wax Poetic” 〉 yes (0.35)
〈 Maria Luisa, “Wax Poetic” 〉 no (0.65)
〈 Maria Luisa, “Jazzanova” 〉 yes (0.62)
〈 Maria Luisa, “Jazzanova” 〉 no (0.38)
. . . . . . . . .

is an uncertain database, keeping track of the likelihood of users of a music library
liking particular musicians.

Because, in the real world, no two tuples in a database can have the same
key value (for example, the “Might Enjoy” database in the foregoing example
cannot contain both 〈〈 Selcuk, “Wax Poetic”〉, yes〉 and 〈〈Selcuk, “Wax Poetic”〉,
no〉), each probabilistic relation, Rp , can be treated as a probability space (W, P),
where W = {I1, . . . , Im} is a set of deterministic relation instances (each a different
possible world of Rp), and for each key-attribute pair, t, P(t) gives the ratio of the
worlds containing t against the total number of possible worlds:

P(t) = |{(Ii ∈ W) ∧ (t ∈ Ii)}|
|W| .

A possible tuple is a tuple that occurs in at least one possible world, that is, P(t) > 0.
Note that, in the probabilistic relation, if for two tuples t �= t′, K(t) = K(t′), then the
joint probability P(t, t′) = 0. Moreover,

∑
t∈Rp ,K(t)=k P(t) ≤ 1. Green and Tannen

[2006] refer to probabilistic relations, where
∑

t∈Rp ,K(t)=k P(t) = 1, as probabilistic
or-set-tables (or p-or-set-tables).

In a probabilistic relation, the value
∑

t∈Rp ,K(t)=k P(t) can never be greater than 1;
if, on the other hand,

∑
t∈Rp ,K(t)=k P(t) < 1, then such a relation is referred to as an

incomplete probabilistic relation: for the key value, k, the probability distribution
for the corresponding attribute values is not completely known. In such cases, to
ensure that the probabilistic relation, Rp , can be treated as a probability space,
often a special “unknown” value is introduced into the domain of A such that∑

t∈Rp ,K(t)=k P(t) = 1.
Probabilistic relations can be easily generalized to complex multiattribute rela-

tions: a relation Rp with the set of attributes Attr(Rp) and key attributes Key(Rp) ⊆
Attr(Rp) is said to be a probabilistic relation if there is a probability distribution
P that leads to different possible worlds. For example, we can also encode the
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foregoing “Might Enjoy” relation in the form of a three-attribute p-or-set, with key
attribute pair 〈User, Band〉, as follows:

Might Enjoyp

User Band Likes (P)

Selcuk “Wax Poetic” yes (0.86)
no (0.14)

Selcuk “Jazzanova” yes (0.72)
no (0.28)

Maria Luisa “Wax Poetic” yes (0.35)
no (0.65)

Maria Luisa “Jazzanova” yes (0.62)
no (0.38)

. . . . . . . . . . . .

3.5.2.2 Probabilistic Databases
We can use this possible worlds interpretation of the probabilistic knowledge to gen-
eralize the probabilistic databases to more complex multiattribute, multirelational
databases [Dalvi and Suciu, 2007]: Let R = {R1, . . . , Rk} be a database, where each
Ri is a relation with a set of attributes Attr(Ri) and a key Key(Ri) ⊆ Attr(Ri). A prob-
abilistic database, Rp is a database where the state of the database is not known;
instead the database can be in any of the finite number of possible worlds in
W = {I1, . . . , Im}, where each Ij is a possible-world instance of Rp . Once again,
the probabilistic database Rp can be treated as a probability space (W, P), such that∑

Ij∈W
P(Ij) = 1.

Also as before, given two tuples t �= t′ in the same probabilistic relation, if K(t) =
K(t′), then P(t, t′) = 0. Moreover,

∑
t∈Rp

i,j,K(t)=k P(t) ≤ 1, where Rp
i,j is the instance of

relation Ri in the world instance Ij.

3.5.2.3 Queries in Probabilistic Databases
A common way to define the semantics of a Boolean statement, s, posed against a
probabilistic database, Rp = (W, P), is to define it as the event that the statement s
is true in the possible worlds of the database [Dalvi and Suciu, 2007]. In other words,
if we denote the event that s is true in a database instance I as I |= s, then

P(s) =
∑

Ij∈W s.t. Ij |=s

P(Ij).

A probabilistic representation is said to be closed under a given database query
language if, for any query specified in the language, there is a corresponding prob-
abilistic table Resp [Green and Tannen, 2006; Sarma et al., 2006] that captures the
probability of occurrences of the result tuples in the possible worlds of the given
probabilistic database.

One way to define the results of a query posed against a probabilistic database is
to rely on the probabilistic interpretation specified earlier: Given a query, Q, posed
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against a probabilistic database, Rp = (W, P), the probability that the tuple t is in
the result, Res, of Q can be computed as

P(t ∈ Res) =
∑

Ij∈W s.t. Ij |=(t∈Res)

P(Ij).

Therefore, under this interpretation, Resp is nothing but the probabilistic table con-
sisting of possible tuples (that are true in the result in at least one instance of the
world) and their probability distributions.

Other, consensus-based, definitions [Li and Deshpande, 2009] of answers to
queries over probabilistic databases take a distance function, � (which quantifies
the difference between a given pair of results, Res1 and Res2, to a query Q), and
define the most consensus answer Res∗ as a feasible answer to the query such that
the expected distance between Res∗ and the answer to Q in the possible worlds of
the probabilistic database is minimized [Li and Deshpande, 2009]:

Res∗ = arg min
Res∗

{
n∑

i=1

Pi × �(Res∗, Resi)

}
,

where Resi is the answer in the possible world Ii with probability Pi. When Res∗
is constrained to belong to one of the possible worlds of the probabilistic database,
the consensus answer is referred to as the median answer; otherwise, it is referred to
as the mean answer.

3.5.2.4 Query Evaluation in Probabilistic Databases
Consider probabilistic relations, Rp

1 , . . ., Rp
n , and an n-ary relational operator Op.

Sarma et al. [2006] define the result of Op(Rp
1 , . . . ,Rp

n) as the probabilistic relation
Resp = (W, P) such that

W = {I | I = Op(I1, . . . , In), I1 ∈ W1, . . . , In ∈ Wn}
and

P = P(I1 ∈ W1, . . . , In ∈ Wn).

Assuming that the probabilistic relations are independent from each other, we can
obtain the probability space of the possible worlds as follows:

P = P(I1 ∈ W1) × · · · × P(In ∈ Wn).

Because there are exponentially many possible worlds, in practice, enumeration
of all possible worlds to compute P would be prohibitively expensive. Therefore,
query processing systems often have to rely on algebraic systems that operate di-
rectly on the probabilistically encoded data, without having to enumerate their pos-
sible worlds. It is, however, important that algebraic operations on the probabilistic
databases lead to results that are consistent with the possible-world interpretation
(Figure 3.18). This often requires simplifying assumptions.

Disjoint-Independence
A probabilistic database, Rp , is said to be disjoint-independent if any set of pos-

sible tuples with distinct keys is independent [Dalvi and Suciu, 2007]; that is,

∀t1,...,tk∈Rp ,Key(ti)�=Key(tj) for i �=j P(t1, . . . , tk) = P(t1) × · · · × P(tk).
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(query processing in the probabilistic domain)

(query processing in the ordinary domain)

({ ({Res1 , ... Resm }, P)}, P)

p p

1 , ... m

Q

Q

R Res

I I

Figure 3.18. Query processing in probabilistic databases.

Disjoint-independence, for example, would imply that, in the probabilistic relation

Might Enjoyp

User Band Likes (P)

Selcuk “Wax Poetic” yes (0.86)
no (0.14)

Selcuk “Jazzanova” yes (0.72)
no (0.28)

. . . . . . . . . . . .

the probabilities associated to the tuples 〈Selcuk, “Wax Poetic”, yes〉 and 〈Selcuk,
“Jazannova”, yes〉 are independent from each other. Although this assumption can
be overly restrictive in many applications,8 it can also be a very powerful help in
reducing the cost of query processing in the presence of uncertainty. For example,
this assumption would help simplify the term

P(I1 ∈ W1, . . . , In ∈ Wn)

into a simpler form:

P(I1 ∈ W1, . . . , In ∈ Wn) = P(I1 ∈ W1) × · · · × P(In ∈ Wn).

In fact, relying on the disjoint-independence assumption, we can further simplify
this as

P(I1 ∈ W1, . . . , In ∈ Wn) =
∏
t∈I1

P(t) × · · · ×
∏
t∈In

P(t) =
n∏

i=1

∏
t∈Ii

P(t).

Note that, although this gives an efficient mechanism for computing the probability
of a given possible world, the cost of computing the probability that a tuple is in
the result by enumerating all the possible worlds would still be prohibitive. Dalvi
and Suciu [2007] showed that for queries without self-joins, computing the result
either is #P-hard (i.e., at least as hard as counting the accepting input strings for
any polynomial time Turing machine) or can be done very efficiently in polynomial

8 For example, a music recommendation engine that keeps track of users’ listening preferences would
never make the assumption that likes of a user are independent from each other.
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(i) Select: when applying a selection predicate to a tuple with probability p, if the tuple
satisfies the condition, then assign to it probability p, otherwise eliminate the tuple
(i.e., assign the tuple probability 0 in the result)

(ii) Cross-product: when putting together two tuples with probabilities p1 and p2, set the
probability of the resulting tuple to p1 × p2.

(iii) Project:
� Disjoint Project: If the projection operation groups together a set of k disjoint

tuples (i.e., tuples that cannot belong to the same world) with probabilities
p1, . . . , pk, then set the probability of the resulting distinct tuple to

∑k
i=1 pk.

� Independent Project: If the projection operation groups together a set of k in-
dependent tuples (i.e., tuples with independent probability distributions) with
probabilities p1, . . . , pk, then set the probability of the resulting distinct tuple to
1 −∏k

i=1(1 − pk).

(iv) if the required operation is none of the above, then Fail.

Figure 3.19. Pseudo-code for a query evaluation algorithm for relational queries, without
self-joins, over probabilistic databases (the algorithm terminates successfully in polynomial
time for some queries and fails for others).

time in the size of the database. Dalvi and Suciu [2007] and Re et al. [2006] give a
query evaluation algorithm for relational queries without self-joins that terminates
successfully in polynomial time for some queries and fails (again in polynomial time)
for some other (harder) queries (Figure 3.19).

Tuple-Independence
An even stronger independence assumption is the tuple-independence assump-

tion, where any pairs of tuples in a probabilistic database are assumed to be indepen-
dent. Obviously, not all domain-independent probabilistic relations can be encoded
as tuple-independent relations. For example, the tuples of the relation

Belongs top

Object Band (P)

Audio file15 “Wax Poetic” (0.35)
“Jazzanova” (0.6)
“Seu George” (0.05)

Audio file42 “Nina Simone” (0.82)
. . . . . . . . .
. . .

cannot be independently selected from each other because of the disjointness re-
quirement imposed by the “Object” key attribute, without further loss of informa-
tion. On the other hand, thanks to the binary (“yes”/”no”) domain of the “Likes”
attribute, the “Might Enjoy” relation in the earlier examples can also be encoded
as a probabilistic relation, where there are no key constraints to prevent a tuple-
independence assumption:
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Might Enjoyp

User Band (P)

Selcuk “Wax Poetic” (0.86)
Selcuk “Jazzanova” (0.72)
Maria Luisa “Wax Poetic” (0.35)
Maria Luisa “Jazzanova” (0.62)
. . . . . . . . .

One advantage of the tuple-independence assumption is that Boolean state-
ments can be efficiently evaluated using ordered binary decision diagrams
(OBDDs), which can compactly represent large Boolean expressions [Meinel and
Theobald, 1998]. The OBDD is constructed from a given Boolean statement, s, us-
ing a variable elimination process followed by redundancy elimination: Let x be a
variable in s; we can rewrite the Boolean statement s as follows:

s = (x ∧ s|x) ∨ (x̄ ∧ s|x̄),

where s|x is the Boolean statement where x is replaced with “true” and s|x̄ is the
statement where x is replaced with “false”. Visually, this can be represented as in
Figure 3.20. The OBDD creation process involves repeated application of this rule
to create a decision tree (see Section 9.1). As an example, consider the query, Q,

SELECT Object
FROM Might_Enjoy m, Belongs_to b
WHERE m.Band = b.Band

over the probabilistic relations

Might Enjoyp

User Band (tuple, P)

Selcuk “Wax Poetic” (t1,1, 0.86)
Selcuk “Jazzanova” (t1,2, 0.72)
Maria Luisa “Wax Poetic” (t1,3, 0.35)

and

Belongs top

Object Band (tuple, P)

Audio file15 “Wax Poetic” (t2,1, 0.35)
Audio file42 “Jazzanova” (t2,2, 0.6)
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ss
x x

xs xs
Figure 3.20. Variable elimination.

Note that, here, each tuple is given a tuple ID, which also serves as the tuple variable:
if in the result t2,1 = “true”, then the answer is computed in a possible world where
the corresponding tuple exists; otherwise the result is computed in a possible world
where the tuple does not exist.

Given the foregoing query and the probabilistic relations, we can represent the
results of the query Q in the form of a logical statement of the form

s = (t1,1 ∧ t2,1) ∨ (t1,2 ∧ t2,2) ∨ (t1,3 ∧ t2,1).

If s is true, then there is at least one tuple in the result. Note that each conjunct
(ti ∧ tj) corresponds to a possible result in the output. Therefore, statements of this
form are also referred to as the lineage of the query results.

Given the (arbitrarily selected) tuple order π = [t1,1, t2,1, t1,2, t2,2, t1,3], the vari-
able elimination process for this statement would lead to the decision tree shown in
Figure 3.21. To evaluate the expression s for a given set of tuple truths/falsehoods,
we follow a path from the root to one of the leaves following the solid edge if the
tuple is in the possible world and the dashed edge if it is not. The leaf gives the value
of the expression in the selected possible world. Note that decision trees can be used
to associate confidences to the statements: because paths are pairwise mutually ex-
clusive (or disjoint), this can be done simply by summing up the probabilities of
each path leading to 1. This summation can be performed in a bottom-up manner:
the probability, P(n), of a node, n, for a tuple variable t and with children nl for t =
“false” and nr for t = “true” can be computed as P(n) = P(nr)P(t) + P(nl)P(t̄).

Note that this decision-tree representation can be redundant and further simpli-
fied by determining the cases where truth or falsehood can be established earlier
or overlaps between substatements can be determined and leveraged. To see this
more clearly, consider for example the case where we are trying to see if the tuple

1,1t

1,2t 1,2t

2,1t

t

2,1t 2,1t

t 22t
2,2t

3,1t

2,2t 2,2t

3,1t 3,1t
11

100

Figure 3.21. Decision tree fragment (only some of the edges are shown).
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1,1t

1,2t
12t 1,2

3,1t

10

Figure 3.22. OBDD for the statement s′ = (t1,1 ∧ t2,1) ∨ (t1,3 ∧ t2,1).

〈“Audio file15”〉 is in the result of the query, Q, or not. We can write the condi-
tions in which this tuple is in the result of Q in the form of the following Boolean
statement:

s′ = (t1,1 ∧ t2,1) ∨ (t1,3 ∧ t2,1)

Figure 3.22 shows the corresponding OBDD for the same tuple order π =
[t1,1, t2,1, t1,2, t2,2, t1,3]. Note that certain redundancies in the graph have been elim-
inated; for example, for the right branch of the graph, the truth of t1,3 is not being
considered at all.

In general, based on the chosen variable order, the size of the OBDD can vary
from constant to exponential, and constructing small OBDDs is an NP-hard prob-
lem [Meinel and Theobald, 1998]. On the other hand, Olteanu and Huang [2009]
showed that for a large class of useful database queries, OBDDs are polynomial
size in the number of query variables. Meinel and Theobald [1998] also showed that
the OBDD does not need to be materialized in its entirety before computing its
probability, helping reduce the cost of confidence calculation process.

3.5.3 Bayesian Models: Bayesian Networks, Language
and Generative Models

So far, we have discussed probabilistic models in which different observations are
mostly independent from each other. In many real-world situations, however, there
are dependencies between observations (such as the color of an image and its like-
lihood of corresponding to a “bright day”). In multimedia databases, knowledge
of such dependencies can be leveraged to make inferences that can be useful in
retrieval.

Bayes’ rule rewrites the definition of the conditional probability, P(X = a|Y =
b), in a way that relates the conditional and marginal probabilities of the observa-
tions X = a and Y = b:

P(X = a|Y = b) = P(Y = b|X = a)P(X = a)
P(Y = b)

.

The definition for continuous random variables in terms of probability density func-
tions is analogous.
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While being simple, the Bayesian rule provides the fundamental basis for sta-
tistical inference and belief revision in the presence of new observations. Let H be
a random variable denoting available hypotheses and E denote a random variable
denoting evidences. Then, the Bayesian rule can be used to revise the hypothesis to
account for the new evidence as follows:

P(H = h|E = e) = P(E = e|H = h)P(H = h)
P(E = e)

.

In other words, the likelihood of a given hypothesis is computed based on the prior
probability of the hypothesis, the likelihood of the event given the hypothesis, and
the marginal probability of the event (under all hypotheses). For example, in mul-
timedia database systems, this form of Bayesian inference is commonly applied to
capture the user’s relevance feedback (Section 12.4).

3.5.3.1 Bayesian Networks
A Bayesian network is a node-labeled graph, G(V, E), where the nodes in V rep-
resent variables, and edges in E between the nodes represent the relationships be-
tween the probability distributions of the corresponding variables. Each node vi ∈ V
is labeled with a conditional probability function

P(vi = yi | vin,i,1 = xin,i,1 ∧ · · · ∧ vin,i,m = xin,i,m),

where {vin,i,1, . . . , vin,i,m} are nodes from which vi has incoming edges. Consequently,
Bayesian networks can be used for representing probabilistic relationships between
variables (e.g., objects, properties of the objects, or beliefs about the properties
of the objects) [Pearl, 1985]. In fact, once they are fully specified, Bayesian net-
works can be used for answering probabilistic queries given certain observations.
However, in many cases, both the structure and the parameters of the network
have to be learned through iterative and sampling-based heuristics, such as expec-
tation maximization (EM) [Dempster et al., 1977] and Markov chain Monte Carlo
(MCMC) [Andrieu et al., 2003] algorithms. We discuss the EM algorithm in detail
in Section 9.7.4.3, within the context of learning the structure of a special type of
Bayesian networks, called Hidden Markov Models (HMMs).

3.5.3.2 Language Models
Language modeling is an example of the use of the Bayesian approach to retrieval,
most successfully applied to (text) information retrieval problems [Lafferty and
Zhai, 2001; Ponte and Croft, 1998]. A language model is a probability distribution
that captures the statistical regularities of features (e.g., word distribution) of stan-
dard collections (e.g., natural language use) [Rosenfeld, 2000]. In language model-
ing, given a database, D, for each feature f i and object oj ∈ D, the probability p(f i|oj)
is estimated and indexed. Given a query, q = 〈q1, . . . , qm〉, with m features, for each
object oj ∈ D, the matching likelihood is estimated as

p(q|oj) =
∏
qi∈q

p(qi|oj).

Then, given p(oj) and using Bayes’ theorem, we can estimate the a posteriori prob-
ability (i.e., the matching probability) of the object, oj, as

p(oj|q) = p(q|oj)p(oj)
p(q)

.
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Because, given a query q, p(q) is constant, the preceding term is proportional to
p(q|oj)p(oj). Thus, the term p(q|oj)p(oj) can be used to rank objects in the database
with respect to the query q.

Smoothing
In order to take into account the distribution of the features in the overall col-

lection, the object language model, p( f i|oj), is often smoothed using a background
collection model, p( f i|D). This smoothing can be performed using simple linear in-
terpolation,

pλ( f i|oj) = λp( f i|oj) + (1 − λ)p( f i|D),

where 0 ≤ λ ≤ 1 is a parameter estimated empirically or trained using an hidden
Markov model (HMM) [Miller et al., 1999].

An alternative smoothing technique is the Dirichlet smoothing [Zhai and Laf-
ferty, 2004], where p( f i|oj) is computed as

pµ( f i|oj) = count( f i, oj) + µp( f i|D)
|oj| + µ

,

where count( f i, oj) is the number of occurrences of the feature f i in object oj (e.g.,
count of a term in a document), |oj| is the size of oj in terms of the number of features
(e.g., number of words in the given document), and µ is the smoothing parameter.

Translation
Berger and Lafferty [1999] extend the model by semantic smoothing, where

relationships between features are taken into account. In particular, Berger and
Lafferty [1999] compute a translation model, t( f i|fk) that relates the feature fk to
the feature f i and, using this model, computes p(q|oj) as

p(q|oj) =
∏
qi∈q

∑
fk

t(qi|fk)p( fk|oj).

For example, Lafferty and Zhai [2001] use Markov chains on features (words) and
objects (documents) to estimate the amount of translation needed to obtain the
query model. We provide details of this Markov chain–based translation technique
in Section 3.5.3.3.

3.5.3.3 Generative Models
Language model–based retrieval is a special case of the more general set of proba-
bilistic schemes, called generative models.

Generative Query Models
Generative query models, such as the one presented by Lafferty and Zhai [2001],

view the query q as being generated by a probabilistic process corresponding to the
user. The query model encodes the user’s preferences and the context in which the
query is formulated. Similarly, each object in the database is also treated as being
generated through a probabilistic process associated with the corresponding source.
In other words, the object model encodes information about the document and its
source.

More formally, the user, u, generates the query, q, by selecting the parameter
values, θq, of the query model with probability p(θq|u); the query q is then generated
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Figure 3.23. Generative model for object relevance assessment.

using this model according to the distribution p(q|θq). The object, o, is also generated
through a similar process, where the source, s, selects an object model θo according
to the distribution p(θo|s) and the object o is generated using these parameter values
according to p(o|θo).

Given a database, D, and an object, oi, Lafferty and Zhai [2001] model the rele-
vance of oi to the query q through a binary relevance variable, reli, which takes the
true or false value based on models θq and θo, according to p(reli|θq, θo) (Figure 3.23).

Given these models, the amount of imprecision I caused by returning a set R of
results is measured as

I(R|u, q, s, D) =
∫

�

L(R, θ)p(θ|u, q, s, D)dθ,

where θ is the set of all parameters of the models, � is the set of all values these
parameters can take, and L(R, θ) is the information loss associated to the objects
in R according to the collective model θ. Given this, the retrieval problem can be
reduced [Lafferty and Zhai, 2001] to finding the set, Ropt, of objects, such that

Ropt = argmin
R

I(R|u, q, s, D).

Within this framework, estimating the relevance of object oi reduces to the prob-
lem of estimating the query and object models, θq and θo. For example, as we men-
tioned earlier, Lafferty and Zhai [2001] estimate the query model using Markov
chains on features and objects; more specifically, Lafferty and Zhai [2001] focus on
the text retrieval problem, where words are the features and documents are the
objects. As in PageRank [Brin and Page, 1998; Page et al., 1998] (where the im-
portance of Web pages is found using a random-walk–based connectedness analysis
over the Web graph – see Sections 3.5.4 and 6.3.1.2), Lafferty and Zhai [2001] use
a random-walk–based analysis to discover the translation probability, t(q|w), from
the document word w to query term q. The random walk process starts with picking
a word, w0, with probability, p(w0|u). After this first step, the process picks a doc-
ument, d0 (using distribution p(d0|w0)) with probability α or stops with probability
1 − α. Here, the transition probability p(d0|w0) is computed as

p(d0|w0) = p(w0|d0)p(d0)∑
d∈D p(w0|d)p(d)

,

where p(·|d) is the likelihood of the word given document d and p(d) is the prior
probability of document d. Note that p(di) can simply be 1

|D| or can reflect some
other importance measure for the document di in the database. After this, the
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process picks a word w1 with probability distribution p(w1|d0) and the process con-
tinues as before.

This random walk process can be represented using two stochastic matrices:
word-to-document transition matrix A, and document-to-word transition matrix B.
The generation probability, p(qj|u), for the query word, qj, is computed by analyz-
ing these two matrices and finding the probability of the process stopping at word qj

starting from the initial probability distribution, p(·|u).

Dirichlet Models
As we see in Chapters 8 and 9, many retrieval algorithms rely on partitioning of

the data into sets or clusters of objects, each with a distinct property. These distinct
properties help the user focus on relevant object sets during search.

Generative Dirichlet processes [Ferguson, 1973; Teh et al., 2003] are often used
to obtain prior probability distributions when seeking these classes [Veeramacha-
neni et al., 2005]. A Dirichlet process (DP) models a given set, O = {x1, . . . , xn},
of observations using the set of corresponding parameters, {ρ1, . . . , ρn}, that define
each class. Each ρi is drawn independently and identically from a random distribu-
tion G, whose marginal distributions are Dirichlet distributed. More specifically, if
G ∼ DP(α, H), with a base distribution H and a concentration parameter, α, then
for any finite measurable partition P1 through Pk,

〈G1, . . . , Gk〉 ∼ Dir(αH1, . . . , αHk).

The Dirichlet process has the property that each Gj is distributed in such a way that

E[Gj] = Hj,

σ2[Gj] = Hj(1 − Hj)
α + 1

,

and ∑
Gj = 1.

Intuitively the base distribution, Hj gives the mean of the partition and αj gives the
inverse of its variance. Note that G is discrete, and thus multiple ρis can take the
same value. When this occurs, we say that the corresponding xs with the same ρ

belong to the same cluster.
Another important property of the Dirichlet process model is that, given a set of

observations, O = {x1, . . . , xn}, the parameter, ρn+1, for the next observation can be
predicted from the {ρ1, . . . , ρn} as follows:

ρn+1|ρ1, . . . , ρn ∼ 1
α + n

(
αH +

n∑
l=1

δρl

)
,

where δρ is a point mass (i.e., distribution) centered at ρ. This is equivalent to stating
that

ρn+1|ρ1, . . . , ρn ∼ 1
α + n

(
αH +

m∑
l=1

nl δρ∗
l

)
,
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where ρ∗
1, . . . , ρ

∗
m are unique parameters observed so far and nl is the number of

repeats for ρ∗
l . Note that the larger the observation count, nl, is, the higher is the

contribution of δρ∗
l

to ρn+1. This is sometimes visualized through a Chinese restau-
rant process analogy: Consider a restaurant with an infinite number of tables.

� The first customer sits at some table.
� Each new customer decides whether to sit at one of the tables with prior cus-

tomers or to sit at a new table. The customer sits at a new table with probability
proportional to α. If the customer decides to sit at a table with prior customers,
on the other hand, she picks a table with probability proportional to the number
of customers already sitting in that table.

In other words, the Dirichlet process model is especially suitable for modeling sce-
narios where the larger clusters attract more new members (this is also referred to
as the rich-gets-richer phenomenon).

Note that the Dirichlet process model is an infinite mixture model; that is, when
we state that G ∼ DP(α, H), we do not need to specify the number of partitions.
Consequently, the Dirichlet process model can be used as a generative model for
a countably infinite number of clusters of objects. In practice, however, given a set
of observations, only a small number of clusters are modeled; in fact, the expected
number of components is logarithmic in the number of observations. This is because
the Dirichlet process generates clusters in a way that favors already existing clusters.
The fact that one does not need to specify the number of clusters as an input param-
eter makes the Dirichlet processes a more powerful tool than other schemes, such
as finite mixture models, that assume a fixed number of clusters. Dirichlet process
models are also popular as generative models, because there exists a so called stick-
breaking construction, which recursively breaks a unit-length stick into pieces, each
corresponding to one of the partitions and providing prior probability for the corre-
sponding cluster [Ishwaran and James, 2001; Sethuraman, 1994].

3.5.4 Markovian Models

Probabilistic models can also be used for modeling the dynamic aspects of multime-
dia data (such as the temporal aspects of audio) and processes.

A process that carries a degree of indeterminacy in its evolution is called a
stochastic (or probabilistic) process; the evolution of such a process is described
by a probability distribution based on the current and past states of the process (and
possibly on external events).

A stochastic process is said to be Markovian if the conditional probability dis-
tributions of the future states depend only on the present (and not on the past).
A Markov chain is a discrete-time stochastic process that can be modeled using

a transition graph, G(V, E, p), where the vertices, v1, . . . , vn ∈ V, are the various
states of the process, the edges are the possible transitions between these states, and
p : E → [0, 1] is a function associating transition probabilities to the edges of the
graph (though the edges with 0 probability are often dropped). A random walk on
a graph, G(V, E), is simply a Markov chain whose state at any time is described by a
vertex of G and the transition probability is distributed equally among all outgoing
edges.
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Figure 3.24. A Markov chain and its transition matrix.

Transition Matrix Representation
The transition probabilities for a Markov model can also be represented in a ma-

trix form (Figure 3.24). The (i, j)th element of this matrix, Tij, describes the prob-
ability that, given that the current state is vi ∈ V, the process will be in state vj ∈ V
next time unit; that is,

Tij = p(ei,j) = P(Snow+1 = vj|Snow = vi).

Because the graph captures all possible transitions, the transition probabilities asso-
ciated to the edges outgoing from any state vi ∈ V add up to 1:∑

vj∈V

Tij =
∑
vj∈V

p(ei,j) = 1.

Because the state transitions are independent of the past states, given this matrix of
one-step transition probabilities, the k-step transition probabilities can be computed
by taking the kth power of the transition matrix. Thus, given an initial state modeled
as an n-dimensional probability distribution vector, �π0, the probability distribution
vector, �πk, representing the k-step can be computed as

�πk = Tk�π0.

If the transition matrix T is irreducible (i.e., each state is accessible from all other
states) and aperiodic (i.e., for any state vi, the greatest common divisor of the set
{k ≥ 1|Tk

ii > 0} is equal to 1), then in the long run, the Markov chain reaches a
unique stationary distribution independent of the initial distribution. In such cases,
it is possible to study this stationary distribution.

Stationary Distribution and Proximity
When the number of states of the Markov chain is small, it is relatively easy to

solve for the stationary distribution. In general, the components of the first eigen-
vector9 of the transition matrix of a random walk graph will give the portion of the
time spent at each node after an infinite run. The eigenvector corresponding to the
second eigenvalue, on the other hand, is known to serve as a proximity measure
for how long it takes for the walk to reach each vertex [McSherry, 2001]. However,
when the state space is large, an iterative method (optimized for quick convergence
through appropriate decompositions) is generally preferred [Stewart and Wu, 1992];
for example, Brin and Page [1998] and Page et al. [1998] rely on a power iteration
method to calculate the dominant eigenvalue (see Section 6.3).

These stationary distributions of Markovian models are used heavily in many
multimedia, web, and social network mining applications. For example, popular

9 See Section 4.2.6 for the definitions of the eigenvalue and eigenvector.
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Web analysis algorithms, such as HITS [Gibson et al., 1998; Kleinberg, 1999] or
PageRank [Brin and Page, 1998; Page et al., 1998], rely on the analysis of the hy-
perlink structure of the Web and use the stationary distributions of the random
walk graphs to measure the importances of the web pages given a user query.
Candan and Li [2000] used random-walk–based connectedness analysis to mine im-
plicit associations between web pages. See Section 6.3 for more details of these link
analysis applications. Also, see Section 8.2.3 for the use of Markovian models in
graph partitioning.

Unfortunately, not all transition matrices can guarantee stationary behavior.
Also, in many cases users are not interested in the stationary state behaviors of
the system, but for example in how quickly a system converges to the stationary
state [Lin and Candan, 2007] or more generally, whether a given condition is true
at any (bounded) future time. These problems generally require matrix algebraic
solutions that are beyond the scope of this book.

Hidden Markov Models
Hidden Markov models (HMMs), where some of the states are hidden (i.e., un-

known), but variables that depend on these states are observable, are commonly
used in multimedia pattern recognition. This involves training (i.e., given a se-
quence of observations, learning the parameters of the underlying HMM) and pat-
tern recognition (i.e., given the parameters of an HMM, finding the most likely se-
quence of states that would produce a given output). We discuss HMMs and their
use in classification in Section 9.7.

3.6 SUMMARY

In this chapter, we have seen that, despite the diversity of features one can use
to capture the information of interest in a given media object, most of these
can be represented using a handful of common feature representations: vectors,
strings/sequences, graphs/trees, and fuzzy or probabilistic based representations.
Thus, in Chapters 5 through 10, we present data structures and algorithms that rely
on the properties of these representations for efficient and effective retrieval of mul-
timedia data. On the other hand, before a multimedia database system can leverage
these data structures and algorithms, it first needs to identify the most relevant and
important features and focus the available system resources on those. In the next
chapter, we first discuss how to select the best feature set, among the alternative
features, for indexing and retrieval of media data.
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Feature Quality and Independence

Why and How?

For most media types, there are multiple features that one can use for indexing
and retrieval. For example, an image can be retrieved based on its color histogram,
texture content, or edge distribution, or on the shapes of its segments and their
spatial relationships. In fact, even when one considers a single feature type, such as
a color histogram, one may be able to choose from multiple alternative sets of base
colors to represent images in a given database.

Although it might be argued that storing more features might be better in terms
of enabling more ways of accessing the data, in practice indexing more features (or
having more feature dimensions to represent the data) is not always an effective way
of managing a database:

� Naturally, more features extracted mean more storage space, more feature ex-
traction time, and higher cost of index management. In fact, as we see in Chap-
ter 7, some of the index structures require exponential storage space in terms
of the features that are used for indexing. Having a large number of features
also implies that pairwise object similarity/distance computations will be more
expensive.

Although these are valid concerns (for example, storage space and commu-
nication bandwidth concerns motivate media compression algorithms), they are
not the primary reasons why multimedia databases tend to carefully select the
features to be used for indexing and retrieval.

� More importantly, as we have seen in Section 3.5.1.2, not all features are inde-
pendent from each other, and this might negatively affect retrieval and relevance
feedback.

Because all features are not equally important (Section 4.2), to support ef-
fective retrieval we may want to pick features that are important and mutually
independent for indexing, and drop the rest from consideration.

� A fundamental problem with having to deal with a large number of dimensions
is that searches in high-dimensional vector spaces suffer from a dimensionality
curse: range and nearest neighbor searches in high dimensional spaces fail to
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Figure 4.1. Equidistance spheres enveloping a query point in a three-dimensional Euclidean
space.

benefit from available index structures, and searches deteriorate to sequential
scans of the entire database.

4.1 DIMENSIONALITY CURSE

To understand the dimensionality curse problem, let us consider what happens if
we start with a small query range and increase the radius of the query step by step
(Figure 4.1).

In two-dimensional Euclidean space, a query with range r forms a circle with
area πr2. In three-dimensional Euclidean space, the same query spans a sphere with
volume 4

3πr3. More generally, in an n-dimensional Euclidean space, the volume cov-
ered by a range query with radius r is crn, for some constant, c. Consequently, the dif-
ference in volume between two queries with the same center, but with radii (i − 1)r
and ir (for some r, i > 0), respectively, can be calculated as

vol�(i − 1, i) = c(ir)n − c((i − 1)r)n = O(in−1).

Hence, if we consider the cases where the data points are uniformly distributed
in the vector space, we can see that the ratio of data points that fall into the (i + 1)th
slice (between the spheres of radii (i + 1)r and ir) to the points that fall into the
previous, ith, slice is O(( i+1

i )n−1). In other words, because for all i > 0, i+1
i > 0, the

number of data points that lie at a distance from the query increases exponentially
with each step away from the query point (Figure 4.2). This implies that whereas
queries with small ranges are not likely to return any matches, sufficiently large
query ranges will return too many matches. Experiments with real data sets indeed
have shown that the distributions of the distances between data points are rarely
uniform and instead often follow a power law [Belussi and Faloutsos, 1998]: in a
given d-dimensional space, the number of pairs of elements within a given distance,
r, follows the formula

pairs(r) = c × rd,



4.2 Feature Selection 145

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1x

Vector-space Dist. of Scores

score

Sample Vector Space Score Distribution
(assuming uniform data distribution)

Figure 4.2. Score distribution assuming uniformly distributed data. Here, a score of 1 means
that the Euclidean distance between the data point and the query is equal to 0; a score of
0, on the other hand, corresponds to the largest possible distance between any two data
points in the vector space. Note that, when the number of dimensions is larger, the curve
becomes steeper.

where c is a proportionality constant. More generally, Beyer et al. [1999] showed
that, if a distance measure �n defined over n-dimensional vector space has the prop-
erty that, given the data and query distributions,

limn→∞
variance(�n(�vq, �vo))
expected(�n(�vq, �vo))

= 0,

then the nearest and the furthest points from the query converge as n increases.
Consequently, the nearest neighbor query looses its meaning and, of course, effec-
tiveness.

4.2 FEATURE SELECTION

Because of the dimensionality curse and the other reasons listed previously, multi-
media databases do not use all available features for indexing and retrieval. Instead,
the initial step of multimedia database design involves a feature selection (or di-
mensionality reduction) phase, in which data are transformed and projected in such
a way that the selected features (or dimensions) of the data are the important ones
(Figure 4.3). A feature might be important for indexing and retrieval for various
reasons:

� Application semantics: The feature might be important for the application do-
main. For example, the location of the eyes and their spatial separation is impor-
tant in a mugshot database.

� Perception impact: The feature might be what users perceive more than the oth-
ers. For example, the human eye is more sensitive to some colors than to others.
Similarly, the human eye is more sensitive to contrast (changes in colors) and
motion (changes in composition).

� Discrimination power: The feature might help differentiate objects in the
database from each other. For example, in a mugshot database with a diverse
population of individuals, hair color might be an important discriminator of
faces.
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(a) (b)

Figure 4.3. Dimensionality reduction involves transforming the original database in such a
way that the important aspects of the data are emphasized and the less important dimen-
sions are eliminated by projecting the data on the remaining ones: in this example, one of
the features of the original data has been eliminated from further consideration: (a) Original
database, (b) Transformed database.

� Object description power: A feature might be important for a given object, if it
is a good descriptor of it. This would include how dominant the feature is in
this object or how well this particular feature differentiates this particular object
from the others.

� Query description power: A feature might be important for retrieval if it is dom-
inant in the user query. The importance of the query criteria might be user spec-
ified or, in QBE systems, might be learned by analyzing the sample provided by
the user. This knowledge can be revised explicitly by the user or transparently
through relevance feedback, after initial candidates are returned by the system
to the user.

� Query workload: The feature might be popular as a query criterion. This is re-
lated to application semantics; but in some domains, what is interesting to the
user population might not be static, but evolve over time. For example, in search
engines, the set of popular query keywords changes with events in the real world.

Note that some of the criteria (such as application semantics and perception
impact) of feature importance just listed might be quantifiable in advance, before
the database is designed. In some cases, there may also be studies establishing the
discriminatory power of features for the data type from which the data set is drawn.
For example, it is observed that the frequency distribution of words in a document
collection often follows the so-called Zipf’s law1 [Li, 1992; Zipf, 1949]; that is, they
have Zipfian distributions (Section 3.5): if the N words in the dictionary are ranked
in nonincreasing order of frequencies, then the probability that the word with rank
r occurs is

f (X = r, α) = 1/rα∑N
w=1 1/wα

,

1 Many other popularity phenomena, such as web requests [Breslau et al., 1999] and query popularity in
peer-to-peer (P2P) sites [Sripanidkulchai, 2001], are known to show Zipfian characteristics.
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(a) (b)

Figure 4.4. (a) The distribution of keywords in a given collection often follows the so-called
Zipf’s law and, thus, (b) most text retrieval algorithms pre-process the data to eliminate those
keywords that occur too frequently (these are often referred to as the “stop words”).

for some α close to 1. As shown in Figure 4.4(a), this distribution is very skewed, with
a handful of words occurring very often. Because most documents in the database
will contain one or more instances of these hot keywords, they can often be elim-
inated from consideration before the data are indexed; thus, these words are also
referred to as the stop words [Francis and Kucera, 1982; Luhn, 1957] (Figure 4.4(b)).
Different stop word lists are available for different languages; for example the stop
word list for the English language would contain highly common words, such as “a”,
“an”, and “the”.

Other criteria, such as discrimination power specific to a particular data collec-
tion, are available only as the data and query corpus become available.

Example 4.2.1 (TF-IDF weights for text retrieval): In text retrieval, documents are
often represented in the form of bags of keywords, where for each document, the
corresponding bag contains the keywords (i.e., features used for indexing and re-
trieval) that the document includes.

Because a good feature (i.e., keyword) needs to represent the content of the
corresponding object (i.e., text document) well, the weight of a given keyword k in
a given document d is proportional to its frequency in d:

tf (k, d) = count(k, d)
size(d)

.

This is referred to as the term frequency (TF) component of the keyword weight.
In addition, a good feature must also help discriminate the object containing it

from others in the database, D. This is captured by a term referred to as the inverse
document frequency (IDF):

idf (k, D) = log
(

number of documents(D)
number of documents containing(k, D)

)
.

Thus, the TF-IDF weight of the keyword k for document d in database D combines
these two aspects of feature weights (Figure 4.5):

tf idf (k, d, D) = tf (k, d) × idf(k, D).

An alternative formulation normalizes the TF-IDF weights to a value between 0
and 1, by dividing the inverse document frequency value, idf(k, D), by the maximum
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(a) (b)

Figure 4.5. TF-IDF weights: (a) term frequency reflects how well the feature represents the
object (feature f1 is better than f2) and (b) inverse document frequency represents how well
it discriminates the corresponding object in the database (feature f2 discriminates better
than f1).

inverse document frequency value, max idf, for all documents and keywords in the
database:

normalized tf idf (k, d, D) = tf (k, d) × idf (k, D)
max idf

.

Although the foregoing formulas are suitable for setting the weights for key-
words in the documents in the database, they may not be suitable for setting the
weight of the keywords in the query. In particular, by the simple action of including
a keyword in the query (or by selecting a document that contains the keyword as
an example), the user is effectively giving more weight to this keyword than other
keywords that do not appear in the query. Salton and Buckley [1988b] suggest that
the TF formula

tf (k, q) =

0.5 +

0.5 × count(k,q)
size(q)

max term frequency(q)




should be used for query keywords. Note that, here, the TF value is normalized such
that only half of the TF weight is affected by the term frequency value.

Similarly to the corpus-specific discrimination power of the features, the query
description power of a feature is also known only immediately before query pro-
cessing or after the user’s relevance feedback; thus it cannot always be taken into
account at the database design time. Therefore, whereas some of the feature impor-
tance criteria can be considered for selecting features for indexing, others need to
be leveraged only for query processing.

4.2.1 False Hits and Misses

Feature selection and dimensionality reduction usually involve some transforma-
tion of the data to highlight which features are important features. The features that
are not important are then eliminated from consideration (see Figure 4.3). Conse-
quently, the process is inherently lossy.

Let us consider the data space and the range query depicted in Figure 4.6(a).
In this figure, three objects are specially highlighted: A is the query object, B is an
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(a) (b)

Figure 4.6. Transformations and projections that result in overestimations of distances cause
misses during query processing; underestimations of distances, on the other hand, cause
false hits: (a) Original database; (b) Transformed database, here B is a false hit (�′

1 < �1)
and C is a miss (�′

2 > �2).

object that is outside of the query range (and thus is not a result), and C is an ob-
ject that falls in the query range, and thus is an answer to this particular query.
Figure 4.6(b), on the other hand, shows the same query in a space which is ob-
tained through dimensionality reduction. In this new space, object B falls in the
query range, whereas C is now outside of the query range:

� Object B is called a false hit. False hits are generally acceptable from a query
processing perspective, because they can be eliminated through postprocessing.
Thus their major impact is an increase in query processing cost.

� Object C is a miss. Misses are unacceptable in many applications: because an
object missed due to a transformation is not available for consideration after the
query is processed, a miss cannot be corrected by a postprocessing step.

As noted in Figure 4.6(b), false hits are caused by transformations that under-
estimate the distances in the original data space. Misses, on the other hand, are
caused by transformations that overestimate object distances. Thus, in many cases,
transformations that overestimate distances are not acceptable for dimensionality
reduction.

Example 4.2.2 (Distance bounding): Let D be an image database, indexed based on
color histograms: for images oi, oj ∈ D,

� histm(oi) denotes an m-dimensional color histogram vector for object oi and
� �Euc,histm(oi, oj) denotes the Euclidean distance between histograms of images oi

and oj.

One way to reduce the number of dimensions used for indexing would be to trans-
form the database by mapping images onto a 3D vector space, where the dimensions
correspond to the amounts of green, red, and blue the images have: if oi ∈ D has M
pixels, then

rgb(oi)=
〈

1
M

M∑
k=1

red(pixel(k,oi)),
1
M

M∑
k=1

green(pixel(k,oi)),
1
M

M∑
k=1

blue(pixel(k, oi))

〉
.
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We can define �Euc,rgb(oi, oj) as the Euclidean distance between the images in
the new RGB space. Faloutsos et al. [1994] showed that the distances in the his-
togram space and the transformed RGB space are related to each other:

�Euc,rgb(oi, oj) ≤ c(m)�Euc,histm(oi, oj),

where the value of the coefficient c(m) can be computed based on the value of m .
This is referred to as the distance bounding theorem.

The transformation described in the preceding example distorts the distances. How-
ever, the amount of distortion has a predictable upper bound, c(m). Consequently,
overestimations of distances can be avoided by taking the query range, δq, specified
by the user in the original histogram space and using δq

c(m) as a query range in the
RGB space. Under these conditions, the distance bounding theorem implies that
the RGB space will only underestimate distances, and thus no object will be missed
despite the significant amount of information loss during the transformation.

4.2.2 Feature Significance in the Information-Theoretic Sense

In general, a feature that has higher occurrence in the database is less interesting
for indexing. This is because it is a poor discriminator of the objects (i.e., too many
objects will match the query based on this feature) and thus might not support ef-
fective retrieval. In information theory, this is referred to as the information content
of an event. Given a set of events,

� those that have higher frequencies (i.e., high occurrence rates) carry less infor-
mation, whereas

� those that have low frequencies carry more information.

Intuitively, a solar eclipse is more interesting (and a better discriminator of days)
than a sunset, because solar eclipses occur less often than sunsets. Shannon en-
tropy [Shannon, 1950] measures the information content, in a probabilistic sense,
in terms of the uncertainty associated with an event.

Definition 4.2.1 (Information Content (Entropy)): Let E = {e1, . . . , en} be a
set of mutually exclusive possible events, and let p(ei) be the probability of
event ei occurring. Then, the information content (or uncertainty), I(ei), of
event ei is defined as

I(ei) = −log2 p(ei).

The information content (or uncertainty) of the entire system is, then, defined
as the expected information content of the event set:

H(E) = −
n∑

i=1

p(ei)log2 p(ei).

Based on this definition, if an event has a high p(ei)log2
1

p(ei)
value, then it in-

creases the overall uncertainty in the system. Table 4.1 shows the entropy of a sys-
tem with two possible events, E = {A, B}, under different probability distributions.
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Table 4.1. Entropy of a system with two events, E = {A, B}, under different event
probability distributions

p(A) p(B) −log2 p(A) −log2 p(B) −p(A)log2 p(A) −p(B)log2 p(B) H(E )

0.05 0.95 4.322 0.074 0.216 0.07 0.29
0.5 0.5 1 1 0.5 0.5 1
0.95 0.05 0.074 4.322 0.07 0.216 0.29

As it can be seen here, the highest entropy for the system is obtained when neither
event is dominating the other in terms of likelihood of occurring; that is, both events
are equally and significantly discriminating. In the cases where either one of the
events is overly likely (0.95 chance of occurrence) relative to the other, the entropy
of the overall system is low: in other words, although the rare event has much higher
relative information content,

−log2(0.05)
−log2(0.95)

= 4.322
0.074

= 58.4,

these two events together do no provide sufficient discrimination.
In Section 9.1.1, we discuss other information-theoretic measures, including in-

formation gain by entropy and Gini impurity, commonly used for classification tasks.

4.2.3 Feature Significance in Terms of Data Distribution

Consider the 3D vector space representation of a database, shown in Figure 4.7(a).
Given a query range along the dimension corresponding to feature F2, Figure 4.7(b)
highlights the matches that the system would return. Figure 4.7(c), on the other
hand, highlights the objects that will be picked if the same query range is given
somewhere along the dimension corresponding to feature F1.

As can be seen here, the dimension F1 (along which the data are distributed
with a higher variance) has a greater discriminatory power: fewer objects are picked
when the same range is provided along F1 than along F2. Thus, variance of the
data along a given dimension is an indicator of its quality as a feature.2 Note that
variance-based feature significance is related to the entropy-based definition of fea-
ture importance. Along a dimension which has a higher variance, the values that the
feature takes will likely have a more diverse distribution; consequently, no individ-
ual value (or particular range of values) will be more likely to occur than the others.
In other words, the overall entropy that the feature dimension provides is likely to
be high.

Unfortunately, it is not always the case that the direction along which the spread
of the data is largest coincides with one of the feature dimensions provided as
input to the database. For instance, compare data distributions in Figures 4.8(a)

2 As we see in Section 9.1.1, for classification applications where different classes of objects are given,
the reverse is true: a discriminating feature minimizes the overlaps between different object classes
by minimizing the variances for the individual classes. Fisher’s discriminant ratio, a variance based
measure for feature selection in classification applications, for example, selects features that have small
per-class variances (Figure 9.1).
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(a)

(b) (c)

Figure 4.7. (a) 3D vector space representation of a database. (b) Objects that are picked
when the query range is specified along dimension F2. (c) Objects that are picked when the
query range is specified along F1.

and (b). In the case of the data corpus in Figure 4.8(a), the direction along which the
data are spread the best coincides with feature F1. On the other hand, in the data
corpus shown in Figure 4.8(b), the data are spread along a direction that is a compo-
sition of features F1 and F2. This direction is commonly referred to as the principal
component of the data.

Intuitively, we can say that it is easier to pick the most discriminating dimensions
of the data, if these dimensions are overlapping with the principal, independent

(a) (b)

Figure 4.8. (a) The data have largest spread along feature F1. (b) The largest data spread
does not coincide with any of the individual features.
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components of the database. In other words, transformations that reduce the corre-
lation between the dimensions should help with dimensionality reduction.

4.2.4 Measuring the Degree of Association between Data Features

As we discussed in Section 3.5.1.2, correlation and covariance are two statistical
measures that are commonly used for measuring the relationship between two con-
tinuously valued features of the data. However, not all features are valued con-
tinuously. In many cases, the features are binary (they either exist in an object or
not) and the dependencies between features have to be captured using other mea-
sures. He and Chang [2006] and Tan et al. [2004] list various measures that can be
used to quantify the strength of association between two features based on their
co-occurrence (or lack thereof) of features in a given data set (Tables 4.2 and 4.3).
In Table 4.2, P(X) corresponds to the probability of selecting a document that has
the property X, and P(X, Y) corresponds to the probability of selecting a document
that has both properties X and Y. Thus, different measures listed in these tables
put different weights to co-occurrence (both features occurring in a given object),
co-absence (neither feature occurring in a given object), and cross-presence based
evidences (either one or the other feature is occurring in the given object, but not
both). Piatetsky-Shapiro [1991] lists three properties that are often useful in mea-
suring feature associations. Let A and B be two features; then

� if A and B are statistically independent, then the measurement should be 0,
� the measurement should monotonically increase with co-occurrence (P(A, B))

when P(A) and P(B) remain constant, and
� the measurement of association should monotonically decrease with the over-

all frequency of a feature (P(A) or P(B)) in the data set, when the rest of the
parameters stay constant.

Other properties that may be of interest in various applications include inversion in-
variance (or symmetry; i.e., the measurement does not change if one flips all feature
absences to presences and vice versa) and null invariance (i.e., the measurement
does not change when one simply adds more objects that do not contain either fea-
tures to the database). Symmetric measures include φ, κ, α, and S. Measures with
null invariance (which is useful for applications, such as those with sparse features,
where co-presence is more important than co-absence) include cosine and Jaccard
similarity [Tan et al., 2004].

4.2.5 Intrinsic Dimensionality of a Data Set

As described earlier, the number of useful dimensions to describe a given data set
depends on the distribution of the data and the way the dimensions of the space are
correlated with each other. If the dimensions of a given vector space are uniform and
independent, then each and every dimension is useful and it is not possible to reduce
the dimensionality of the data without loss of information. On the other hand, when
there are correlations between the dimensions, the inherent (or intrinsic) dimen-
sionality of the space can be lower than the original number of dimensions.
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Table 4.2. Measuring the degree of association between features A and B in a data set of
size N [He and Chang, 2006; Tan et al., 2004] (A and B denote the lack of the
corresponding features in a given object)

Measure Formula

φ-coefficient P(A,B)−P(A)P(B)√
P(A)P(B)(1−P(A))(1−P(B))

Goodman-Kruskal’s (λ)
of sets of features

∑
i max jP(Ai,B j)+

∑
j maxiP(Ai,B j)−maxiP(Ai)−max jP(B j)

2−maxiP(Ai)−max jP(B j)

Odds ratio (α, lift) P(A,B)P(A,B)
P(A,B)P(A,B)

Yule’s Q P(A,B)P(A,B)−P(A,B)P(A,B)
P(A,B)P(A,B)+P(A,B)P(A,B)

= α−1
α+1

Yule’s Y
√

P(A,B)P(A,B)−
√

P(A,B)P(A,B)√
P(A,B)P(A,B)+

√
P(A,B)P(A,B)

=
√

α−1√
α+1

Kappa (κ) P(A,B)+P(A,B)−P(A)P(B)−P(A)P(B)
1−P(A)P(B)−P(A)P(B)

Mutual information (MI)
of sets of features

∑
i

∑
j P(Ai,B j)log

(
P(Ai ,B j)

P(Ai )P(B j)

)
min(−∑i P(Ai)log(P(Ai)),−

∑
j P(B j)log(P(B j))

J-measure (J ) max
(
P(A, B)log

(
P(B|A)
P(B)

)
+ P(A, B)log

(
P(B|A)
P(B)

))
,(

P(A, B)log
(

P(A|B)
P(A)

)
+ P(A, B)log

(
P(A|B)
P(A)

))
Gini index (G) max(P(A)(P(B|A)2 + P(B|A)2) + P(A)(P(B|A)2 + P(B|A)2)

−P(B)2 − P(B)2,

P(B)(P(A|B)2 + P(A|B)2) + P(B)(P(A|B)2 + P(A|B)2)

−P(A)2 − P(A)2)

Support (s) P(A, B)

Confidence (c) max(P(B|A), P(A|B))

Laplace (L) max
(

N P(A,B)+1
N P(A)+2 , N P(A,B)+1

N P(B)+2 ,
)

Conviction (V ) max
(

P(A),P(B)
P(A,B)

, P(A)P(B)
P(A,B)

)
Interest (I) P(A,B)

P(A)P(B)

cosine P(A,B)√
P(A)P(B)

Piatetsky-Shapiro’s (PS) P(A, B) − P(A)P(B)

Certainty factor (F ) max
(

P(B|A)−P(B)
1−P(B) ,

P(A|B)−P(A)
1−P(A)

)
Added value (AV ) max(P(B|A) − P(B), P(A|B) − P(A))

Collective strength (S) P(A,B)+P(A,B)
P(A)P(B)+P(A)P(B)

× 1−P(A)P(B)−P(A)P(B)
1−P(A,B)−P(A,B)

Jaccard (ζ ) P(A,B)
P(A)+P(B)−P(A,B)

Klosgen (K)
√

P(A, B)max(P(B|A) − P(B), P(A|B) − P(A))

H-measure (H, negative
correlation)

P(A,B)P(A,B)
P(A)P(B)
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Table 4.3. Scores corresponding to evidences of relationships between features A
and B [He and Chang, 2006; Tan et al., 2004] (rows with three values correspond to
measures that can provide evidence for negative association, no association, and
positive association; rows with two values correspond to measures that can provide
evidence for no association and association)

Measure Negative assoc. No assoc. (Positive) assoc.

φ-coefficient −1 0 1
Goodman-Kruskal’s (λ) of

sets of features
0 1

Odds ratio (α, lift) 0 1 ∞
Yule’s Q −1 0 1
Yule’s Y −1 0 1
Kappa (κ) −1 0 1
Mutual information (MI)

of sets of features
0 1

J-measure (J ) 0 1
Gini index (G) 0 1
Support (s) 0 1
Confidence (c) 0 1
Laplace (L) 0 1
Conviction (V ) 0.5 1 ∞
Interest (I) 0 1 ∞
cosine 0

√
P(A, B) 1

Piatetsky-Shapiro’s (PS) −0.25 0 0.25
Certainty factor (F ) −1 0 1
Added value (AV ) −0.5 0 1
Collective strength (S) 0 1 ∞
Jaccard (ζ ) 0 1

Klosgen (K)
√

2√
3
− 1(2 − √

3 − 1√
3
) 0 2

2
√

3

H-measure (H, negative
correlation)

1 P(A)P(B) 0

As described in Section 4.1, given a set of data points and a distance function, the
average number of data points within a given distance is proportional to the distance
raised to the number of dimensions of the space; in other words, the number of pairs
of elements within a given distance r follows the formula

pairs(r) = c × rd,

where c is a proportionality constant [Belussi and Faloutsos, 1998]. Note that we can
also state this formula as

log(pairs(r)) = d × log(c1/dr) = c′ + d × log(r),

where c′ is a constant. This implies that the intrinsic dimensionality, d, of the data can
be estimated by plotting the log(pairs(r)) values against log(r) and computing the
slope of the line that best fits3 the resulting plot [Belussi and Faloutsos, 1998; Traina
et al., 2000]. Belussi and Faloutsos [1998], leverage this to develop an estimation

3 The fit is especially strong for data that is self-similar at different scales; i.e. is fractal (Section 7.1.1).
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method called box-occupancy counting: The space is split into grids of different sizes
and, for each grid size, the numbers of object pairs in the resulting cells are counted.
Given these counts, the correlation fractal dimension is defined as the slope of the
log-log curve

δ log
(∑

i count2
r,i

)
δ log(r)

,

where r is the length of the sides of the grid cells and count2
r,i is the number of point

pairs in the ith cell of the grid.

4.2.6 Principal Component Analysis

Principal component analysis (PCA), also known as the Karhunen-Loeve, KL,
transform is a linear transform, which optimally decorrelates the input data. In other
words, given a data set described in a vector space, PCA identifies a set of alternative
bases for the space along which the spread is maximized.

As we discussed in Section 3.5.1.2, variance and covariance are the two statisti-
cal measures that are commonly used for measuring the spread of data. Variance is
one-dimensional, in that it measures the data spread along a single dimension, inde-
pendently of the others. Covariance, on the other hand, measures how much a pair
of data dimensions vary from their means with respect to each other. Given a data
set, D, in an n-dimensional data space, a covariance matrix, S, can be used to encode
pairwise covariance relationships among the dimensions of this space:

∀1≤i,j≤n S[i, j] = Cov(i, j) = E((�o[i] − µi)(�o[j] − µj)),

where E stands for expected value and µi and µj are the average values of the data
vectors along the ith and jth dimensions, respectively. Note that the covariance ma-
trix S can also be written as

S = GGT,

where G is an n × |D| matrix, such that

∀1≤i≤n∀�oh∈D G[i, h] = − 1√|D| (�oh[i] − µi).

If the dimensions of the space are statistically independent from each other,
then for any two distinct dimensions, i and j, Cov(i, j) will be equal to 0; in other
words, the covariance matrix S will be diagonal, with the values at the diagonal
of the matrix encoding Cov(i, i) = σ2

i (the variance along i) for each dimension i.
Otherwise, the covariance matrix S is only symmetric; i.e., Cov(i, j) = Cov( j, i) =
E((�o[i] − µi)(�o[ j] − µj)).

The goal of the PCA transform is to identify a set of alternative dimensions for
the given data space, such that the covariance matrix of the data along this new set
of dimensions is diagonal. This is done through the process of eigen decomposition,
where the square matrix, S, is split into its eigenvalues and eigenvectors:

www.Ebook777.com

http://www.ebook777.com
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Figure 4.9. Eigen decomposition of a symmetric, square matrix, S.

Definition 4.2.2 (Eigenvector): Let S be a square matrix. A right eigenvector
for S is defined as a column vector, �r, such that

S�r = λr�r,
or equivalently

(S − λrI)�r = 0.

Here I is the identity matrix. The value λr is known as the eigenvalue cor-
responding to the right eigenvector, �r. Similarly, the left eigenvector for S is
defined as a row vector, �l, such that

�lS = �lλl or �l(S − λlI) = 0.

When S is symmetric (as in covariance matrices) the left and right eigenvectors are
each other’s transposes. Furthermore, given an n × n symmetric square matrix, S,
there are k ≤ n unique, unit-length right eigenvectors.

Theorem 4.2.1 (Eigen decomposition of a symmetric matrix): Let S be an
n × n symmetric, square matrix with real values. Then S can always be de-
composed into

S = PCP−1,

where

C =




λ1 0 . . . 0

0 λ2 . . . 0
. . . . . . . . . . . .

0 0 . . . λk




is real and diagonal and

P = [ �r1 �r2 . . . �rk] ,

where �r1, . . . , �rk are the unique eigenvectors of S.

Furthermore, the eigenvectors of S are orthogonal to (and thus linearly independent
from) each other (see Figure 4.9).
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Theorem 4.2.2 (Orthogonality): Let S be an n × n square matrix, and let �r1

and �r2 be two distinct eigenvectors of S. Then �r1 · �r2 = 0.

Note that because the k eigenvectors are orthogonal, they can be used as the
orthogonal bases (instead of the original dimensions) to describe the database. Thus,
a given database D, of m objects, described in an n-dimensional vector space can be
realigned along the eigenvectors by the following linear transformation:

D′
(m,k) = D(m,n)P(n,k).

This transformation projects each data vector in D onto the k (unit-length) eigenvec-
tors and records the result in a new matrix, D′. Note that because the transformation
is orthonormal (i.e., P is such that the columns are orthogonal to each other and are
all unit length), all the (Euclidean) object distances as well as the angles between
the objects are preserved in the new space.

Moreover, the subspace defined by the eigenvectors �r1, . . . , �rk has the largest
variance. In fact, the variance is highest along the dimension defined by �ri with the
largest eigenvalue, λi (and so on). To see why, consider the following:

S = GGT

P−1SP = (P−1G) (GTP).

Because S = PCP−1 (or equivalently P−1SP = C), we know that the left-hand side
is equal to C:

C = (P−1G) (GTP).

Furthermore, because P is an orthonormal matrix, P−1 = PT, and thus

C = (PTG) (GTP) = (PTG)(PTG)T.

On the other hand, because G is an n × |D| matrix, such that

∀1≤i≤n∀�oj∈D G[i, j] = 1√|D| (�oj[i] − µi),

and since P is an orthonormal transformation, we have

∀1≤h≤k∀�oj∈D (PTG)[h, j] = 1√|D| (�oj(h) − µh),

where �oj(h) is the length of the projection of the vector �oj onto the hth eigenvector.
In other words, (PTG)(PTG)T is nothing but the covariance matrix of the data on
the new k × k basis defined by the eigenvectors. Because this is equivalent to C, we
can also conclude that C is the covariance matrix of the new space. Because C is
diagonal, the values at the diagonal (i.e., the eigenvalues) encode the variance along
the new basis of the space.

In summary, the eigenvectors of the covariance matrix S define bases such that
the pairwise correlations have been eliminated. Moreover, the eigenvectors with
the largest eigenvalues also have the greatest discriminatory power and thus are
more important for indexing (Figure 4.10). This is performed by keeping only those
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Figure 4.10. The eigenvectors of the covariance matrix S provide an alternative description of
the space, such that the directions along which the data spread is maximized can be easily
identified.

eigenvectors that have large eigenvalues and discarding those that have small eigen-
values (Figure 4.11).

4.2.6.1 Selecting the Number of Dimensions
In Section 4.2.5, we have seen that one way to select the number of dimensions
needed to represent a given data set is to compute its so-called intrinsic dimen-
sionality. An alternative method for selecting the number of useful dimensions is
to pick only those eigenvectors with eigenvalues greater than 1. This is known as
the Kaiser-Guttman (or simply Kaiser) rule. The scree test, on other hand, plots the
successive eigenvalues and looks for a point where the plot levels off. The variance
explained criterion keeps enough dimensions to account for 95% of the variance.
The mean eigenvalue rule uses only the dimensions whose eigenvalues are greater
than or equal to the mean eigenvalue. The parallel analysis approach analyzes a
random covariance matrix and plots cumulative eigenvalues for both random and
intended matrices; the number of dimensions to be used is picked based on where
the two curves intersect.

A major advantage of PCA is that, when the number of dimensions is reduced, it
keeps most of the original variance intact and optimally minimizes the error under
the Euclidean distance measure.

Figure 4.11. The effect of eliminating eigenvectors with small eigenvalues: S′ �= S, but the
impact on the overall covariance is relatively small.
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4.2.6.2 Limitations of PCA
One limitation of the PCA method is that 0 correlation does not always mean
statistical independence (although the statistical independence always means 0
correlation). Consequently, while the dimensions of the newly defined space are
decorrelated, they may not be statistically independent. However, because uncor-
related Gaussians are statistically independent [Lee and Verleysen, 2007], under
the Gaussian assumption the dimensions of the bases are also statistically indepen-
dent. The Gaussian assumption can be validated through the Kolmogorov-Smirnov
test [Chakravarti et al., 1967]. Other tests for non-Gaussianity include negative en-
tropy and kurtosis [Hyvärinen, 1999]. When the Gaussian assumption does not hold,
PCA can be extended to find the basis along which the data are statistically inde-
pendent. This variant is referred to as independent component analysis (ICA).

4.2.7 Common Factor Analysis

PCA is an instance of a class of analysis algorithms, referred to as the factor analysis
algorithms, which all try to discover the latent structure underlying a given set of
observed variables (i.e., the features of the media data). These algorithms assume
that the provided dimensions of data can be transformed into linear combinations
of a set of unobserved dimensions (or factors).

Common factor analysis (CFA) seeks the least number of factors (or dimensions)
that can account for the correlation in the given set of dimensions. The input dimen-
sions are treated as linear combinations of the factors, plus certain error terms. In
more precise terms, each variable is treated as the sum of common and unique por-
tions, where the common portions are explained by the common factors. The unique
portions, on the other hand, are uncorrelated with each other. In contrast, PCA does
not consider error terms (i.e., assumes that all variance is common) and finds the set
of factors that account for the total variance in the given set of variables.

Let us consider an n × n covariance matrix, S. Common factor analysis partitions
S into two matrices, common, C, and unique, U:

S = C + U,

where the matrix C is composed of k ≤ n matrices:

C = C1 + C2 + · · · + Ck.

Each Ci is the outer product of a column vector, containing the correlations with the
corresponding common variable and the n input dimensions. Intuitively, each diag-
onal entry in Ci is the amount of variance in the corresponding dimension explained
by the corresponding factor.

Because U is supposed to represent each dimension’s unique variability, U is
intended to be diagonal. However, in general, if k is too small to account for all the
common factors U will have residual errors, that is, off-diagonal nonzero values. In
general, the higher k, the better the fit and the smaller the number and sizes of the
errors in U.

As in PCA, Ci are derived from the eigenvalues associated to individual eigen-
vectors. Unlike PCA, on the other hand, in CFA, the proportion of each input
dimension’s variance, explained by the common factors, is estimated prior to the
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analysis. This information (also referred to as the communality of the dimension)
is leveraged in performing factor analysis: most CFA algorithms initially estimate
each dimension’s degree of communality as the squared multiple correlation be-
tween that dimension and the other dimensions. They then iterate to improve the
estimate.

Note that although both PCA and CFA can be used for dimensionality reduc-
tion, PCA is commonly preferred over CFA for feature selection because it pre-
serves the total variance better.

4.2.8 Selecting an Independent Subset of the Original Features

Both PCA and CFA aim to find alternative bases for the space that can be used
to represent the data corpus more effectively, with fewer dimensions. However, the
new dimensions are not always intelligible to the users; for example, in the case
of PCA, these dimensions are linear combinations of the input dimensions. In the
case of CFA, a postrotation process is commonly used to better explain the new
dimensions in terms of the input dimensions; but, nevertheless, the new (latent) di-
mensions are not always semantically meaningful in terms of application semantics.

In Section 9.6.2, we introduce a probability-driven approach for selecting a sub-
set of the original features by accounting for the interdependencies between the
probability distributions of the features in the database. In this section, we discuss
an alternative approach, called database compactness–based feature selection [Yu
and Meng, 1998], which applies dimensionality reduction on the original features of
the database based on the underlying object similarity measure.

Definition 4.2.3 (Database compactness): Let D be a database of objects, let
F be the feature set, and let simF () be a function that evaluates the similarity
between two media objects, based on the feature set, F. The compactness of
the database is defined as

compactnessF (D) =
∑

oi �=oj∈D

simF (oi, oj).

As shown in Figures 4.12(a) and (b), a given query range is likely to return
a larger number of matches in a compact database. Thus, the compactness of a
database is inversely related to how discriminating queries on it will be. Thus, we
can measure how good a discriminator a given feature f ∈ F is by comparing the
compactness of the database with and without the feature f considered for similar-
ity evaluation:

Definition 4.2.4 (Feature quality based on database compactness): Let D be
a database of objects, let F be the feature set, and let simF () be a function that
evaluates the similarity between two media objects, based on the feature set, F.
The quality of feature f∈F based on database compactness is defined as

qualityF,D(f ) = compactnessF\{f }(D) − compactnessF (D).

A negative qualityF,D( f ) indicates that, when f is not considered, the database be-
comes less compact. In other words, f is making the database compact and, thus,
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(a) (b)

(c) (d)

Figure 4.12. The same query range is likely to return a smaller number of matches in (a)
a database with large variance than in (b) a compact database. (c) The removal of a good
feature reduces the overall variance (rendering the queries less discriminating), whereas (d)
the removal of a bad feature renders the database less compact (eliminating some aspect
of the data that is too common in the database).

if there is a need to remove a feature, f should be considered for removal (Fig-
ures 4.12(c) and (d)).

Note that database compactness–based dimensionality reduction can be expen-
sive: (a) the number of objects in the database can be very large and (b) removal of
one feature may change the quality ordering of the remaining features. The first of
these challenges is addressed by computing the feature qualities on a set of samples
from the database rather than on the entire database. The second challenge can
be addressed through greedy hill climbing (which evaluates a candidate subset of
features, modifies the subset, evaluates if the modification is an improvement, and
iterates until a stopping condition, such as a threshold, is reached) or branch-and-
bound style search.

4.2.9 Dimensionality Reduction Using Fixed Basis

PCA and CFA, as well as the compactness approach extract the reduced basis for
representing the data based on the distribution of the data in the database. Thus,
the basis can differ from one database instance to another and may in fact evolve
over time for a single data collection that is regularly updated. This, on the other
hand, may be costly.

An alternative approach is to use a fixed basis, which does not represent the data
distribution but can nevertheless minimize the amount of errors that are caused
by dimensionality reduction. As discussed in Section 4.2.1, most transformations
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Figure 4.13. Distances among two objects and the origin.

involved in feature selection are lossy, and these losses impact distance function
computations. Although transformations that underestimate distances do not cause
any misses (i.e., they might be acceptable for media retrieval), they introduce false
hits and thus they might require costly postprocessing steps. Consequently, it is nat-
urally important that the error introduced by the dimensionality reduction process
be as small as possible.

One approach commonly used for ensuring that the reductions in the dimen-
sionality of the data cause small errors in distance computations is to rely on
transformations that concentrate the energy of the data in as few dimensions as
possible:

Definition 4.2.5 (Energy): Let F = {f1, f2, . . . , fn} be a set of features and let
�vo = 〈w1,o, w2,o, . . . , wn,o〉 be the feature vector corresponding to object o. The
energy of �vo is defined as

E( �vo) =
n∑

i=1

w2
i,o.

Intuitively, the energy of the vector representing the object is the square of
the Euclidean distance of this vector from the hypothetical null object, �vnull =
〈0, 0, . . . , 0〉. Given this, we can rewrite the formula for the Euclidean distance be-
tween two objects, oi and oj, as follows (Figure 4.13):

�2
Euc( �voi, �voj) = �2

Euc( �vnull, �voi) + �2
Euc( �vnull, �voj) + 2�Euc( �vnull, �voi)�Euc( �vnull, �voj)cos�.

We can also write this equation in terms of the energies of the feature vectors:

�2
Euc( �voi, �voj) = E( �voi) + E( �voj) + 2

√
E( �voi)E( �voj)cos�.

Thus, transformations that preserve the energies of the vectors representing the
media objects as well as the angles between the original vectors also preserve the
Euclidean distances in the transformed space.

These include orthonormal transformations. In fact, the goal of PCA was to
identify an orthonormal transformation which preserves and concentrates variances
in the data. Discrete cosine (DCT) and wavelet (DWT) transforms are two other
transforms that are orthonormal. Both of these help concentrate energies of the data
vectors at a few dimensions of the data, while preserving both energies as well as the
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angles between the vectors in the database. The most important difference of these
from PCA and CFA is that DCT and DWT each uses a fixed basis, independent of
the data corpus available, whereas PCA and CFA extract the corresponding basis
to be used considering the nature of the data collection.

4.2.9.1 Discrete Cosine Transform
DCT treats a given vector as a discrete, finite signal in the time domain (the indexes
of the feature dimensions are interpreted as the time instances at which the un-
derlying continuous signal is “sampled”) and transforms this discrete signal into an
alternative domain, referred to as the frequency domain. As such, it is most applica-
ble when there is a strong correlation between the indexes of the feature dimensions
and the feature values. This, for example, is the case when two equi-length digital
audio signals are compared, sample-by-sample, based on their volumes or pitches at
corresponding time instances.4

Intuitively, the frequency of the signal indicates how often the signal changes.
DCT measures and represents the changes in the signal values in terms of the cycles
of a cosine wave. In other words, it decomposes the given discrete signal into cosine
waves with different frequencies, such that when all the decomposed cosine signals
are summed up, the original signal is obtained.5

Definition 4.2.6 (DCT): DCT is an invertible function dct : R
n → R

n, such
that given �v = 〈w1, w2, . . . , wn〉, the individual components of dct(�v) =
〈w′

1, w
′
2, . . . , w

′
n〉, are computed as follows:

w′
i = ai

n∑
j=1

wj cos
(

π(i − 1)
n

(
( j − 1) + 1

2

))
,

where

ai =
{√

1/n for i = 1√
2/n for i > 1.

In other words,

w′
i =

n∑
j=1

C[i, j]wj,

where C is an n × n matrix:

C[i, j] = ai cos
(

π(i − 1)
n

(
( j − 1) + 1

2

))
.

Based on the foregoing definition, we can see that DCT is nothing but a linear trans-
form of the input vector:

dct (�v) = C�v.

4 Similarly, images can be compared pixel-by-pixel. Because the corresponding signal is two-
dimensional, the corresponding DCT transform also operates on 2D signals (and is referred to as
2D-DCT).

5 In this sense, it is related to the discrete Fourier transform (DFT). Whereas DCT uses only cosine
waves, DFT uses more general sinusoids to achieve the same goal.
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This definition implies two things:

� Each component of �v contributes to each component of dct(�v).
� The contribution of �v to the ith component of dct(�v) is computed by multiplying

the corresponding data signal by the cosine of a signal by the frequency ∼ π(i−1)
n .

In fact, it is possible to show that the row vectors of C are orthonormal. In other
words, if �ck and �cl denote two distinct vectors representing two rows of C, then �ck �cl =
0 (i.e., rows are linearly independent) and �ck �ck = 1 (i.e., rows are all unit length).
Thus, the row vectors of C form the basis of an n-dimensional space.

Consequently, energies of the individual vectors as well as the angles between
pairs of vectors are preserved by the transformation. Thus, Euclidean distances (as
well as cosine similarities) of the original vectors are preserved.

Moreover, if the signal is not random (i.e., high-frequency noise), the signal val-
ues will be temporally correlated, with neighboring values being similar to each
other. This implies that most of the energy of the signal will be confined to the
low-frequency components of the signal, resulting in larger w′

i components for small
is and small w′

is for large is. This means that most information contained in the vec-
tor �v is captured by the first few components of dct(�v), and replacing the remaining
components by 0 (or simply eliminating them for dimensionality reduction) will in-
troduce only small errors (underestimations) in distance computations.6

4.2.9.2 Discrete Wavelet Transform
Discrete wavelet transform (DWT) is similar to DCT in that it treats the given vec-
tor as a signal in time space and decomposes it into multiple signals using a trans-
formation with orthonormal basis. Unlike DCT, which relies on cosine waves, on
the other hand, DWT relies on the so called wavelet functions. Furthermore, unlike
DCT, which transforms the signal fully into the frequency domain, DWT maintains
certain amount of temporal information. Thus, it is most applicable when there is
need to maintain temporal information in the transform space.7

In the more general, continuous time domain, a wavelet is any continuous func-
tion, ψ , which has zero mean:∫ +∞

−∞
ψ(t)dt = 0.

The mother wavelet, which is used for generating a family of wavelet functions, is
also generally normalized to 1.0,

‖ψ‖ =
∫ ∞

−∞
|ψ(t)|2 dt = 1,

and centered at t = 0. A family of wavelet functions is defined by scaling and trans-
lating the mother wavelet at different amounts. More specifically, given a mother

6 Because DCT is an invertible transform, the distorted signal with high-frequency components set to 0
can be brought back to the original domain. Because most of the energy of the signal is preserved in the
low-frequency components, the error in the signal will be minimal. This property of DCT is commonly
leveraged in lossy compression algorithms, such as JPEG.

7 This is for example the case for image compression, where the wavelet-transformed image can actually
be viewed as a low resolution of the original, without having to decompress it first.
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wavelet function, ψ , a family of wavelet functions is defined using a positive scaling
parameter, s > 0, and a real valued shift parameter, h:

ψs,h(t) = 1√
s

ψ

(
t − h

s

)
.

Given this family of the wavelet functions, the wavelet transform of a continuous,
integrable function x(t), corresponding to the scaling parameter s > 0, and the real
valued shift parameter h, is as follows:

x′(s, h) = 1√
s

∫ ∞

−∞
x(t)ψ

(
t − h

s

)
dt.

This transform has three useful properties:

� It is linear.
� It is covariant under translations; that is, if x(t) is replaced by x(t − u), then

x′(s, h) is replaced with x′(s, h − u).
� It is covariant under dilations; that is, if x(t) is replaced by x(ct), then x′(s, h) is

replaced with 1√
c x′(cs, ch).

This means that the wavelet transform can be used for zooming into a function and
studying it at varying granularities.

In general, discrete wavelets are formed from a continuous mother wavelet, but
using scale and shift parameters that take discrete values. We are on the other hand
often interested in discrete wavelets that apply on vectors of values (such as rows of
pixels). In this case, wavelets are generally defined over n = 2m dimensional vector
spaces. Let S

j denote the space of vectors with 2j dimensions, and let �j be a basis
for S

j. Let dbl : S
j → S

j+1 be a doubling function, where dbl(�v) = �u such that

∀1≤i≤2j u2i−1 = u2i = vi.

Let W
j ⊆ S

j+1 be a vector space such that �w ∈ W
j iff �w is orthogonal to dbl(�v) for

all �v ∈ S
j. The vectors in the basis, � j, for W

j are called the (2 j+1-dimensional)
wavelets.

The 2 j+1-dimensional basis vectors for W
j along with the (doubled versions of)

the basis vectors in � j define a basis for S
j+1. Moreover every basis vector for the

vector space W
j is orthogonal to the (doubled versions of) the basis vectors in � j.

Example 4.2.3 (Haar wavelets): Let S be a space of vectors with 2n dimensions.
Haar basis vectors [Davis, 1995; Haar, 1910] are defined as follows: For 0 ≤ j ≤ n,
�j,n = {φj,n

1 , φ
j,n
2 , . . . , φ

j,n
2j }, where

∀1≤i≤2j φ
j,n
i = dbl(n − j, 〈φi(1), φi(2), . . . , φi(2j)〉),

where

φi(x) =
{

1 i = x
0 otherwise.

and where dbl(k, �v) is k times doubling of the vector �v. Similarly, for 0 ≤ j ≤ n,
�j,n = {ψ j,n

1 , ψ
j,n
2 , . . . , ψ

j,n
2j }, where

∀1≤i≤2j ψ
j,n
i (x) = dbl(n − j − 1, 〈ψi(1), ψi(2), . . . , ψi(2j+1)〉),
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Table 4.4. Alternative (not-normalized) Haar wavelet basis for the 4D space of
vectors

Basis 1 φ
2,2
0 φ

2,2
1 φ

2,2
2 φ

2,2
3

〈1, 0, 0, 0〉 〈0, 1, 0, 0〉 〈0, 0, 1, 0〉 〈0, 0, 0, 1〉
Basis 2 φ

1,2
0 φ

1,2
1 ψ

1,2
0 ψ

1,2
1

〈1, 1, 0, 0〉 〈0, 0, 1, 1〉 〈1,−1, 0, 0〉 〈0, 0, 1,−1〉
Basis 3 φ

0,2
0 ψ

0,2
0 ψ

1,2
0 ψ

1,2
1

〈1, 1, 1, 1〉 〈1, 1,−1,−1〉 〈1,−1, 0, 0〉 〈0, 0, 1,−1〉

where

ψi(x) =



1 x = 2i − 1
−1 x = 2i

0 otherwise.

Table 4.4 provides three alternative (not-normalized) Haar basis for 4D vector
space. These can be easily normalized by taking into account vector lengths. For
example, ψ

1,2
1 would become 〈0, 0, 1√

2
, −1√

2
〉 when normalized to unit length.

Note that vectors in the wavelet basis � extract and represent details. The vec-
tors in the basis �, on the other hand, are used for averaging. Thus, the (averaging)
basis vectors in � are likely to maintain more energy then the (detail) basis vectors
in �. As j increases, the basis vectors in �j represent increasingly finer details (i.e.,
noise) and thus can be removed from consideration for compression or dimension-
ality reduction.

4.3 MAPPING FROM DISTANCES TO A MULTIDIMENSIONAL SPACE

Although feature selection algorithms can help pick the appropriate set of di-
mensions against which the media objects in the database can be indexed, not all
database applications can benefit from these directly. In particular, various media
(such as those with spatial or hierarchical structures) do not have explicit features to
be treated as dimensions of a data space. For example, distance between two strings
can be evaluated algorithmically using the edit-distance measure as discussed in Sec-
tion 3.2.2; however, there is no explicit feature space on which these distances can
be interpreted.8

One way of dealing with these “featureless” data types is to exploit the knowl-
edge about distances between the objects to map the data onto a k-dimensional
space. Here the dimensions of the space do not correspond to any semantically
meaningful feature of the data. Rather, the k dimensions can be interpreted as the
latent features for the given data set.

8 In Section 5.5.4, we discuss ρ-gram transformation, commonly used to map strings onto a multidimen-
sional space.



168 Feature Quality and Independence

(a) (b)

Figure 4.14. MDS mapping of four data objects into points in a two-dimensional space:
the original distances are approximately preserved: (a) Distances between the objects,
(b) Distances between the objects in the 2D space.

4.3.1 Multidimensional Scaling

Multidimensional scaling (MDS) [Kruskal, 1964a,b] is a family of data analysis
methods, all of which discover the underlying structure of the data by embedding
them into an appropriate space [Kruskal, 1964a; Kruskal and Myron, 1978; Torger-
son, 1952]. More specifically, MDS discovers this embedding of a set of data items
from the distance information among them.

MDS works as follows: Given as inputs (1) a set of N objects, (2) a matrix of size
N × N containing pairwise distance values, and (3) the desired dimensionality k,
MDS tries to map each object into a point in the k-dimensional space (Figure 4.14).
The criterion for the mapping is to minimize a stress value defined as

stress =
√√√√∑

i,j(d′
i,j − di,j)2∑
i,j d2

i,j

,

where dij is the actual distance between two nodes vi and vj and d′
i j is the distance be-

tween the corresponding points pi and p j in the k-dimensional space. If, for all such
pairs, dij is equal to d′

i j, then the overall stress is 0, that is, minimum. MDS starts with
some, possibly random, initial configuration of points in the desired space. It then
applies some steepest descent algorithm, which modifies the locations of the points
in the space iteratively in a way that minimizes the stress. At each iteration, the al-
gorithm identifies a point location modification that gives rise to a large reduction
in stress and moves the point in space accordingly.

In general, the more dimensions (i.e., larger k) that are used, the better is the
final fit that can be achieved. On the other hand, because multidimensional index
structures do not work well at a high number of dimensions, it is important to keep
the dimensionality as low as possible. One method to select the appropriate value of
k is known as the scree test, where stress is plotted against the dimensionality, and
the point in the plot where the stress stops substantially reducing is selected (see
Section 4.2.6.1).
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(i) Process the given N data objects to construct the N × N distance matrix required
as input to MDS.

(ii) Find the configuration (point representation of each document in a k-dimensional
space).

(iii) Identify c pivot/representative points (data elements), where each pivot pi repre-
sents ri many points.

(iv) When a query specification q is provided, map the query into the MDS space
using the c pivot points (accounting for ri for each pi). Thus the complexity of
applying MDS is O(c) instead of O(N).

(v) Once the query is mapped into the k-dimensional place, use the spatial index
structure to perform a range search in this space.

Figure 4.15. Extended MDS algorithm.

MDS places objects in the space based on their distances: objects that are
closer in the original distance measure are mapped closer to each other in the k-
dimensional space; those that have large distance values are mapped away from
each other. As a pre-processing step to support indexing, however, MDS suffers
from two drawbacks; expensive (1) data-to-space and (2) query-to-space mappings:

� Because there are O(N2) pairwise distances to consider, it takes at least O(N2)
time to identify the configuration of N objects in k-d space.

� Given a query object q, it would take O(N) time to properly map q to a point in
the same k-d space as the data objects.

To understand why it takes O(N) to find the spatial representation of q, note that,
we need the distance between q and all the objects in the database (N in this case),
for MDS to be able to determine the precise spatial representation of q. Although
the first drawback may be acceptable, the real disadvantage is that to introduce
the query object q into the k-dimensional space requires O(N) time with a large
constant. This would imply that relying on MDS for retrieval would be as bad as
sequential scan.

Yamuna and Candan [2001] propose an extended MDS algorithm to support
more efficient indexing (Figure 4.15). The algorithm works by first mapping the data
objects into a multidimensional space through MDS and selecting a set of objects as
the pivots. The query object, then, is compared to the pivots and mapped into the
same space as the other objects. Naturally, the query mapping is less accurate than
the original data mapping, because only the pivots are used for the mapping instead
of the entire data set. Note that the quality of the retrieval will depend heavily on the
c data points selected for the query-to-space mapping process. Yamuna and Candan
[2001] present two approaches for selecting the pivot points: (1) data-driven and
(2) space-driven (Figure 4.16). In the data-driven approach, the c pivot points are
chosen based on the distribution of the data elements. The space-driven approach
subdivides the space and chooses one data point to represent each space subdivision.
The intuition is that the space-driven selection of the points will provide a better
coverage of the space itself.
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(a) (b)

Figure 4.16. (a) Data-driven versus (b) space-driven choice of pivot points.

4.3.2 FastMap

Faloutsos and Lin [1995] propose the FastMap algorithm to map objects into points
in a k-dimensional space based on just the distance/similarity values between ob-
jects. They reason that it is far easier for domain experts to assess the similar-
ity/distance of two objects than it is to identify features and design feature extraction
functions.

Their method is conceptually similar to the multidimensional scaling ap-
proach [Kruskal, 1964a,b]; however, they provide a much more efficient way of
mapping the objects into points in space, by assuming that the distance/similarity
measure satisfies triangular inequality. In particular, the complexity of their algo-
rithm to map the database to a low-dimensional space is O(Nk), where k is the di-
mensionality of the target space. Moreover, the algorithm requires �(k) distance
computations to map the query to the same space as the data.

The main idea behind the FastMap algorithm is to carefully choose pivot objects
that define mutually orthogonal directions, on which the data are projected. The
authors establish the following lemma central to their construction:

Lemma 4.3.1: Let op1 and op2 be two objects in the database selected as piv-
ots. Let H be the hyperplane perpendicular to the line defined by op1 and op2 .
Then, the Euclidean distance �′

Euc(o′
i, o′

j) between o′
i and o′

j (which are the pro-
jections of objects oi and oj onto this hyperplane) can be computed based on
the original distance, �Euc(oi, oj), of oi and oj:

(�′
Euc(o′

i, o′
j))2 = (�Euc(oi, oj))2 − (xi − xj)2,

where xi is the projection of object oi onto the line defined by the pivots, op1

and op2 , computed based on the cosine law:

xi = (�Euc(oi, op1 ))2 − (�Euc(oi, op2 ))2 + (�Euc(op1 , op2 ))2

2�Euc(op1 , op2 )
.

xj is also computed similarly.

Given two pivot objects, this lemma enables FastMap to quickly (i.e., in O(N)
time) map all N objects onto the line defined by these two pivots (Figure 4.17(a))
and then revise distances of the objects on a hyperplane perpendicular to this line
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(a) (b)

Figure 4.17. (a) The projection of object oi onto the line defined by the two pivots op1 and op2 .
(b) Computing the distance between the projections of oi and o j on a hyperplane perpendicular
to this line between the two pivots.

(Figure 4.17(b)). Thus, the space can be incrementally built, by selecting pivots that
define orthogonal dimensions one at a time.

The pivots are chosen from the objects in the database in such a way that the pro-
jections of the other objects onto this line are as sparse as possible; that is, the pivots
are as far apart from each other as possible. To avoid O(N2) distance computations,
FastMap leverages a linear time heuristic, which

(i) picks an arbitrary object, otemp,
(ii) chooses the object that is farthest apart from otemp to be op1 , and

(iii) chooses the object that is farthest apart from op1 to be op2 .

Thus, at each iteration, FastMap picks two pivot objects that are (at least heuris-
tically) furthest apart from each other (Figure 4.18(a)). The line between these

(a) (b)

(c) (d)

Figure 4.18. (a) Find two objects that are far apart to define the first dimension. (b) Project
all the objects onto the line between these two extremes to find out the values along this
dimension. (c) Project the objects onto a hyperplane perpendicular to this line. (d) Repeat
the process on this reduced hyperspace. See color plates section.
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objects becomes the new dimension, and the values of the objects along this di-
mension are computed by projecting the objects onto line (Figure 4.18(b)). All
objects are then (implicitly) projected onto a hyperplane orthogonal to line (Fig-
ure 4.18(c)). FastMap incrementally adds more dimensions by repeating this pro-
cess on the reduced hyperplane, orthogonal to all the dimensions already discovered
(Figure 4.18(d)).

4.4 EMBEDDING DATA FROM ONE SPACE INTO ANOTHER

The MDS and FastMap techniques just described both assume that the system is
provided only the distances between the objects (possibly computed by a user-
defined function) and nothing else. However, in some cases, the system is also pro-
vided with a set of feature dimensions, but these are not necessarily orthogonal
to each other. In other words, although we have the dimensions of interest, these
dimensions are not most appropriate for indexing and retrieval purposes. In such
cases, it may be more effective to embed the available data into an alternative (pos-
sibly smaller) space, spanned and described by a basis of orthogonal vectors.

One way to achieve this is to use MDS or FastMap. However, these are mainly
heuristic approaches that do not necessarily provide a lossless mapping. In this sec-
tion, we introduce other transformations that perform the embedding in a more
principled manner.

4.4.1 Singular Value Decomposition (and Latent Semantic Indexing)

Singular value decomposition (SVD) is a technique for identifying a transformation
that can take data described in terms of n feature dimensions and map them into a
vector space defined by k ≤ n orthogonal basis vectors.

In fact, SVD is a more general form of the eigen decomposition method that
underlies the PCA approach to dimensionality reduction: whereas PCA is applied to
square symmetric covariance matrix of the database, with the goal of identifying the
dimensions along which the variances are maximal, SVD is applied on the object-
feature matrix itself. Remember from Section 4.2.6 that given an n × n symmetric,
square matrix, S, with real values, S can be decomposed into

S = PCP−1,

where C is a real and diagonal matrix of eigenvalues, and P is an orthonormal matrix
consisting of the eigenvectors of S. SVD generalizes this to matrices that are not
symmetric or square:

Theorem 4.4.3 (Singular value decomposition): Let A be an m× n matrix
with real values. Then, A, can be decomposed into

A = U�VT,

where

� U is a real, column-orthonormal m× r matrix, such that UUT = I
� � is an r × r positive valued diagonal matrix, where r ≤ min(m, n) is the

rank of the matrix A
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� VT is the transpose of a real, column-orthonormal r × n matrix, such that
VVT = I

The columns of U, also called the left singular vectors of matrix A, are the
eigenvectors of the m× m square matrix, AAT. The columns of V, or the right
singular vectors of A, are the eigenvectors of the n × n square matrix, ATA.
�[i, i] > 0, for 1 ≤ i ≤ r, also known as the singular values of A, are the square
roots of the eigenvalues of AAT and ATA.

Because the columns of U are eigenvectors of an m× m matrix, they are orthog-
onal and form an r-dimensional basis. Similarly, the orthogonal columns of V also
form an r-dimensional basis.

4.4.1.1 Latent Semantic Analysis (LSA)
Let us consider an m× n document-term matrix, A, which describes the contribution
of a given set of n terms to the m documents in a database.

The m× m document-document matrix, AAT, can be considered as a document
similarity matrix, which describes how similar two documents are in terms of their
compositions. Similarly, the n × n term-term matrix, ATA, can be considered as a
term similarity matrix, which describes how similar two terms are in terms of their
contributions to the documents in the database.

Given the singular value decomposition, A = U�VT, of the document-term ma-
trix, the r column vectors of U form an r-dimensional basis in which the m documents
can be described. Also, the r column vectors of V (or the rows vector of VT) form
an r-dimensional basis in which the n terms can be placed. These r dimensions are
referred to as the latent semantics of the database [Deerwester et al., 1990]: the or-
thogonal columns of V (i.e., the eigenvectors of the term-to-term matrix, ATA) can
be thought of as independent concepts, each of which can be described as a combi-
nation of the given terms. In a similar fashion, the columns of U can be thought of
as the eigen documents of the given document collection, each corresponding to one
independent concept.

Furthermore, the r singular values of A can be considered to represent the
strength of the corresponding concepts in the database: the ith row of the document-
term matrix, corresponding to the ith document in the database, can also be written
as

∀1≤j≤n A[i, j] =
r∑

k=1

U[i, k]�[k, k]V[k, j].

Thus, replacing any singular value, �[k, k] with 0 would result in a total error of

error(k) = �[k, k]
m∑

i=1

n∑
j=1

U[i, k]V[k, j].

Thus, the amount of error that would be caused by the removal of a concept from
the database is proportional to the corresponding singular value. This property
of the singular values found during SVD enables further dimensionality reduction:
those concepts with small singular values, and the corresponding eigen documents,
can be removed and the documents can be indexed against the remaining c < r
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concepts with high contributions to the database using the truncated U′ matrix.
Keyword queries are also mapped to the same concept space using truncated �′

and V′ matrices. Because reducing the number of dimensions can save a significant
amount of query processing cost (O(mc + c2 + cm) instead of O(mn), which would
be required to compare m vectors of length n each), this process is referred to
as latent semantic analysis (LSA) or latent semantic indexing (LSI) [Berry et al.,
1995].

4.4.1.2 Incremental SVD
As illustrated by latent semantic analysis and indexing, SVD can be an effec-
tive tool for dimensionality reduction and indexing. However, because it requires
O(m× n × min(m, n)) time for analysis and decomposition of the entire database,
its cost can be generally prohibitive. Thus, especially in databases where the content
is updated frequently, it is more advantageous to use techniques for incremental
updating SVD [Brand, 2006, 2002; O’Brien, 1994; Zha and Simon, 1999].

Folding
One way to implement incremental updates is to simply fold in new objects and

features to an existing SVD decomposition. New objects (rows) and new features
(columns) of the matrix A are represented in terms of their positions in the SVD
basis. Let us consider a new object row �rT to be inserted into the database. Unless
it also introduces new features and assuming that the update did not alter the latent
semantics, this insertion will not affect � and VT; thus, �rT can be written as

�rT = �uT�VT.

Based on this, the new row, �uT, of U can be computed as

�uT = �rT(VT)
−1

�−1 = �rTV�−1.

A similar process can be used to find the effect of a new feature on the matrix, VT.
Note that, in folding, new objects and features do not change the latent concepts;
consequently it is fast but can in the long run negatively affect the orthogonality of
the basis vectors identified through SVD. A more effective, albeit slower, approach
is to incrementally change the SVD decomposition, including the matrix �, as new
objects and features are added to the database.

SVD-Update
A particular challenge faced during the incremental updating of SVD is that in

many cases, instead of the original A, U, �, and VT matrices, their rank-k approxi-
mations (Ak, Uk, �k, and VT

k , corresponding to the k highest eigenvalues, for some k)
are maintained in the database. Thus, the incremental update needs to be per-
formed on an imperfect database. Berry et al. [1995] and O’Brien [1994] introduce
the SVD-Update algorithm, which deals with this problem by exploiting the ex-
isting singular values and singular vectors of the object-feature matrix A. Given a
set of p new objects, let us create a new p × n matrix, N, describing these objects
in terms of their feature compositions. Let A′ = ( Ak

N ) be the object-feature matrix
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extended with the new objects, and let U′�′(V′)T be the singular value decomposi-
tion of A′. Then

UT
k AkVk = �k(

UT
k 0

0 Ip

)(
Ak

N

)
Vk =

(
�k

NVk

)
(

UT
k 0

0 Ip

)(
Ak

N

)
Vk = UH�HVT

H,

where UH�HVT
H is the singular value decomposition of

(
�k

NVk

)
. Thus,

(
Ak

N

)
︸ ︷︷ ︸

A′

=
((

Uk 0
0 Ip

)
UH

)
︸ ︷︷ ︸

U′

�H︸︷︷︸
�′

(
VT

HVT
k

)︸ ︷︷ ︸
(V′)T

.

A similar process can be used for incorporating new features to the singular value
decomposition.

Note, on the other hand, that not all updates to the database involve insertion
of new objects and features. In some cases, an existing object may be modified in
such a way that the contributions of the features to the object may change. The
final correction step of SVD-Update incorporates such updates. Let � denote an
m× n matrix describing the changes in term weights, A′′ = Ak + � denote the new
object-feature matrix, and U′′�′′VT′′

be the singular value decomposition of A′′:

UT
k AkVk = �k

UT
k (Ak + �) Vk = �k + UT

k �Vk

UT
k (Ak + �) Vk = UQ�QVT

Q,

where UQ�QVT
Q is the singular value decomposition of �k + UT

k �Vk. Thus,

(Ak + �)︸ ︷︷ ︸
A′′

= (UkUQ)︸ ︷︷ ︸
U′′

�Q︸︷︷︸
�′′

(
VT

QVT
k

)︸ ︷︷ ︸
(V′′)T

.

More General Database Updates
Work on incremental updates to SVD focuses on support for a richer set of mod-

ifications, including removal of columns and rows of the database matrix [Gu and
Eisenstat, 1995; Witter and Berry, 1998], as well as on improving the complexity of
the update procedure [Chandrasekaran et al., 1997; Gu et al., 1993; Levy and Lin-
denbaum, 2000]. Recently, [Brand, 2006] showed that a number of database updates
(including removal of columns) that can all be cast as additive modifications to the
original m× n database matrix, A, can be reflected on the SVD in O(mnr) time as
long as the rank, r, of matrix A is such that r ≤ √

min(m, n). In other words, as long
as the latent dimensionality of the database is low, the singular value decomposition
can be updated in linear time. Brand further shows that, in fact, the update to the
SVD can be computed in a single pass over the database, making the process highly
efficient for large databases.
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4.4.2 Probabilistic Latent Semantic Analysis

As in LSA, probabilistic latent semantic analysis (PLSA [Hofmann, 1999]) also re-
lies on a matrix decomposition strategy to identify the latent semantics underlying
a data collection. However, PLSA is based on a more solid statistical foundation,
known as the aspect model [Saul and Pereira, 1997], based on a generative model of
the data (see Section 3.5.3.3 for generative data and query models).

4.4.2.1 Aspect Model
Given a database, D = {o1, . . . , on}, of n objects and a feature set, F = {f1, . . . , fm},
the aspect model associates an unobserved class variable, z ∈ Z = {z1, . . . , zk}, to
each occurrence of a feature, f ∈ F , in an object, o ∈ D. This can be represented as
a generative model as follows: (a) an object o ∈ D is selected with probability p(o),
(b) a latent class z ∈ Z is selected with probability p(z|o), and a feature f ∈ F is gen-
erated with probability p(f |z). Note that o and f can be observed in the database, but
the latent semantic z is not directly observable and therefore needs to be estimated
based on the observable data (i.e., objects and their features). This can be achieved
using the expectation maximization algorithm, EM [Dempster et al., 1977]; see also
Section 9.7.4.3. EM relies on a likelihood function to tie the parameters whose val-
ues are unknown to the available observations and estimates the unknown values
by maximizing this likelihood function. For this purpose, PLSA uses the likelihood
function∏

o∈D

∏
f ∈F

p(o, f )count(o,f )

where count(o, f ) denotes the frequency of the feature f in the given object o, and
p(o, f ) denotes the joint probability of o and f . Note that the joint probability p(o, f )
can also be expressed in terms of the unobserved class variables as follows:

p(o, f ) = p(o)p( f |o)

= p(o)
∑
z∈Z

p( f |z)p(z|o)

= p(o)
∑
z∈Z

p( f |z)
p(o|z)p(z)

p(o)

=
∑
z∈Z

p(z)p( f |z)p(o|z).

Therefore this likelihood function9 ties observable parameters (joint probabilities of
objects and features and frequencies of the features in the objects in the database)
to unobservable parameters, p(z), p(o|z), and p( f |z), that we wish to discover.

9 Note that often the simpler log-likelihood function,

log


∏

o∈D

∏
f ∈F

p(o, f )count(o,f )


 =

∑
o∈D

∑
f ∈F

count(o, f )log(p(o, f )),

is used instead.
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4.4.2.2 Decomposition
Given a database, D = {o1, . . . , on}, of n objects, a feature set, F = {f1, . . . , fm}, and
the unobserved class variables, Z = {z1, . . . , zk}, the PLSA uses the equality

p(o, f ) =
∑
z∈Z

p(z)p( f |z)p(o|z)

to decompose the n × m matrix, P, of p(oi, f j), as follows:

P = U�VT,

Here,

� U is the n × k matrix of p(oi|zl) entries
� V is the m× k matrix of p( f j|zl) entries
� � is the k × k matrix of p(zl) entries

Note that despite its structural similarity to SVD, through the use of EM, PLSA is
able to search explicitly for a decomposition that has a high predictive power.

4.4.3 CUR Decomposition

Many data management techniques rely on the fact that rows and columns of the
object-feature matrix, A, are generally sparse: that is, the number of available fea-
tures is much larger than the number of features that objects individually have. This
is true, for example, for text objects, where the dictionary size of potential terms
tends to be significantly large compared to the unique terms in a given document.
Such sparseness of a given database matrix usually enables application of more spe-
cialized algorithms for its manipulation, from indexing to analysis.

When considered in this context a potential disadvantage of the PCA and SVD
techniques is that both take sparse matrices as input, but return two extremely dense
left and right matrices. It is true that they also return one extremely sparse (diag-
onal) central matrix; however, this matrix does not directly relate objects to their
compositions and, furthermore, tends to be much smaller than the left and right
matrices.

CUR decomposition [Mahoney et al., 2006] tries to avoid destruction of sparsity
by giving up the use of eigenvectors for the construction of the left and right matrices
and, instead, picking the columns of the left matrix and the rows of the right matrix
from the columns and rows of the database matrix, A, itself: given an m× n matrix,
A, and given two integers, c ≤ m and r ≤ n, the CUR decomposition of A is

A ∼ C U R,

where C is an m× c matrix, with columns picked from columns of A, R is an r × n
matrix, with rows picked from the rows of A, and U is a c × r matrix, such that
‖A − CUR‖ is small.

Note that since C and R are picked from the columns and rows of A, they are
likely to preserve the sparsity of A. On the other hand, because the constraint of
representing the singular values of A is removed from U, it is not necessarily diago-
nal and instead tends to be much denser than C and R.
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CUR decomposition of a given matrix, A, requires three complementary sub-
processes: (a) selection of c and r; (b) choice of columns and rows of A for the con-
struction of C and R, respectively; and (c) given these, identification of the matrix U
that minimizes the decomposition error. Selection of the values c and r tends to be
application dependent. Given c and r, on the other hand, choosing the appropriate
examples from the database requires care. Although uniform sampling [Williams
and Seeger, 2001] is a relatively efficient solution, biased subspace sampling tech-
niques [Drineas et al., 2006a,b] might impose absolute or, at least, relative bounds
on the decomposition errors.

One indirect advantage of the CUR decomposition is that the columns of C and
the rows of R are in fact examples from the original database; thus, they are much
easier to interpret than the composite singular vectors that are produced by PCA
and SVD. However, these columns and rows are no longer orthogonal to each other
and, thus, their use of the basis of the vector space is likely to give rise to unintended
and undesirable consequences, especially when similarity distance measures that
call for orthogonality of the basis are used in retrieval or further analysis.

4.4.4 Tensors and Tensor Decomposition

So far, we have been assuming that the media database can be represented in the
form of an object-feature matrix, A. Although in general this representation is suffi-
cient for indexing multimedia databases, there are cases in which the matrix repre-
sentation falls short. This is, for example, the case when the database changes over
time and the patterns of change, themselves, are important: in other words, when the
database has a temporal dimension that cannot be captured by a single snapshot.

4.4.4.1 Tensor Basics
Mathematically, a tensor is a generalization of matrices [Kolda and Bader, 2009;
Sun et al., 2006]: whereas a matrix is essentially a two-dimensional array, a tensor
is an array of arbitrary dimension. Thus, a vector can be thought of as a tensor of
first order, an object-feature matrix is a tensor of second order, and a multisensor
data stream (i.e., sensors, features of sensed data, and time) can be represented
as a tensor of third order. The dimensions of the tensor array are referred to as
its modes. For example, an M × N × K tensor of third order has three modes: M
columns (mode 1), N rows (mode 2), and K tubes (mode 3). These 1D arrays are
collectively referred to as the fibers of the given tensor. Similarly, the M × N × K
tensor can also be considered in terms of its M lateral slices, N horizontal slices, and
K frontal slices: each slice is a 2D array (or equivalently a matrix, or a tensor of
second order).

As matrices can be multiplied with other matrices or vectors, tensors can also be
multiplied with other tensors, including matrices and vectors. For example, given an
M × N × K tensor T and a P × N matrix A,

T ′ = T ×2 A

is an M × P × K matrix where each lateral slice T [][j][] has been matrix multi-
plied by AT. In the foregoing example, the tensor-matrix multiplication symbol
“×2” states that the matrix AT will be multiplied with T over its lateral slices.
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Multiplication of a tensor with a vector is defined similarly, but using a different
notation: given an M-dimensional vector �v,

T ′′ = T ×̄1�v
is a N × K tensor, such that �v has been multiplied with each column, T [][j][k]. In
this example, the tensor-vector multiplication symbol “×̄1” states that vector �v and
columns of T will get into the dot product.

4.4.4.2 Tensor Decomposition
Tensors can also be analyzed and mapped into lower dimensional spaces. In fact,
because matrices themselves are tensors of second order, we can write the SVD
decomposition

AM×N = UM×r�r×rVT
r×N

using tensor notation as follows:

AM×N = �r×r ×1 UM×r ×2 VN×r.

Orthonormal Tensor Decompositions
Tucker decomposition [Tucker, 1966] generalizes this to a M × N × K tensor, T ,

as follows:

TM×N×K ∼ Gr×s×t×1UM×r×2VN×s×3XK×t.

Like CUR, Tucker decomposition fails to guarantee a unique and perfect decompo-
sition of the input matrix. Instead, most approaches involve searching for orthonor-
mal U, V, X matrices and a G tensor that collectively minimize the decomposition
error. For example the high-order SVD approach [Lathauwer et al., 2000; Tucker,
1966] to Tucker decomposition first identifies the left eigenvectors (with the highest
eigenvalues) of the lateral, horizontal, and frontal slices to construct U, V, and X.

Because there are multiple lateral (or horizontal, or frontal) slices, these equidi-
rectional slices need to be combined into a single matrix before the corresponding
eigenvectors are identified. Once U, V, and X are found, the corresponding optimal
tensor, G, is computed as

Gr×s×t = TM×N×K ×1 UT
r×M ×2 VT

s×N ×3 XT
t×K.

This process does not lead into an optimal decomposition. Thus, the initial U, V, and
X estimates are iteratively improved using a least-squares approximation scheme
before G is computed [Kroonenberg and Leeuw, 1980; Lathauwer et al., 2000].

Diagonal Tensor Decompositions
CANDECOMP [Caroll and Chang, 1970] and PARAFAC [Harshman, 1970]

decompositions take a different approach and, as in SVD, enforce that the core
tensor is diagonal:

TM×N×K ∼ �r×r×r ×1 UM×r ×2 VN×r ×3 XK×r.

The diagonal values of the � matrix are eigenvalues. The consequence of start-
ing the decomposition process from identifying a central matrix, constrained to be
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diagonal, however, is that the U, V, and X matrices are not guaranteed to be or-
thonormal. Thus, this approach may not be applicable when the matrices U, V, and
X are to be used as bases that describe and index the different facets of the data.

Dynamic and Incremental Tensor Decompositions
Because tensors are mostly used in domains where data evolve continuously and

thus have a temporal aspect, tensors tend to be updated by the addition of new slices
(and deletion of the old ones) along the mode that corresponds to time. Conse-
quently, specialized dynamic decomposition algorithms that focus on insertion and
deletion of slices can be developed. The Dynamic Tensor Analysis (DTA) approach,
for example, updates the variance information (used for identifying eigenvalues and
eigenvectors to construct the decomposition) incrementally, but rediagonalizes the
variance matrix for each new slice [Sun et al., 2006]. The Window-based Tensor
Analysis (WTA) algorithm builds on this by iteratively improving the decomposi-
tion as in Tucker’s scheme [Tucker, 1966]. The Streaming Tensor Analysis (STA)
scheme, on the other hand, takes a different approach and incrementally rotates the
columns (representing lines in the space) of the decomposition matrices with each
new observed data point [Papadimitriou et al., 2005].

4.5 SUMMARY

In this chapter, we have first introduced the concept of dimensionality curse, which
essentially means that multimedia database systems cannot manage more than a
handful of facets of the multimedia data simultaneously. In Chapter 7 on multi-
dimensional data indexing, Chapter 9 on classification, and Chapter 10 on ranked
query processing, we see different instantiations of this very curse. Thus, feature
selection algorithms, which operate based on some appropriate definition of signif-
icance of features, are critical for multimedia databases. In many cases, in fact, the
real challenge in multimedia database design and operation is to identify the appro-
priate criterion for feature selection. In Chapters 9 and 12, we see that classification
and user relevance feedback algorithms, which can leverage user provided labels on
the data, are also useful in selecting good features.

In this chapter, we have also seen the importance of managing data using in-
dependent features. Independence of features not only helps ensure that the few
features we select to use do not have wasteful redundancy in them, but also ensures
that the media objects can be compared against each other effectively. Once again,
we see the importance of having independent features in the upcoming chapters on
indexing, classification, and query processing.
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Indexing, Search, and Retrieval
of Sequences

Sequences, such as text documents or DNA sequences, can be indexed for searching
and analysis in different ways depending on whether patterns that the user may want
to search for (such as words in a document) are known in advance and on whether
exact or approximate matches are needed.

When the sequence data and queries are composed of words (i.e., nonoverlap-
ping subsequences that come from a fixed vocabulary), inverted files built using
B+-trees or tries (Section 5.4.1) or signature files (Section 5.2) are often used for
indexing. When, on the other hand, the sequence data do not have easily identifi-
able word boundaries, other index structures, such as suffix trees (Section 5.4.2), or
filtering schemes, such as ρ-grams (Section 5.5.4), may be more applicable.

In this section, we first discuss inverted files and signature files that are com-
monly used for text document retrieval. We then discuss data structures and algo-
rithms for more general exact and approximate sequence matching.

5.1 INVERTED FILES

An inverted file index [Harman et al., 1992] is a search structure containing all the
distinct words (subpatterns) that one can use for searching. Figure 5.1(a) shows the
outline of the inverted file index structure:

� A word (or term) directory keeps track of the words that occur in the database.
For each term, a pointer to the corresponding inverted list is maintained. In ad-
dition, the directory records the length of the corresponding inverted list. This
length is the number of documents containing the term.

� The inverted lists are commonly held in a postings file that contains the actual
pointers to the documents. To reduce the disk access costs, inverted lists are
stored contiguously in the postings file. If the word positions within the docu-
ment are important for the query, word positions can also be maintained along
with the document pointers. Also, if the documents have hierarchical structures,
then the inverted lists in the postings file can also reflect a similar structure
[Zobel and Moffat, 2006]. For example, if the documents in the database are
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Figure 5.1. (a) Inverted file structure and (b) a search example.

composed of chapters and sections, then the inverted list can also be organized
hierarchically to help in answering queries of different granularity (e.g., finding
documents based on two words occurring in the same section).

� A search structure enables quick access to the directory of inverted lists. Differ-
ent search structures can be used to locate inverted lists matching query words.
Hash files can be used for supporting exact searches. Another commonly used
search data structure is the B+-tree [Bayer and McCreight, 1972]; because of
their balanced and high-fanout organizations, B+-trees can help locate inverted
lists on disks with only a few disk accesses. Other search structures, such as tries
(Section 5.4.1) or suffix automata (Sections 5.4.3), can also be used if prefix-
based or approximate matches are needed during retrieval.

Figure 5.1(b) shows the overview of the search process. First the search data struc-
ture is consulted to identify whether the word is in the dictionary. If the word is
found in the dictionary, then the corresponding inverted list is located in the postings
file by following the pointer in the corresponding directory entry. Finally, matching
documents are located by following pointers from the inverted list.
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5.1.1 Processing Multi-Keyword Queries Using Inverted Files

If the query contains multiple keywords and is conjunctive (i.e., the result must con-
tain all the query keywords), the inverted lists matching the query keywords are
retrieved and intersected before the documents are retrieved. If, on the other hand,
the query is disjunctive in nature (i.e., finding any query keywords is sufficient to
declare a match), then the matching inverted lists need to be unioned.

If the given multikeyword query is fuzzy or similarity-based (for example, when
the user would like to find the document that has the highest cosine similarity to the
given query vector), finding all matches and then obtaining their rankings during
a postprocessing step may be too costly. Instead, by using similarity accumulators
associated with each document, the matching and ranking processes can be tightly
coupled to reduce the retrieval cost [Zobel and Moffat, 2006]:

(i) Initially, each accumulator has a similarity score of zero.
(ii) Each query word or term is processed, one at a time. For each term, the

accumulator values for each document in the corresponding inverted in-
dex are increased by the contribution of the word to the similarity of the
corresponding document. For example, if the cosine similarity measure is
used, then the contribution of keyword k to document d for query q can be
computed as

contrib(k, d, q) = w(d, k)w(q, k)√∑
ki∈d w2(d, ki)

√∑
ki∈q w2(q, ki)

.

Here w(d, k) is the weight of the keyword k in document d, and w(q, k) is
the weight of k in the query.

(iii) Once all query words have been processed, the accumulators for docu-
ments with respect to the individual terms are combined into “global”
document scores. For example, if the cosine similarity measure is used as
described previously, the accumulators are simply added up to obtain doc-
ument scores. The set of documents with the largest scores is returned as
the result.

Note that more efficient ranked query processing algorithms, which may avoid
the need for postprocessing and which can prune the unlikely candidates more ef-
fectively, are possible. We discuss these ranked query-processing algorithms in more
detail in Chapter 10.

5.1.2 Sorting and Compressing Inverted Lists for Efficient Retrieval

A major cost of the inverted file–based query processing involves reading the in-
verted lists from the disk and performing intersections to identify candidates for
conjunctive queries. Keeping the inverted lists in sorted order can help eliminate
the need for making multiple passes over the inverted list file, rendering the inter-
section process for conjunctive queries, as well as the duplicate elimination process
for disjunctive queries, more efficient.

One advantage of keeping the documents in the inverted list in sorted order is
that, instead of storing the document identifiers explicitly, one may instead store
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      "phone"               0001 0110

Keyword            Signature of word

"Motorola"          0011 0010
      "music"               0001 1100

User Query       Signature of user query
                  (a) match :               "Motorola"           0011 0010  

(c) false match :       "television"         0010 1010
(b) no match :          "game"                1000 0011

Text: "Motorola also has a music phone."

Signature of File (bitwiseor)           0011 1110

Figure 5.2. Document signature creation and use for keyword search.

the differences (or d-gaps) between consecutive identifiers; for example, instead of
storing the sequence of document identifiers

100, 135, 180, 250, 252, 278, 303,

one may store the equivalent d-gap sequence,

100, 35, 45, 70, 2, 26, 25.

The d-gap sequence consists of smaller values, thus potentially requiring fewer
bits for encoding than the original sequence. The d-gap values in a sequence are
commonly encoded using variable-length code representations, such as Elias and
Golomb codes [Zobel and Moffat, 2006], which can adapt the number of bits needed
for representing an integer, depending on its value.

5.2 SIGNATURE FILES

Signature files are probabilistic data structures that can help screen out most unqual-
ified documents in a large database quickly [Faloutsos, 1992; Zobel et al., 1998]. In
a signature file, each word is assigned a fixed-width bit string, generated by a hash
function. As shown in Figure 5.2, the signature of a given document is created by
taking the bitwise-or of all signatures of all the words appearing in the document.
Figure 5.2 also shows the querying process: (a) the document signature is said to
match the query if the bitwise-and of the query signature and the document signa-
ture is identical to the query signature; (b) the document signature is said not to
match the query if the bitwise-and operation results in a loss of bits.

As shown in Figure 5.2(c), signature files may also return false matches: in
this case, signature comparison indicates a match, but in fact there is no key-
word match between the document and the query. Because of the possibility of
false hits/matches, query processing with document signatures requires three steps:
(1) computing the query signature, (2) searching for the query signature in the set
of document signatures, and (3) eliminating any false matches.

5.2.1 False Positives

Let us consider a document composed of n distinct words. Let each m-bit word sig-
nature be constructed by randomly setting some of the signature bits to 1 in l rounds.
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The signature for the entire document is constructed by taking the bitwise-or of the
m-bit signatures of the words appearing in the document. Hence, the probability of
a given bit in the document signature being set to 1 can be computed as follows:

1 −
((

1 − 1
m

)l
)n

= 1 −
(

1 − 1
m

)nl

.

Intuitively, this corresponds to the probability of the position corresponding to the
selected bit being occupied by a “1” in at least one of the m signatures. The term(
1 − 1

m

)l
is the probability that in any given word signature the selected bit remains

“0”, despite l rounds of random selection of bits to be set to “1”. Note that it is
possible to approximate the preceding equation as follows:

1 −
(

1 − 1
m

)nl

≈ 1 − e−
nl
m = 1 − e−nα,

where l = α × m.

5.2.1.1 Single Keyword Queries
This implies that, given the m-bit signature of a single keyword query, (where ap-
proximately l bits are set to “1”), the probability that all the corresponding “1” bits
in the document signature file are also set to “1” is(

1 − e−nα
)l = (

1 − e−nα
)αm

.

In strict terms, this is nothing but the rate of matches and includes both true and
false positives. It, however, also approximates the false positive rate, that is, the
probability that the bits corresponding to the query in the signature file are all set to
“1”, although the query word is not in the document. This is because this would be
the probability of finding matches even if there is no real match to the query in the
database.

Let us refer to the term (1 − e−nα)αm as fp(n, α, m). By setting the derivative,
δfp(n,α,m)

δα
, of the term to 0 (and considering the shape of the curve as a function of

α), we can find the value of α that minimizes the rate of false positives. This gives
the optimal α value as α = ln(2)

n . In other words, given a signature of length m, the

optimal number, loptimal, of bits to be set to “1” is �mln(2)
n  . Consequently, the false

positive rate under this optimal value of l is

fpopt(n, m) = fp(n,
ln(2)

n
, m) =

(
1 − e−n ln(2)

n

)� ln(2)
n m 

=
(

1
2

)� ln(2)m
n  

.

This means that, as shown in Figure 5.3(a), once the signature is sufficiently long,
the false positive rate will decrease quickly with increasing signature length.

5.2.1.2 Queries with Multiple Keywords
Conjunctive Queries
If the user query is a conjunction of k > 1 keywords, then the query signature is

constructed (similarly to the document signature creation) by OR-ing the signatures
of the individual query keywords. Thus, by replacing n with k in the corresponding
formula for document signatures, we can find that, given a conjunctive query with k
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Figure 5.3. False positive rate of signature files decreases exponentially with the signature
length.

keywords, the likelihood of a given bit being set to “1” in the query signature is ≈
1 − e−

kl
m . Because there are m bits in each signature, the expected number of bits set

to “1” in the query signature can be approximated as

≈
m∑

i=1

1 − e−
kl
m = m

(
1 − e−

kl
m

)
.

As shown in Figure 5.4, when m ! l, the foregoing equation can be approximated
by k × l:

≈
m∑

i=1

1 − e−
kl
m ≈ kl.

Using this approximation, for a query with k keywords, the false positive rate can
be approximately computed as

≈
(

1 − e−
nl
m

)kl
=
((

1 − e−
nl
m

)l
)k

.

Expected number of bits set in the query 
signature divided by (k*l)         (m=8192)
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In other words, for a conjunctive query with more than one keyword, the false pos-
itive rate drops exponentially with the number, k, of query words:

fpconj(k, n, α, m) ≈ ((
1 − e−nα

)αm)k = fp(n, α, m)k.

Disjunctive Queries
If, on the other hand, the query is disjunctive, then each query keyword is evalu-

ated independently, and if a match is found for any query keyword, then a match is
declared for the overall query. Thus, a false positive for any query word will likely
result in a false positive for the overall query. Thus, the false positive rate for the
query will increase with the number k of words in the disjunctive query:

fpdisj(k, n, α, m) ≈ 1 − (1 − fp(n, α, m))k.

5.2.2 Indexing Based on Signature Files: Bitslice
and Blocked Signature Files

In general, checking the signature of a document for a match is faster than scanning
the entire document for the query words. Yet, given a database with large number of
documents, identifying potential matches may still take too much time. Therefore,
especially in databases with large numbers of documents, better organizations of the
document signature files may be needed.

Bitslice Signature Files
Given a database with N documents, bitslice signature files organize and store

document signatures in the form of “slices”: the ith bitslice contains bit values of the
ith position in all the N document signatures.

Given a query signature where lquery bits are set to “1”, the corresponding bit-
slices are fetched, and all these slices are AND-ed together. This creates a bitmap
of potential answers, and only these candidate matches need be verified to find the
actual matches.

In practice (if the slices are sufficiently sparse1), the false positive rate is ac-
ceptably low even if only s " lquery slices are used for finding candidate documents.
According to Kent et al. [1990] and Sacks-Davis et al. [1987], in practice the number
of slices to be processed for conjunctive queries can be fixed around six to eight. For
a conjunctive query, if the number of query keywords, k, is greater than this, at least
k slices need to be used. If the query is disjunctive, because each query keyword is
matched independently, k × s slices should be fetched.

Blocked Signature Files
In a large database, the bitslices themselves can be very long and costly to fetch.

Given that multiple slices need to be fetched per query, having to fetch and pro-
cess bitslices that are very long might have a negative effect on query processing
performance.

Because the bitslices are likely to be sparse, one alternative is to store them in
compressed form. Although this may help reduce storage costs, once fetched from

1 According to Kent et al. [1990], approximately one bit in eight should be set to “1”.
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the database, these compressed slices need to be decompressed before the matching
process and, overall, this may still be too costly. An alternative to naive compression
is to group documents into blocks, where each bit in a slice corresponds to a block
of B documents. Although this reduces the sizes of the slices that need to be fetched
from the database, block-level aggregation of documents may have two potential
disadvantages [Kent et al., 1990]:

� First, the reduction in the slice length may increase the overall slice density. This
may then cause an increase in false positives, negatively affecting the retrieval
quality. When using blocking, to keep the overall slice density low for the entire
database, the signature length (i.e., the total number of slices) needs to be in-
creased. Also, the larger the blocking factor is, the more slices must be fetched
to eliminate false matches.

� A second disadvantage of aggregating documents into blocks is that, in the case
of a false match, the entire block of documents needs to be verified all together.
The degree of block-level false matches needs to be reduced by using different
document-to-block mappings for different slices.

When block-based aggregation is used, each bit in the blocked slice corresponds to a
set of documents. Consequently, to find the individual matches, the blocked bitslices
need to be decoded back to document identifiers. Because blocking may potentially
result in a larger number of candidate matches and because more slices would need
to be fetched from the database to reduce the false positive rate, identifying candi-
date matches may require a significant amount of work [Sacks-Davis et al., 1995].
Thus, informed choice of appropriate parameters, based on a cost model (which
takes into account the I/O characteristics and the available memory) and a proper
understanding of the data characteristics, is crucial.

5.2.3 Data Characteristics and Signature File Performance

As described previously, the likelihood of false positives is a function of the number
of distinct words in a given document. Thus, given a database with a heterogeneous
collection of documents, setting the appropriate size for the signature is not straight-
forward: a short signature will result in a large degree of false positives for long
documents, whereas a long signature may be redundant if most of the documents
in the database are short. Although partitioning the database into sets of roughly
equal-sized documents [Kent et al., 1990] or dividing documents into roughly equal-
sized fragments might help, in general, signature files are easier to apply when the
documents are of similar size.

A related challenge stems from common terms [Zobel et al., 1998] that occur in
a large number of documents. Having a significant number of common terms results
in bitslices that are unusually dense and thus increases the false positive rate (not
only for queries that contain such common terms, but even for other rare terms that
share the same bitslices). This problem is often addressed by separating common
terms from rare terms in indexing.
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5.2.4 Word-Overlap–Based Fuzzy Retrieval Using Signature Files

Although the original signature file data structure was developed for quick-and-
dirty lookup for exact keyword matches, it can also be used for identifying fuzzy
matches between a query document and the set of documents in the database. Kim
et al. [2009] extend the basic signature file method, with a range search mechanism
to support word-overlap based retrieval.

Let doc be a document containing n words and q be a query document that con-
tains the same n words as doc plus an additional set of u words.2 Let Sigdoc and Sigq

denote the signatures of these two documents, respectively. As described earlier,
document signatures are formed through the bitwise-OR of the signatures of the
words in the documents. Let us assume that the signature size is m bits and signa-
tures are obtained by setting random bits in l ≤ m rounds. As before, the probability
of a given bit in the document signature being set to “1” can be computed as follows:

1 −
((

1 − 1
m

)l
)n

= 1 −
(

1 − 1
m

)nl

≈ 1 − e−
nl
m .

Here,
(
1 − 1

m

)l
is the probability that in any given signature, the selected bit remains

“0” despite l rounds in which a randomly selected bit is set to “1”. The formula
then reflects the probability of the position corresponding to the selected bit being
occupied by a “0” in all the contributing n bit-strings.

Let us now consider q. Because q contains u additional words, the bits set to 1
for the query signature, Sigq, will be a superset of the bits set to 1 in Sigdoc. Some of
the bits that are 0 in Sigdoc will switch to 1 because of the additional u words. The
probability of a given bit switching from 0 to 1 as a result of the addition of these u
new words can be be computed as follows:

Pbitswitch(m, l, n, u) =
(

1 − 1
m

)nl

×
(

1 −
(

1 − 1
m

)ul
)

≈ e−
nl
m ×

(
1 − e−

ul
m

)
.

Given this, the probability, Pexact bit diff, that exactly t bits will differ between doc and
q due to these u additional words can be formulated as follows:

Pexact bit diff(m, l, n, u, t) =
(

m
t

)
Pbitswitch(m, l, n, u)t(1 − Pbitswitch(m, l, n, u))m−t.

Furthermore, the probability, Pmax bit diff, that there will be at most d bits differing
between signatures, Sigdoc and Sigq, due to u words is

Pmax bit diff(m, l, n, u, d) =
∑

1≤t≤d

Pexact bit diff(m, l, n, u, t).

Let us assume that the user allows up to u-words flexibility in the detection of word
overlaps between the document and the query. Under this condition, doc should be
returned as a match to q by the index structure with high probability. In other words,

2 Missing words are handled similarly.
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under u-words flexibility, for the given values of m, l, n, and u and an acceptable false
hit rate ρfp , we need to pick the largest bit-difference value, d, such that

Pmax bit diff(m, l, n, u + 1, d) ≤ ρfp .

For any document with more than u words difference with the query, the probability
of being returned within d bit differences will be at most ρfp . In other words, given
the mismatch upper bound u, d is computed as

argmax
d≥0

Pmax bit diff(m, l, n, u + 1, d) ≤ ρfp .

To leverage this for retrieval, Kim et al. [2009] treat the signatures of all the docu-
ments in the database as points in an m-dimensional Euclidean space, where each
dimension corresponds to one signature bit. Given a query and an upper bound, u, of
the number of mismatching words between the query and the returned documents,
a search with a range of

√
d is performed using a multidimensional index struc-

ture, such as the Hybrid-tree [Chakrabarti and Mehrotra, 1999] (Section 7.2.4.3),
and false positives are eliminated using a postprocessing step.

5.3 SIGNATURE- AND INVERTED-FILE HYBRIDS

Both signature and inverted files have their advantages and disadvantages. Some
schemes try combining the inverted file and signature file approaches to get the
best of both worlds. Faloutsos and Christodoulakis [1985] argue that if there exist
discriminatory terms that are used frequently in user queries but do not appear in
data, then significant savings can be achieved in signature files if such high discrim-
inatory terms are treated differently from the others. Based on this observation,
Kent et al. [1990] propose to index common terms using bitmaps and rare terms
using signature files to eliminate the problems signature files face when the distri-
bution of the term frequencies is highly heterogeneous in the database. Chang et al.
[1989] propose a hybrid method, integrating signature files with postings lists. Sim-
ilarly, Faloutsos and Jagadish [1992] propose the use of signature files along with
variable-length postings lists. The postings file is used only for the highly discrim-
inatory terms, whereas the signature file is built for common, low discriminatory
terms. Given a query, a shared index file is used to route the individual query terms
to the postings file or the signature file for further matching.

Sacks-Davis [1985] presents a two-level signature file, composed of a block sig-
nature file and a record signature file. Given a query, first the block signature file
(implemented as a bitslice) is searched to determine matching blocks. Then, the
record signatures (implemented as bit strings) of the matching blocks are further
searched to identify matching documents. Chang et al. [1993] improve the two-level
signature method by integrating postings files, for leveraging term discrimination,
and block signature files, for document signature clustering. In this scheme, as in
the approach by Faloutsos and Jagadish [1992], a shared index file is used to route
the individual query terms to the postings or the signature file for further matching.
Unlike the approach by Faloutsos and Jagadish [1992], however, both the postings
and signature files are implemented as block-based index structures, which cluster
multiple documents. Once matching blocks are identified using the postings and
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Figure 5.5. The (implicit) KMP state machine corresponding to the query sequence “artalar”:
each node corresponds to a subsequence already verified, and each edge corresponds to a
new symbol seen in the data sequence. When a symbol not matching the query sequence
is seen (denoted by “¬”), the state machine jumps back to the longest matching query
prefix.

signature files, then the record signatures (implemented as bit strings of the match-
ing blocks) are further searched to identify individual matching documents. Lee and
Chang [1994] show experimentally that the hybrid methods tend to outperform the
signature files that do not discriminate between terms. More recently, Zobel et al.
[1998] argue theoretically and experimentally that, because of the postprocessing
costs, in general inverted files, supported with sufficient in-memory data structures
and compressed postings files, tend to perform better than signature files and hybrid
schemes in terms of the disk accesses they require during query processing.

5.4 SEQUENCE MATCHING

In the previous two subsections, we described approaches for addressing the
problem of searching long sequences (e.g., documents) based on whether or not
they contain predefined subpatterns (e.g., words) picked from a given vocabu-
lary. More generally, the sequence-matching problem (also known as the string-
matching problem) involves searching for an occurrence of a given pattern (a sub-
string or a subsequence) in a longer string or a sequence, or to decide that none
exists.

The problem can be more formally stated as follows: given two sequences q, of
length m, and p, of length n, determine whether there exists a position x such that the
query sequence q matches the target sequence p at position x. The query sequence
q matches the target sequence p at position x iff ∀0≤i≤m−1p[x + i] = q[1 + i].

A naive approach to the sequence-matching problem would be to slide the query
sequence (of size m) over the given data sequence (of size n) and to check matches
for each possible alignment of these two sequences. When done naively, this would
lead to O(mn) worst-case time. The Knuth-Morris-Pratt (KMP) [Knuth et al., 1977]
and Boyer-Moore (BM) [Boyer and Moore, 1977] algorithms improve this by pre-
venting redundant work that the naive approach implies. As in the naive algorithm,
KMP slides the data sequence over the query sequence but, using an implicit struc-
ture that encodes the overlaps in the given query sequence (Figure 5.5), it skips
unpromising alignment positions. Consequently, it is able to achieve linear O(n)
worst-case execution time. BM allows linear-time and linear-space pre-processing
of the query sequence to achieve sublinear, O(nlog(m)/m), average search time
by eliminating the need to verify all symbols in the sequence. The worst-case
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(a)

(b) (c)

Figure 5.6. (a) Trie data structure. (b) A sample trie for a database containing sequences
“cat” and “cattle” among others. (c) The corresponding Patricia trie that compresses the
subpaths.

behavior [Cole, 1994] of the BM algorithm, however, is still O(n) and in general
is worse than the worst-case behavior of the KMP.

5.4.1 Tries

Tries [Fredkin, 1960] are data structures designed for leveraging the prefix common-
alities of a set of sequences stored in the database. Given an alphabet, �, and a set,
S, of sequences, the corresponding trie is an edge-labeled tree, T(V, E), where each
edge, ei ∈ E, is labeled with a symbol in � and each path from the root of T to any
node vi ∈ V corresponds to a unique prefix in the sequences stored in the database
(Figures 5.6(a) and (b)). The leaves of the trie are specialized nodes correspond-
ing to complete sequences in the database. Because each sequence is encoded by a
branch, tries are able to provide O(l) search time for a search sequence of length l,
independent of the database size. To further reduce the number of nodes that need
to be stored in the index structure and, most importantly, traversed during search,
Patricia tries [Morrison, 1968] compress subpaths where the nodes do not contain
any branching decisions (Figure 5.6(c)).

5.4.2 Suffix Trees and Suffix Arrays

Although benefiting from the prefix commonalities of the sequences in the database
may reduce the cost of searches, this also limits the applicability of the basic trie
data structure to only those searches that start from the leftmost symbols of the se-
quences. In other words, given a query sequence q, tries can help only when looking
for matches at position x = 1.

Suffix trees [McCreight, 1976; Ukkonen, 1992b] support more generalized se-
quence searches simply by storing all suffixes of the available data: given a
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Figure 5.7. (a) Suffixes of a sample string (in this example only those suffixes that start at
word boundaries are considered). (b) The corresponding suffix tree and (c) the suffix array.

sequence p, of length n, the corresponding suffix tree indexes each subsequence
in {p[i, n] | 1 ≤ i ≤ n} in a trie or a Patricia trie (Figure 5.7(a,b)). Thus, in this case,
searches can start from any relevant position in p. A potential disadvantage of suffix
trees is that, since they store all the suffixes of all data sequences, they may be costly
in terms of the memory space they require. Suffix arrays [Manber and Myers, 1993]
reduce the corresponding space requirement by trading off space with search time:
instead of storing the entire trie, a suffix array stores in an array only the leaves of
the trie (Figure 5.7(c)). In a database with s unique suffixes, searches can be per-
formed in log(s) time using binary search on this array.

5.4.3 Suffix Automata

As described in Section 5.4.2, suffix trees and suffix arrays are able to look into the
stored sequences for matches at positions other than the leftmost symbols. They, on
the other hand, assume that the input sequence needs to be matched starting from
its leftmost symbol. If the goal, however, is to recognize and trigger matches based
on the suffixes of an incoming sequence, these data structures are not immediately
applicable.

One way to extend suffix trees to support matches also on the suffixes of the data
sequences is to treat the suffix tree as a nondeterministic finite automaton: for each
new incoming symbol, search restarts from the root of the trie. When naively per-
formed, however, this may be extremely costly in terms of time as well as memory
space needed to maintain all simultaneous executions of the finite automaton.

Directed Acyclic Word Graphs
A suffix automaton is a deterministic finite automaton that can recognize all

the suffixes of a given sequence [Crochemore and Vrin, 1997; Crochemore et al.,
1994]. For example, the backward directed acyclic word graph matching (BDM)
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Figure 5.8. A suffix automaton clusters the subsequences of the input sequence (in this case
“artalar”) to create a directed acyclic graph that serves as a deterministic finite automaton
that can recognize all the suffixes of the given sequence.

algorithm [Crochemore et al., 1994] creates a suffix automaton (also referred to as
a directed acyclic word graph) for searching the subsequences of a given pattern in
a longer sequence. Let p be a given sequence and let u and v be two subsequences
of p. These subsequences are said to be equivalent (≡) to each other for cluster-
ing purposes if and only if the set of end positions of u in p is the same as the set
of end positions of v in p. For example for the sequence “artalar”, “tal”≡ “al” but
“ar” �≡ “lar”. The nodes of the suffix automaton are the equivalence classes of ≡,
that is, each node is the set of subsequences that are equivalent to each other. There
is an edge from one node to another if we can extend the subsequences using a new
symbol while keeping the positions that still match (Figure 5.8). The suffix automa-
ton is linear in the size of the given sequence and can be constructed in linear time.

Bit Parallelism
An alternative approach to the deterministic encoding of the automaton, as fa-

vored by BDM, is to directly simulate the nondeterministic finite automaton. As de-
scribed earlier, however, a naive simulation of the nondeterministic finite automa-
ton can be very costly. Thus, this alternative requires an efficient mechanism that
does not lead to an exponential growth of the simulation. The backward nondeter-
ministic directed acyclic word graph matching (BNDM) algorithm [Navarro and
Raffinot, 1998] follows this approach to implement a suffix automaton that simu-
lates the corresponding non-deterministic finite automaton by leveraging the bit-
parallelism mechanism first introduced in Baeza-Yates and Gonnet [1989, 1992].

In bit parallelism, states are represented as numbers, and each transition step is
implemented using arithmetic and logical operations that give new numbers from
the old ones. Let m be the length of the query sequence, q, and n be the length of
the data sequence, d. Let sj

i denote whether there is a mismatch between q[1..i] and
d[( j − i + 1)..j]. If sj

m = 0, then the query is matched at the data position j. Let T[x]
be a table such that

Ti[x] =
{

0 x = q[i]
1 otherwise.

Then the value of sj
i can be computed from the value of sj−1

i−1 as follows:

s j
i = s j−1

i−1 ∨ Ti[d[j]].

Here, sj
0 = 0 for all j because an empty query sequence does not lead to any mis-

matches with any data.
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Let the global state of the search be represented using a vector of m states: in-
tuitively there are m parallel-running comparators reading the same text position,
and the vector represents the current state for each of these comparators. The global
state vector, gsj, after the consumption of the jth data symbol can be represented us-
ing a single number that combines the bit representations of all individual m states:

gsj =
m−1∑
i=0

sj
i+12i.

For every new symbol in the data, the state machine is transitioned by shifting the
vector gsj left 1 bit to indicate that the search advanced 1 symbol on the data se-
quence, and the individual states are updated using the table T[x]:

gsj = (gsj−1 << 1) ∨ GT[d[j]],

where GT[x] is a generalized version of the table T that matches the bit structure of
the global state vector:

GT[x] =
m−1∑
i=0

[
x �= q[i + 1]

]
2i.

Because of this, this algorithm is referred to as the shift-or algorithm. A match is
declared when gsj < 2m−1; that is, there is at least one individual state which finds
a match (i.e., ∃1≤i≤m sj

i = 0). Given a computational device with w bit words, the
shift-or algorithm achieves a worst-case time of O( mn

w
).

5.5 APPROXIMATE SEQUENCE MATCHING

Unlike the previous algorithms, which all search for exact matches, approximate
string or sequence matching algorithms focus on finding patterns that are not too
different from the ones provided by the users [Baeza-Yates and Perleberg, 1992;
Navarro, 2001; Sellers, 1980].

5.5.1 Finite Automata

One way to approach the approximate sequence matching problem is to repre-
sent the query pattern in the form of a nondeterministic finite automaton (NFA).
Figure 5.9 shows a nondeterministic finite automaton created for the sequence
“SAPINO”. Each row of this NFA corresponds to a different number of errors.
In the NFA, insertions are denoted as vertical transitions (which consume one extra
symbol), substitutions are denoted as diagonal transitions (which consume an alter-
native symbol), and deletions are denoted as diagonal ε (or null) transitions (which
proceed without consuming any symbols). Note that the NFA-based representation
assumes that each error has a cost of 1 and, thus, it cannot be directly used when
insertions, deletions, and substitutions have different costs.

Ukkonen [1985] proposed a deterministic version of the finite automaton to
count the number of errors observed during the matching process. This allows
for O(n) worst-case time but requires exponential space complexity. Kurtz [1996]
showed that the space requirements for the deterministic automaton can be reduced
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Figure 5.9. The NFA that recognizes the sequence “SAPINO” with a total of up to two insertion,
deletion, and substitution errors. See color plates section.

to O(mn) using a lazy construction, which avoids enumerating the states that are
not absolutely necessary. More recently, Baeza-Yates and Navarro [1999], Baeza-
Yates [1996], and Wu and Manber [1991] proposed bit-parallelism–based efficient
simulations of the NFA. These avoid the space explosion caused by NFA-to-DFA
conversion by carefully packing the states of the NFA into memory words and
executing multiple transitions in parallel through logical and arithmetic operations
(Section 5.5.3).

5.5.2 Dynamic Programming–Based Edit Distance Computation

Let q (of size m) and p (of size n) be two sequences. Let C[i, j] denote the edit
distance between p[1..i] and q[1..j]. The following recursive definition of the number
of errors can be easily translated into an O(mn) dynamic programming algorithm for
computing edit distance, C[n, m], between p and q:

C[i, 0] = i

C[0, j] = j

C[i, j] =
{

if (p[i] = q[j]) then C[i − 1, j − 1]
else 1 + min{C[i − 1, j], C[i, j − 1], C[i − 1, j − 1]}.

Note that the foregoing recursive formulation can also be viewed as a column-based
simulation of the NFA, where the active states of the given NFA are iteratively
evaluated one column at a time [Baeza-Yates, 1996].

This recursive formulation can easily be generalized to the cases where the edit
operations have nonuniform costs associated to them:

C[0, 0] = 0

C[i, j] = min




C[i − 1, j − 1] + substitution cost(p[i], q[j]),
C[i − 1, j] + deletion cost(p[i]),
C[i, j − 1] + insertion cost(q[j])


 ,

where substitution cost(a, a) = 0 for all symbols, a, in the symbol alphabet and
C[−1, j] = C[i,−1] for all i and j.

www.Ebook777.com
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Landau and Vishkin [1988] improve the execution time of the dynamic
programming-based approach to O(k2n) time (where k is the maximum number of
errors) and O(m) space by considering the diagonals of the NFA as opposed to its
columns. Consequently, the recurrence relationship is written in terms of the diag-
onals and the number of errors, instead of the rows, i, and columns, j. Landau and
Vishkin [1989] and Myers [1986] further reduce the complexity to O(kn) time and
O(n) space by exploiting a suffix tree that helps maintain the longest prefix common
to both suffixes q[i..m] and p[j..n] efficiently.

5.5.3 Bit Parallelism for Direct NFA Simulation

As stated previously, dynamic programming based solutions essentially simulate the
automaton by packing its columns into machine words [Baeza-Yates, 1996]. Wu and
Manber [1991, 1992], on the other hand, simulate the NFA by packing each row into
a machine word and by applying the bit-parallelism approach (which was originally
proposed by Baeza-Yates and Gonnet [1989]; see Section 5.4.3). Wu and Manber
[1991] maintain k + 1 arrays R0, R1, R2, . . . , Rk, such that array Rd stores all possible
matches with up to d errors (i.e., Rd corresponds to the dth row).3 To compute the
transition from Rd

j to Rd
j+1, Wu and Manber [1991] consider the four possible ways

that lead to a match, for the first i characters of the query sequence q, with ≤ d errors
up to p[ j + 1]:

� Matching: There is a match of the first i − 1 characters with ≤ d errors up to p[ j]
and p[ j + 1] = q[i].

� Substituting: There is a match of the first i − 1 characters with ≤ d − 1 errors up
to p[ j]. This case corresponds to substituting p[ j + 1].

� Deletion: There is a match of the first i − 1 characters with ≤ d − 1 errors up to
p[ j + 1]. This corresponds to deleting of q[i].

� Insertion: There is a match of the first i characters with ≤ d − 1 errors up to p[ j].
This corresponds to inserting d[ j + 1].

Based on this, Wu and Manber [1991] show that Rd
j+1 can be computed from Rd

j ,
Rd−1

j , and Rd−1
j+1 using two shifts, one and, and three ors. Because each step requires

a constant number of logical operations, and because there are k + 1 arrays, approx-
imate sequence search on a data string of length n takes O((k + 1)n) time.

Wu and Manber [1991] further propose a partitioning approach that partitions
the query string into r blocks, all of which can be searched simultaneously. If one
of the blocks matches, then the whole query pattern is searched directly within a
neighborhood of size m from the position of the match. Baeza-Yates and Navarro
[1999] further improve the search time of the algorithm to O(n) for small query pat-
terns, where mk = O(logn), by simulating the automaton by diagonals (as opposed
to by rows). Baeza-Yates and Navarro [1999] also propose a partition approach that

can search for longer query patterns in O(
√

mk
σw

n) time, for a partitioning constant,
w, and symbol alphabet size, σ.

3 R0, that is, the array corresponding to zero matching error, corresponds to the original string.



198 Indexing, Search, and Retrieval of Sequences

5.5.4 Filtering, Fingerprinting, and ρ-Grams

Filtering-based schemes rely on the observation that a single matching error can-
not affect two widely separated regions of the given sequence. Thus, they split the
pattern into pieces and perform exact matching to count the number of pieces that
are affected to have a sense of the number of errors there are between the query
pattern and the text sequence. For example, given a maximum error rate, k, Wu and
Manber [1991] cut the pattern into k + 1 pieces and verify that at least one piece is
matched exactly. This is because k errors cannot affect more than k pieces. Jokinen
et al. [1996] slide a window of length m over the text sequence and count the num-
ber of symbols that are included in the pattern. Relying on the observation that in
a subsequence of length m with at most k errors, there must be at least m− k sym-
bols that are belonging to the pattern, they apply a counting filter that passes only
those window positions that have at least m− k such symbols. These candidate text
windows are then verified using any edit-distance algorithm.

ρ-Grams
Holsti and Sutinen [1994], Sutinen and Tarhio [1995], Ukkonen [1992a],

Ullmann [1977] and others rely on filtering based on short subsequences, known
as ρ-grams, of length ρ.4 Given a sequence p, its ρ-grams are obtained by sliding
a window of length ρ over the symbols of p. To make sure that all ρ-grams are of
length ρ, those window positions that extend beyond the boundaries of the sequence
are prefixed or suffixed with null symbols. Because two sequences that have a small
edit distance are likely to share a large number of ρ-grams, the sets of ρ-grams of
the two sequences can be compared to identify and eliminate unpromising matches.

Karp and Rabin [1987] propose a fingerprinting technique, referred as KR, for
quickly searching for a ρ-length string in a much longer string. Because comparing
all ρ-grams of a long string to the given query string is expensive, Karp and Rabin
[1987] compare hashes of the ρ-grams to the hash of the query q. Given a query
sequence q (of size ρ) and a data sequence p (of size n), KR first computes the hash
value, hash(q), of the query sequence. This hash value is then compared to the hash
values of all ρ-symbol subsequences of p; that is, only if

hash(q) = hash(p[i..(i + ρ − 1)])

is the actual ρ-symbol subsequence match at data position i verified. Note that be-
cause the hash values need to be computed for all ρ-symbol subsequences of p,
unless this is performed efficiently, the cost of the KR algorithm is O(ρn). Thus,
reducing the time complexity requires efficient computation of the hash values
for the successive subsequences of p. To speed up the hashing process, Karp and
Rabin [1987] introduce a rolling hash function that allows the hash for a ρ-gram to
be computed from the hash of the previous ρ-gram. The rolling hash function allows
computation of hash(p[i + 1..(i + ρ)]) from hash(p[i..(i + ρ − 1)]) using a constant
number of operations independent from ρ. Consider, for example,

hash(p[i..(i + ρ − 1)]) =
i+ρ−1∑

k=i

nv(p[k]) lpk−i,

4 In the literature, these are known as q-grams or n-grams. We are using a different notation to distin-
guish it from the query pattern, q, and length of the text, n.
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where nv(p[k]) is the numeric value corresponding to the symbol p[k] and lp is a
large prime. We can compute hash(p[i + 1..(i + ρ)]) as follows:

hash(p[i + 1..(i + ρ)]) = hash(p[i..(i + ρ − 1)] − nv(p[i])
lp

+ (
nv(p[i + ρ]) lpρ−1) .

Focusing on the matching performance, as opposed to the hashing performance,
Manber [1994] proposes a modsampling technique that selects and uses only ρ-gram
hashes that are 0 modulo P, for some P. On the average, this scheme reduces the
number of hashes to be compared to 1/P of the original number and is shown to be
robust against minor reorderings, insertions, and deletions between the strings. On
the other hand, when using modsampling, the exact size of the resulting fingerprint
depends on how many ρ-gram hashes are 0 modulo P. Heintze [1996] proposes using
the n smallest hashes instead. The advantage of this scheme, called minsampling, is
that (assuming that the original number of ρ-grams is larger than n) it results in
fixed-size (i.e., ρ × n) fingerprints, and thus the resulting fingerprints are easier to
index and use for clustering.

Schleimer et al. [2003] extend this with a technique called winnowing that takes a
guarantee threshold, t, as input; if there is a substring match at least as long as t, then
the match is guaranteed to be detected. This is achieved by defining a window size
w = t − ρ + 1 and, given a sequence of hashes h1h2 . . . hn (each hash correspond-
ing to a distinct position on the input sequence of length n), dividing the sequence
into nonoverlapping windows of w consecutive hashes. Then, in each window, the
minimum hash is selected (if there is more than one hash with the minimum value,
the algorithm selects the rightmost ρ-gram in the window). These selected hashes
form the signature or fingerprint of the whole string. Schleimer et al. [2003] also
define a local fingerprinting algorithm as an algorithm that, for every window of w

consecutive hashes, includes one of these in the fingerprint, and the choice of the
hash depends only on the window’s contents. By this definition, winnowing is a local
fingerprinting scheme. Schleimer et al. [2003] show that any local algorithm with a
window size w = t − ρ + 1 is correct in the sense that any matching pair of substrings
of length at least t is found by any local algorithm. Schleimer et al. [2003] further es-
tablish that any local algorithm with a window size w = t − ρ + 1 has a density (i.e.,
expected proportion of hashes included in the fingerprint),

d ≥ 1.5
w + 1

.

In particular, the winnowing scheme has a density of 2
w+1 ; that is, it selects only 33%

more hashes than the lower bound to be included in the fingerprint.
Ukkonen [1992a] proposes a ρ-gram distance measure based on counting the

number of ρ-grams common between the given pattern query and the text sequence.
A query sequence, q, of length m has (m− ρ + 1) ρ-grams. Each mismatch between
the query sequence and the text sequence, p, can affect ρ ρ-grams. Therefore, given
k errors, (m− ρ + 1 − kρ) ρ-grams must be found. Ukkonen [1992a] leverages a suf-
fix tree to keep the counts of the ρ-grams and, thus, implements the filter operation
in linear time. To reduce the number of ρ-grams considered, Takaoka [1994] picks
nonoverlapping ρ-grams each h symbols of the text. If h = #m−k−ρ+1

k+1 $, at least one ρ-
gram will be found and the full match can be verified by examining its neighborhood.
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Notes that if, instead of 1, s many ρ-grams of the query pattern are required to
identify a candidate match, then the sampling distance needs to be reduced to
h = #m−k−ρ+1

k+s $.

String Kernels
Let S be an input space, and let F be a feature space with an inner product (see

Section 3.1.1). The function κ is said to be a (positive definite) kernel if and only if
there is a map φ : S → F , such that for all x, y ∈ S,

κ(x, y) = φ(x) · φ(y).

In other words, the binary function κ can be computed by mapping elements of S
into a suitable feature space and computing this inner product in that space. For
example, S could be the space of all text documents, and φ could be a mapping
from text documents to normalized keyword vectors. Then the inner product would
compute the dot product similarity between a pair of text documents. String kernels
extend this idea to strings. Given an alphabet, �, the set, �∗, of all finite strings
(including the empty string), and the set, �ρ, of all strings of length exactly ρ, the
function φρ : �∗ → 2�ρ×Z

+
maps from strings to a feature space consisting of ρ-grams

and their counts in the input strings. In other words, given a string s, φρ counts the
number of times each ρ-gram occurs as a substring in s.

Given this mapping from strings to a feature space of ρ-grams, the ρ-spectrum
kernel similarity measure, κρ, is defined as the inner product of the feature vectors
in the ρ-gram feature space:

κρ(s1, s2) = φρ(s1) · φρ(s2).

The weighted all-substrings kernel similarity (WASK) [Vishwanathan and Smola,
2003] takes into account the contribution of substrings of all lengths, weighted by
their lengths:

κwask(s1, s2) =
∞∑

ρ=1

αρκρ(s1, s2),

where αρ is often chosen to decay exponentially with ρ.
Martins [2006] shows that both ρ-spectrum kernel and weighted all-substrings

kernel similarity measures can be computed in O(|s1| + |s2|) time using suffix trees.

Locality Sensitive Hashing
Indyk and Motwani [1998] define a locality sensitive hash function as a hash func-

tion, h, where given any pair, o1 and o2, of objects and a similarity function, sim(),

prob(h(o1) = h(o2)) = sim(o1, o2).

In other words, the probability of collision between hashes of the objects is high for
similar objects and low for dissimilar ones.

Conversely, given a set of independent locality-sensitive hash functions, it is pos-
sible to build a corresponding similarity estimator [Urvoy et al., 2008]. Consider the
minsampling scheme [Broder, 1997; Broder et al., 1997; Heintze, 1996] discussed
earlier, where a linear ordering ≺ is used to order the hashes to pick the smallest
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n to form a fingerprint. If the total order ≺ is to be picked at random, then for any
pair of sequences s1 and s2, we have

prob(h≺(s1) = h≺(s2)) = hashes(s1) ∩ hashes(s2)
hashes(s1) ∪ hashes(s2)

;

that is, the probability that the same n hashes will be selected from both sequences
is related to the number of hashes that are shared between s1 and s2.

Remember from Section 3.1.3 that this ratio is nothing but the Jaccard similarity,

prob(h≺(s1) = h≺(s2)) = simjaccard(s1, s2).

Thus, given a set of m total orders picked at random, we can construct a set, H,
of independent locality sensitive hash functions, each corresponding to a different
order. If we let simH(s1, s2) be the number of locality-sensitive hash functions in H
that return the same smallest n hashes for both s1 and s2, then we can approximately
compute the similarity function, simjaccard(s1, s2), as

simjaccard(s1, s2) � simH(s1, s2)
m

.

In Section 10.1.4.2, we discuss the use of locality-sensitive hashing to support
approximate nearest neighbor searches.

5.5.5 Compression-Based Sequence Comparison

The Kolmogorov complexity K(q) of a given object q is the length of the short-
est program that outputs q [Burgin, 1982]. Intuitively, complex objects will require
longer programs to output them, whereas objects with inherent simplicity will be
produced by simple and short programs.

Given this definition of complexity, Bennett et al. [1998] define the information
distance between two objects, q and p, as

�Kol(q, p) = max{K(q|p), K(p|q)},
where K(q|p) is the length of the shortest program with input p that outputs q. In the
extreme case where p and q are identical, the only operation the function that com-
putes q needs to do is to output the input p. Thus, intuitively, K(q|p) measures the
amount of work needed to convert p to q and is thus an indication of the difference
of q from p.

Similarly, the normalized information distance between the objects can be de-
fined as

�Norm Kol(q, p) = �Kol(q, p)
max{K(q), K(p)} .

Because, in the extreme case where p and q have nothing to share, the program can
ignore the p (or q) provided as input and create q (or p) from scratch, the denom-
inator corresponds to the maximum amount of work that needs to be done by the
system to output p and q independently from the other.

Unfortunately, the Kolmogorov complexity generally is not computable. There-
fore, this definition of distance is not directly useful. On the other hand, the length
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of the maximally compressed version of q can be seen as a form of complexity mea-
sure for data object q and thus can be used in place of the Kolmogorov complexity.
Based on this observation, Cilibrasi and Vitanyi [2005] introduce a normalized com-
pression distance, �ncd, by replacing the Kolmogorov complexity in the definition
of the normalized information distance with the length of a compressed version of q
obtained using some compression algorithm:

�ncd(q, p) = C(qp) − min{C(q), C(p)}
max{C(q), C(p)} .

Here C(q) is the size of the compressed q, and C(qp) is the size of the compressed
version of the sequence obtained by concatenating q and p.

5.5.6 Cross-Parsing–Based Sequence Comparison

Ziv and Merhav cross-parsing is a way to measure the relative entropy between
sequences [Helmer, 2007; Ziv and Merhav, 1993]. Let q (of size m) and p (of size
n) be two sequences. Cross-parsing first finds the longest (possibly empty) prefix of
q that appears as a string somewhere in p. Once the prefix is found, the process is
restarted from the very next position in q, this continues until the whole document
q is parsed. Let c(q|p) be the number of times the process had to start before q is
completely parsed. The value

�cross parse(q, p) = c(q|p) − 1 + c(p|q) − 1
2

can be used as a distance measure between strings q and p. Note that each symbol
in q is visited only once. In fact, the entire cross-parsing can be performed in linear
time if the string p is indexed using a suffix tree (introduced in Section 5.4.2).

5.6 WILDCARD SYMBOLS AND REGULAR EXPRESSIONS

A variant of the non-exact string-matching problem is when wildcard symbols are
allowed [Amir et al., 1998; Muthukrishnan and Ramesh, 1995]. For example, a “*”
wildcard in the query pattern q can match any symbol in the alphabet and a “//”
wildcard can match 0 or more symbols in the text sequence p. When there are wild-
card symbols in the query pattern, matches found on p may differ from each other.
In general, it is possible to extend edit-distance functions to accommodate these
special wildcard symbols. Baeza-Yates and Gonnet [1989] and others have shown
that many of the techniques, such as bit parallelism, developed for patterns without
wildcard symbols can be adapted to capture patterns with wildcards.

5.6.1 Regular Expressions

Regular-expression–based frameworks further generalize the expressive power of
the patterns [Chan et al., 1994]. Each regular expression, R, defines a set, L(R), of
strings (symbol sequences). Let � be a finite symbol alphabet, and let the regular
expression, s, denote the set L(s) = {“s”}. Also, let ε denote the empty string (a
sequence without any symbol). We can create more complex regular expressions by
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combining simpler regular expressions using concatenation, union, and Kleene star
operators. Given two regular expressions R1 and R2:

� The concatenation, R ≡ R1R2, of R1 and R2 denotes the language L(R1R2) =
{uv ‖ u ∈ L(R1) ∧ v ∈ L(R2)}

� The union, R ≡ R1|R2, of R1 and R2 defines L(R1|R2) = {u ‖ u ∈ L(R1) ∨ u ∈
L(R2)}

� The Kleene star, R∗
1, of the regular expression, R1, denotes the set of all strings

that can be obtained by concatenating zero or more strings in L(R1)

For example, the regular expression R ≡ 1(0|1|...|9)∗ denotes the set of all strings
representing natural numbers having 1 as their more significant digit.

5.6.2 Regular Languages and Finite Automata

Strings in a language described by a regular expression (i.e., a regular language) can
be recognized using a finite automaton. Any regular expression can be matched us-
ing a nondeterministic finite automaton (NFA) in linear time. However, converting
a given NFA into a deterministic finite automaton (DFA) for execution can take
O(m2m) time and space [Hopcroft and Ullman, 1979]. Once again, however, the bit-
parallelism approach can be exploited to simulate an NFA efficiently [Baeza-Yates
and Ribeiro-Neto, 1999]. Baeza-Yates and Gonnet [1996] use the Patricia tree as
a logical model and presents algorithms with sublinear time for matching regular
expressions. It also presents a logarithmic time algorithm for a subclass of regular
expressions.

5.6.3 RE-Trees

The RE-tree data structure, introduced by Chan et al. [1994], enable quick access
to regular expressions (REs) matching a given input string. RE-trees are height-
balanced, hierarchical index structures. Each leaf node contains a unique identifier
for an RE. In addition, the leaf node also contains a finite automaton corresponding
to this RE. Each internal node of the RE-tree contains a set of (M, ptr) pairs, where:

� M is a finite automaton
� ptr is pointer to a child node, N, such that the union of the languages recognized

by the finite automata in node N is contained in the language recognized by the
bounding automaton, M

Intuitively, the bounding automaton is used for pruning the search space: if a given
sequence q is not contained in M (i.e., is not recognized by the corresponding au-
tomaton), then it cannot match any of the regular expressions accessible through
the corresponding pointer to node N. Therefore, the closer the language recognized
by M is to the union of all the languages recognized by the corresponding node, the
more effective will be the pruning. On the other hand, implementing more precise
(minimal bounding) automata may require too much space, possibly exceeding the
size of the corresponding index node. To reduce the space requirements, the au-
tomata stored in the RE-tree nodes are nondeterministic. Furthermore, the number
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of states used for constructing each automaton is limited by an upper bound, α. For
space efficiency, each RE node is also required to contain at least m entries.

Searches proceed top-down along all the relevant paths whose bounding au-
tomata accept the input sequence. Insertions of new regular expressions require
selection of an optimal insertion node such that the update causes minimal expan-
sions in (the size of the languages recognized by the) bounding automata of the
internal nodes. This ensures that the precision is not lost. Furthermore, it minimizes
the amount of further updates (in particular splits) that insertions may cause on
the path toward the root. Note that estimating the size of a language recognized
by an RE is not trivial, in particular since these languages may be infinite in size.
Therefore, Chan et al. [1994] propose two heuristics. The first heuristic, max-count,
simply counts the size of the regular language upto some predetermined maxi-
mum sequence length. The second heuristic uses the minimum description length
(MDL) [Rissanen, 1978] instead of the sizes of the language. The MDL is computed
by first picking a random set, R, of strings in the language recognized by the automa-
ton, M, and then computing

1
|R|

∑
w∈R

MDL(M, w)
|w| ,

such that for w = w1w2w3 . . . wn and the corresponding state sequence s0s1s2s3 . . . sn,

MDL(M, w) =
n−1∑
i=0

log2(fanouti),

where fanouti is the number of outgoing transitions (in a minimal-state DFA repre-
sentation of M) from state si and, thus, log2(fanouti) is the number of bits required
to encode the transition out of state si. This measure is based on the intuition that
given two DFAs, Mi and Mj, if |L(Mi)| is larger than |L(Mj)|, then the per-symbol
cost of a random string in L(Mi) will likely to be higher than the per-symbol cost of
a random string in L(Mj). This intuition follows information theoretical observation
that, in general, more bits are needed to specify an item that comes from a larger
collection of items.

When a node split is not avoidable, the REs in the node need to be partitioned
into two disjoint sets such that, after the split, the total sizes of the languages cov-
ered by the two sets will be minimum. Furthermore, during insertions, node splits,
and node merges (due to deletions), the corresponding bounding automata need
to be updated in such a way that the size of the corresponding language is mini-
mal. Chan et al. [1994] show that the problems of optimal partitioning and minimal
bounding automaton construction are NP-hard and proposes heuristic techniques
for implementing these two steps efficiently.

5.7 MULTIPLE SEQUENCE MATCHING AND FILTERING

In many filtering and triggering applications, there are multiple query sequences
(also called patterns) that are registered in the system to be checked against incom-
ing data or observation sequences. Although each filter sequence can be evaluated
separately against the data sequence, this may cause redundant work. Therefore, it
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Figure 5.10. Aho-Corasik trie indexes multiple search sequences. Into a single integrated
data structure. In this example, sequences “artalar” and “tall” are indexed together.

may be more advantageous to find common aspects of the registered patterns and
avoid repeated checks for these common parts.

5.7.1 Trie-Based Multiple Pattern Filtering

Aho-Corasick tries [Aho and Corasick, 1975] eliminate redundant work by ex-
tending the KMP algorithm (Section 5.4) with a trie-like data structure that lever-
ages overlaps in input patterns registered in the system (Figure 5.10). Because
all overlaps in the registered patterns are accounted for in the integrated in-
dex structure, they are able to provide O(n) search with O(m) trie construction
time, where n is the length of the data sequence and m is the length of the
query sequence. In a similar fashion, the Commentz-Walter algorithm [Commentz-
Walter, 1979] extends the BM algorithm with a trie of input patterns to
provide simultaneous search for multiple patterns. Unlike Aho-Corasick tries, how-
ever, the resulting finite-state machine compares starting from the ends of the regis-
tered patterns as in the BM algorithm.

5.7.2 Hash-Based Multiple Pattern Filtering

As described in Section 5.5.4, in contrast to the foregoing algorithms that work on
the plain-text or plan-symbol domain, to improve efficiency, the Karp-Rabin (KR)
algorithm [Karp and Rabin, 1987] and others rely on sequences’ hashes, rather
than on the sequences themselves. These techniques can be adapted to the multi-
ple pattern filtering task using a randomized set data structure, such as Bloom fil-
ters [Bloom, 1970], which can check whether a given data object is in a given set in
constant time (but potentially with a certain false positive rate).

Like signature files (introduced in Section 5.2), a Bloom filter is a hash-based
data structure, commonly used for checking whether a given element is in a set or
not. A Bloom filter consists of an array, A, of m bits and a set, H, of independent
hash functions, each returning values between 1 and m. Let us be given a database,
D, of objects.

� To insert the objects in the database into the Bloom filter, for each data object,
oi ∈ D, for each hj ∈ H, the bit A[hj(oi)] is set to 1.
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� To check whether an object, oi, is in the database D or not, all bit positions
A[hj(oi)] are checked, in O(m) time, to see if the corresponding bit is 1 or 0. If
any of the bits is “0”, then the object oi cannot be in the database. If all bits are
“1”, then the object oi is in the database, D, with false positive probability(

1 −
(

1 − 1
m

)|H||D|)|H|
� (

1 − e−|H||D|/m)|H|
.

Intuitively,
(
1 − 1

m

)|H||D|
is the probability that a given bit in the array is “0” despite

all hash operations for all objects in the database. Then the preceding equation gives
the probability for the event that, for the given query and for all |H| hash functions,
the corresponding position will contain “1” (by chance). Thus, given a data sequence
of length n, we can use the hashes produced by the KR (or other similar algorithms)
as the basis to construct a Bloom filter, which can filter for a set of k registered
patterns in O(n) average time, independent of the value of k.

5.7.3 Multiple Approximate String Matching

Navarro [1997] extends the counting filter approach to the multiple pattern match-
ing problem. For each pattern, the algorithm maintains a counter that keeps track of
the matching symbols. As the window gets shifted, the counters are updated. Given r
query patterns, the multipattern algorithm packs all r counters into a single machine
word and maintains this packed set of counters incrementally in a bit-parallel man-
ner. Although the worst-case behavior of this algorithm is O(rmn), if the probability
of reverifying (when a potential match is found) is low (O(1/m2)), the algorithm is
linear on average.

Baeza-Yates and Navarro [2002] also adapt other single approximate sequence
matching algorithms to the multiple matching problem. In particular, it proposes to
use a superimposed NFA to perform multiple approximate matching. The proposed
scheme simulates the execution of the resulting combined automaton using bit par-
allelism. Baeza-Yates and Navarro [2002] also propose a multipattern version of
the partitioning-based filtering scheme, discussed by Wu and Manber [1991], which
cuts the pattern into k + 1 pieces and verifies that at least one piece is matched ex-
actly. Given r patterns, Baeza-Yates and Navarro [2002] propose to cut each pattern
into k + 1 partitions, and all r(k + 1) pieces are searched using an exact matching
scheme, such as the one adopted by Sunday [1990], in parallel.

5.8 SUMMARY

As we have seen in this chapter, a major challenge in indexing sequences is that,
in many cases, the features of interest are not available in advance. Consequently,
techniques such as ρ-grams help extract parts of the sequences that can be used as
features for filtering and indexing. Still, many operations on sequences, including
edit-distance computation or regular expression matching, require very specialized
data structures and algorithms that are not very amenable to efficient indexing and
require algorithmic approaches. Nevertheless, when the registered data (or query

www.Ebook777.com

http://www.ebook777.com


5.8 Summary 207

patterns) have significant overlaps, carefully designed index structures can help one
leverage these overlaps in eliminating redundant computations.

In the next section, we see that graph- and tree-structured data also show similar
characteristics, and many techniques (such as edit distances) applied to sequences
can be revised and leveraged when dealing with data with more complex structures.
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Indexing, Search, and Retrieval of
Graphs and Trees

In Chapter 2, we have seen that most high-level multimedia data models
(especially those that involve representation of spatiotemporal information, object
hierarchies – such as X3D – or links – such as the Web) require tree or graph-based
modeling. Therefore, similarity-based retrieval and classification commonly involve
matching trees and graphs.

In this chapter, we discuss tree and graph matching. We see that, unlike the case
with sequences, computing edit distance for finding matches may be extremely com-
plex (NP-hard) when dealing with graphs and trees. Therefore, filtering techniques
that can help prune the set of candidates are especially important when dealing with
tree and graph data.

6.1 GRAPH MATCHING

Although, as we discussed in Section 3.3.2, graph matching through edit distance
computation is an expensive task, there are various heuristics that have been de-
veloped to perform this operation efficiently. In the rest of this section, we con-
sider three heuristics, GraphGrep, graph histograms, and graph probes, for matching
graphs.

6.1.1 GraphGrep

Because the graph-matching problem is generally very expensive, there are various
heuristics that have been developed for efficient matching and indexing of graphs.
GraphGrep [Giugno and Shasha, 2002] is one such technique, relying on a path-based
representation of graphs.

GraphGrep takes an undirected, node-labeled graph and, for each node in the
graph, finds all paths that start at this node and have length up to a given, small
upper bound, lp . Given a path in the graph, the corresponding id-path is defined as
the list of the ids of the nodes on the path. The list-path is also defined similarly: the
list of the labels of the nodes on the path.

208
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Although the id-paths in the database are unique, there can be multiple paths
with the same label sequence. Thus, GraphGrep clusters the id-paths corresponding
to a single label-path and uses the resulting set of label-paths, where each label-path
has a set of id-paths, as the path representation of the given graph. The fingerprint of
the graph is a hash table, where each row corresponds to a label-path and contains
the hash of the label-path (i.e., the key) and the corresponding number of id-paths
in the graph.

Given the fingerprint of a query graph and the fingerprints of the graphs in the
database, irrelevant graphs are filtered out by comparing the numbers of id-paths for
each matching hash key and by discarding those graphs that have at least one value
in their fingerprints that is less than the corresponding value in the fingerprint of
the query. Among the graphs in the database that have sufficient overlaps with the
query, matching subgraphs are found by focusing on the parts of the graph that cor-
respond to the label-paths in the query. After, the relevant id-path sets are selected
and overlapping id-paths are found and concatenated to build matching subgraphs.

6.1.2 Graph Histograms and Probes

Let us consider unlabeled graphs and three primitive graph edit operations: vertex
insertion, vertex deletion, and vertex update (deletion or insertion of an incident
edge). We can define a graph edit distance �G() based on these primitives. Given a
query graph, the goal is then to identify graphs that have small edit distances from
this query graph.

6.1.2.1 Graph Histograms
Given an unlabeled undirected graph, G(V, E), let us construct a graph histogram,
hist(G), by calculating the degree (valence) of each vertex of the graph and as-
signing the vertex to a histogram bin based on this value. Let us also compute a
sorted graph histogram, hists(G), by sorting the histogram bins in decreasing order.
Papadopoulos and Manolopoulos [1999] show that given two graphs, G1 and G2,

L1(hists(G1), hists(G2)) = �G(G1, G2),

where L1 is the Manhattan distance between the corresponding histogram vectors
(Section 3.1.3). Thus, a sorted graph histogram based multidimensional representa-
tion can be used for indexing graphs that are mapped onto a metric vector space, for
efficient retrieval.

6.1.2.2 Graph Probes
Graph probes [Lopresti and Wilfong, 2001] are also histogram-based, but they apply
to more general graphs. Consider for example two unlabeled, undirected graphs, G1

and G2, and a graph distance function, �G(), based on an editing model with four
primitive operations: (a) deletion of an edge, (b) insertion of an edge, (c) deletion of
an (isolated) vertex, and (d) insertion of an (isolated) vertex. Lopresti and Wilfong
[2001] show that the function, probe(G1, G2), defined as

probe(G1, G2) ≡ L1(PR(G1), PR(G2)),
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where PR(G) is a probe-histogram, obtained by assigning the vertices with the same
degree into the same histogram bin, has the following property:

probe(G1, G2) ≤ 4 · �G(G1, G2).

Note that, although the probe() function does not provide a bound as tight as the
bound provided by the approach based on the sorted graph histogram described
earlier, it can still be used as a filter that does not result in any misses. Moreover,
under the same graph edit model, the foregoing result can be extended to unlabeled,
directed graphs, simply by counting in-degrees and out-degrees of vertices indepen-
dently while creating the probe-histograms.

Most importantly, for general graph-matching applications, Lopresti and Wil-
fong [2001] also show that, if the graph edit model is extended with two more oper-
ations, (e) changing the label of a node and (f) changing the label of an edge, then
a similar result can be obtained for node- and edge-labeled directed graphs as well.
In this case, the in- and out-degrees of vertices are counted separately for each edge
label. The histogram is also extended with bins that are simply counting the vertices
that have a particular vertex label. If α denotes the number of unique edge labels
and d is the maximum number of edges incident on any vertex, then the total index-
ing time for graph G(V, E) is linear in the graph size: O(α(d + |V|) + |E|). Note that,
although it is highly efficient when α and d are small constants, this approach does
not scale well when the dictionary size of edge labels is high and/or when d ∼ V.

6.1.3 Graph Alignment

Let us consider two graphs, G1(V1, E1) and G2(V2, E2), with a partially known map-
ping (or correspondence) function, µ : V1 × V2 → [0, 1] ∪ {⊥}, between the nodes in
V1 and V2, such that if µ(vi, vj) = ⊥, it is not known whether vi is related to vj; that is,
vi and vj are unmapped. The graph alignment problem [Candan et al., 2007] involves
estimation of the degree of mapping for vi ∈ V1 and vj ∈ V2, where µ(vi, vj) = ⊥, us-
ing the structural information inherent in G1 and G2. Candan et al. [2007] propose a
graph alignment algorithm involving the following steps:

(i) Map the vertices of V1 and V2 into multidimensional spaces S1 and S2, both
with the same number (k) of dimensions.

(ii) Identify transformations required to align the space S1 with the space S2

such that the common/mapped vertices of the two graphs are placed as close
to each other as possible in the resulting aligned space.

(iii) Use the same transformations to map the uncommon vertices in S1 onto S2.
(iv) Now that the vertices of the two graphs are mapped into the same space,

compute their similarities or distances in this space.

6.1.3.1 Step (i): MDS-Based Mapping into a Vector Space
Step (i) is performed using a multidimensional scaling (MDS) algorithm described in
Section 4.3.1: for every pair of nodes in a given graph, the shortest distance between
them is computed using an all-pairs shortest path algorithm [Cormen et al., 2001],
and these distances are used for mapping the vertices onto a k dimensional space
using MDS.
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6.1.3.2 Step (ii): Procrustes-Based Alignment of Vector Spaces
In step (ii), the algorithm aligns spaces S1 and S2, such that related vertices are
colocated in the new shared space, using the Procrustes algorithm [Gower, 1975;
Kendall, 1984; Schönemann, 1966]. Given two sets of points, the Procrustes algo-
rithm uses linear transformations to map one set of points onto the other set of
points. Procrustes has been applied in diverse domains including psychology
[Gower, 1975] and photogrammetry [Akca, 2003], where alignment of related but
different data sets is required. The orthogonal Procrustes problem [Schönemann,
1966] aims finding an orthogonal transformation of a given matrix into another one
in a way that minimizes transformation errors. More specifically, given matrices A
and B, both of which are n × k, the solution to the orthogonal Procrustes problem is
an orthogonal transformation T, such that the sum of squares of the residual matrix
E = AT − B is minimized. In other words, given the k × k square matrix S = ETE
(note that MT denotes the transpose of matrix M)

trace(S) =
k∑

i=1

sii =
n∑

i=1

k∑
j=1

e2
i j is minimized.

The extended Procrustes algorithm builds on this by redefining the residual ma-
trix as E = cAT + [11 . . . 1]TtT − B, where c is a scale factor, T is a k × k orthogonal
transformation matrix, and t is a k × 1 translation vector [Schoenemann and Car-
roll, 1970]. The general Procrustes problem [Gower, 1975] further extends these by
aiming to find a least-squares correspondence (with translation, orthogonal trans-
formation, and scaling) between more than two matrices.

Weighted extended orthogonal Procrustes [Goodall, 1991] is similar to extended
orthogonal Procrustes in that it uses an orthogonal transformation, scaling, and
translation to map points in one space onto the points in the other. However, unlike
the original algorithm, it introduces weights between the points in the two spaces.
Given two n × k matrices A and B, while the extended orthogonal Procrustes min-
imizes the trace of the term ETE, where E = cAT + [11 . . . 1]TtT − B, the weighted
extended orthogonal Procrustes minimizes the trace of the term Sw = ETWE, where
W is an n × n weight matrix: that is;

trace(Sw) =
k∑

i=1

swii =
n∑

i=1

n∑
h=1

k∑
j=1

wihei jehj

is minimum. Note that if the weight matrix, W, is such that ∀i wii = 1 and ∀i,h�=i wih =
0 (i.e., if the mapping is one-to-one and nonfuzzy), then this is equivalent to the
nonweighted extended orthogonal Procrustes mapping. On the other hand, when
∀i wii ∈ [0, 1] and ∀i,h�=i wih = 0, then we get

trace(Sw) =
k∑

i=1

swii =
n∑

i=1

k∑
j=1

wiie2
i j.

In other words, the mapping errors are weighted in the process. Consequently, those
points that have large weights (close to 1.0) will be likely to have smaller mapping
errors than those points that have lower weights (close to 0.0).
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(a) (b) (c)

Figure 6.1. (a) Node relabeling, (b) node deletion, and (c) node insertion.

Let us assume that we are given the mapping function, µ, between the nodes of
the two input graphs, G1 and G2; let us further assume that µ(vi, vj) ∈ [0, 1] and µ is
1-to-1. Then, µ can be used to construct a weight matrix, W, such that ∀i wii ∈ [0, 1]
and ∀i,h�=i wih = 0. This weight matrix can then be used to align the matrices A and
B, corresponding to the graphs G1 and G2, using the weighted extended orthogo-
nal Procrustes technique. When the mapping function µ is not 1-to-1, however, the
weighted extended orthogonal Procrustes cannot be directly applied. Candan et al.
[2007] introduce a further extension to the Procrustes technique to accommodate
many-to-many mappings between the vertices of the input graphs.

6.1.3.3 Steps (iii) and (iv): Alignment of Unmapped Vertices
and Similarity Computation
Once the transformations needed to align the two spaces, S1 and S2, are found, these
transformations are used to align unmapped vertices of graphs G1 and G2. Similari-
ties or distances of the unmapped vertices are then computed in the resulting aligned
space.

6.2 TREE MATCHING

In Section 3.3.3, we have seen that matching unordered trees can be very costly.
As in the case of approximate string and graph matching, many approximate tree
matching algorithms rely on primitive edit operations that can be used for trans-
forming one tree into another. These primitive operations, relabeling, node deletion,
and node insertion, are shown in Figure 6.1. The following three approximate tree
matching problems all are expressed using these primitive edit operations:

� Tree edit distance: Let γ() be a metric cost function associated with primitive
tree edit operations. Let T1 and T2 be two trees and let S be a sequence of edit
operations that transforms T1 into T2. The cost of the edit sequence, S, is the
sum of the costs of the primitive operations. Given this, the tree edit distance,
�T(T1, T2) is defined as

�T(T1, T2) = min
S takes T1 to T2

{γ(S)}.

� Tree alignment distance: The tree alignment distance, �a,T(T1, T2), between T1

and T2 is defined by considering only those edit sequences where all insertions
are performed before deletions.

� Tree inclusion distance: The tree inclusion distance, �i,T(T1, T2), between T1 and
T2 is defined by considering only insertions to tree T1. Conversely, T1 is included
in T2 if and only if T1 can be obtained from T2 by deleting nodes from T2.
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(a) (b) (c)

Figure 6.2. (a) Postorder numbering of the tree, (b) leftmost leaf under node t[4], and (c) the
substructure induced by the nodes t[1], t[2], and t[3].

Tai [1979] and [Shasha and Zhang, 1990; Zhang and Shasha, 1989] provide post-
order traversal-based algorithms for calculating the editing distance between or-
dered, node-labeled trees. Zhang et al. [1996] extend their work to edge-labeled
trees. They first show that the problem is NP-hard and then provide an algorithm for
computing the edit distance between graphs where each node has at most two neigh-
bors. Chawathe et al. provide alternative algorithms to calculate the edit distance be-
tween ordered node-labeled trees [Chawathe, 1999; Chawathe and Garcia-Molina,
1997]. Other research in tree similarity includes works by Farach and Thorup [1997],
Luccio and Pagli [1995], Myers [1986], and Selkow [1977]. In the following subsec-
tion, we present Shasha and Zhang’s algorithm for tree edit-distance computation
[Bille, 2005; Shasha and Zhang, 1995].

6.2.1 Tree Edit Distance

Ordered Trees
Given an ordered tree, T, we number its vertices using a left-to-right postorder

traversal: t[i] is the ith node of T during postorder traversal (Figure 6.2(a)).
Given two ordered trees T1 and T2, let M be a one-to-one, sibling-order and

ancestor-order preserving mapping from the nodes of T1 to the nodes of T2. Fig-
ure 6.3(a) shows an example mapping. In this example, nodes t1[2] and t1[3] in T1 and
nodes t2[3] and t2[4] in T2 are not mapped. Also, the labels of the mapped nodes t1[5]
and t2[5] are not compatible. This mapping implies a sequence of edit operations

(a) (b)

Figure 6.3. (a) A one-to-one, sibling-order and ancestor-order preserving mapping and (b) the
corresponding tree edit operations.
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(i) treedist(∅,∅) = 0;
(ii) For k = l(i) to i

(a) forestdist(T1[l(i)..k], T2) = forestdist(T1[l(i)..k − 1], T2) + γ(delete(t1[k]))

(iii) For h = l(j) to j
(a) forestdist(T1, T2[l(j)..h]) = forestdist(T1, T2[l(j)..h − 1]) + γ(insert(t2[h]))

(iv) For k = l(i) to i
(a) For h = l(j) to j

1. if l(k) = l(i) and l(h) = l(j) then
a. A = forestdist(T1[l(i)..k − 1], T2[l(j)..h]) + γ(delete(t1[k]))
b. B = forestdist(T1[l(i)..k], T2[l(j)..h − 1]) + γ(insert(t2[h]))
c. C = forestdist(T1[l(i)..k − 1], T2[l(j)..h − 1]) + γ(change(t1[k], t2[h]))
d. forestdist(T1[l(i)..k], T2[l(j)..h]) = min{A, B, C}
e. treedist(k, h) = forestdist(T1[l(i)..k], T2[l(j)..h])

2. else
a. A = forestdist(T1[l(i)..k − 1], T2[l(j)..h]) + γ(delete(t1[k]))
b. B = forestdist(T1[l(i)..k], T2[l(j)..h − 1]) + γ(insert(t2[h]))
c. C = forestdist(T1[l(i)..l(k) − 1], T2[l(j)..l(h) − 1]) + treedist(k, h)
d. forestdist(T1[l(i)..k], T2[l(j)..h]) = min{A, B, C}

(v) return(treedist(i,j))

Figure 6.4. Pseudocode for computing the edit distance, treedist(i, j), between T1 and T2; i
and j indicate the roots of T1 and T2, respectively.

where t1[2] and t1[3] are deleted from T1 and t2[3] and t2[4] are inserted. Further-
more, the sequence of edit operations needs to include a node relabeling operation
to accommodate the pair of mapped nodes with mismatched labels (Figure 6.3(b)).

Let us define the cost of the mapping M as the sum of all the addition, dele-
tion, and relabeling operations implied by it. In general, for any given mapping M
between two trees T1 and T2, there exists a sequence, S, of edit operations with a cost
equal to the cost of M. Furthermore, given any S, there exists a mapping M such that
γ(M) ≤ γ(S) (the sequence may contain redundant operations). Consequently, the
tree edit distance �T(T1, T2) can be stated in terms of the mappings between the trees:

�T(T1, T2) = min
M from T1 to T2

{γ(M)}.

The pseudocode for the tree edit distance computation algorithm is presented
in Figure 6.4. In this pseudocode, l(a) denotes the leftmost leaf of the subtree
under t[a] (Figure 6.2(b)). Also, given a ≤ b, T[a..b] denotes the substructure de-
fined by nodes t[a] through t[b] (Figure 6.2(c)). As was the case for string edit-
distance computation, this algorithm leverages dynamic programming to eliminate
redundant computations. Unlike the string case (where substructures of strings are
also strings), however, in the case of trees, the subproblems may need to be de-
scribed not as other smaller trees, but in terms of sets of trees (or forests). Figure 6.5
provides an overview of the overall process.

� Step (i) initializes the base case, treedist(∅,∅) = 0, that is, the edit distance be-
tween two empty trees.

� Steps (ii) and (iii) visit the nodes of the two trees in postorder (Figure 6.5(a)).
For each visited node, these steps compute the appropriate forestdist value (edit
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(a)

(b) (c)

(d) (e)

Figure 6.5. Building blocks of the tree edit distance computation process: (a) Post-order
traversal of the data; (b) Deletion of a node; (c) Insertion of a node; (d) l(k) = (i); and (e) l(k) �=
(i) (t[1] . . . t[4] define a forest).

distances between the forest defined by the node and the other tree) using the
forestdist values computed for the earlier nodes (Figures 6.5(b) and (c)).

� Step (iv) is the main loop where treedist values are computed in a bottom-up
fashion. This step involves a double loop that visits the nodes of the two trees in
a postorder manner (Figure 6.5(a)). For each pair, t1[k] and t2[h], of nodes the
forestdist and treedist values are computed using the values previously computed.

There are two possible cases to consider:
– In the first case (step (iv)((a))1), t1[k] and t2[h] define complete subtrees (Fig-

ure 6.5(d)). Thus, along with a forestdist value, a treedist value can also be
computed for this pair.

– In the other case (step (iv)((a))2), either t1[k] or t2[h] defines a forest (Fig-
ure 6.5(e)); thus only a forestdist value can be computed for this pair.

In both cases, three possible edit operations (corresponding to deletion, inser-
tion, and relabeling of nodes, respectively) are considered, and the operation
that results in the smallest edit cost is picked.

The running time of the preceding algorithm is O(|T1| × |T2| × depth(T1) ×
depth(T2)) (i.e., O(|T1|2 × |T2|2) in the worst case), and it requires O(|T1| × |T2|)
space. Klein [1998] presents an improvement that requires only O(|T1|2 × |T2| ×
log(T2)) run time.

Unordered Trees
The tree edit-distance problem is NP-hard for unordered trees [Shasha et al.,

1994]. More specifically the problem is MAX SNP-hard; that is, unless P=NP; there
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is no polynomial time approximation solution for the problem. On the other hand,
if the number of leaves in T2 is logarithmic in the size of the tree, then there is an
algorithm for solving the problem in polynomial time [Zhang et al., 1992].

6.2.2 Tree Alignment Distance

Because of its restricted nature, the tree alignment distance [Jiang et al., 1995]
has specialized algorithms that work more efficiently than the tree edit distance
algorithms. The algorithm presented by Jiang et al. [1995] has O(|T1| × |T2| ×
max degree(T1) × max degree(T2)) complexity for ordered trees. Thus, it is more ef-
ficient, especially for trees with low degrees.

Unlike the tree edit-distance problem, however, the alignment distance has ef-
ficient solutions even for unordered trees. For example, the algorithm presented
by Jiang et al. [1995] can be modified to run in O(|T1| × |T2|) for unordered, degree-
bounded trees. When the trees have arbitrary degree, then the unordered alignment
is still NP-hard.

6.2.3 Tree Inclusion Distance

The special case of the problem where we want to decide whether there is an em-
bedding of T1 in T2 (known as the tree inclusion problem [Kilpelainen and Mannila,
1995]) has a solution with O(|T1| × |T2|) time and space complexities [Kilpelainen
and Mannila, 1995]. An alternative solution to the problem, with O(num
leaves(T1)×|T2|) time and O(num leaves(T1)×min{max degree(T2), num leaves(T2)})
space complexities, may work more efficiently for certain types of trees [Chen,
1998]. The problem is NP-complete for unordered trees [Kilpelainen, 1992].

6.2.4 Other Special Cases

There are various other special cases of the ordered tree edit distance problem that
often have relatively cheaper solutions.

Top-Down Distance
In the top-down edit distance problem [Nierman and Jagadish, 2002; Yang,

1991], the mapping M from T1 to T2 is constrained such that if t1[i1] is mapped to
t2[j1], then the parents of t1[i1] and t2[j1] are also mapped to each other. In other
words, insertions and deletions are not allowed for the parts of the trees that are
mapped: any unmapped node (i.e., node insertion or deletion) causes the subtree
rooted at this node to be removed from the mapping.

Because, when node insertions and deletions are eliminated, the tree mapping
process does not need to consider forests, the top-down edit distance problem has an
efficient O(|T1| × |T2|) solution (in the algorithm presented in Figure 6.6, the value
of γ(change(t1[i], t2[j])) is considered only once for each pair of tree nodes). The
space complexity of the algorithm is O(|T1| + |T2|).

Isolated-Subtree Distance
In the isolated-subtree distance problem [Tai, 1979], the mapping M from T1 to

T2 is constrained such that if t1[i1] is mapped to t2[j1] and t1[i2] is mapped to t2[j2],
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(i) Let m denote the number of children of t1[i];
(ii) Let n denote the number of children of t2[j];

(iii) For u = 0 to m
(a) M[u, 0] = 0

(iv) For v = 0 to n
(a) M[0, v] = 0

(v) For u = 1 to m
(a) For v = 1 to n

1. M[u, v] = min




M[u, v − 1],
M[u − 1, v],
M[u − 1, v − 1] + topdowndist(t1[i].child(u), t2[j].child(v))




(vi) return(M[m, n] + γ(change(t1[i], t2[j])))

Figure 6.6. Pseudocode for computing the top-down tree edit distance, topdowndist(i, j),
between T1 and T2; i and j indicate the roots of T1 and T2, respectively.

then the subtree rooted under t1[i1] is to the left of t1[i2] if and only if the subtree
rooted under t2[j1] is to the left of t2[j2]. In other words, isolated-subtree mappings
map disjoint subtrees to disjoint subtrees. The isolated-subtree distance problem is
known to have an O(num leaves(T1) × |T2|) time solution [Tai, 1979].

Note that an isolated-subtree mapping from T1 to T2 is also an alignment map-
ping from T1 to T2; moreover, any top-down mapping M is also an isolated-subtree
mapping [Wang and Zhang, 2001].

Bottom-Up Distance
A bottom-up mapping is defined as an isolated-subtree mapping in which the

children of the mapped nodes are also in the mapping [Valiente, 2001; Vieira
et al., 2009]. Consequently, the largest bottom-up mappings between a given pair
of trees correspond to the largest common forest, consisting of complete subtrees
between these two trees. Valiente [2001] shows that the bottom-up distance be-
tween two rooted trees, T1 and T2, can be computed very efficiently, in linear time
O(|T1| + |T2|), for both ordered and unordered trees. Note that the bottom-up dis-
tance coincides with the top-down distance only for trees that are isomoporhic
[Valiente, 2001].

6.2.5 Tree Filtering

As described earlier, unordered tree matching is an NP-complete problem. Thus, for
applications where the order between siblings is not relevant, alternative matching
schemes that can handle unordered trees efficiently are needed. One approach to
the problem of unordered tree matching is to use specialized versions of the graph-
matching heuristics, such as GraphGrep, graph histograms, graph probing, and graph
alignment techniques. For example, Candan et al. [2007] present a tree alignment
technique based on known mappings between nodes of two trees, similar to the one
we discussed in Section 6.1.3. In this section, we do not revisit these techniques.
Instead, we introduce other techniques that approach the tree-matching problem
from different angles.
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6.2.5.1 Cousin Set Similarity
Shasha et al. [2009] propose to compare unordered trees using a cousin set similar-
ity metric. According to this approach sibling is defined as a cousin of degree 0, a
nephew is a cousin of degree 0.5, a first cousin is a cousin of degree 1, and so on.
Given two trees and the corresponding sets of pairs of cousins up to a fixed degree,
the cousin distance metric is computed by comparing the two sets.

6.2.5.2 Path Set Similarity
Rafiei et al. [2006] describe the structure of a tree as a set of paths. In particular,
it focuses on root paths, each of which starts from the root and ends at a leaf. The
path set of the tree is then defined as the union of its root paths and all subpaths of
the root paths. Each path in the path set has an associated frequency, which reports
how often the path occurs in the given tree. Two trees are said to be similar if a large
fraction of the paths in their path sets are the same. Given a tree with n root paths of
maximum length l, there are nl(l+1)

2 subpaths in the path set and thus the comparison
algorithm runs in O(nl2).

6.2.5.3 Time Series Encoding
Flesca et al. [2005] propose to leverage an alternative encoding of the ordered trees
to support comparisons. Each node label, t ∈ �, in the label alphabet is mapped into
a real number, φ(t), and the nodes of the given tree, T, are considered in a preorder
sequence. The resulting sequence of tags of the nodes is then encoded as a series of
numbers. Alternative encodings include

enqvalue(T) = φ(t1), φ(t2), . . . , φ(tn)

and

encprefix sum(T) = φ(t1), φ(t1) + φ(t2), . . . ,
∑
k≤n

φ(tk).

Given such an encoding, the distance between the two given trees, T1 and T2, is
computed as the difference between the discrete Fourier transforms (DFTs) of the
corresponding encodings:

�(T1, T2) = �Euclidean(DFT(enc(T1)), DFT(enc(T2))).

6.2.5.4 String Encodings
An alternative to time-series encoding of the trees is to encode a labeled tree in
the form of a string (i.e., symbol sequence), which can then be used for computing
similarities using string comparison algorithms, such as string edit distance (Sec-
tion 3.2.2), the compression-based sequence comparison scheme introduced in Sec-
tion 5.5.5, or the Ziv-Merhav cross-parsing [Ziv and Merhav, 1993] algorithm, intro-
duced in Section 5.5.6.

There are many sequence-based encodings of ordered trees. Simplest of these
are based on preorder, postorder and in-order traversals of the trees. A common
shortcoming of these, on the other hand, is that they are not one-to-one. In partic-
ular, the same sequence of labels can correspond to many different trees. Thus, the
following encodings are more effective when used in matching algorithms.
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Prüfer Encoding
Prüfer [1918] proposed a technique for creating a sequence from a given tree,

such that there are no other trees that can lead to the same sequence. Let us be
given a tree T of n nodes, where the nodes are labeled with symbols from 1 to n. A
Prüfer sequence is constructed by deleting leaves one at a time, always picking the
node with the smallest label, and recording the label of the parent of the deleted
node. The process is continued until only two nodes are left. Thus, given a tree with
n nodes, we obtain a sequence of length n − 2 consisting of the labels of the parents
of the deleted nodes. Prüfer showed that the original tree T can be reconstructed
from this sequence.

Given an ordered tree T where the labels come from the alphabet �, a simi-
lar process can be used to create a corresponding sequence. In this case, the post-
order traversal value of each tree node is associated to that node as a metalabel.
The Prüfer node elimination process is followed on these metalabels, but both
the actual node labels (from �) and the metalabels are used in creating the se-
quence [Rao and Moon, 2004]; that is, each symbol in the sequence is a pair in � ×
{1, . . . , n}.

Note that although this process ensures that a unique sequence is constructed
for each labeled tree, the reverse is not true: the sequence contains only non-
leaf node labels and, thus, labels of the leaf nodes cannot be recovered from the
corresponding sequence. Leaves can be accounted for by separately storing label
and postorder number of every leaf node. Alternatively, the Prüfer sequence can
be constructed by using as symbols quadruples in � × {1, . . . , n} × � × {1, . . . , n},
which record information about each deleted node along with the corresponding
parent.

Other Encodings
Helmer [2007] proposed to leverage the compression-based sequence compar-

ison scheme introduced in Section 5.5.5 to compute the distance between two or-
dered trees. More specifically, Helmer [2007] converts each ordered tree into a text
document using one of four different mechanisms:

� In the first approach, given an input tree, the labels of the nodes are concate-
nated in a postorder traversal of the tree.

� In the second approach, parent labels are appended to the node labels during
the traversal.

� In the third approach, for each node, the entire path from the root to this node
is prepended.

� In the fourth approach, all children of a node are output as one block and
thereby all siblings occur next to each other.

The resulting documents are then compressed using Ziv-Lempel encoding [Ziv and
Lempel, 1977], and the normalized compression distance between the given trees
is computed and used as the tree distance. Alternatively, the Ziv-Merhav cross-
parsing [Ziv and Merhav, 1993] algorithm introduced in Section 5.5.6 can also be
used to compare the resulting documents.
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Figure 6.7. (a) Ancestor-supplied context and (b) descendant-supplied context for node dif-
ferentiation.

6.2.5.5 Propagation Vector-Based Tree Comparison
The propagation vectors for trees (PVT) approach [Cherukuri and Candan, 2008] re-
lies on a label propagation process for obtaining tree summaries. It primarily lever-
ages the following observations:

� A node in a given hierarchy clusters all its descendant nodes and acts as a context
for the descendant nodes (Figure 6.7(a)).

� Similarly, the set of descendants of a given node may also act as a context for
the node (Figure 6.7(b)), differentiating the node from others that are similarly
labeled.

Consequently, one way to differentiate nodes from each other is to infer the con-
texts imposed on them by their neighbors, ancestors, and descendants in the given
hierarchy, enrich (or annotate) the nodes using vectors representing these contexts,
and compare these context vectors along with the label of the node (Figure 6.8).

Mapping a tree node into a vector (representing the node’s relationship to all
the other nodes in the tree) requires a way to quantify the structural relationship
between the given node and the others in the tree. Rada et al. [1989], for example,
propose that the distance between two nodes can be defined as the number of edges
on the path between two nodes in the tree. This approach, however, ignores vari-
ous structural properties, including variations of the local densities in the tree. To
overcome this shortcoming, R. Richardson and Smeaton [1995] associate weights to
the edges in the tree: the edge weight is affected both by its depth in the tree and
by the local density in the tree. To capture the effect of the depth, Wu and Palmer
[1994] estimate the distance between two nodes, c1 and c2, in a tree by counting the
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Figure 6.8. Mapping of the nodes of a tree onto a multidimensional space: (a) A sample tree,
(b) Vector space defined by the node labels.
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Figure 6.9. (a) The input hierarchy, (b) initial concept vectors and propagation degrees (α),
(c) concept vectors and propagation degrees after the first iteration, and (d) status after the
second iteration.

number of edges between them, and normalizing this value using the number of
edges from the root of the tree to the closest common ancestor of c1 and c2.

CP/CV [Kim and Candan, 2006] was originally developed to measure the seman-
tic similarities between terms/concepts in a given taxonomy (concept tree). Given
a user-supplied concept tree, C = H(N, E) with c concepts, it maps each node into
a vector in the concept space with c dimensions. These concept vectors are con-
structed by propagating concepts along the concept tree (Figure 6.9). How far and
how much concepts are propagated are decided based on the shape of the tree
and the structural relationships between the tree nodes. Unlike the original use
of CP/CV (which is to compare the concept nodes in a single taxonomy with each
other), PVT uses the vectors associated to the nodes of two trees to compare the
two trees themselves. This difference between the two usages presents a difficulty:
whereas the vectors corresponding to the nodes of a single tree all have the same di-
mensions (i.e., they are all in the same vector space), this is not necessarily the case
for vectors corresponding to nodes from different trees. PVT handles the mismatch
between the dimensions of the vector spaces corresponding to two different trees
being compared by mapping them onto a larger space containing all the dimensions
of the given two spaces. A second difficulty that arises when comparing trees is that,
unlike a taxonomy where each concept is unique, in trees, multiple tree nodes may
have identical labels. To account for this, PVT combines the weights of all nodes
with the same label under a single combined weight: let S be a set of tree nodes with

the same label; the combined weight, wS, is computed as wS =
√∑

ni∈S wni
2. Note

that after the collapse of the dimensions corresponding to the identically labeled
nodes in S, the magnitude of the new vector remains the same as that of the original
vector. Thus the original vector is transformed from the space of tree nodes to the
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space of node labels, but keeping its energy (or the distance from the origin, O) the
same.

In order to compare two trees using the sets of vectors corresponding to their
nodes, one needs to decide which vectors from one tree will be compared to which
vectors from the other. In order to reduce the complexity of the process, PVT relies
on the special position of the root node in the trees. Because the vector correspond-
ing to the root node represents the context provided to it through all its descendants
(i.e., the entire tree), the vector representation for the root node could be consid-
ered as a structural summary for the entire tree. Note that, for a given tree, the
PVT summary (i.e., the vector corresponding to the root node) consists of only the
unique labels in the tree.

The PVT summary vectors, �v1 and �v2, of two trees can be compared using differ-
ent similarity/difference measures: cosine similarity (measuring the angles between
the vectors),

simcosine( �v1, �v2) = cos( �v1, �v2),

average KL divergence (which treats the vectors as probability distributions and
measures the so-called relative entropy between them),

�KL( �v1, �v2) + �KL( �v2, �v1)
2

= 1
2

n∑
i=1

v1ilog
v1i

v2i
+ v2ilog

v2i

v1i
,

and intersection similarity (which considers to what degree �v1 and �v2 overlap along
each dimension),

simintersection( �v1, �v2) =
∑n

i=1 min(v1i, v2i)∑n
i=1 max(v1i, v2i)

are candidates. Cherukuri and Candan [2008] showed that, in general, the KL-
divergence measure performs best in helping cluster similar trees together.

6.3 LINK/STRUCTURE ANALYSIS

So far, in this chapter, we have concentrated on problems related to the manage-
ment of graph- and tree-structure data objects. In particular, we have assumed that
each data object has a graph or tree structure and that we need to find a way to
compare these structures for querying and search. In many other applications of
graph- and tree-structured data, however, the main challenge is not comparing two
graphs/trees to each other, but to understand the structure of these graphs/trees to
support efficient and effective access to their constituent nodes.

As we see in this section, similarly to principal component analysis (PCA, Sec-
tion 4.2.6) and latent semantic indexing (LSI, Section 4.4.1.1), structural analysis of
graphs also relies on eigenvector analysis. The major difference from PCA and LSI
is that, instead of the object-feature or document-keyword matrices, for link analysis
the adjacency matrices of the underlying graphs are used as input.

6.3.1 Web Search

As mentioned previously in Section 3.5.4, there are many applications requiring
such structural analysis of graphs. Consider, for example, the World Wide Web,
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where the Web can be represented as a (very large) graph, G(V, E), of pages (V)
connected to each other through edges (E) representing the hyperlinks. Because
each edge in the Web graph is essentially a piece of evidence that the author of the
source page found the destination page to be relevant in some context, many sys-
tems and techniques have been proposed to utilize links between pages to determine
the relative importances of the pages or degrees of page-to-page associations [Brin
and Page, 1998; Candan and Li, 2000; Gibson et al., 1998; Kleinberg, 1999; Li and
Candan, 1999b; Page et al., 1998].

Given a query q (often described as a set of keywords), web search involves iden-
tifying a subset of the nodes that relate to q. Although web search queries can be
answered simply by treating each page as a separate document and indexing it using
standard IR techniques, such as inverted indexes, early web search systems that re-
lied on this approach failed quickly. The reason for this is that web search queries are
often underspecified (users provide only up to two or three keywords), and the Web
is very large. Consequently, these systems could not filter out the not-so-relevant
pages from important pages and burdened users with the task of sifting through a
potentially large number of matches to find the few that are most useful to them.

6.3.1.1 Hubs and Authorities
An edge in the Web graph often indicates that the source page is directing or refer-
ring the user to the destination page; thus, each edge between two pages can be used
to refer that these two documents are related to each other. Cocitation relationship,
where two edges point to the same destination, and social filtering, where two pages
are linked by a common page, indicate topical relationships between sources and
destinations, respectively. More generally, an m : n bipartite core of the Web graph
consists of two disjoint sets, Vi and Vj, of vertices such that there is an edge from each
vertex in Vi to each vertex in Vj, |Vi| = m, and |Vj| = n. Such bipartite cores indicate
close relationships between groups of pages. We discuss properties of bipartite cores
of graphs in Section 6.3.5.

One of the earlier link-analysis algorithms, HITS [Gibson et al., 1998; Kleinberg,
1999], recognized two properties of web pages that can be useful in the context of
web search:

� Hubness: A hub is essentially a web page that can be used as a source from which
one can locate many good web pages on a given topic.

� Authoritativeness: An authority, on the other hand, is simply a web page that
contains good content on a topic.

A web page can be a good hub, a good authority, or neither. Given a web search
query, the HITS algorithm tries to locate good authorities related to the query to
help prevent poor pages from being returned as results to the user. HITS achieves
this by further recognizing that

� a good hub must be pointing to a lot of good authorities, and
� a good authority must be pointed to by a lot of good hubs.

This observation leads to an algorithm that leverages mutual reinforcement between
hubs and authorities in the Web. In particular, given a keyword query, q,

(i) HITS first uses standard keyword search to identify a set of candidate web
pages relevant for the query.
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(ii) It then creates a web graph, Gq(Vq, Eq) consisting of these core pages as
well as other pages that link and are linked by this core set.

(iii) Next, in order to measure the degrees of hubness and authoritativeness of
the pages on the Web, HITS associates a hubness score, h(p), and an au-
thority score, a(p), to each page, p. Note that, based on the earlier observa-
tion that hubs and authorities are mutually enforcing, HITS mathematically
relates these two scores as follows: given a page, p ∈ Vq, let in(p) ⊆ Vq de-
note the pages that link to p and out(p) ⊆ Vq denote the set of pages that
are linked by p; then we have

∀pi ∈ Vq


a(pi) =

∑
p j∈in(pi)

h(p j)


 and


h(pi) =

∑
p j∈out(pi)

a(p j)


 .

(iv) Finally, HITS solves these mathematical equations to identify hubs and au-
thority scores of the pages in Vq and selects those pages with high authority
scores to be presented to the user as answers to the query, q.

Bharat and Henzinger [1998] refer to this process as topic distillation.
One way to solve the foregoing set of equations is to rewrite them in matrix

form. Let m denote the number of pages in vq and E be an m× m adjacency matrix,
where E[i, j] = 1 if there is an edge 〈pi, p j〉 ∈ Eq and E[i, j] = 0 otherwise. Let �h be
the vector of hub scores and �a be the vector of authority scores. Then, we have

�a = ET�h and �h = E�a.

Moreover, we can further state that

�a = ETE�a and �h = EET�h.

In other words, �a is the eigenvector of ETE with the eigenvalue 1, and �h is the
eigenvector of EET with the eigenvalue 1 (see Section 4.2.6 for eigenvectors and
eigenvalues).

As discussed in Section 3.5.4, when the number of pages is small, it is relatively
easy to solve for these eigenvectors. When the number of pages is large, however,
approximations may need to be used. One solution, which is often effective in prac-
tice, is to assign random initial hub and authority scores to each page and iteratively
apply the foregoing equations to compute new hub and authority scores (from the
old ones). This iterative process is repeated until the scores converge (the differ-
ences between old and new values become sufficiently small). In order to prevent it-
erations from resulting in ever-increasing authority and hub scores, HITS maintains
an invariant that ensures that, before each iteration, the scores of each type are nor-
malized such that

∑
p∈Vq

h2(p) = 1 and
∑

p∈Vq
a2(p) = 1. If the process is repeated

infinitely many times, the hub and authority scores will converge to the correspond-
ing values in the hub and authority eigenvectors, respectively. In practice, however,
about twenty iterations are sufficient for the largest scores in the eigenvectors to
become stable [Gibson et al., 1998; Kleinberg, 1999].

Note that a potential problem with the direct application of the foregoing tech-
nique for web search is that, although the relevant web neighborhood (Gq) is
identified using the query, q, the neighborhood also contains pages that are not
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necessarily relevant to the query, and it is possible that one of these pages will be
identified as the highest authority in the neighborhood. This problem, where au-
thoritative pages are returned as results even if they are not directly relevant to the
query, is referred to as topic drift. Such topic drift can be avoided by considering the
content of the pages in addition to the links in the definition of hubs and authorities:

∀pi ∈ Vq


a(pi) =

∑
p j∈in(pi)

wj,ih(p j)


 and


h(pi) =

∑
p j∈out(pi)

wi,ja(p j)


 ,

where wi,j is a weight associated to the edge between pi and p j (based on content
analysis) within the context of the query q.

6.3.1.2 PageRank
A second problem with the preceding approach to web search is that, even for rela-
tively small neighborhoods, the iterative approach to computing hub and authority
scores in query time can be too costly for real-time applications.

In order to avoid query-time link analysis, the PageRank [Brin and Page, 1998;
Page et al., 1998] algorithm performs the link analysis as an offline process indepen-
dently of the query. Thus, the entire web is analyzed and each web page is assigned
a pagerank score denoting how important the page is based on structural evidence.
At the query time, the keyword scores of the pages are combined with the pagerank
scores to identify the best matches by content and structure.

The PageRank algorithm models the behavior of a random surfer. Let G(V, E)
be the graph representing the entire web at a given instance. The random surfer is
assumed to navigate over this graph as follows:

� At page p with probability β the random surfer follows one of the available links:
– If there is at least one outgoing hyperlink, then the surfer jumps from p to one

of the pages linked by p with uniform probability.
– If there is no outgoing hyperlink, then the random surfer jumps from p to a

random page.
� Occasionally, with probability 1 − β, the surfer decides to jump to a random web

page.

Let the number of web pages be N (i.e., |V| = N). This random walk (see Sec-
tion 3.5.4) over G can be represented with a transition matrix

T = βM + (1 − β)
[

1
N

]
N×N

,

where
[ 1

N

]
N×N is an N-by-N matrix where all entries are 1

N and M is an N-by-N
matrix, where

M[i, j] =




1
|out(pi)| , if there is an edge from pi to p j,

1
N , if |out(pi)| = 0,

0, if |out(pi)| �= 0 but there is no edge from pi to p j.




Given the transition matrix, T, the pagerank score of each page, p, is defined as
the percentage of the time the random surfer spends on visiting p. As described in
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Section 3.5.4, the components of the first eigenvector of T will give the portion of
the time spent at each node after an infinite run; that is, (similarly to HITS) the
components of this eigenvector can be used as the pagerank scores of the pages
(denoting how important the page is based on link evidence).

6.3.1.3 Discovering Page Associations with Respect to a Given
Set of Seed Pages
Let us assume that we are given a set, S, of (seed) pages and asked to create a
summary of the Web graph with respect to the pages in S. In other words, we need
to identify pages in the Web that are structurally critical with respect to S. Candan
and Li [2000] observe that, given a set, S, of seed pages,

� a structurally critical page must be close to the pages in S, and
� it must also be highly connected to the pages in S.

A page with high overall connectivity (i.e., more incoming links and outgoing links)
is more likely to be included in more paths. Consequently, such a page is more likely
to be ranked higher according to the foregoing criteria. This is consistent with the
principle of topic distillation discussed earlier. On the other hand, a page with a high
connectivity but far away from the seed pages may be less significant for reasoning
about the associations than a page with low connectivity but close to the seed pages.
A page that satisfies both of the foregoing criteria (i.e., near seed URLs and with
high connectivity) would be a critical page with respect to the seeds in S.

Based on the preceding observation, Candan and Li [2000] first calculate for each
page a penalty that reflects the page’s overall distance from the seed pages. Because
a page with high penalty is less likely to be critical with respect to S, each outgoing
link from page p is associated with a weight inversely proportional to the destination
page’s penalty score. By constraining the sum of all weights of the outgoing links
from p to be equal to 1.0, Candan and Li [2000] create a random walk graph and
show that the primary eigenvector of the transition matrix corresponding to this
graph can be used to pick the structurally critical pages that can then be used to
construct a map connecting the pages in S [Candan and Li, 2002].

6.3.2 Associative Retrieval and Spreading Activation

As we have seen, given a data collection modeled as a graph, understanding associ-
ations between the nodes of this graph can be highly useful in creating summaries
of these graphs with respect to a given set of seed nodes. Researchers have also no-
ticed that such associations can also be used to improve retrieval, especially when
the features of the objects are not sufficient for purely feature-based (or content-
based) retrieval [Huang et al., 2004; Kim and Candan, 2006; Salton and Buckley,
1988a]. Intuitively, in these associative retrieval schemes, given a graph representa-
tion of the data (where the nodes represent objects and edges represent certain –
transitive – relationships between these objects), first pairwise associations between
the nodes in the graph are discovered; and then these discovered associations
are used for sharing features among highly associated data nodes. Consequently,
whereas originally the features of the nodes may be too sparse to support effective
retrieval, after the feature propagation the nodes may be more effectively queried.
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For example, in Section 6.2.5.5, we have seen a use of the feature-sharing approach
in improving retrieval of tree-structured data: whereas originally the label of the
root of the tree is not sufficient for similarity-based search, after label propagation
in the tree using the CP/CV propagation technique [Kim and Candan, 2006], the
root of the tree is sufficiently enriched in terms of labels to support efficient and
effective tree-similarity search.

Most of the existing associative-retrieval techniques are based on the spread-
ing activation theory of the semantic memory [Collins and Loftus, 1975], where the
memory is modeled as a graph: when some of the nodes in the graph are activated
(for example, as a result of an observation), spreading activation follows the links of
the graph to iteratively activate other nodes that can be reached from these nodes.
These activated nodes are remembered based on the initial observations.

Note that, when the iterative activation process is unconstrained, all nodes reach-
able from the initial nodes will eventually be activated. Different spreading acti-
vation algorithms regulate and constrain the amount of spreading in the graph in
different ways. Kim and Candan [2006], for example, regulate the degree of prop-
agation based on the depth and density of the nodes in a given hierarchy. Candan
and Li [2000], which we discussed in Section 6.3.1.3, on the other hand, regulate the
degree of activation based on distance from the seeds as well as the degree of con-
nectivity of the Web pages. In addition, the spreading activation process is repeated
until certain predetermined criteria are met. For example, because its goal is to in-
form all nodes in a given hierarchy of the content of all other nodes, in theory the
CP/CV [Kim and Candan, 2006] algorithm continues the process until all nodes in
the given hierarchy have had chance to affect all other nodes. In practice, however,
the number of iterations required to achieve a stable distribution is relatively small.
Most algorithms, thus, constrain the activation process in each step in such a way
that only a small subset of the nodes in the graph are eventually activated.

Note that the algorithms previously mentioned [Candan and Li, 2000; Kim and
Candan, 2006] leverage certain domain-specific properties of the application do-
mains in which they are applied to improve the effectiveness of the spreading
process. In the rest of this section, we discuss three more generic spreading acti-
vation techniques: (a) the constrained leaky capacitor model [Anderson, 1983b],
(b) the branch-and-bound [Chen and Ng, 1995], and the Hopfield net approach
[Chen and Ng, 1995].

6.3.2.1 Constrained Leaky Capacitor Model
Let G(V, E) be a graph, and let S be the set of starting nodes. At the initialization
step of the constrained leaky capacitor model for spreading activation [Anderson,
1983b], two vectors are created:

� A seed vector, �s, where each entry corresponds to a node in the graph G and all
entries of the vector, except for those that correspond to the starting nodes are
set to 0; those entries that are corresponding to the starting nodes in S are set
to 1.

� An initial activation vector, �d0, which captures the initial activation levels of all
the nodes in G: since no node has been activated yet, all entries of the vector are
initialized to 0.
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The algorithm also creates an adjacency matrix, G, corresponding to the graph G
and a corresponding activation control matrix, M, such that

M = (1 − λ)I + αG.

Here, λ is the amount of decay of the activation of the nodes at each iteration, and
α is the efficiency with which the activations are transmitted between neighboring
nodes. Given M, at each iteration, the algorithm computes a new activation vector
using a linear transformation:

�dt = �s + M �dt−1.

Often, only a fixed number of nodes with the highest activation levels keep their
activation levels; activation levels of all others are set back to 0. The algorithm ter-
minates after a fixed number of iterations or when the difference between �dt and
�dt−1 becomes sufficiently small. The threshold can be constant, or to speed up con-

vergence, it can be further tightened with increasing iterations.

6.3.2.2 Hopfield Net Spreading Activation
Structurally, the Hopfield net based spreading activation algorithm [Chen and Ng,
1995] is very similar to the constrained leaky capacitor model just described. How-
ever, instead of a spreading strategy based on linear transformations, the Hopfield
net uses sigmoid transformations. In this scheme, at the initialization step only one
vector is created:

� An initial activation vector, �d0, where only those entries that are corresponding
to the starting nodes in S are set to 1 and all others are set to 0.

Once again, the algorithm creates an activation control matrix, M, where the entry
M[i, j] is the weight of the link connecting node vi of the graph to node vj. At each it-
eration, the activation levels are computed based on the neighbors’ activation levels
as follows:

�dt[j] = f


∑

vi∈V

M[i, j] �dt−1[i]


 ,

where f() is the following nonlinear transformation function:

f(x) = 1

1 + e
θ1−x
θ2

.

Here θ1 and θ2 are two control parameters that are often emprically set.
Once again, after each iteration, often only a fixed number of nodes with the

highest activation levels keep their activation levels. Also, the algorithm terminates
after a fixed number of iterations or when the difference between �dt and �dt−1 be-
comes sufficiently small.

6.3.2.3 Branch-and-Bound Spreading Activation
The branch-and-bound algorithm [Chen and Ng, 1995] is essentially an alternative
implementation of the matrix multiplication approach used by the constrained leaky
capacitor model. In this case, instead of relying on repeated matrix multiplications
which do not distinguish between highly activated and lowly activated nodes in
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computations, the activated nodes are placed into a priority queue based on their ac-
tivation levels, and only the high-priority nodes are allowed to activate their neigh-
bors. This way, most of the overall computation is focused on highly activated nodes
that have high spreading impact. In this algorithm, first

� an activation vector, �d0, where only those entries that are corresponding to the
starting nodes in S are set to 1 and all others set to 0, is created; and

� then, each node vi ∈ V is inserted into a priority queue based on the correspond-
ing activation level, �d0[i].

The algorithm also creates an activation control matrix, M.
At each iteration, the algorithm first sets �dt = �dt−1. Then, the algorithm picks a

node, vi, with the highest current activation level from the priority queue, and for
each neighbor, vj, of vi, it computes a new activation level:

�dt[j] = �dt−1[j] + M[i, j] �dt−1[i].

All the nodes whose activation scores changed in the iteration are removed from
the priority queue and are reinserted with their new weights.

In many implementations, the algorithm often terminated after a fixed number
of iterations.

6.3.3 Collaborative Filtering

Another common use of link analysis is the collaborative filtering applica-
tion [Brand, 2005; Goldberg et al., 1992], where analysis of similarities between in-
dividuals’ preferences is used for predicting whether a given user will prefer to see
or purchase a given object or not. Although the collaborative filtering approach to
recommendations dates from the early 1990s [Goldberg et al., 1992], its use and im-
pact greatly increased with the widespread use of online social networking systems
and e-commerce applications, such as Amazon [Amazon] and Netflix [Netflix].

In collaborative filtering, we are given a bipartite graph, G(Vu, Vo, E), where

� Vu is a set of individuals in the system.
� Vo is the set objects in the data collection.
� E is the set of edges between users in Vu and objects in Vo denoting past access/

purchase actions or ratings provided by the users. In other words, the edge
〈ui, oj〉 ∈ E indicates that the user ui declared his preference for object oj through
some action, such as purchasing the object oj.

In addition, each user ui ∈ Vu may be associated with a vector �ui denoting any meta-
data (e.g., age, profession) known about the user ui. Similarly, each object oj ∈ Vo

may be associated with a vector �oj describing the content and metadata (e.g., title,
genre, tags) of the object oj.

Generating recommendations through collaborative filtering is essentially a clas-
sification problem (see Chapter 9 for classification algorithms): we are given a set
of preference observations (the edges in E) and we are trying to associate a “pre-
ferred” or “not preferred” label or a rating to each of the remaining user-object
pairs (i.e., (Vu × Vo) − E). Relying on the assumption that similar users tend to
like similar objects, collaborative filtering systems leverage the graph G(Vu, Vo, E)
and the available user and object vectors to discover unknown preference
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relationships among users and objects. Here, similarity of two users, ui and uk,
may mean similarity of the metadata vectors, �ui and �uk, as well as the similar-
ity of their object preferences (captured by the overlap between the destinations,
out(ui) and out(uk), of the outgoing edges from ui and uk in the graph). In a parallel
manner, similarity of the objects, oj and ol, may be measured through the similar-
ity of content/metadata vectors, �oj and �ol, as well as the similarity of the sets of
users accessing these objects (i.e., sources, in(oj) and in(ol), of incoming edges to oj

and ol).
We discuss the collaborative filtering–based recommendation techniques in

more detail in Section 12.8.

6.3.4 Social Networking

Online social networking gained recent popularity with the emergence of web-based
applications, such as Facebook [Facebook] and LinkedIn [LinkedIn], that help bring
together individuals with similar backgrounds and interests. These social network-
ing applications are empowering for their users, not only because they can help users
maintain their real-world connections in a convenient form online, but also because
social networks can be used to discover new, previously unknown individuals with
shared interests. The knowledge of individuals with common interests (declared ex-
plicitly by the users themselves or discovered implicitly by the system through social
network analysis) can also be used to improve collaborative feedback based rec-
ommendations: similarities between two individuals’ preferences can be used for
predicting whether an object liked by one will also be liked by the other or not.
Moreover, if we can analyze the network to identify prominent or high-prestige
users who tend to affect (or at least reflect) the preferences of a group of users,
we may be able to fine-tune the recommendations systems to leverage knowledge
about these individuals [Shardanand and Maes, 1995].

A social network is essentially a graph, G(V, E), where V is a set of individuals
in the social network and E is the set of social relationships (e.g., friends) between
these individuals [Wasserman et al., 1994].

Because their creation processes are often subject to the preferential-attachment
effect, where those users with already large numbers of relationships are more likely
to acquire new ones, most social networks are inherently scale-free (Section 6.3.5).
This essentially means that, as in the case of the Web graphs, social network graphs
can be analyzed for key individuals (who act as hubs or authorities) in a given con-
text. More generally though, social networks can also be analyzed for various social
properties of the individuals or groups of individuals, such as prestige and promi-
nence (often measured using the authority scores obtained through eigen analysis),
betweenness (whether deleting the node or the group of nodes would disconnect
social network graph), and centrality/cohesion (quantified using the clustering coef-
ficient that measures how close to a clique a given node and its neighbors are; see
Section 6.3.5). The social network graph can also be analyzed for locating strongly
connected subgroups and cliques of individuals (Section 8.2). As in the case of web
graphs, given a group of (seed) individuals in this network, one can also search for
other individuals that might be structurally related to this group. An extreme ver-
sion of this analysis is searching for individuals that are structurally equivalent to
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each other; this is especially useful in finding very similar (or sometimes duplicate)
individuals in the network [Herschel and Naumann, 2008; Yin et al., 2006, 2007].

6.3.5 The Power Law and Other Laws That Govern Graphs

In the rest of this section, we see that there are certain laws and patterns that seem
to govern the shape of graphs in different domains. Understanding of these patterns
is important, because these can be used not only for searching for similar graphs,
but also for reducing the sizes of large graphs for more efficient processing and in-
dexing. Graph data reduction approaches exploit inherent redundancies in the data
to find reduction strategies that preserve statistical and structural properties of the
graphs [Candan and Li, 2002; Leskoec et al., 2008; Leskovec and Faloutsos, 2006].
Common approaches involve either node or edge sampling on the graph or graph
partitioning and clustering (see Section 8.2) to develop summary views.

6.3.5.1 Power Law and the Scale-Free Networks
In the late 1990s, with the increasing research on the analysis of the Web and the
Internet, several researchers [Barabasi and Albert, 1999; Kleinberg, 1999] observed
that the graphs underlying these network have a special structure, where some hub
nodes have significantly more connections than the others. The degrees of the ver-
tices in these graphs, termed scale-free or Barabási-Albert networks, obey a power
law distribution, where the number, count(d), of nodes with degree d is O(d−α),
for some positive α. Consequently, the resulting frequency histograms tend to be
heavy-tailed, where there are many vertices with small degrees and a few vertices
with a lot of connections. In other words, the graph degree frequency distributions
in these graphs show the Zipfian-like behaviors we have seen for keyword distri-
butions in document collections (Sections 3.5 and 4.2) and the inverse exponential
distribution we have seen for the number of objects within a given distance from
a point in a high-dimensional feature space (Sections 4.1, 4.2.5, and 10.4.1). The
term “scale-free” implies that these graphs show fractal-like structures, where low-
degree nodes are connected to hubs to form a dense graphs, which are then con-
nected to other higher-degree hubs to form bigger graphs, and so on. The scale-free
structure emerges due to preferential-attachment effect, where vertices with high de-
grees/relationships with others are more likely to acquire new relationships. As we
have seen in Sections 6.3.1 through 6.3.4, this strongly impacts the analysis of web
and social-network structures for indexing and query processing.

6.3.5.2 Triangle and Bipartite Core Laws
Degrees of the vertices are not the only key characteristic that can be leveraged
in characterizing a graph. The number and distribution of triangles (for example,
highlighting friends of friends who are also friends in social networks [Faloutsos
and Tong, 2009]) can also help distinguish or cluster graphs.

Tsourakakis [2008] showed that for many real-world graphs, including social net-
works, coauthorship networks for scientific publications, blog networks, and Web
and Internet graphs, the distribution of the number of triangles the nodes of the
graphs participate in, obeys the power law. Moreover, the number of triangles also
obeys the power law with respect to the degree of the nodes (i.e., the number
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of triangles increases exponentially with the degree of the vertices). Tsourakakis
[2008] also showed that the number of triangles in a graph is exactly one sixth of the
sum of cubes of eigenvalues and proposes a triangle counting algorithm based on
eigen analysis of graphs.

Not all social communities are undirected. Many others, such as citation net-
works, are directed. In these cases, the number and distribution of bipartite cores
can also be used to characterize (index and compare) graphs. An m : n bipartite
core consists of two disjoint sets, Vi and Vj, of vertices such that there is an edge
from each vertex in Vi to each vertex in Vj, |Vi| = m, and |Vj| = n. Similar to the
triangles in (undirected) social networks, bipartite cores can indicate a close rela-
tionship between groups of individuals (for example members of Vi being fans of
members of Vj). Kumar et al. [1999] showed that in many networks, bipartite cores
also show power-law distributions. In particular, the number of m : n bipartite cores
is O(m−α × 10β−γn), for some positive α, β, and γ.

6.3.5.3 Diameter, Shortest Paths, Clustering Coefficients,
and the Small-Worlds Law
Other properties of graphs that one can use for comparing one to another include
diameter, distribution of shortest-path lengths, and cluster coefficients. The small-
worlds law observes that in many real-world graphs, the diameter of the graph
(i.e., the largest distance between any pair of vertices) is small [Erdos and Renyi,
1959]. Moreover, many of these graphs also have large clustering coefficients in ad-
dition to small average shortest path lengths [Watts and Strogatz, 1998]. It has also
been observed that in most real-world graphs (such as social networks) the net-
works are becoming denser over time and the graph diameter is shrinking as the
graph grows [Leskoec et al., 2008; Leskovec et al., 2007]. The clustering coefficient
of a vertex measures how close to a clique the vertex and its neighbors are. In di-
rected graphs, the clustering coefficient of vertex, vi, is defined as |Ei |

degree(vi)(degree(vi)−1) ,
where Ei is the number of edges in the neighborhood of vi (i.e., among vi’s im-
mediately connected neighbors); in undirected graphs, the coefficient is defined
as 2|Ei |

degree(vi)(degree(vi)−1) .

6.3.6 Proximity Search Queries in Graphs

As mentioned earlier, in many multimedia applications, the underlying data can be
seen as a graph, often enriched with weights, associated with the nodes and edges
of the graph. These weights denote application specific desirability/penalty assess-
ments, such as popularity, quality, or access cost.

Let us be given a graph structured data, G(V, E), where V is the set of atomic
data objects and E is the links connecting these. Given a set of features, let π :
V → 2F denote the node-to-feature mapping. Also, let δ : E → R be a function
that associates cost or distance to each edge of the graph. Given a set of fea-
tures, Q = {f1, . . . , fn}, each answer to the corresponding proximity query is a set,
{v1, . . . , vm} ⊆ V of nodes that covers all the features in the query [Li et al., 2001a]:

π(v1) ∪ . . . ∪ π(vm) ⊇ Q.

For example, if the graph G corresponds to the Web and Q is a set of keywords, an
answer to this proximity query would be a set of web pages that collectively covers
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Figure 6.10. A graph fragment and a minimal-cost answer to the proximity query Q =
{K1, K2, K3, K4}, with cost 12.

all the keywords in the query. A minimal answer to the proximity query, Q, is a set
of pages, VQ, such that no proper subset of VQ is also an answer to Q. Let VQ be
the set of all minimal answers to Q and VQ be a minimal answer in VQ. The cost,
δ(VQ) of this answer to Q is the sum of the edge costs of the tree with minimal cost
in G that connects all the nodes in VQ. Figure 6.10 shows an example: in the given
graph fragment, there are at least two ways to connect all three vertices that make
up the answer to the query. One of these ways is shown with solid edges; the sum of
the corresponding edge costs is 12. Another possible way to connect all three nodes
would be to use the dashed edges with costs 7 and 8. Note that if we were to use this
second option, the total edge costs would be 15; that is, greater than 12, which we
can achieve using the first option. Consequently, the cost of the answer is 12, not 15.

Li et al. [2001a] called the answers to such proximity queries on graphs informa-
tion units and showed that the problem of finding minimum-cost information units
(i.e., the minimum weighted connected subtree, T, of the given graph, G, such that T
includes the minimum cost answer to the proximity query Q) can be formulated in
the form of a group Steiner tree problem, which is known to be NP-hard [Reich and
Widmayer, 1991]. Thus, the proximity search problem does not have known poly-
nomial time solutions except for certain special cases, such as when vertex degrees
are bounded by 2 [Ihler, 1991] or the number of groups is less than or equal to 2 (in
which case the problem can be posed as a shortest path problem). However, there
are a multitude of polynomial time approximation algorithms that can produce so-
lutions with bounded errors [Garg et al., 1998]. In addition, there are also various
heuristics proposed for the group Steiner tree problem. Some of these heuristics
also provide performance guarantees, but these guarantees are not as tight. Such
heuristics include the minimum spanning tree heuristic [Reich and Widmayer, 1991],
shortest path heuristic [Reich and Widmayer, 1991], and shortest path with origin
heuristic [Ihler, 1991]. However, because users are usually interested in top-k best
only, proximity query processing algorithms that have practical use, such as RIU [Li
et al., 2001a], BANKS-I [Bhalotia et al., 2002], BANKS-II [Kacholia et al., 2005],
and DPBF [Ding et al., 2007], rely on efficient heuristics and approximations for
progressively identifying the small (not necessarily smallest) k trees covering the
given features.

6.4 SUMMARY

Graph- and tree-structured data are becoming more ubiquitous as more and more
applications rely on the higher-level (spatial, temporal, hierarchical) structures of
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the media as opposed to lower level features, such as colors and textures. Anal-
ysis and understanding of graphs is critical because most large-scale data, such as
collections of media objects in a multimedia database or even user communities,
can be represented as graphs (in the former case, based on the object similarities
and in the second case, based on explicit relationships or implicit similarities be-
tween individual users). In Chapter 8, we discuss how the structure of graphs can be
used for clustering and/or partitioning data for more efficient and effective search.
Later, in Chapter 12, we discuss collaborative filtering, one of the applications of
social graph analysis, in greater detail.
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Indexing, Search, and Retrieval of Vectors

As we have seen in the previous chapters, it is common to map the relevant features
of the objects in a database onto the dimensions of a vector space and perform near-
est neighbor or range search queries in this space (Figure 7.1). The nearest neighbor
query returns a predetermined number of database objects that are closest to the
query object in the feature space. The range query, on the other hand, identifies and
returns those objects whose distance from the query object is less than a provided
threshold.

A naive way of executing these queries is to have a lookup file containing the
vector representations of all the objects in the database and scan this file for the
required matches, pruning those objects that do not satisfy the search condition.
Although this approach might be feasible for small databases where all objects
fit into the main memory, for large databases, a full scan of the database quickly
becomes infeasible. Instead, multimedia database systems use specialized indexing
techniques to help speed up search by pruning the irrelevant portions of the space
and focusing on the parts that are likely to satisfy the search predicate (Figure 7.2).

Index structures that support range or nearest neighbor searches in general lay
the data out on disk in sorted order (Figure 7.3(a)). Given a pointer to a data el-
ement on disk, this enables constraining further reads on the disk to only those
disk pages that are in immediate neighborhood of this data element (Figure 7.3(b)).
Search structures also leverage the sorted layout by dividing the space in a hierarchi-
cal manner and using this hierarchical organization to prune irrelevant portions of
the data space. For example, consider the data layout in Figure 7.3(c) and consider
the search range [6, 10]:

(i) The root of the hierarchical search structure divides the data space into
two: those elements that are ≤14.8 and those that are >14.8. Because the
search range falls below 14.8, the portion of the data space >14.8 (and the
corresponding portions of the disk) are pruned.

(ii) In this example, the next element in the search structure divides the space
into the data regions ≤4.2 and >4.2 (and ≤14.8); because the search range
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Figure 7.1. (a) δ-Range query, (b) Nearest-2 (or top-2) query on a vector space; matching
objects are highlighted.

falls above 4.2, the portion of the data space ≤4.2 (and the corresponding
portions of the disk) are eliminated from the search.

(iii) The process continues by pruning the irrelevant portions of the space at
each step, until the data elements corresponding to the search region are
identified.

This basic idea of hierarchical space subdivision led to many efficient index struc-
tures, such as B-trees and B+-trees [Bayer and McCreight, 2002], that are used today
in all database management systems for efficient data access and query processing.

Note that the underlying fundamental principle behind the space subdivision
mechanism just described is a sorted representation of data. Such a sorted represen-
tation ensures the following:

� Desideratum I: Data objects closer to each other in the value space are also closer
to each other on the disk.

� Desideratum II: Data objects further away from each other in the value space
are also further away from each other on the storage space.

Index Structure
A

B

C

D

E

E A CD

query

Data regions on disk

Figure 7.2. A multidimensional index structure helps prune the search space and limit the
lookup process only to those regions of the space that are likely to contain a match. The
parts of the disk that correspond to regions that are further away from the query are never
accessed.
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Figure 7.3. (a) Data are usually laid out on disk in a sorted order to enable (b,c) processing
of range searches and nearest neighbor searches with few disk accesses.

The sorted representation of data, on the other hand, requires a totally ordered
value space; that is, there must exist some function, ≺, which imposes a total
order1 on the data values. A particular challenge faced when dealing with mul-
tidimensional vector spaces, on the other hand, is that usually an intuitive total
order does not exist. For example, given a two-dimensional space and three vec-
tors �va = 〈1, 3〉, �vb = 〈3, 1〉, and �vc = 〈2.8, 2.8〉, even though there exist total orders
for the individual dimensions (e.g., 1 ≺ 2.8 ≺ 3), these total orders do not help us
define a similar ≺vec order for the vectors, 〈1, 3〉, 〈3, 1〉, and 〈2.8, 2.8〉:

� If we consider the first dimension, then the order is

〈1, 3〉≺vec〈2.8, 2.8〉≺vec〈3, 1〉.
� If, on the other hand, we consider the second dimension, the order should be

〈3, 1〉≺vec〈2.8, 2.8〉≺vec〈1, 3〉.

1 The binary relation ≺ is said to be a total order if reflexivity, antisymmetry, transitivity, and comparabil-
ity properties hold.
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Although one can pick these or any other arbitrary total order to layout the data
on the disk, such orders will not necessarily satisfy the desiderata I or II listed here.
For example, if we are given the query point �vc = 〈0, 0〉 and asked to identify the
closest two points based on Euclidean distance, the result should contain vectors,
〈1, 3〉 and 〈3, 1〉, which are both

√
10 unit away (as opposed to the vector 〈2.8, 2.8〉,

which is
√

15.68 away from 〈0, 0〉). However, neither of the foregoing orders place
the vectors, 〈1, 3〉 and 〈3, 1〉, together so that they can be picked without having to
read 〈2.8, 2.8〉. Consequently, multidimensional index structures require some form
of postprocessing to eliminate false hits (or false positives) that the given data layout
on the disk implies.

In this chapter, we cover two main approaches to multidimensional data organi-
zation: space-filling curves and multidimensional space subdivision techniques. The
first approach tries to impose a total order on the multidimensional data in such a
way that the two desiderata listed earlier are satisfied as well as possible. The second
approach, on the other hand, tries to impose some subdivision structure on the data
such that, although it is not based on a total order, it still helps prune the data space
during searches as effectively as possible.

7.1 SPACE-FILLING CURVES

As their names imply space-filling curves are curves that visit all possible points in
a multidimensional space [Hilbert, 1891; Peano, 1890]. Although multidimensional
curves can also be defined over real-valued vector spaces, for simplicity we will first
consider an n-dimensional nonnegative integer-valued vector space S = Z

n
≥0, where

each dimension extends from 0 to 2m − 1 for some m > 0. Let π be a permutation of
the dimensions of this space. A π-order traversal, Cπ order : Z

n
≥0 → Z≥0, of this space

is defined as follows:

Cπ order(�v) =
n∑

i=1

�v[π(i)] × (2m)n−i.

Figure 7.4 shows two possible traversals,2 row-order and column-order, of an
8 × 8 2D space. In column-order traversal, for example, π(1) corresponds to the
x dimension and π(2) corresponds to the y dimension. Thus, the value that the
Ccolumnorder takes for the input point 〈1, 2〉 can be computed as

Ccolumnorder(〈1, 2〉) = (
1 × 81)+ (

2 × 80) = 10.

It is easy to show that Ccolumnorder(〈1, 1〉) = 9 and Ccolumnorder(〈1, 3〉) = 11. In other
words, if the points in the space are neighbors along the y-axis, the column-order
traversal is able to place them on the traversal in such a way that they will be
neighbors to each other. On the other hand, the same cannot be said about points
that are neighbors to each other along the other dimensions. For example, if we
again consider the column-order traversal shown in Figure 7.4(b), we can see that
while Ccolumnorder(〈0, 1〉) = 1, Ccolumnorder(〈1, 1〉) = 9; that is, for two points neigh-
boring along the x-axis, desideratum I fails significantly. A quick study of Fig-
ure 7.4(b) shows that desideratum II also fails: while Ccolumnorder(〈0, 7〉) = 7 and

2 Note that these are not curves in the strict sense because of their noncontinuous nature.
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(a) (b)

Figure 7.4. (a) Row- and (b) column-order traversals of 2D space. See color plates section.

Ccolumnorder(〈1, 0〉) = 8, these two points that are far from each other in the 2D space
are mapped onto neighboring positions on the Ccolumnorder traversal.

It is easy to see that the reason why both desiderata I and II fail are the long
jumps that these two row-order and column-order filling traversals are making.
Therefore, errors that space-filling traversals introduce can be reduced by reduc-
ing the length and frequency of the jumps that the traversal has to make to fill
the space. Row-prime-order and Cantor-diagonal-order traversals3 of the space are
two such attempts (Figure 7.5(a) and (b), respectively). For example, whereas in
the row-order traversal, Croworder(〈7, 0〉) = 7 and Croworder(〈7, 1〉) = 15, in the row-
prime-order traversal, this problem has been solved: Crowprimeorder(〈7, 0〉) = 7 and
Crowprimeorder(〈7, 1〉) = 8. On the other hand, the row-prime-order traversal is actu-
ally increasing the degree of error in other parts of the space. For example, whereas

|Croworder(〈0, 0〉) − Croworder(〈0, 1〉) = |0 − 8| = 8,

for the same pair of points neighboring in the 2D space, the amount of error is larger
in the row-prime-order traversal:

|Crowprimeorder(〈0, 0〉) − Crowprimeorder(〈0, 1〉) = |0 − 15| = 15.

In general, given an n-dimensional nonnegative integer valued vector space S =
Z

n
≥0, where each dimension extends from 0 to 2m − 1 for some m > 0, and a traversal

(or a curve), C, filling this space, the error measure, ε(S, C) can be used for assessing
the degree of deviation from desiderata I and II:

ε(S, C) =
∑
�vi∈S

∑
�vj∈S

∣∣�( �vi, �vj) −
∣∣C( �vi) − C( �vj)

∣∣∣∣ ,
where � is the distance metric (e.g., Euclidean, Manhattan) in the original
vector space S. Intuitively, the smaller the deviation is, the better the curve

3 Note that these traversals lead to curves in that they are continuous.
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(a) (b)

Figure 7.5. (a) Row-prime- and (b) Cantor-diagonal-order traversals of 2D space. See color
plates section.

approximates the characteristics of the space it fills. Although any curve that fills the
space approximates these characteristics to some degree, a special class of curves,
called fractals, are known to be especially good in terms of capturing the character-
istics of the space they fill.

7.1.1 Fractals

A fractal is a structure that shows self-similarity; that is, it is composed of simi-
lar structures at multiple scales. A fractal curve, thus, is a curve that looks similar
when one zooms in or zooms out in the space that contains it. Fractals are com-
monly generated through iterated function systems that perform contraction map-
pings [Hutchinson, 1981]: Let F ⊂ R be the set of points in n-dimensional real val-
ued space corresponding to a fractal. Then, there exists a set of mappings F , where

� f i ∈ F are contraction mappings; that is, f i : R
n → R

n and

∃0<k<1∀x,y∈Rn �(f i(x), f i(y)) ≤ k�(x, y)

such that F is the fixed set of F :

F =
⋃
f i∈F

f i(F).

Because of the recursive nature of the definition, many fractals are created by pick-
ing an initial fractal set, F0, and iterating the contraction mappings until sufficient
detail is obtained. (Figure 7.6 shows the iterative construction of the fractal known
as the Hilbert curve; we discuss this curve in greater detail in the next subsection.)

How well a fractal covers the space can be quantified by a measure called the
Hausdorff dimension. Traditionally, the dimension of a set is defined as the num-
ber of independent parameters needed to uniquely identify an element of the set.
For example, a point has dimension 0, a line 1, a plane 2, and so on. Although the
Hausdorff dimension generalizes this definition (e.g., Hausdorff dimension of a
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Figure 7.6. Hilbert curve: (a) First order, (b) Second order, (c) Third order. See color plates
section.

plane is still 2), its definition also takes into account the metric used for defining
the space. Let F be a fractal and let N(F, ε) be the number of balls of radius at most
ε needed to cover F . The Hausdorff dimension of F is defined as

d = ln(N(F, ε))
ln(1/ε)

.

In other words, the Hausdorff dimension of a fractal is the exponential rate, d, at
which the number of balls needed to cover the fractal grows as the radius is reduced
(N(F, ε) = 1

ε

d
). Fractals that are space-filling, such as the Hilbert curve and Z-order

curve (both of which we discuss next), have the same Hausdorff dimension as the
space they fill.

7.1.2 Hilbert Curve

The Hilbert curve is one of the first continuous fractal space-filling curves described.
It was introduced in 1891 by Hilbert [1891] as a follow-up on Peano’s first paper on
space-filling curves in 1890 [Peano, 1890]. For that reason, this curve is also know as
the Peano-Hilbert curve.

Figure 7.6 shows the first three orders of the Hilbert curve in 2D space. Fig-
ure 7.6(a) shows the base curve, which spans a space split into four quadrants. The
numbers along the “U”-shaped curve give the corresponding mapping from the 2D
coordinate space to the 1D space. Figure 7.6(b) shows the second-order curve in
which each quadrant is further subdivided into four subquadrants to obtain a space
with a total of 16 regions. During the process, the line segments in each quadrant
are replaced with “U”-shaped curve segments in a way that preserves the adjacency
property (i.e., avoiding discontinuity – which would require undesirable jumps).
To obtain the third-order Hilbert curve, the same process is repeated once again:
each cell is split into four cells and these cells are covered with “U”-shaped curve-
segments in a way that ensures continuity of the curve.

Note that however many times the region is split into smaller cells, the resulting
curve is everywhere continuous and nowhere differentiable; furthermore, it passes
through every cell in the square once and only once. If this division process is con-
tinued to infinity, then every single point in the space will have a corresponding po-
sition on the curve; that is, all 2D vectors will be mapped onto a 1D value and vice



242 Indexing, Search, and Retrieval of Vectors

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

0 1 2 3 4 5 6 7

  6
   

7 
11

0
11

1

 3
   

4 
   

5 
01

1
10

0
10

1
13

0 
   

1 
   

2
00

00
1

01
0

000

CZ(010,011) = 001101

Figure 7.7. Z-order traversal of 2D space. See color plates section.

versa. Thus, since the Hilbert curve is filling the 2D space, its Hausdorff dimension
is 2 (i.e., equal to the number of dimensions that it fills).

The Hilbert curve fills the space more effectively than the row-prime- and
Cantor-diagonal-order traversals of the space. In particular, its continuity ensures
that any two nearby points on the curve are also nearby in space. Furthermore, its
fractal nature ensures that each “U” clusters four neighboring spatial regions, imply-
ing that points nearby in space also tend to be nearby on the curve. This means that
the Hilbert curve is a good candidate to be used as a way to map multidimensional
vector data to 1D for indexing.

However, to be useful in indexing and querying of multidimensional data, a
space-filling curve has to be efficient to compute, in addition to filling the space
effectively. A generating state-diagram–based algorithm, which leverages structural
self-similarities when computing Hilbert mappings from multidimensional space to
1D space, is given by Faloutsos and Roseman [1989]. For spaces with a large num-
ber of dimensions, even this algorithm is impractical because it requires large state
space representations in the memory. Other algorithms for computing Hilbert map-
pings back and forth between multidimensional and 1D spaces are given by Butz
[1971] and Lawder [1999]. None of the existing algorithms, however, is practical for
spaces with large numbers (tens or hundreds) of dimensions. Therefore, in practice,
other space filling curves, such as the Z-order curve (or Z-curve), which have very
efficient mapping implementations, are preferred over Hilbert curves.

7.1.3 Z -Order Curve

Because it allows for jumps from one part of the space to a distant part (i.e., because
it is discontinuous), the Z-order (or Morton-order [Morton, 1966]) curve, shown in
Figure 7.7, is not a curve in the strict sense. Nevertheless, like the Hilbert curve, it
is a fractal; it covers the entire space and is composed of repeated applications of
the same base pattern, a Z as opposed to a U in this case. Thus, despite the jumps
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that it makes in space, like the Hilbert curve, it clusters neighboring regions in the
space and, except for the points where continuity breaks, points nearby in space are
nearby on the curve.

Because of the existence of points of discontinuity, the Z-order curve provides
a somewhat less effective mapping for indexing than the Hilbert mapping. Yet, be-
cause of the existence of extremely efficient implementations, Z-order mapping is
usually the space-filling curve of choice when indexing vector spaces with large num-
bers of dimensions.

Let us consider an n-dimensional nonnegative integer-valued vector space S =
Z

n
≥0, where each dimension extends from 0 to 2m − 1 for some m > 0. Let �v =

〈v[1], v[2], . . . , v[n]〉 be a point in this n-dimensional space. Given an integer a
(0 ≤ a ≤ 2m − 1), let a.base2(k) ∈ {0, 1} denote the value of the kth least significant
bit of the integer a. Then,

∀1≤j≤n∀1≤k≤m CZ order(�v).base2((m− k)n + j) = v[j].base2(k).

Because of the way it operates on the bit representation of the components of
the vector provided as input, this mapping process is commonly referred to as the
bit-shuffling algorithm. The bit-shuffling process is visualized in Figure 7.7: Given
the input vector 〈2, 3〉, the corresponding Z-order value, 0011012 (= 1310), is ob-
tained by shuffling the bits of the inputs, 0102 (= 210) and 0112 (= 310). Given an
n-dimensional vector space with 2m resolution along all its dimensions, the bit-
shuffling algorithm takes only O(nm) time; that is, it is linear in the number of di-
mensions and logarithmic in the resolution of the space.

7.1.4 Executing Range Queries Using Hilbert and Z-order Curves

As we have discussed, space-filling curves can be used for mapping points (or vec-
tors) in multidimensional spaces onto a 1D curve to support indexing of multidi-
mensional data using data structures designed for 1D data. However, because the
point-to-point mapping does not satisfy desiderata I and II, mapping multidimen-
sional query ranges onto a single 1D query range is generally not possible. Because
a space-filling mapping can result in both over-estimations and under-estimations
of distances, range searches may result in false hits and misses. Since in many ap-
plications misses are not acceptable (but false hits can be cleaned through a post-
processing phase) one solution is to pick 1D search ranges that are sufficiently large
to cover all the data points in the original search range. This, however, can be pro-
hibitively expensive.

An alternative solution is to partition a given search range into smaller ranges
such that each can be processed perfectly in the 1D space. Figure 7.8 illustrates this
with an example: The query range shown in Figure 7.8(a) corresponds to two sep-
arate ranges on the Z-curve: [48, 51] and [56, 57]. These ranges can be considered
under their binary representations (“don’t care” symbol “*” denoting both 0 and
1) as “1100 ∗ ∗” and “11100∗”, respectively. When ranges are represented this way,
each range corresponds to a prefix of a string of binary symbols and, thus, range
queries can be processed using a prefix-based index structure, such as the tries in-
troduced in Section 5.4.1.
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Figure 7.8. (a) A range query in the original space is partitioned into (b) two regions for
Z-order curve based processing on a 1D index structure. See color plates section.

7.2 MULTIDIMENSIONAL INDEX STRUCTURES

As discussed previously, when the multidimensional data is mapped to a one-
dimensional space for storage using traditional index structures, such as B+-trees,
there is an inherent degree of information loss that may result in misses or false pos-
itives. An alternative to multidimensional to one-dimensional mapping is to keep
the dimensions of the original data space intact and to apply subdivision process
directly in this multidimensional space.

Multidimensional space subdivision based indexing, however, poses new chal-
lenges. In the case of 1D space subdivision, the main task is to find where the sub-
division boundaries should be and how to store these boundaries in the form of a
search data structure to support efficient retrieval. In the case of multidimensional
spaces, on the other hand, there are new issues to consider and new questions to
answer. For example, one critical parameter that has a significant impact on choos-
ing the appropriate strategy for dividing a multidimensional space is the distance
measure/metric underlying the multidimensional space. In other words, to be able
to pick the right subdivision strategy, we need to know how the different dimensions
affect the distance between a pair of objects in the space.

A multidimensional space introduces new degrees of freedom, which can be
leveraged differently by different subdivision strategies. When we decide to place
a boundary on a point on a one-dimensional space, the boundary simply splits the
space into two (before and after the boundary). In a two-dimensional space, how-
ever, once we decide that a boundary (a line) is to be placed such that it passes
over a given point in the space, we further have to decide what the slope of this line
should be (Figure 7.9). This provides new opportunities for more informed subdivi-
sion, but it also increases the complexity of the decision-making process. In fact, as
we see next, to ensure that the index creation and updating can be done efficiently,
most index structures simply rely on rectilinear boundaries, where the boundaries
are aligned with the dimensions of the space; this reduces the degrees of freedom,
but consequently reduces the overall index management cost as well.

Space subdivision decision strategies can be categorized into two: open (Fig-
ure 7.10(a)) and closed (Figure 7.10(b,c,d)) approaches. In the former case, the
space is divided into two open halves, whereas in the latter cases, one of the
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Figure 7.9. Multidimensional spaces introduce degrees of freedom in space sub-division.

subdivisions created by the boundary is a closed region of the space. As shown
in Figures 7.10(b) through (d), there can be different ways to carve out closed
subdivisions of the space, and we discuss the advantages and disadvantages of these
schemes in the rest of this section.

7.2.1 Grid Files

As its name implies, a grid file is a data structure where the multidimensional space
is divided into cells in such a way that the cells form a grid [Nievergelt et al., 1981].
Commonly, each cell of the grid corresponds to a single disk page (i.e., the set of
data records in a given cell can all be fetched from the disk using a single disk ac-
cess). Consequently, the sizes of the grid cells must be such that the number of data
points contained in each cell is not more than what a disk page can accommodate.
Conversely, the cells of the grid should not be too small, because if there are many
cells that contain only few data elements, then

� The pages of the disk are mostly empty and consequently the data structure
wastes a lot of storage space

� Because there are many grid cells, the lookup directory for the grid as well as
the cost of finding the relevant cell entry in the directory are large, and

� Because query ranges may cover or touch a lot of cells, all the corresponding
disk pages need to be fetched from disk, increasing the search cost substantially.

Therefore, most grid files adaptively divide the space in such a way that the sizes of
the grid cells are only large enough to cover as many data points as a data page can
contain (Figure 7.11(a)). However, because boundaries in a grid cut the space from
one end to the other, when the data distribution in the space is very skewed, this

(a) (b) (c) (d)

Figure 7.10. (a) An open subdivision strategy and (b,c,d) three closed subdivision strategies.
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Figure 7.11. (a) A grid file where the cell boundaries are placed in such a way as to adapt
to the data distribution (in this example, each cell contains at most four data points).
(b) Nevertheless, when the data are not uniformy distributed, grid files can result in significant
wastages of directory and disk space.

can result in significant imbalance in utilization of the disk pages (Figure 7.11(b)).
More advanced grid file schemes, such as [Hinrichs, 1985], allow for the combina-
tion of adjacent, under-utilized cells in the form of supercells whose data points can
all be stored together in a single disk page. This, however, requires complicated
directory management schemes that may introduce large directory management
overheads.

7.2.2 Quadtrees

While relying on a gridlike subdivision of space, quadtrees are better able to adapt
to the distribution of the data [Finkel and Bentley, 1974]. The reason for this is that,
instead of cutting through the entire space, the boundaries creating the partitions of
the space have more localized extents. Thanks to this property, while subdividing a
dense region of the space finely using a large number of partitions, the boundaries
created in the process do not necessarily affect distant regions of the space that may
have much thinner distributions of points.

7.2.2.1 Point Quadtrees
A point quadtree [Finkel and Bentley, 1974] is a hierarchical partitioning of the
space where, in an m-dimensional space, each node in the tree is labeled with a
point at which the corresponding region of the space is subdivided into 2m smaller
partitions. Consequently, in two-dimensional space, each node subdivides the space
into 22 = 4 partitions (or quadrants); in three-dimensional space, each node sub-
divides the space into 23 = 8 partitions (or octants); and so on. The root node of
the tree represents the whole region, is labeled with a point in the space, and has
2m pointers corresponding to each one of the 2m partitions this point implies (Fig-
ure 7.12(a)). Similarly, each of the descendants of the root node corresponds to a
partition of the space and contains 2m pointers representing the subpartitions the
point corresponding to the node implies (Figure 7.12(b,c,d)).

Insertion
As shown in Figure 7.12, in the case of the simple point quadtree, each new data

point is inserted into the tree by comparing it to the nodes of the tree starting from



7.2 Multidimensional Index Structures 247

<12,11>

0,0

<9,15>

<12,11>

0,0

<9,15>

<12,11>

<14,3>

0,0

<9,15>

<12,11>

<14,3>

<1,13>

0,0

<12,11>

<12,11>

<9,15>

NW

<9,15>

<12,11>

<14,3>

SENW

<12,11>

<9,15> <14,3>

SENW

<1 13>

SW

<1,13>

(a) (b) (c) (d)

Figure 7.12. Point quadtree creation: points are inserted in the following order: 〈12, 11〉,
〈9, 15〉, 〈14, 3〉, 〈1, 13〉.

the root and following the appropriate pointers based on the relative position of the
new data point with respect to the points labeling the tree nodes visited during the
process. For example, in order to insert the data point 〈1, 13〉, the data point is first
compared to the point 〈12, 11〉 corresponding to the root of the quadtree. Because
the new point falls to the northwest of the root, the insertion process follows the
pointer corresponding to the northwest direction. The data point 〈1, 13〉 is then com-
pared against the next data point, 〈9, 15〉, found along the traversal. Because 〈1, 13〉
falls to the southwest of 〈9, 15〉, the insertion process follows the southwest pointer
of this node. Because there is no child node along that direction (i.e., the pointer
is empty), the insertion process creates a new node and attaches that node to the
tree by pointing the southwest pointer of the node with label 〈9, 15〉 to the new data
node. Note that, as shown in this example, the structure of the tree depends on the
order in which the points are inserted into the tree. In fact, given n data points, the
worst-case height of a point quadtree can be n (Figure 7.13). This implies that, in
the worst case, insertions can take O(n) time. The expected insertion time for the

Figure 7.13. In the worst case, a point quadtree with n data points creates a tree of
height n.
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Figure 7.14. (a) A search range and (b) the pointers that are inspected during the search
process.

nth node in a random point quadtree in an m-dimensional space is known to be
O( log(n)

m ) [Devroye and Laforest, 1990].

Range Searches
Range searches on a point quadtree are performed similarly to the insertions:

relevant pointers (i.e., pointers to the partitions of the space that intersect with the
query range) are followed until no more relevant nodes are found. Unlike the case
of insertions, however, a range search may need to follow more than one pointer
from a given node. For example, in Figure 7.14, the search region touches south-
west, southeast, and northwest quadrants of the root node. Thus all the correspond-
ing pointers need to be examined. Because there is no child along the southwest
pointer, the range search proceeds along southeast and northwest directions. Along
the southeast direction, the search range touches only the northwest quadrant of
〈14, 3〉; thus only one pointer needs to be inspected. In the northwest quadrant of
the root, however, the search region touches both southeast and southwest quad-
rants of 〈9, 15〉, and thus both of the corresponding pointers need to be inspected
to look for matches. The southeast pointer of 〈9, 15〉 is empty; however, there is a
child node, 〈1, 13〉, along the southwest direction. The search region touches only
the southeast quadrant of 〈1, 13〉 and the corresponding pointer is empty. Thus, the
range search stops as there are no more pointers to follow.

Nearest Neighbor Searches
A common strategy for performing nearest neighbor searches on point

quadtrees is referred to as the depth-first k-nearest neighbor algorithm. The basic
algorithm visits elements in the tree (in a depth-first manner), while continuously
updating a candidate list consisting of k closest points seen so far. If we can de-
termine that a partition corresponding to a node being visited cannot contain any
points closer to the query point than the k candidates found so far, the node as well
as all of its descendants (which are all contained in this partition) are pruned. We
discuss nearest neighbor searches in Section 10.1 in more detail.

Deletions
Deletions in point quadtrees can be complex. Consider the example shown in

Figure 7.15(a). Here, we want to delete the point corresponding to the root node;
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Figure 7.15. (a) When 〈12, 11〉 is deleted, (b) some regions of the space are not searchable
by any of the remaining nodes; thus, (c,d) one of the remaning nodes must replace this
deleted node, and the tree must be updated in such a way that the entire space is properly
covered.

however, if we simply remove that point from the tree, portions of the original space
are not indexable by any of the remaining nodes (Figure 7.15(b)). Thus, we need to
restructure the point quadtree by selecting one of the remaining nodes to replace
the deleted node. Such replacements may require significant restructurings of the
tree. Consider Figure 7.15(c), where the node 〈1, 13〉 is picked to replace the deleted
node. After this change, the node 〈9, 15〉 that used to be to the northwest of the old
root has moved to the northeast of the new root.

Because such restructurings may be costly, the replacement node needs to be se-
lected in a way that will minimize the likelihood that nodes will need to move from
one side of the partition to the other. As illustrated in Figure 7.16(a), the nodes that
are affected (i.e., need to move in the tree) are located in the region between the
original partition boundaries and the new ones. Therefore, when choosing among
the replacement candidates in each partition (as shown in Figure 7.16(b), only the
leaves in each partition are considered; this eliminates the need for cascaded re-
placement operations), the candidate node with the smallest affected area is picked
for replacing the deleted node. In the example shown in Figure 7.16, the affected
area due to node C is smaller than the affected area due to node B; thus (unless
one of the nodes D and E provides a smaller affected area), the node C will replace
deleted node A.

(a) (b) (c)

Figure 7.16. (a) The nodes that may be affected when the deleted node A is replaced by
node B are located in the shaded region; thus, (b,c) when choosing among replacement
candidates in all quadrants, we need to consider the size of the affected area for each
replacement scenario.
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(a) (b)

Figure 7.17. Three points in a 22 × 22 space and the corresponding MX-quadtree.

Shortcomings of Point Quadtrees
As we have discussed, deletions in point quadtrees can be very costly because of

restructurings. Although restructurings are not required during range and nearest
neighbor searches, those operations can also be costly. For example, even though
the range search in the example shown in Figure 7.14 did not return any matches,
a total of seven pointers had to be inspected. The cost is especially large when the
number of dimensions of the space is large: because for a given m-dimensional space,
each quadtree node splits the space into 2m partitions, the number of pointers that
the range search algorithm needs to inspect and follow can be up to 2m per node.
This means that, for point quadtrees, the cost of the range search may increase ex-
ponentially with the number of dimensions of the space. This, coupled with the fact
that the tree can be highly unbalanced, implies that range and nearest neighbor
queries can be highly unpredictable and expensive.

7.2.2.2 MX Quadtrees
In point quadtrees, the space is treated as being real-valued and is split by draw-
ing rectilinear partitions through the data points. In MX-quadtrees (for matrix
quadtrees), on the other hand, the space is treated as being discrete and fi-
nite [Samet, 1984]. In particular, each dimension of the space is taken to have integer
values from 0 to 2d − 1. Thus, a given m-dimensional space potentially contains 2dm

distinct points.
Unlike the point quadtree, where the space is split at the data points, in MX-

quadtrees, the space is always split at the center of the partitions. Because the space
is discrete and because the range of values along each dimension of the space is
from 0 to 2d − 1, the maximum depth of the tree (i.e., the number of times any given
dimension can be halved) is d.

In a point quadtree, because they also act as criteria for space partitioning, the
data points are stored in the internal nodes of the data structure. In MX-quadtrees,
on the other hand, the partitions are always halved at the center; thus, there is
no need to keep data points in the internal nodes to help with navigation. Con-
sequently, as shown in Figure 7.17, in MX-quadtrees, data points are kept only at
the leaves of the data structure. This ensures that deletions are easy and no restruc-
turing needs be done as a result of a deletion: when a data point is deleted from the
database, the corresponding leaf node is simply eliminated from the MX-quadtree
data structure and the nodes that do not have any remaining children are collapsed.
Note that the shape of the tree is independent of the order in which data points are
inserted to the data structure.
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Figure 7.18. PR-quadtree based partitioning of the space.

Another major difference between point quadtrees and MX-quadtrees is that,
in MX-quadtrees, the leaves of the tree are all at the same, dth, level. For example,
in Figure 7.17, the point 〈1, 1〉, is stored at a leaf at depth 2, even though this leaf
is the only child of its parent. Although this may introduce some redundancy in
data structure (i.e., more nodes and pointers than are strictly needed to store all the
data points), it ensures that the search, insertion, and deletion processes all have the
same, highly predictable cost.

In case the data points are not integers, but real numbers, then such data can be
stored in MX-quadtrees after a discretization process: each cell of the MX-quadtree
is treated as a unit-sized region, and all the data points that fall into this unit-sized
region are kept in an overflow list associated with the corresponding cell. This may,
however, increase the search time if the data distribution is very skewed and there
are cells that contain a large number of data points that need to be sifted through.
An alternative to this is to use PR-quadtrees as described next.

7.2.2.3 PR Quadtree
A point-region (PR)-quadtree [Samet, 1984] (also referred to as a uniform
quadtree [Anderson, 1983a]) is a cross between a point quadtree and an MX-
quadtree (Figure 7.18). As in point quadtrees, the space is treated as being real-
valued. On the other hand, as in MX-quadtrees, the space is always split at the cen-
ter of the partitions and data are stored at the leaves. Consequently, the structure of
the tree is independent of the insertion order and deletion is, as in MX-quadtrees,
easy. One difference from the MX-quadtrees is that, in most implementations of
PR-quadtrees, all leaves are not maintained at the same level.

7.2.2.4 Summary of Quadtrees
Quadtrees and their variants are, in a sense, similar to the binary search tree: At
each node, the binary search tree divides the 1D-space into 2 (= 21) halves (or
partitions). Similarly, at each node, the quadtree divides the given m-dimensional
space into 2m partitions. In other words, quadtrees can be seen as a generaliza-
tion of binary search idea to multidimensional spaces. While extending from 1D to
multidimensional space, however, the quadtree data structure introduces a poten-
tially significant disadvantage: having 2m partition per node implies that, as the num-
ber of dimensions of the space gets larger,

� The storage space needed for each node grows very quickly
� More critically, range searches may be negatively affected because of the in-

creased numbers of pointers that need to be investigated and partitions of the
space that need to be examined.
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(a) (b) (c) (d) (e)

Figure 7.19. A sequence of insertions into a KD-tree in 2D space.

We next consider a different space subdivision scheme, called KD-tree, which, as in
binary search trees, always divides a given partition into two (independent of the
number of dimensions of the space).

7.2.3 KD-Trees

A KD-tree is a binary space subdivision scheme, where whatever the number of
dimensions of the space is, the fanout (i.e., the number of pointers) of each tree
node is never more than two [Bentley, 1975]. This is achieved by dividing the space
along only a single dimension at a time. In order to give a chance for each dimension
of the space to contribute to the discrimination of the data points, the space is split
along a different dimension at each level of the tree. The order of split directions is
usually assigned to the levels of the KD-tree in a round-robin fashion. For example,
in the KD-tree shown in Figure 7.19, the first and third splits along any branch of
the tree are vertical, whereas the second and fourth splits are horizontal.

Figure 7.20 shows the point quadtree that one would obtain through the same
sequence of data point insertions. Comparing Figures 7.19 and 7.20, it is easy
to see that the KD-tree partitioning results in more compact tree nodes, thus

(a) (b)

Figure 7.20. (a) The point quadtree that one would obtain through the sequence of data point
insertions in Figure 7.19. (b) The corresponding data structure.
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providing savings in both storage and the number of comparisons to be performed
per node. Conversely, though, because the fanout of the KD-tree nodes is small (i.e.,
always 2), the resulting tree is likely to be deeper than the corresponding quadtree.
A quick comparison of Figures 7.19 and 7.20 verifies this. In fact, the problem with
the quadtree data structure is not that the fanout is large, but that the required
fanout grows exponentially with the number of dimensions of the space. As we see in
Section 7.2.4, bucketing techniques can be used for increasing the fanout of KD-
trees in a controlled manner, without giving rise to exponential growth (as in
quadtrees) with the number of dimensions.

Because, aside from picking the dimensions for the splits in a round-robin man-
ner, the KD-tree is quite similar to the quadtree data structure, most versions of the
quadtree (e.g., point quadtree, MX-quadtree, PR-quadtree) have KD-tree counter-
parts (e.g., point KD-tree, MX-KD-tree, PR-KD-tree).

7.2.3.1 Point KD-Trees
As in point quadtrees, the point KD-tree data structure partitions the space at the
data points. The resulting tree depends on the order of insertions, and the tree is not
necessarily balanced.

The insertion and search processes also mimic those of the point quadtrees, ex-
cept that the partitions considered for insertion and search are chosen based on
a single dimension at each node. The data deletion process, on the other hand, is
substantially different from that of point quadtrees. The reason for this is that, be-
cause of the use of different dimensions for splitting the space at each level, finding
a suitable node that will minimize the restructuring is not a straightforward task.
In particular, this most suitable node needs not be located at the leaves of the tree,
and thus the deletion process may need to be performed iteratively by (a) finding
a most suitable descendant to be the replacement for the deleted node, (b) remov-
ing the selected node from its current location to replace the node to be deleted,
and (c) repeating the same process to replace the node that has just been removed
from its current position. For selecting the most suitable descendant node to re-
place the one being deleted, one has to consider how much the partition boundary
will shift because of the node replacement. It is easy to see that the node that will
cause the smallest shift is the descendant node that is closest to the boundary along
the dimension corresponding to the node being deleted. In fact, because there will
be no nodes between the one deleted and the one selected for replacement along
the split axis, unlike the case in quadtrees, no single node will need to move between
partitions (Figure 7.21). Thus, in KD-trees the cost of moving the data points across
partitions is replaced with the cost of repeated searches for the most suitable re-
placement nodes. Bentley [1975] showed that average insertion and deletion times
for a random point are both O(log(n)). Naturally, deleting nodes closer to the root
has a considerably higher cost, as the process could involve multiple searches for
most suitable replacement nodes.

7.2.3.2 Adaptive KD-Trees
The adaptive KD-tree data structure is a variant of the KD-tree, where the require-
ment that the partition boundaries pass over the data points is relaxed. Instead, as
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(a) (b) (c)

Figure 7.21. Deletion in KD-trees: (a) Original tree, (b) The root is deleted and replaced by a
descendant, (c) The resulting configuration.

in PR-quadtrees, all data points are stored at the leaves and split points are chosen
in a way that maximizes the data spread:

� In data-dependent split strategies, the split position is chosen based on the points
in the region: a typical approach is to split a given partition at the average or
median of points along the split dimension.

� In space-dependent strategies, the split position is picked independently of the
actual points. An example strategy is to split a given region into two subregions
of equal areas.

The basic adaptive KD-tree picks the median value along the given dimension to lo-
cate the partition boundary [Friedman et al., 1977]. This helps ensure that the data
points have equal probability of being on either side of the partition. The VAM-
Split adaptation technique considers the discrimination power of the dimensions
and at each level picks the dimension with the maximum variance as the split di-
mension [Sproull, 1991; White and Jain, 1996b]. The fair-split technique [Callahan
and Kosaraju, 1995] is based on a similar strategy: at each iteration, the algorithm
picks the longest dimension and divides the current partition into two geometrically
equal halves along it. Consequently, it allows for O(nlog(n)) construction of the KD-
tree. The binary space partitioning tree (or BSP-tree) [Fuchs et al., 1980] is a further
generalization where the partition boundaries are not necessarily aligned with the
dimensions of the space, but are hyperplanes that are selected in a way that splits
the data points in a manner that best separates them (Figure 7.22).

Note that in order to create an adaptive KD-tree, we need to have the data
points available in advance. Because insertions and deletions could cause changes

AB

CD

Figure 7.22. A sample BSP-tree.
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in the location of the median point, performing these operations on an adaptive
KD-tree is not cheap.

7.2.4 Bucket-Based Quadtree and KD-Tree Variants

The quadtree and KD-tree variants discussed so far all take data points as the units
of data access and, thus, associate at most one data point per tree node. In real-
ity, however, disks are accessed one disk page at a time, and each page may have
sufficient space to contain more than one data point. Consequently, when the mul-
tidimensional search data structures are implemented over secondary storage de-
vices, it is more advantageous to aggregate multiple data points into buckets that
are mapped onto disk pages.

7.2.4.1 k-d-B-Tree
A k-d-B-tree is a cross between an adaptive KD-tree and a B-tree [Robinson, 1981].
Each node of a k-d-B-tree corresponds to a region of space. As in B-trees, the leaves
contain more than one data entry (the number of data entries is determined based
on the size of the disk page and storage requirement of each data point). K-d-B-trees
are balanced like B-trees and, also like B-trees, nodes can contain more than two
pointers. Each nonleaf node of the tree is referred to as a region page and represents
a KD-tree partitioning of the corresponding region of the space. For each subregion,
the nonleaf node contains a pointer to another tree node: if that node is a leaf, then
it will simply contain the data points in the corresponding subregion; if the node is
not a leaf, on the other hand, it will in turn represent a KD-tree partitioning of the
corresponding subregion into smaller sub-subregions.

Maintaining the k-d-B-tree in the presence of insertions and deletions is not
straightforward. When insertions cause a leaf node to overflow, the corresponding
region needs to be partitioned into two, and this needs to be reflected into the parent
node, potentially resulting in cascading splits. Most importantly, though, the hyper-
plane that repartitions the region must be selected in such a way that the resulting
subregions themselves do not overflow.

Point deletions may cause leaf pages to become underutilized and when the uti-
lization of the pages goes beyond a certain level, underutilized pages may need to be
merged. However, not all leaf pages are compatible with each other, because they
may result in irregularly shaped regions when combined. Thus, merging pages may
require shifting some of the existing partition boundaries to render the merged re-
gion regular. This may, in turn, require some of the points to move across partitions
(and thus across the corresponding disk pages), increasing the cost of the whole
process.

7.2.4.2 LSD-Tree
The local split decision tree (or LSD-tree) [Henrich et al., 1989] structure partitions
the space into disjoint regions such that each region is associated with a bucket
of fixed size (corresponding to a disk page). The LSD partitioning directory is
maintained in a binary tree as in KD-trees. Each node represents one split deci-
sion, described using a split dimension and a split position. Each split decision is
made purely based on local information (as opposed to, for example, assigning split
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Figure 7.23. LSD-tree organization: when the main memory is not sufficient to keep the
directory structure (which is essentially an adaptive KD-tree), some subtrees are pushed
onto secondary storage.

dimensions in a round-robin fashion); hence, the resulting tree is referred to as a
local split decision tree.

The most significant difference between the LSD-tree and other adaptive KD-
tree variants is that the LSD-tree insertion and deletion algorithms preserve an ex-
ternal balancing property [Henrich et al., 1989]: “The number of external directory
pages which are traversed on any two paths from the directory root to a bucket differs
by at most 1.” The tree is kept at the main memory as much as possible. When the
tree grows to a size where it can no longer be maintained in the main memory in its
entirety, then a paging algorithm determines the parts of the tree that will be paged
on (i.e., stored at) secondary storage (Figure 7.23). The paging process ensures that
the external balancing property is preserved by selecting a subtree that has the fol-
lowing properties: (a) the paths from the root of the subtree down to data buckets
contain minimal number of external directory pages (across the entire LSD-tree)
and (b) the selected in-memory subtree fits into a single disk page (Figure 7.24).

7.2.4.3 Hybrid-Tree
As in k-d-B-trees and LSD-trees, the hybrid-tree data structure [Chakrabarti and
Mehrotra, 1999] splits a given node along a single dimension. Also as in the k-
d-B-trees, the space partitioning within each internal node is represented using a
KD-tree. However, the hybrid-tree scheme avoids cascading splits by relaxing the
requirement that the partitions created in the process are always mutually disjoint:

single
disk
page

(a) (b)

Figure 7.24. The LSD-tree selects the subtrees to be pushed onto the secondary storage in
such a way that the external balancing property is preserved.
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(a) (b)

Figure 7.25. When splitting data nodes, the hybrid tree chooses the dimension along which
the corresponding bounding region has the largest extent: the scenario (a) results in a smaller
area of overlap for the same length, �, of overlap along the selected dimension.

overlaps are allowed (only) when a split will cause cascading splits. In order to ac-
commodate overlaps, internal nodes of the hybrid tree maintain two split positions
instead of a single one. When the two split positions are equal, this corresponds to
the standard KD-tree partitioning. Overlaps occur when the two split positions are
different from each other.

The split dimension is chosen in a way that minimizes the expected number of
disk accesses per query. Because when two partitions overlap (i.e., cover the same
region of the space) a query for the shared region may need to inspect both par-
titions, the split dimension is selected in a way that minimizes the likelihood of
an overlap: in particular, the hybrid tree chooses the dimension along which the
bounding region has the largest extent for splitting data nodes, because this is likely
to result in the least volume of overlap (Figure 7.25). Note that this choice also im-
plies that less discriminating dimensions are never used for partitioning the space
and, thus, the hybrid tree implicitly eliminates nondiscriminating features. Further-
more, unlike the earlier KD-tree schemes that either perform round-robin assign-
ment of split dimensions or rely on the variance of the data distribution, the hybrid-
tree data structure also takes into account the distribution of the query sizes.

For the leaves, where the data points are stored, the split position is chosen as
close to the middle as possible, as this results in more cube-like partitions with small
surface areas, thus reducing the probability that range queries will unnecessarily
overlap with the resulting partitions. For the internal nodes, the split positions are
chosen in such a way that the overlaps between the partitions are minimized, yet the
utilizations of the resulting partitions are sufficiently high.

The hybrid tree tries to reduce the number of disk accesses during search by
further eliminating the dead space (i.e., space that does not contain any data points)
in the partitions through a live space encoding scheme [Henrich, 1998]. In live space
encoding, a grid is placed on each KD-tree partition and the live space (i.e., the
bounding box that contains all the corresponding data points) is encoded using few
bits per dimension (Figure 7.26).

7.2.5 R-Trees and Their Variants

As the live space discussion illustrates, top-down space subdivision techniques, such
as quadtrees and KD-trees, commonly result in dead space simply because, at all
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Figure 7.26. Live space encoding with 3-bit precision: 〈001, 010; 110, 111〉.

levels of the tree, the entire space (even the parts that do not contain any data
points) needs to be covered. This means that, even though a search range may not
contain any data points, the search process would still need to continue all the way
to the leaves. The live space encoding somewhat alleviates this, but in an ad hoc
manner.

R-trees [Guttman, 1984] address the dead space problem directly by building
the index structure using a bottom-up data partitioning strategy as opposed to a top-
down space partitioning strategy. In particular, the data buckets (i.e., the leaves) of
the R-tree directory structure simply correspond to the minimum bounding regions
(MBRs) that cluster nearby data items. Consequently, the leaves represent only the
portions of the space needed to cover the data points. Similarly, the nodes at the
higher levels of the R-tree cluster close-by lower-level minimum bounding regions
to form ever-larger minimum bounding regions. The only node in the R-tree that is
guaranteed to cover the entire space is the root.

A distinctive feature of the R-tree data insertion and deletion processes is that
the resulting trees are always balanced. The R-tree achieves this by generalizing the
B-tree mechanism [Bayer and McCreight, 1972] from one dimension to multiple
dimensions:

� In B-trees, each node corresponds to an interval of values; in R-trees, each node
is a minimum bounding region of data points contained within.

� As in B-trees, each node in an R-tree (except for the root) must contain at least
M
2 children (where M is the fanout capacity of the node).

� Also as in B-trees, all the leaves are at the same level and the root has at least
two children unless it itself is a leaf.

� The data point insertion and deletion processes also follow the B-tree scheme
(Figure 7.27): (a) when a node becomes full, it is split (Figure 7.28) and the
resulting regions are pushed up the hierarchy, and (b) when a node becomes
unacceptably empty, exchanges between neighboring nodes help keep all nodes
sufficiently full.

In R-trees, each node represents a region and each child node represents a subre-
gion. As stated previously, the parent node is the MBR of its children. Each region is
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Figure 7.27. Overview of the R-tree insertion and deletion processes: (a) insertion,
(b) deletion.

described using the two end points of a diagonal; therefore, given an m-dimensional
space, each MBR requires 2m values to describe the corresponding region.

A significant difference between R-trees and B-trees (as well as the quadtree
and KD-tree variants – except for the hybrid tree) is that in R-trees the regions
corresponding to sibling nodes may overlap. Consequently, R-tree variants employ
different heuristics to minimize the likelihood of overlaps. One such heuristic is to
split an overful node in such a way that the MBRs of the two resulting nodes have a
minimum overlap (Figure 7.29(a,b)). Although this strategy helps attack the prob-
lem of overlaps directly, it may result in dead space that may overlap with future
queries and MBRs. An alternative heuristic is to minimize the total area covered by
the resulting nodes (Figure 7.29(a,c)). This scheme does not explicitly target or pre-
vent overlaps; instead, the idea is that by minimizing the total area (even if it causes
overlaps) now, one may save a lot in the future because the dead areas generated in
the process are smaller.

Another major difference between R-trees and B-trees is that, whereas in B-
trees the node to which a new entry will go is deterministic, because R-trees do
not cover the entire space or may multiply cover a given region of the space, there
may be multiple candidate nodes to store a newly inserted entry (Figure 7.30). Once
again, R-tree variants employ different heuristics to select the suitable node among
the candidates.

7.2.5.1 Hilbert R-Tree
A successfully applied heuristic for selecting the appropriate node for inserting a
new entry is to compare the Hilbert value (see Section 7.1.2) of the center of the new

(a) (b) (c)

Figure 7.28. A node that can hold at most four MBRs would need to be split if it receives a
new MBR to keep: (a) Before insertion, (b) New entry, (c) After split.
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Figure 7.29. (a) A node that can hold at most three entries receives a new entry, and thus
it needs to be split. (b) One possible heuristic is to minimize the overlaps of the resulting
MBRs (but this may cause dead space that may unnecessarily overlap with a future query,
Q). (c) Another heuristic is to minimize the total area (but this does not explicitly minimize
current overlaps between the MBRs; thus a query, Q, may require access to both resulting
nodes).

entry with the largest Hilbert values (LHVs) of the MBRs contained in the candidate
nodes. Among all the candidates, this heuristic picks the node with the smallest LHV
that is greater than the Hilbert value of the new entry. In other words, the Hilbert
R-tree [Kamel and Faloutsos, 1994] imposes a linear order on all the candidate
MBRs based on Hilbert values and uses this order to select among the candidate
nodes.

7.2.5.2 R+-Tree
R+-trees [Sellis et al., 1987] avoid overlaps of MBRs altogether by allowing entries
to be replicated in multiple data nodes (Figure 7.31). This helps reduce search time
as only one single path in the tree corresponds to any single point in space. On the
other hand, because entries are replicated, the resulting index structure may be sig-
nificantly larger than the equivalent R-tree. Furthermore, insertions and deletions
are costlier because more than one leaf may need to be accessed to maintain the
tree.

MBR1

MBR2

new

?

?

MBR1

MBR2

new

(a) (b)

Figure 7.30. (a) The new region is not covered by any existing MBR, so one of the MBRs
needs to be extended to include the new entry. (b) In this case, the new entry is covered
by more than one MBR; thus one of these candidates must be selected to contain the new
entry.
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Figure 7.31. The R+-tree prevents overlaps of MBRs by replicating entries in multiple nodes.

7.2.5.3 R∗-Tree
The R*-tree data structure [Beckmann et al., 1990] explicitly optimizes parameters
that correspond to the following three criteria when choosing the subtree for point
insertion and for selecting the split strategy when a node is full:

� The volumes of the MBRs must be small to ensure that the size of the dead space
in each node is minimized.

� The overlap between the MBRs should be minimized.
� The margins of the MBRs must be minimized. This means that given two MBRs

of equal size, the one that has a more balanced shape will be preferred. Because
such shapes are easier to pack, this helps reduce the volumes of the higher level
MBRs that will contain them.

The R*-tree also employs a forced re-insertion strategy that generally results in trees
with better structures: when a node overflows, some of its children are chosen to
be deleted and re-inserted. The use of such forced insertions, as opposed to blind
localized splits, gives an opportunity to the tree to re-adjust its structure in a more
globally meaningful manner.

7.2.5.4 Trees with Spherical Bounding Regions
The SS-tree [White and Jain, 1996a], M-tree [Ciaccia et al., 1997], and sphere/
rectangle-tree (SR-tree) [Katayama and Satoh, 1997] all use spherical bounding re-
gions along with or instead of the rectangular ones.

Rectangular regions tend to result in long diagonals, which implies that two ob-
jects that are not necessarily close to each other can be placed into the same re-
gion if they are along the diagonal. In order to avoid long diagonals, the SS-tree
employs bounding spheres instead of bounding rectangles. A second advantage of
using spheres is that they require less storage space to describe: in an m-dimensional
space, the MBR of a region requires 2m values to describe two diagonal corners; in
the same space, the sphere requires m+ 1 values to describe the center point and
the radius.



262 Indexing, Search, and Retrieval of Vectors

Given a set of entries, the center of the sphere containing them is the centroid
of all the points included in the region. During insertion, the SS-tree algorithm de-
termines the most suitable subtree by choosing the one with the centroid closest
to the new entry. When a sphere is full, the algorithm calculates the variance (of
the centroids of its children of the point entries contained in the region) along each
dimension and uses the dimension with the highest variance for splitting the sphere.

When inserting points, the M-tree data structure tries to pick the node that will
result in the least enlargement of the radius. If there are multiple such nodes, the
closest one is chosen. When a node is full, like other R-tree variants, M-tree tries to
pick a split that minimizes the total volume, while also minimizing the overlap.

Although bounding spheres help divide points into short diameter regions, as
shown by Katayama and Satoh [1997], given a fixed diameter, bounding spheres
occupy much larger volumes than bounding rectangles (especially when the num-
ber of dimensions is high). As stated earlier, regions with larger volumes tend to
create more overlaps. The SR tree brings together advantages of spherical and rect-
angular regions by specifying the regions as the intersections of bounding spheres
and bounding rectangles. This helps reduce the volumes of the regions and, while
requiring more storage space, helps eliminate dead space and minimize overlaps.

7.2.5.5 VAMSplit R-Tree
The VAMSplit R-tree [White and Jain, 1996b] leverages the VAMSplit adaptation
technique (discussed in Section 7.2.3.2), which considers the discrimination powers
of the dimensions when selecting the split point. This helps the data structure adapt
to varying data distributions and outperform R*-trees for databases where points
are not uniformly distributed.

7.2.5.6 X-Tree
The eXtended node tree (X-tree) [Berchtold et al., 1996] data structure is an R-tree
variant that tries to avoid splits. R-tree splits (commonly performed using only local
information) can result in inefficient directory structures whose MBRs are prone to
high degrees of overlap, especially when the dimensionality of the space increases.
To avoid splits, the X-tree introduces the concept of supernodes, which are essen-
tially R-tree nodes consisting of multiple consecutive disk pages. Because they can
hold more entries, supernodes help reduce the need for splits and protect the struc-
ture of the R-tree from deformations due to frequent splits.

In X-trees, supernodes are created only if there is no other possibility to avoid
overlap. First, the X-tree tries to choose an overlap-free (or at least overlap-
minimal) split axis. When an overlap-minimal split will result in underfilled nodes,
however, the split algorithm terminates without executing the split. Only in that case
is the current (super-)node extended with an additional disk page.

A positive side effect of the supernode strategy is the increase in the fanout of
the tree: a supernode of k pages will have k times more children than a regular node.
Of course, supernodes do not come for free: a supernode consisting of multiple disk
pages may require multiple disk accesses (or at least one disk seek operation fol-
lowed by multiple rotations) and, thus, when a given query does not cover the en-
tire MBR of the supernode, the extra disk accesses result in unnecessary overhead.
Furthermore, as the supernode grows (i.e., as k gets larger), the process may in fact
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deteriorate to a sequential scan of a large file: consider, for example, the extreme
case where the entire database is a single supernode consisting of an MBR that cov-
ers all the data points. Clearly, this data structure would be inefficient in that each
query would require scanning of the entire database.

7.2.5.7 Packed R-Trees
So far, we have discussed R-trees designed to support dynamic updates, insertions,
and deletions. In many cases, however, the data are static and, once they are created,
the R-tree will be used only for searching. In these cases, it is better to pack the R-
tree in such a way that the utilization of the pages is maximized. This is usually
achieved by picking an order in which the space will be visited during insertion and
building the R-tree bottom-up following this order.

There are different heuristics to build the R-tree in a packed fashion. Rous-
sopoulos and Leifker [1985] proposed sorting the data along a single dimension.
The sorted list of entries is scanned, and each entry is assigned to a leaf node un-
til this leaf node is full. When the leaf node is full, a new leaf node is created, and
this process is continued until the data are all inserted into the leaves. Once the
leaf nodes are created, the same process is repeated with (selected corners of) their
MBRs to obtain the next level of the R-tree, and so on. Once this bottom-up pro-
cess is over, the resulting packed R-tree is almost 100% full. Experiments showed
that the resulting packed R-tree is better than linear- and quadratic-split R-trees
and R*-tree. The Hilbert packed R-tree [Kamel and Faloutsos, 1993] improves the
query performance significantly by relying on the clustering properties of the Hilbert
curves during packing.

The sort-tile-recursive (STR) packed R-tree [Leutenegger et al., 1997] first sorts
all n entries in a given m-dimensional space according to the first coordinate of their
centers. Then, given disk pages that can hold b entries, the set of entries is divided
into �( n

b

) 1
m  groups, each with ∼ n

( n
b )

1
m

= b
1
m n

m−1
m data entries. Then, each of these

sorted groups of entries goes through the same process recursively using the re-
maining m− 1 dimensions. When the process is over (i.e., all the dimensions are
considered), the resulting sorted tiles are packed into the leaves of the R-tree, and
the process is repeated recursively in a bottom-up manner to obtain the higher lev-
els of the tree. Experiments showed that this scheme requires about 50% fewer disk
accesses for uniformly distributed or mildly skewed data sets.

7.2.6 TV-Trees

Although essentially being a variant of R-trees, the telescoping vector tree (TV-
tree) [Lin et al., 1994] data structure fights the dimensionality curse in a way that
is quite different from other R-trees.

As we have discussed in Section 4.1, range and nearest neighbor searches in high-
dimensional spaces fail to benefit from available index structures, and searches dete-
riorate to sequential scans of the entire database. This is primarily for three reasons:

� As the number of dimensions increases, the nearest and the furthest points from
the query converge, and nearest neighbor and range queries lose their meanings.
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Figure 7.32. A class hierarchy may use a higher number of features at the lower levels to
better discriminate the objects.

� In R-trees and their variants, the dead space and the degrees of overlaps be-
tween the MBRs of various nodes increase as the number of dimensions be-
comes larger.

� Because of the fixed sizes of the disk pages, the fanouts of the directory nodes get
smaller as the number of dimensions and thus the number of values needed to
describe the MBRs increase. Consequently, the depth of the tree and the num-
ber of pages that one needs to access to reach the appropriate leaf nodes also
increase.

One solution to this problem is to apply a feature selection algorithm (see Sec-
tion 4.2) to reduce the number of relevant dimensions before attempting to index
the data points. It is, however, not always possible to pick the right number of
dimensions to represent the entire data set. In fact, different subsets of the data may
require different numbers of dimensions for effective representation and indexing.

TV-trees use a vector telescoping scheme to help pick the appropriate number
of dimensions needed to represent different MBRs in the data structure. In par-
ticular, Lin et al. [1994] observe that not all features are equally important, and in
many cases it is possible to order features based on some importance criterion (i.e.,
discrimination power). The telescoping technique helps contract and extend feature
vectors based on need and, thus, use as little features as possible to avoid the di-
mensionality curse. In some sense, the idea is similar to those of class or concept
hierarchies, which tend to use more features at the lower levels of the hierarchy to
better discriminate the objects (Figure 7.32). Similar to this, the telescoping scheme
used by the TV-trees uses a smaller number of features at the higher levels of the
tree and a larger number of features at the lower levels, where finer discrimination
between points is needed.

As in SS- and M-trees, TV-trees also rely on spherical MBRs that are defined us-
ing center/radius pairs. However, TV-trees do not use all the available dimensions
to define the MBRs. Instead, only a few dimensions, sufficient to discriminate the
points covered by the MBR, are used. The center and the radius of an MBR are
defined along different dimensions. Let us consider an m-dimensional vector space.
An MBR, mbri is a pair 〈centeri, ri〉, where centeri is defined using the first c dimen-
sions and the radius, ri, is defined using the next k dimensions of the space; note that
c + k ≤ m (Figure 7.33). Given a c-dimensional center description, 〈w1, w2, . . . , wc〉,
this corresponds to the point

〈w1, w2, . . . , wc, 0, 0, . . . , 0︸ ︷︷ ︸
(m−c) zeros

〉
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Figure 7.33. In TV-trees, only the first few dimensions, sufficient to discriminate the points
covered by the region, are used to describe a given MBR.

in the m-dimensional space. Given the foregoing center and a radius, r, defined
in k dimensions, all the points that lie in the corresponding region are of the
form

〈w1, w2, . . . , wc, wc+1, wc+2, . . . , wc+k,︸ ︷︷ ︸
k weights

wc+k+1, . . . , wm〉,

such that

�(〈wc+1, wc+2, . . . , wc+k〉, 〈0, 0, . . . , 0︸ ︷︷ ︸
k zeros

〉) ≤ r.

The last m− c − k weights are left unused.
The value of k (i.e., the number of dimensions used for defining the radius) deter-

mines the dimensionality of the bounding region. The value is picked at design time
and is kept constant throughout the evolution of the data structure. Thus, TV-trees
are usually specified with the corresponding k values (e.g., TV-2 trees, for k = 2,
and TV-3 trees, for k = 3). At design time, one can also choose between different
metrics for computing the distance between the points in the space: for example, if
the L1-metric (or the Manhattan distance) is used, then the bounding regions are
diamond shaped; when the L2-metric (or the Euclidean distance) is picked to com-
pute the distance between the points, then the bounding regions are spherical, and
so on (Figure 7.34).
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Figure 7.34. The shapes of MBRs with radius r = 2, defined in 2D space (k = 2), and cen-
tered at the point 〈3, 4〉, when the distance measure is (a) L1 and (b) L2. Note that the
positions of the points B and C with respect to the boundary of the region differ based on
the metric used to descibe the radius.
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(a)

(b)

Figure 7.35. The shapes of the MBRs for a TV-1 tree in a three-dimensional space for different
values of c. (a) When c = 1, the center is described using x, the radius using y, and the z
dimension is left unused; consequently, the MBRs are planar stripes along the z dimension.
(b) When c = 2, on the other hand, the resulting MBRs are line segments of length r along
z. In a sense, telescoping from c = 1 to c = 2 involves shredding the given stripe into its
fibers.

While the value k is kept constant, the TV-tree is able to adapt itself to the inher-
ent dimensionality of the data by dynamically telescoping (extending and contract-
ing) the number, c, of dimensions used for describing the centers of the individual
MBRs (Figures 7.33 and 7.35).

For a new data point, the TV-tree insertion algorithm traverses the tree choos-
ing the most suitable branch to hold the new point. For this purpose it uses the
following criteria in descending priority: (a) minimum increase in overlapping re-
gions within the selected node; (b) minimum decrease in the dimensionality (of the
value c) needed to accommodate the point in the MBR; (c) minimum increase in
the radius; and (d) minimum distance from the center of the MBR.

When a node becomes full, it is split to redistribute the entries into two groups.
One way to perform the split operation is to apply a clustering scheme that will
group similar vectors. In this scheme, the algorithm picks two branches that have
the smallest common prefix in their centers, and the other branches are clustered
around these two based on the four criteria listed earlier. An alternative scheme is
to order the centers of the entries (using, for example, Hilbert ordering) and find a
partition such that (a) the sum of the radii of the two new MBRs is minimized and
(b) the value (the sum of the radii of the two new MBRs minus the distance between
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centers) is minimized. The first of these tries to minimize the area that the MBRs
cover, and the second minimizes their overlaps.

Deletion is performed by removing the remaining branches of any node that
becomes underutilized and re-inserting them into the tree.

Extensions of the dimensionality occur during splits and deletions. In either case,
if the remaining entries all agree in more dimensions, the definition of the center can
be extended to describe the MBR more precisely. The contraction occurs during
insertions. When a new point is inserted into an MBR such that the center of the
MBR does not agree with the corresponding dimensions of the new point, then some
dimensions will need to be contracted to ensure that the center of the MBR and the
corresponding dimensions of the point agree. Note that these imply that, in most
cases, the nodes closer to the root will have lower dimensionality (i.e., high fanout).
This helps prune the database more effectively and thus reduces the number of disk
accesses required to perform searches using TV-trees.

7.2.7 Pyramid Trees

Pyramid trees [Berchtold et al., 1998] attack the dimensionality curse by taking a
radically different approach from hierarchical space subdivision. Remember from
Section 4.1 and the previous discussion of TV-trees that, because the nearest and
the furthest points from the query start converging, clustering in high-dimensional
spaces fails to provide any benefits in supporting range and nearest neighbor
searches. This is mainly because the space becomes extremely sparse and the num-
ber of data points that lie at a distance from any given point increases exponentially
with each step away from the point (Figure 7.36). Consequently, the amount of dead
space grows exponentially and, thus, the resulting cluster boundaries (MBRs) over-
lap significantly.

The pyramid technique completely avoids overlaps by discarding the use of
distance-based clusters. Instead, it maps the multidimensional space onto a 1D space
as in space-filling curves; the data points mapped onto the 1D space are then parti-
tioned in a nonoverlapping fashion, as in B-trees.

Unlike the space-filling curves, however, the pyramid technique does not try to
fill the space in a way that brings the closer points together, essentially rejecting the
desiderata listed near the beginning of this chapter. Instead, as shown in Figure 7.37,
the pyramid technique splits the space into pyramids (such that each pyramid has
its peak at the center of the space and its base at one of the bounding hyperplanes)
and numbers each pyramid uniquely. For each point, then, the pyramid ID and the
distance between the center of the space and the hyperplane passing through the
point and parallel to the base of the pyramid are combined to obtain its key.

Once the keys are obtained, the data are then simply stored in a 1D data struc-
ture, such as a B+-tree, which partitions the data and maps them onto disk pages in
a nonoverlapping manner. Note that, unlike space-filling curves, in this scheme the
mapping from the multidimensional space to the 1D space is not one-to-one. In fact,
any two points that are in the same pyramid and on the same plane with respect to
the corresponding base have the same key, and thus are likely to be stored together,
irrespective of how far apart they are. Because each disk page can hold a fixed num-
ber of points, and because, when the data are uniformly distributed in the space, the
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Figure 7.36. The dimensionality curse: The volume between the slices between equidistance
spheres enveloping a query point increases exponentially.

number of points increases exponentially as one gets further away from the center
(the dimensionality curse!), this results in partitions that get progressively thinner as
one gets away from the tip of the pyramid (Figure 7.38(a)). Consequently, queries
that are closer to the center of the space and away from the boundaries result in
fewer disk accesses.

Queries that are closer to the boundary, on the other hand, may need to read a
larger number of pages that need to be filtered out later (Figure 7.38(b)). Berchtold
et al. [1998] showed analytically that when the queries are uniformly distributed, on
average, the number of pages that need to be fetched using the pyramid technique

11
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h2 key=(3,h1)

4

3

Figure 7.37. The keys of each point are computed by combining the ID of the pyramid
containing the point and the point’s height.
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Figure 7.38. (a) Partitions get thinner as one gets further away from the center. (b) Queries
that are closer to the center result in smaller numbers of page accesses.

is significantly smaller than the number of pages that clustering-based hierarchical
solutions would require. In a sense, the pyramid techniques turns the key contrib-
utor to the dimensionality curse (the fact that most points lie further away than any
selected point) into a weapon to attack the curse itself. Berchtold et al. [1998] also
show how to form and use pyramids whose centers are not at the center when the
data and queries are not uniformly distributed.

7.2.8 VA-Files

As we have mentioned, almost all hierarchical data structures become ineffective as
the number of dimensions of the space increases. In many cases, searches through
index structures become as costly as simple sequential scans of the entire database.
The vector-approximation files (VA-files) [Weber and Blott, 1998] simply take this
observation to its natural conclusion: They eliminate the entire hierarchical struc-
ture altogether and optimize the sequential access instead.

As in grid files, the VA-file technique divides the space into 2b rectangular cells,
where b is a user-specified number of bits. Each cell essentially approximates all
the points that fall in it. Unlike the grid files (or any hierarchical organization
schemes) the VA-file is simply an array of these compact representations and a
search is performed simply by scanning the entire VA-file. Experiments reported by
Weber and Blott [1998] showed that VA-file approach scales better than R*- and X-
tree data structures as the number of dimensions increases.

Ferhatosmanoglu et al. [2000] build on the VA-file approach to develop a VA+-
file data structure that performs better for data sets where the data points are not
uniformly distributed. In particular, before the approximation is carried out, the
VA+-file first applies the Karhunen-Loeve transform (see Section 4.2.6) to identify
the principal components of the data that can support more effective approxima-
tions. Given these principal dimensions, the VA+-file assigns appropriate number
of bits to different dimensions. In particular, those dimensions along which data
require more precision are allocated a higher number of bits than the dimensions
along which data can be compressed without losing much of the discriminatory
power of the VA+-file. Finally, once the algorithm knows how many bits are al-
located to a given principal component, the data along this dimension are quantized
(i.e., approximated) nonuniformly [Lloyd, 1982], based on the local density of the
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points along this dimension. This last phase is similar to K-means, a popular cluster-
ing algorithm that we discuss in the next chapter.

7.3 SUMMARY

Vectors play an important role in representing and managing multimedia data. Once
relevant features are identified and quantified, most media data can be mapped onto
a multidimensional feature space, and queries can be formulated as range searches
or nearest neighbor searches in this space. As we have seen in this chapter, when
the underlying distance/similarity measure is metric, this helps significantly with ef-
ficient indexing of multidimensional data. In Chapter 10, we revisit the problem
of performing nearest neighbor searches, this time in the more general context of
ranked query processing (not necessarily in metric spaces) and skyline queries.

Unfortunately, most multidimensional data indexing schemes fail to scale with
the number of dimensions necessary to describe the multimedia data. We have seen
that a number of schemes, such as TV-trees, X-trees, pyramid trees, and VA-files,
attempt to address this shortcoming. When the data cannot be mapped onto multi-
dimensional space or when the space onto which the data are mapped is not suitable
for efficient indexing, other techniques, such as clustering, can be used for pruning
the irrelevant data during query processing. We cover this next.



8

Clustering Techniques

In the previous chapter, we described mechanisms for indexing multimedia data for
quick access. The indexing process, in general, is based on establishing some or-
der between the data objects so that queries can be routed toward the ones that
are likely to be matches for the query and prune away those objects that are non-
matches. Thus, most indexing techniques are based on some form of data clustering.
In fact, hierarchical multidimensional index structures are sometimes referred to as
self-clustering techniques.

Naturally, establishing an order on the given set of data objects requires an un-
derstanding of the fundamental characteristics and features of the media and the
use of data structures appropriate for these features. We have seen that the index
structures applicable for different media (e.g., sequences, graphs, trees, and vectors)
are based on different principles and operate differently from each other.

In many multimedia databases, however, we may not have prior knowledge
about the explicit features of data. This is the case, for example, when we have
“black-box programs” that can compare two objects or when the similarity of the
pair is simply evaluated subjectively by users. In both cases, we can obtain informa-
tion about distances and/or similarities between pairs of objects, but there are no
explicit features that one can use as a basis for an index structure. As we have seen
in Section 4.3, one possible solution in these cases is to map or embed the objects
into a multidimensional space (using MDS or FastMap) using the available distance
values. Once the data are mapped into a multidimensional space, queries can be
supported using appropriate index structures, such as R-trees.

Such embeddings, however, are not always desirable. First, any embedding
comes with some information loss, and this may be undesirable. Second, queries
also need to be mapped onto the same space as the data objects and, as we have
seen in Section 4.3, this may be very costly.

An alternative strategy is to rely on clustering techniques that do not need explicit
features to operate. In this section, we cover such clustering techniques. Although
different clustering schemes operate differently, most first group related objects to-
gether and then select a single representative for the entire cluster (Figure 8.1(a)).
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(a) (b)

Figure 8.1. (a) Data are grouped into four clusters, and a representative is selected for each
cluster. (b) Only the representative of the fourth cluster matches the query; thus, all the
other clusters are pruned away (even though they may contain a few matches).

The query is then compared against the cluster representatives, and only those
clusters whose representatives match the query are further investigated (Fig-
ure 8.1(b)). Although this often saves time by reducing the number of comparisons
one would need to make with a naive scan of the entire database, it may result in
misses if there are matching objects in clusters whose representatives are not a suffi-
ciently good match to the query. Thus, in general, clusters need to be compact, and
the representatives must be selected carefully.

8.1 QUALITY OF A CLUSTERING SCHEME

The quality of a clustering scheme can be quantified in various ways, some of which
may conflict with each other. The appropriate quality measures are application
dependent.

Let C = {C1, C2, . . . , Ck} be the set of clusters obtained by processing the objects
in a given set, S. The following are some commonly used cluster quality measures.

Cluster Diameter
The diameter of a cluster is the maximum distance (or dissimilarity) of objects

included in the cluster. The problem of partitioning a given set of entities into k
clusters, such that the sum of the diameters of the clusters is minimum, is known to
be NP-complete for k ≥ 3 [Brucker, 1977].

Cluster Homogeneity/Compactness
One can quantify the homogeneity (or compactness) of a cluster by computing

the sum or average of all similarities of object pairs in the cluster:

compactness(Ci) =
∑

ok �=ol;ok,ol∈Ci

sim(ok, ol).

A method that is more efficient to compute, and thus often used, is the sum-of-
squares, which is the sum of squared distances of all objects in the cluster from the
corresponding cluster centroid (or representative). The minimum sum-of-squares
clustering problem of partitioning a given set of entities into k clusters in such a way
that the sum of squared distances is minimized is known to be NP-hard [Aloise et al.,
2008] in the Euclidean space.

A related quality measure is the root-mean-square-error (RMSE) measure,
which is the average of the squared distances from the objects to the cluster
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centroid. Given a clustering scheme C = {C1, C2, . . . , Ck}, the root-mean-squared
error is computed as

RMSE(C) = 1
k

∑
1≤i≤k

√√√√ 1
|Ci|

∑
oj∈Ci

(|oj − µi|2),

where µis are the cluster centroids.1 Essentially, RMSE normalizes the sum-of-
squares cluster measure with respect to the size of the cluster.

Cluster Sizes
Many applications, especially the ones that go through the clustering process

to improve mapping of media objects to resources, require clusters to be evenly
sized. If some cluster contains too few items, this may result in resources that are
wasted; clusters that are overly crowded may not fit into resources allocated on a
per-cluster basis. A commonly used measure of clustering balance is the clustering
entropy. Assuming that the clusters are nonoverlapping, maximizing the clustering
entropy, defined as

entropy(C) =
∑

1≤i≤k

P(Ci)log
(

1
P(Ci)

)
,

where P(Ci) is the probability that a randomly selected object in S will be in clus-
ter Ci, will encourage more balanced clusters (see Section 4.2.2 for a discussion of
entropy). If the clusters are overlapping, ρ =∑

1≤i≤k P(Ci) is not equal to 1; how-
ever, a similar measure can be defined by normalizing the probabilities by ρ so that∑

1≤i≤k P′(Ci) =∑
1≤i≤k

P(Ci)
ρ

= 1.

Cluster Separation
As stated earlier, objects in a given cluster should be highly connected (or simi-

lar) with each other. Conversely, a good cluster should be as separated from other
clusters as possible. One way to define this is as follows:

min separation(Ci) = MIN
ol∈Ci,oh �∈Ci

(dist(oh, ol)).

A good cluster would have a high min separation value.
Let cut(Ci, Cj) be defined as the number of pairs in Ci × Cj that have similarities

above a given threshold. Then, the separation quality of the clustering scheme, C,
can also be based on how small the total cut value,∑

Ci �=Cj ;Ci,Cj∈C
cut(Ci, Cj),

is. One way to quantify the impact of a cut is through the use of Cheeger’s ratio.
Given a cluster Ci its Cheeger’s ratio is defined as

ratioCheeger(Ci) =
∑

Ci �=Cj ;Ci,Cj∈C cut(Ci, Cj)

min{∑oh∈Ci
degree(oh),

∑
oh �∈Ci

degree(oh)} ,

1 If the objects are not in the vector space, µi would correspond to Ci ’s cluster representative, and
|oj − µi| would be the distance between the object, oj , and the cluster representative, µi , under the
corresponding distance model.
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where degree(oh) measures how connected oh is with the other objects. Cheeger’s
ratio normalizes the size of the cut as a function of the density of the connection
edges inside and outside the cluster. Because a small cluster with a lot of objects
similar to those that are external to the cluster is worse than a larger cluster with the
same number of connections to the outside, Kannan et al. [2000] normalize the cuts
with the sizes of the corresponding clusters:

expansion(Ci, Cj) = cut(Ci, Cj)
min

{|Ci|, |Cj|
} .

The quality of the clustering scheme, C, can then be based on how small the sum of
all the expansions is. Alternatively, one can also define the separation quality of a
clustering scheme as how small the following value is:

MAX
Ci∈C

expansion(Ci, S − Ci);

in other words, the quality of the clustering scheme is based on how well the objects
in any of the clusters are separated from the rest of the objects in S.

Note that cut- and expansion-based schemes ignore the actual similarity and dis-
tance values, but it is possible to generalize these definitions by weighting the cut
and expansion sizes with the similarity weights of the object pairs involved. Con-
dunctance is a measure that gives greater importance to vertices that have many
similar neighbors.

Cluster Integrity
Although previously we have used the cut and expansion concepts to define in-

tercluster separation measures, we can also use them to define intracluster integrity
measures. Based on the observation that if there is a cut of small weight that divides
a given cluster into two comparable pieces, then the cluster has lots of dissimilar
object pairs and, thus, is of low quality, Kannan et al. [2000] define the expansion
of a cluster, Ci ∈ C, as the minimum expansion over all the cuts of Ci. The cluster
integrity of the clustering scheme, C, is then defined in terms of the cluster with the
smallest expansion.

Cut- and expansion-based quality measures, in general, result in clustering prob-
lems that are NP-hard.

Clustering Modularity
Newman and Girvan [2004] introduce the following modularity quality measure

to assess a given clustering scheme C = {C1, C2, . . . , Ck}:

modularity(C) =
∑
Ci∈C


cut(Ci, Ci)

|E| −
(∑

Cj∈C cut(Ci, Cj)

|E|

)2

 ,

where cut(Ci, Ci) is simply the number of connections among the objects in clus-
ter Ci, and E is the set of all connections among all objects in the database. Maxi-
mization of the first term of the modularity measure implies that many connections
should be contained within individual clusters (i.e., edges in the cuts must be small
in number). Maximizing only this term, however, can give rise to clusters that are
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too big; in the extreme case, for example, putting all the objects into a single clus-
ter would maximize this term. To account for this, modularity measure introduces a
second term that ensures that each cluster accounts for only a small portion of the
connections in the database. Thus, the modularity measure captures both of these
conflicting criteria simultaneously. Brandes et al. [2008] show that, in general, maxi-
mizing modularity is an NP-complete problem.

8.2 GRAPH-BASED CLUSTERING

As in multidimensional scaling (MDS, Section 4.3.1), which embeds a given set of
objects into a metric vector space using the a priori knowledge about the distances
among them, graph-based clustering techniques also embed the objects into another
platform for clustering. Unlike MDS, however, these techniques embed the data
into a graph (instead of a vector space), which is then analyzed for identifying clus-
ters. The general outline of the graph-based clustering methods is as follows:

(i) Compute the similarity/distance between all object pairs.
(ii) Compute a threshold if not already given.

(iii) Create a graph that represents each object with a node and each pair whose
similarity is above the threshold (or distance less than the threshold) with
an edge.2

(iv) Analyze the resulting graph to identify clusters.

In the rest of the section, we assume that we are given an undirected graph,
G(V, E), where each vertex corresponds to a media object and each edge corre-
sponds to a pair of objects whose distances from each other are less than a given
upper bound. The adjacency matrix, A(G), of this graph is a |V| × |V| matrix, such
that if two nodes have an edge between them in the graph, the adjacency matrix has
a 1 in the corresponding entry and has 0 otherwise. The Laplacian matrix, L(G), of
the graph, on the other hand, is a |V| × |V| matrix, such that

� If i = j, then L(G)[i, j] is equal to the degree of the node i,
� If nodes i and j are connected with an edge, then L(G)[i, j] = −1, and
� L(G)[i, j] = 0 otherwise.

8.2.1 Connected Components

The connected components based clustering scheme works on the premise that if two
objects are to be put into the same cluster, there must be some (direct or indirect)
linkage between these two objects; otherwise, if two objects do not have any path
between them, then they must belong to different clusters. Based on this premise
this clustering method searches for the groups of nodes that are pairwise reachable
and labels each group as a different cluster (Figure 8.2). Note that this method gen-
erates nonoverlapping clusters.

2 In the rest of this section, unless otherwise specified, we treat the graph as being undirected. In case
the distance measure is not symmetric, then we can take the smallest or largest value, depending on
whether we want optimistic or pessimistic clustering.
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Figure 8.2. Connected components clustering: there are two connected components (hence
two clusters) in this example graph.

A major advantage of connected components–based clustering is the efficiency
of the process: starting from an arbitrary node, one can follow all the adjacent edges
until no more adjacent edges can be found; this gives a cluster; the process then can
be repeated starting from any of the remaining nodes until no unvisited nodes/edges
remain. The cost of the process is O(|V| + |E|), that is, linear in the graph size.

A major disadvantage of this approach, on the other hand, is that the resulting
clusters may contain objects that are quite dissimilar from each other. For example,
objects o1 and o4 in Figure 8.2 are in the same cluster, although they are not neigh-
bors. Furthermore, they are not even in each other’s two-edge neighborhood. When
connected components contain such long chains, the objects at the remote ends of
these chains may be very different from each other.

Also, the resulting clusters are heterogeneous in size, and this may not be appro-
priate in some applications where clusters are needed to be bounded (for example,
to be packed as a unit into fixed-size disk pages).

8.2.2 Maximal Clique Clustering

The critical shortcoming of the connected component scheme is that it does not
enforce any tightness of the resulting clusters. As we have seen, a connected com-
ponent may consist of a long chain of nodes, thus including very dissimilar objects
in the same cluster. A cluster, on the other hand, is a group of objects that are all
similar to each other; thus, for clustering, it may be more effective to look for graphs
that consist of nodes where all edges are neighbors of each other. This would mean
that all pairs of nodes in the cluster have similarity greater than the given threshold.

Graphs where all nodes are neighbors of each other are called cliques. Given a
graph, a subset of the nodes that forms a clique and where one cannot add any other
nodes to obtain a bigger clique is called a maximal clique of this graph (Figure 8.3).
A cluster, composed of mutually similar objects, then forms a maximal clique in the
object similarity graph.

The number of cliques in a given graph can be exponential in the number of
vertices [Moon and Moser, 1965]. For example, there are as many as 3|V| cliques
in the socalled Moon-Moser’s graphs [Moon and Moser, 1965]. Although there are
polynomial time delay algorithms for enumeration of cliques (i.e., if the graph of
size n contains C cliques, the time to output all cliques is bounded by O(naC) for
some constant a) [Johnson and Papadimitriou, 1988], because in general graphs
C = O(2n), one cannot efficiently search for maximal cliques by enumerating all the
cliques of the graph. The number of maximal cliques in a graph, on the other hand, is
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Figure 8.3. Maximal clique clustering: there are 6 (overlapping) maximal cliques in this graph.

polynomial in the size of the graph. Yet, finding a maximal clique in a given graph is
known to be an NP-complete problem [Boppana and Halldórsson, 1992]. Thus, in
general, clique-based clustering is expensive for use with large data sets.

8.2.3 Spectral Graph Partitioning

As we have discussed, the problem of partitioning a graph into clusters using cliques
is an NP-hard problem. An alternative is to rely on spectral clustering, where the
eigenvectors of the adjacency matrix (describing the pairwise similarities of
the nodes) or the Laplacian matrix (describing the second-order connectivity) of
the graph are used for identifying clusters [Boppana, 1987; Fiedler, 1973; Kannan
et al., 2000; McSherry, 2001; Pothen et al., 1990; Schaeffer, 2007; Spielman and Hua
Teng, 1996]. In the former case, the eigenvalues indicate the path capacity of the
graph [Harary and Schwenk, 1979]; in the latter case, they indicate its algebraic con-
nectivity [Chung, 1997; Fiedler, 1973].

An advantage of the spectral clustering algorithms over clique-based approaches
is that, using randomized algorithms, such as [Drineas et al., 1999] and [Frieze et al.,
1998], spectral clustering can be implemented in nearly linear time.

8.2.3.1 Angular Clustering
Similar to the latent semantic indexing (LSI) approach discussed in Section 4.4.1.1,
an angular spectral clustering algorithm first finds the k left singular vectors,
�u1, . . . , �uk with the highest singular values, λ1, . . . , λk. Each of these k singular vec-
tors corresponds to a cluster. Let the clustering matrix, C, be such that the jth column
(corresponding to the jth cluster) is equal to λj�uj. Then, the node ni of the graph is
placed in cluster j if the largest entry in the ith row is C[i, j] [Kannan et al., 2000].
Note that, essentially, one assigns each node to the cluster whose singular vector has
the smallest angle from the adjacency vector of the node.

8.2.3.2 Random Walk–Based (or Markovian) Clustering
An alternative approach relies on the idea of random walks over Markov chains.
As described in Section 3.5.4, random walk on a graph, G(V, E), is simply a stochas-
tic process whose state at any time is described by a vertex of G and whose tran-
sition probability is distributed equally among all outgoing edges. The transition
probability distribution for the random walk can be represented as a matrix. The
(i, j)th element of this matrix, Tij, describes the probability that, given that the
current state is node i, the process will be in node j in the next time unit; that is,
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Tij = P(Snow+1 = j|Snow = i). The components of the first singular vector of the adja-
cency matrix of a random walk on a graph will give the portion of the time spent
at each node after an infinite run. The singular vector corresponding to the second
eigenvalue, on the other hand, is known to serve as a proximity measure for how
long it takes for the walk to reach each vertex [McSherry, 2001]. Thus, based on the
premise that the points in the same cluster should be more connected to each other
than to points in other clusters (and that two vertices in the same cluster should be
quickly reachable from each other), one can argue that if two nodes are in the same
cluster, then the corresponding values in the second eigenvector must be close to
each other. Consequently, the closeness of the value in the second eigenvector of
the graph can be used as a measure of being in the same cluster, and the graph can
be partitioned by looking for significant jumps in the (sorted) values of entries.

Focusing on the Laplacian matrix as opposed to the adjacency matrix, Fiedler
[1975] showed that the second smallest eigenvalue of the Laplacian matrix is equal
to 0 if and only if the graph is connected. Furthermore, the corresponding eigenvec-
tor can be used to partition the graph into two connected subgraphs [Fiedler, 1975]
simply by putting those nodes that have negative weights in the eigenvector into one
group and the others into another: the resulting “negative” group is connected; the
resulting “nonnegative” group is also connected, as long as no member of this group
has a 0 value in the second smallest eigenvector (i.e., all values are positive). Thus,
the second eigenvector of the Laplacian is commonly referred to as the algebraic
connectivity of the graph. In fact, Fiedler [1975] also showed that given two graphs
G1(V, E1) and G2(V, E2), such that E1 ⊂ E2, then the second eigenvector of G1 can-
not be larger than that of G2. It has also been argued that the smaller the second
smallest eigenvector of the Laplacian is, the more likely is that the data set contains
a clustering with a small cut.

8.2.4 Minimum Cut–Based Clustering

Let G(V, E) be a connected graph and let C1 and C2 be two subsets of V such that
C1 ∩ C2 = ∅. As described in Section 8.1, the number (or the sum of weights) of
edges that cross between C1 and C2 is the value of cut of the pair (C1, C2) and a
good clustering scheme has a low cut value.

Flake et al. [2004, 2000] and Kannan et al. [2000] present schemes that create
clusters that have small intercluster cuts and large intracluster cuts. Because mini-
mum cut–based cluster selection, in general, is NP-hard, these provide heuristics and
approximation algorithms. The technique used by Kannan et al. [2000] is spectral in
nature. In this section, we review the graph-theoretical cut-clustering approach pre-
sented by Flake et al. [2004, 2000].

Given a graph, G, let the spanning tree, TG, where the minimum cut between any
two nodes vi and vj in G is through the edge with the minimum weight on the path
that connects vi and vj in TG, be called the minimum cut (or min-cut) tree. Gomory
and Hu [1961] show that for every undirected graph, there is a min-cut tree. The
cut-clustering algorithm described by Flake et al. [2004, 2000] leverage this min-cut
tree by (a) introducing an artificial node, t, connected to all nodes in V with some
weight α and (b) calculating the minimum cut tree, T ′, of the expanded graph. To
obtain the clusters, the algorithm (c) removes the artificial node, t, from T ′, and (d)
the remaining connected components of T ′ form the clusters of G.
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The correctness of the foregoing algorithm is based on the following property
proven by Flake et al. [2004]: Let TG be a min-cut tree of a graph G(V, E), and let
〈u, w〉 be an edge of TG. Consider any cut (U, W) in G over the edge 〈u, w〉, such that
u ∈ U and w ∈ W. If we take any cut (U1, U2) of U, so that U1 and U2 are nonempty,
u ∈ U1, U1 ∪ U2 = U, and U1 ∩ U2 = ∅, then

cut(W, U2) ≤ cut(U1, U2).

Using the foregoing triangular equality-like property, Flake et al. [2004] showed
that each of the clusters formed by elimination of edges of weight α incident on the
artificial node t will have intracluster expansion values (i.e., integrity) of at least α.
Using the same property, Flake et al. [2004] also showed that the intercluster expan-
sion value (i.e., opposite of the separation) for any of these clusters with respect to
the rest of the graph is at most α. In other words, α puts lower bounds on the inter-
cluster integrity values as well as the intracluster separation values. Consequently,
α can be used to control the trade-off between the two criteria of cluster separation
and cluster integrity.

This implies, though, that the quality of the resulting clustering scheme heavily
depends on the value of α, yet there is no analytical mechanism to pick the α value
to obtain the best clustering. Flake et al. [2004, 2000] propose the use of a binary-
search–like scheme to pick the best value for α.

8.2.5 Adaptive Thresholding

One of the reasons why the cheap connected components–based schemes do not
work effectively in practice is that, in general, it is hard to fix a single threshold that
will work effectively in the entire database. In most cases, different data localities
may require different similarity lower bounds. One way to resolve this problem is to
rely on adaptive thresholding techniques that pick locally meaningful thresholds.

The most commonly used adaptive thresholding technique relies on the
minimum-distance spanning tree of the complete graph. Given a graph G(V, E), a
minimum spanning tree of G is a tree T that spans the graph (i.e., includes every
node in the graph), and the sum of edge weights (i.e., object distances) is the small-
est among all such spanning trees [Cormen et al., 2001]. The time cost of finding a
minimum spanning tree of G in an undirected graph is O(|V| + |E|).

The adaptive thresholding algorithm starts with a complete graph containing all
nodes and all edges, where each edge is weighted with the dissimilarity/distance
between the objects corresponding to the end points. Thus, the graph has O(|V|2)
edges. The first step of the process involves finding a minimum spanning tree of this
complete graph. This process takes O(|V|2) time and results in a tree with |V| − 1
edges.

As shown in Figure 8.4(a), each edge on the minimum spanning tree partitions
the nodes in the graph into two sets. Let us consider the edge a in this figure. Be-
cause the tree is minimal, any other edge in E that connects these two partitions but
not included in the tree must have a distance weight greater than or equal to the
weight of a. In other words, the distance weight of a is the shortest distance between
these two partitions. Similarly, the weight of each of the edges on the tree describes
the shortest distance between the partitions that would be created if that edge is
removed.



280 Clustering Techniques

a
b

c
d

e
f

a
b e

fc
d

f
a

b
ea

c
d

e
f

(a) (b) (c)

Figure 8.4. (a) Each edge on the minimum spanning tree partitions the nodes in the graph
into two sets. (b,c) The length of an edge relative to the average length of the edges in its
neighborhood determines whether the edge is kept or removed from the tree (the shaded
area denotes the inside of the cluster).

Once the minimum spanning tree is created, the adaptive thresholding algorithm
proceeds by investigating each of the edges in the tree and comparing its weight to
the average of the weights of the edges that are incident on its end points. For ex-
ample, in Figure 8.4, the distance weight �(a) is compared to the average distance
weight �(b)+···+�(f )

5 . If the weight of the edge is greater than the neighborhood aver-
age, this is interpreted as the corresponding two partitions being too far apart from
each other relative to the corresponding local neighborhoods, and the edge is re-
moved (Figure 8.4(b)). If the weight of the edge is smaller than the neighborhood
average, on the other hand, it is not a good candidate for being used for partitioning
the corresponding nodes into two different clusters (Figure 8.4(c)).

8.3 ITERATIVE METHODS

The graph-based clustering algorithms we discussed in the previous section all have
at least O(N2) initial cost, where N is the number of objects in the database, because
they require distance or similarity values to be computed for all pairs of objects. For
large databases, computing pairwise scores may simply be infeasible. A second cate-
gory of clustering methods, commonly referred to as the iterative clustering methods,
try to avoid the quadratic time complexity and reduce the execution time to O(N).

8.3.1 Single-Pass Iterative Clustering

The general outline of the single-pass iterative clustering methods is as follows:

(i) choose an object and create a cluster that contains that object;
(ii) while there are more unprocessed objects do

(a) choose a new object, o;
(b) find the most suitable cluster, c, to include o;
(c) if a suitable cluster, c, to insert o is found, then add o into c;
(d) else create a new cluster containing only o

It is easy to see that the cost of iterative algorithms is in general O(kN), where k
is the number of resulting clusters: the main loop goes over each object once and
compares this object to all clusters created so far to pick the most suitable cluster.
Thus, the total amount of work performed per object is at most O(k), and the cost
of the algorithm is linear in the number, N, of objects.
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Naturally, the foregoing single-pass iterative algorithm can be implemented in
many different ways.

Scan Order
The first design criterion includes the order in which the objects are chosen to

be processed. Because the very first object found to not match any of the existing
clusters creates a new cluster, the order in which the objects are scanned has an
impact on the quality of the clusters created.

Cluster Quality
A second criterion is needed to pick the most suitable cluster among the ones

identified so far. If we are provided a threshold in advance, one solution is to pick the
very first cluster found to satisfy this threshold. Although fast, this may not always
result in high-quality clusters (see Section 8.1). An alternative is to pick the smallest
cluster among those that satisfy the threshold. This would spread the wealth and
promote more balanced (and high-entropy) clusterings. A third alternative is to find
the closest cluster among all clusters identified so far. Obviously, this would promote
the creation of compact and homogeneous clusters.

Leader Selection
A third design criterion enables the computation of the distance between an ob-

ject and a cluster. In the fixed leader approach, the first object included in the cluster
becomes the leader (or the representative) of the cluster, and the distances between
new objects to this cluster are computed by comparing those objects to this leader.
In adaptive leader schemes, the leader or the representative of the cluster is contin-
uously updated as new objects are included in the cluster. This ensures that the first
leader, which may eventually migrate to a perimeter of the cluster as new objects
are included and lose its representative quality, is not unnecessarily forced to act
as the representative for the whole cluster. This adaptation can be performed in an
incremental manner if the objects are represented as vectors and the representative
point is the centroid of the objects in the cluster (which may or may not correspond
to an actual object in the cluster). However, adaptation may be costly if it cannot be
performed in an incremental manner. This is the case, for example, when the objects
are not represented in a vector space and a search has to be performed to identify
the object that is closest to all others to represent the cluster.

If the target number of clusters are known in advance, then one can use an alter-
native leader selection scheme, called max-a-min, which picks all the leaders before
the single-pass clustering process starts (Figure 8.5). Based on the premise that the
cluster representatives (i.e., the leaders) should well separate the data in different
clusters from each other, the max-a-min scheme picks objects that are further away
from each other as leaders.3 Although this process can be implemented in different
ways, the most basic scheme first picks a random object (Figure 8.5(b)) as the first
leader, then picks the objects furthest from the first leader as the second leader (Fig-
ure 8.5(c)), then picks the objects furthest from both leaders as the third leader, and
so on (Figure 8.5(d,e)). The single-pass iterative clustering is then performed with

3 Note the similarity between max-a-min and the FastMap pivot selection technique discussed in Sec-
tion 4.3.2.
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Figure 8.5. Max-a-min approach: (a) given a number of clusters, first (b,c,d,e) leaders that are
sufficiently far apart from each other are selected, and then (f) the clustering is performed
using the single-pass scheme.

the remaining objects (Figure 8.5(f)), except that in this case, all objects are mapped
to the clusters corresponding to one of the preselected leaders (i.e., no threshold is
needed to decide whether to create a new cluster).

Threshold Value
A fourth criterion needed to execute the single-pass clustering algorithm is an

upper bound on the acceptable distance between the object and the cluster. This
threshold can be fixed globally or can be computed locally; for example, it can be
set as a function of the diameter of the cluster being considered. Once again any
adaptive scheme would increase the complexity of the algorithm, as the threshold
has to be readjusted for each cluster as new objects arrive. If the objects are in a
vector space, an alternative is to use the Mahalonobis distance (Section 3.1.3), which
adapts the distance function itself to each cluster.

8.3.2 Agglomerative Clustering

An alternative approach to clustering, which may involve more than one passes
over the data, is the agglomerative clustering scheme, which builds up clusters in
a bottom-up, hierarchical fashion.

The agglomerative clustering approach starts by assigning each object in the
database to an individual cluster. In other words, each object is a cluster by itself.
Then these clusters are iteratively merged until some quality threshold (see Sec-
tion 8.1) is met or a target number of clusters is reached. Alternatively, the entire
hierarchy is created (i.e., clusters are merged until only one single cluster remains)
and, then, an appropriate clustering strategy is picked by navigating down the hier-
archy to find the appropriate depth (i.e., degree of clustering) along each branch.

8.3.3 K-Means and Iterative Improvement

Although the k-means algorithm is commonly described as a clustering algorithm, it
is in fact a name for a family of algorithms for iteratively improving a given cluster-
ing scheme [Lloyd, 1982, 1957; Steinhaus, 1956].
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(a) (b) (c)

Figure 8.6. K-means iterative improvement: (a) No change, (b) One object changes cluster,
(c) Final status.

8.3.3.1 K-Means and Related Algorithms
Given N objects preclustered into k clusters, a k-means algorithm goes repeatedly
over the objects and checks whether the quality (described through a global qual-
ity function based on any suitable combination of the measures introduced in Sec-
tion 8.1) of the clustering scheme can be improved by moving the object into another
cluster (Figures 8.6(a) and (b)). The scan over the database is repeated either for a
fixed number of times or until no more improvements can be obtained. The reason
why the technique is referred to as the k-means algorithm is that, in most popular
implementations of the technique (such as [Lloyd, 1982, 1957]), the objects are as-
sumed to be represented in a vector space and the quality of a clustering scheme,
C = {C1, C2, . . . , Ck}, is evaluated using the root-mean-square error,

qualityrmse(C) = 1
k

∑
1≤i≤k

√√√√ 1
|Ci|

∑
�vj∈Ci

(| �vj − �µi|2),

or the squared error,

qualityse(C) =
∑

1≤i≤k

∑
�vj∈Ci

(| �vj − �µi|2
)
,

measures, both of which consider the cluster centroids (i.e., cluster means, �µi) as
cluster representatives.

Although the preceding formulation is based on centroids or representatives of
the clusters, there are versions of the algorithm more specific to cut-based par-
titioning of graphs, where the cluster quality is not measured relative to a cen-
troid or a representative, but is based on the size of the edge cuts. The KL algo-
rithm [Kernighan and Lin, 1970] incrementally swaps nodes among partitions of a
graph to reduce the edge-cut of the partitioning, until a local minimum is reached.
The FM algorithm [Fiduccia and Mattheyses, 1988] computes, for each node of the
graph, the gain achieved by moving the node to each other partition. These vertices
are inserted into max-priority queues, one for each partition, based on their cor-
responding gain values. The algorithm selects a node v with the largest gain from
the heavier partition and moves it to the other partition corresponding to this gain.
This node is locked (i.e., it cannot move anymore in this iteration), and the gain val-
ues of the other neighboring nodes are updated. After each step, the FM algorithm
records the size of the cut. After all the nodes have been processed and there are
no more unlocked nodes, the step where the minimum cut was observed is found,
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and all nodes that changed partitions after that step are moved back to their original
partitions. Once again, the process is repeated until a local minimum is reached.

Note that, in k-means, as well as other iterative algorithms, the initial k clusters
can be provided by another clustering algorithm or can, in fact, be a random group-
ing of the objects in the database. When a k-means algorithm is executed over a
random initial grouping, the iterative improvement process essentially behaves as
a clustering algorithm. For this reason, the k-means technique is commonly used
alone as the sole clustering algorithm, instead of being used as a companion to an-
other clustering technique.

8.3.4 Estimating the Number of Clusters in the Database

As we have seen, some clustering algorithms such as max-a-min and k-means
require the number of clusters, k, to be provided as an input parameter.

In general, estimating the number of clusters is not an easy task. In some cases,
the number of clusters is determined by the application’s needs; for example, objects
may be split into k pieces, each of which will be processed by a separate processor
in a parallel computing environment. In these cases, k is determined by external
factors. In many other cases, however, the number of clusters needs to reflect the
characteristics of the data. Because what one expects from the clustering scheme
(such as the quality measures described in Section 8.1) would vary from application
to application, the characteristic number of clusters of a data set is also application
dependent.

8.3.4.1 Probabilistic Estimation
When one specifically focuses on the vector data, it is possible to establish a rela-
tionship between the cluster centroids and the principal components of the corre-
sponding vector space [Ding and He, 2004]. Thus the problem of finding the number
of clusters is analogous to finding the number of principal components of the space.

An alternative estimation model for k in vector data is based on a probabilis-
tic model, especially suitable to be used along with other probabilistic information
retrieval tools such as TF and IDF. Given a database of N objects and d feature
dimensions, let us define pairwise covering of objects oi and oj as

covering(oi, oj) =
∑

1≤l≤d

p(featurel|oi)p(oj|featurel),

where p(featurel|o) describes the prominence of featurel in object o, and p(o|featurel)
is the likelihood of picking the object o among all the objects that contain featurel.
Suppose now that the database is a perfect single cluster, in the sense that all the
features are uniformly distributed in all the objects and all the objects are equally
likely to be selected for all given features. In this case, we can see that all the pairwise
coverings would be equal to 1

N :

covering(oi, oj) =
∑

1≤l≤d

p(featurel|oi)p(oj|featurel) =
∑

1≤l≤d

1
d

1
N

= 1
N

.
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Thus, if we add up the self-coverings of all the objects in this one perfect cluster,
we get 1:∑

1≤i≤N

covering(oi, oi) =
∑

1≤i≤N

1
N

= 1.

It is easy to see that the result generalizes to multiple perfect clusters as well. For
example, let us assume that the database contains two perfect clusters, C1 and C2,
where the first one has N objects with d1 uniform feature dimensions and the second
one has M objects with d2 uniform feature dimensions. Because the clusters are
perfect, let us further assume that there are no shared features between the clusters.
Then ∑

oi∈C1∪C2

covering(oi, oi) =
∑

oi∈C1

covering(oi, oi) +
∑

oi∈C2

covering(oi, oi)

=
∑

oi∈C1

∑
1≤l≤d1

1
d1

1
N

+
∑

oi∈C2

∑
1≤l≤d2

1
d2

1
M

= N
1
N

+ M
1
M

= 2.

In other words, given a database of objects, if we compute the total self-covering
value for the entire database, this value can be considered as an approximation of
the number of perfect clusters; of course, because the clusters are in general not
perfect, the number of clusters in the database is likely to be different than the total
self-covering value implies.

8.3.4.2 Incremental Selection of the Number of Clusters
As we discussed in Section 4.3.1, while embedding a given set of distances onto a
metric space, the multidimensional scaling (MDS) scheme picks the number of di-
mensions of the resulting space incrementally, as needed to improve the structure
of the space, instead of picking the number in advance. In this section, we see that it
is possible to use a similar incremental selection process in determining the appro-
priate number of clusters as well.

An example of this approach is shown in [Pelleg, 2000], which introduces the
X-means scheme that exploits the available data statistics to estimate the value of
k as well as for selecting the most promising clusters to be processed in run-time
during k-means iterative improvement process. The X-means scheme requires from
the user only the range in which k lies. The algorithm starts with the lower bound
of the range and adds centroids as needed, until the upper bound is reached. An
improve-structure operation finds out when new clusters need to be inserted and
which clusters need to be split into two new clusters. For each split candidate, the
algorithm performs a model selection test that asks whether the children after the
split will model the data distribution well or, before the split, the parent was a bet-
ter model for the distribution of the points. To choose between the parent and its
children, X-means uses BIC scores [Kass and Wasserman, 1995] for evaluating the
models the clusters represent. The BIC score for a given model (cluster), M, of data,
D, approximates the posterior probability, prob(M|D). Thus, it describes how well
a given cluster matches the points it covers. For more details on BIC (and other
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criteria that can be used for selecting the appropriate complexity of a model for
representing the data), see Section 9.8.

Another significant example of this scheme is the G-means algorithm [Hamerly
and Elkan, 2003], which performs statistical tests for the clustered data, under the
assumption that a properly clustered data would have a Gaussian distribution (see
Section 3.5). Based on this assumption, G-means runs k-means clustering with in-
creasing k until a Gaussian fit test accepts all the resulting clusters. If the test deter-
mines that the data around the center of the cluster are not sampled from a Gaussian
distribution, then the corresponding cluster is split and the test is repeated on the
children until all the resulting clusters are Gaussian. Given a cluster C with a center
c, the Gaussian fit test is performed as follows:

(i) The algorithm runs k-means for the data points in C for k = 2.
(ii) Let c1 and c2 be the centers of the clusters of the two children. The vector

v = c1 − c2 gives the direction which k-means believes to be important for
separating the data. As in FastMap (Section 4.3.2), G-means projects all the
data in the given cluster, C, onto this vector v.

(iii) Once all the points are mapped onto the most significant one-dimensional
space and after all the values are normalized such that the mean is 0 and
the variance is 1, G-means performs the Anderson-Darling test [Stephens,
1974] on the resulting one-dimensional list of values, which checks whether
the set of values is Gaussian. At this stage, the algorithm uses the statistical
significance level, α, provided by the user to determine whether there is
statistically significant evidence that the data form a Gaussian.

The test essentially checks whether the given list of values have a Gaussian distri-
bution or not under the given statistical significance bounds. Projecting the data in
the cluster onto a one-dimensional space allows the algorithm to consider the data
along the direction that k-means considers important for separating the data. Thus,
if the test fails, we can argue that the cluster C is not Gaussian along this significant
dimension, and we can split the cluster into two.

8.4 MULTICONSTRAINT PARTITIONING

As we have seen in Section 8.1, there can be multiple, even conflicting criteria
one may want to use when partitioning data. Karypis and Kumar [1998] propose
to treat the task of minimizing the edge cuts as the objective function to a con-
straint program that can take an arbitrary number of balancing constraints (e.g., the
requirement that the partitions are of the same size). In particular, Karypis and Ku-
mar [1998] assign a vector of weights (considering various constraints) to each vertex
and formulate a constraint program whose goal is to produce an edge-cut minimal
partitioning of the underlying graph in such a way that a balancing constraint asso-
ciated with each weight is satisfied.

Let G = (V, E), be a graph such that each vertex v ∈ V has a weight vector �wv
4

of size m associated with it, and each edge e has a scalar weight we. Given a k-
way partitioning, P, of vectors, where P[v] is the partition number of the vertex v,

4 Without loss of generality, Karypis and Kumar [1998] assume that ∀i
∑

v∈V wv[i] = 1.
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Karypis and Kumar [1998] define the load imbalance with respect to the ith
weight as

li = k × MAX
j


 ∑

v s.t. P[v]=j

�wv[i]


 .

Given this definition of load imbalance, one can formulate two different multicon-
straint partitioning problems [Karypis and Kumar, 1998]:

� Horizontal formulation: Find an edge-cut minimizing partitioning such that,
given an upper bound-vector �u of size m, each weight i is balanced within the
limits specified by the corresponding entry in �u:

∀i li ≤ �u[i].

� Vertical formulation: Find an edge-cut minimizing partitioning such that, given a
total upper bound value, u ≤ 1.0, and a relative importance vector, �r,

m∑
i=1

li�r[i] ≤ u.

Karypis and Kumar [1998] show that given a set S of objects, where each object ni

has two weights, �wi[1] and �wi[2], one can partition these objects into two clusters A
and B such that∣∣∣∣∣∣

∑
ni∈A

�wi[1] −
∑
ni∈B

�wi[1]

∣∣∣∣∣∣ ≤ 2µ and

∣∣∣∣∣∣
∑
ni∈A

�wi[2] −
∑
ni∈B

�wi[2]

∣∣∣∣∣∣ ≤ 2µ,

where µ is the maximum of all weights. If the number of weights is more than two,
then the algorithm first puts all the objects in A and then iteratively moves objects
from A to B, considering the relative weight orders of the objects in A. The result is
a partitioning where for m weights, the partition imbalance is bounded by (m− 1)µ.
However, when m > 2, the algorithm presented by Karypis and Kumar [1998] may
fail to find appropriate objects to move from A to B. Karypis and Kumar [1998]
argue that for sufficiently large and diverse data sets, there often are suitable parti-
tioning solutions. Finally, Karypis and Kumar [1998] show that these bounds are suf-
ficient to implement iterative refinement–based k-way partitioning algorithms that
can iteratively improve the edge cuts while also balancing the partitions to solve the
horizontal and vertical constraint formulations presented earlier.

8.5 MIXTURE MODEL BASED CLUSTERING

As we have seen in Section 3.5.3.3, considering the data sets as being generated by
model-driven random processes can help in developing algorithms to discover var-
ious properties of the data. Mixture model based clustering algorithms apply this
idea to data clustering [McLachlan and Basford, 1988]: in particular, each cluster is
treated as a data generator and each point in the input data set is treated as being
generated by one of these clusters. Thus, given a set of input objects, a target number
of clusters, a statistical model, such as Gaussian [Permuter et al., 2006; Roberts et al.,
1998; Rudzkis and Radavicius, 1995], which drives data generation by the clusters,
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and a known or assumed prior probability for each of the clusters, the parameters
best describing each cluster and the cluster membership for each input object are
discovered using expectation maximization (EM [Dempster et al., 1977], see Sec-
tion 9.7.4.3). Intuitively, this process is similar to the probabilistic latent semantic
analysis (PLSA) discussed in 4.4.2, except that advanced knowledge about the sta-
tistical properties of the clusters are also leveraged during the clustering process.

8.6 ONLINE CLUSTERING WITH DYNAMIC EVIDENCE

The clustering schemes we have discussed so far all assume that all the distance/
similarity values required for clustering are either available before the process starts
or, at least, available on an on-demand basis. In many scenarios, however, these
values may not be known a priori or on demand. For example, if the similarity value
is based on user feedback or users’ use and access patterns to data, this information
will be available only when the user has occasion to provide feedback or access
the data. Furthermore, a given user’s assessment or use patterns may evolve over
time. Thus, clustering schemes that assume static distance/similarity values are not
suitable for use in these cases.

8.6.1 Confidence Clustering

A commonly used approach to clustering with dynamic information is to assign a
confidence score for each object/cluster pair and revise this confidence score as new
evidence becomes available.

Let O = {o1, . . . , oN} be a set of objects and C = {C1, . . . , Ck} be a clustering.
Let initially each object, oi, be assigned to a cluster Cj, and let 0 < conf(oi, Cj) ≤ θ

denote how confident we are that oi belongs to Cj. The initial assignment can be
random or may reflect an initial clustering performed using some static properties
of the objects in O. Similarly, initial confidence values can be assigned randomly
or may reflect how close each object is to the corresponding cluster representative,
based on the static data properties.

As new evidence based on user access or direct feedback becomes available,
the confidence values are revised. Let us assume that at some point, the user either
explicitly (through feedback) or implicitly (through simultaneous access) provided
the evidence that object oh and oi are related:

� If oh and oi are already in the same cluster, Cj, this provides further support for
the fact that both belong to that cluster; thus conf(oh, Cj) and conf(oi, Cj) are
incremented (of course as long as they are less than the upper bound, �).

� If oh is in cluster Cj and oi is in cluster Cl, then this is evidence against the current
clustering; the clustering and the confidence values need to be revised:
– If both conf(oh, Cj) and conf(oi, Cl) are larger than 1, then these confidence

values are decremented;
– If conf(oh, Cj) = 1 and conf(oi, Cl) is larger than 1, then

� if there is at least one object, ov in cluster Cl such that conf(ov, Cl) = 1,
objects oh and ov are swapped and their confidences in their new clusters
are set to the lowest possible value, that is, 1;

� if there is no such object, then conf(oi, Cl) is decremented.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.7. Adaptive clustering based on user access patterns: (a) Initial mapping, (b) A set
of objects are accessed together, (c) Objects moved together, (d) A random set of objects
are selected, (e) Objects moved away, (f) Final mapping.

The case where conf(oi, Cl) = 1 and conf(oh, Cj) is larger than 1 is similarly
handled.

– If both conf(oh, Cj) = 1 and conf(oi, Cl) = 1, then
� If there is at least one object, ov in cluster Cl such that conf(ov, Cl) = 1, then

objects oh and ov are swapped and their confidences in their new clusters
are set to the lowest possible value, that is, 1;

� else if there is at least one object, ov in cluster Cj such that conf(ov, Cj) =
1, then objects oi and ov are swapped and their confidences in their new
clusters are set to the lowest possible value, that is, 1;

� else no adjustments are performed.

The threshold value � has a significant impact one how adaptive the system is. When
� is large, the system may take more time to move an object to another cluster when
the user’s behavior changes. When � is small, on the other hand, the clustering can
undesirably fluctuate because of temporally localized variations in the usage pattern.
Therefore, the value of � must be set with care.

8.6.2 Perturbation-Based Clustering

The confidence clustering scheme just described assumes that an initial clustering
(or at least the number of clusters) is known in advance. In many cases, however,
such information may not be available a priori either.

An alternative dynamic evidence-based clustering scheme starts with a random
mapping of objects onto a one-dimensional space (Figure 8.7(a)) and perturbs (or
moves) the objects on this space as new evidence is collected. When there is ev-
idence that a set of objects are related (Figure 8.7(b)), these objects are moved
toward their centroid (Figure 8.7(c)). Because at every iteration related objects
are forced together, all these objects will eventually form a cluster on the one-
dimensional space. On the other hand, there is a risk that the resulting clusters will
overlap in space and thus different clusters will not be separable from each other.
Thus, there is also a need for a second force that separates unrelated objects. This is
realized by picking a random set of objects (Figure 8.7(d)) and moving these away
from their centroid (Figure 8.7(e)). Of course, this random separation may also af-
fect clusters that are being formed; however, the centripetal force that brings the
related objects closer to cluster centroids is likely to be more consistent than the
centrifugal force that separates random related objects. Consistently, the tendency
to form clusters will not be significantly affected. Yet, when aggregated over all the
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unrelated pairs of objects, the weak centrifugal force will cause the different clus-
ters to form elsewhere along the 1D space, ensuring the separability of the resulting
clusters (Figure 8.7(f)).

The time at which this clustering scheme converges on separable clusters de-
pends on the number of objects, the number of objects that are accessed together
at each iteration, the consistency of the feedback, and the relative strengths of the
centripetal and centrifugal forces. Note also that the output of this scheme is not
the clusters, but a mapping from objects to the 1D space. Thus, there is a need for
a separate clustering algorithm to use these mappings and separate the clusters of
objects from each other.

8.7 SELF-ORGANIZING MAPS

A self-organizing map (SOM) is a neural network model that simulates the topo-
graphic mappings of the sensory data (from the retina) to the cerebral cortex in the
human brain [Kohonen, 1988]. Because it simulates the way the brain readjusts (i.e.,
self-organizes) to learn patterns within the sensory data set, it is also used in other
clustering and classification contexts.

8.7.1 Neural Networks

Neural networks emulate the way brains perform cognitive tasks. In particular, a
neural network consists of neurons that are interconnected, and the learning pro-
cess involves modification and reconfiguration of these synaptic connections and
their weights. When presented with a set of examples (e.g., labeled observations),
neural networks adjust the weights of the synaptic connections in a way that best
represents the most intrinsic properties of the underlying patterns. More specifi-
cally, given an input stimulus, neurons in the network compete for ownership; the
winners of this competition strengthen their weights with respect to this input un-
der the so called Hebbian learning rule [Hebb, 1949]: “When cell A excites cell B
repeatedly and persistently, some changes take place in such a way that improves A’s
efficiency in firing B.” In other words, if A and B are fired together, the connection
between them should be strengthened, whereas if their firings are not coherent, then
the weight should be weakened:

δwAB(t)
δt

= αA(t)B(t),

where wAB is the weight of the link between A and B, A(t) is the firing status
of A at time t, B(t) is the firing status of B at time t, and α ∈ (0, 1) is a learn-
ing rate. After the training phase, where the weights between the cells in the net-
work are learned, when presented with unknown data, the neural network can now
be used for performing recognition by tracking which cells are fired for the given
input.

8.7.2 Clustering Using Self-Organizing Maps

A self-organizing map (SOM) is a special type of neural network, consisting of
neurons arranged into a 2D rectangular grid. Given a set, X, of data points in
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Figure 8.8. Self-organizing maps: Given a new data instance, (a) first a winner neuron (i.e.,
grid cell) is selected, and then (b) the weights of the winning neuron and the neurons nearby
are adjusted.

n-dimensional space, the neurons in the SOM fight for the ownership of each data
point. This is performed as follows:

Let S be a SOM in the shape of a k × l grid, and let S[i, j] denote the neuron
at row i, column j. Each neuron S[i, j] has an associated small random weight �wi,j

that itself is a vector in the same n-dimensional space as the input data. At each time
instant, t, an input from X is taken as the current input, �x(t), and a winner neuron
closest to �x(t) is selected:

v(t) = argmin
i≤k,j≤l

�(�x(t), �wi,j(t)).

Here, v(t), is the index of the winner neuron (Figure 8.8(a)). Once the winner is
selected, the weights of the winner and its neighbors in the grid are updated (Fig-
ure 8.8(b)); intuitively, the winning neuron and the neurons nearby are rewarded by
becoming more like the input vector �x(t):

∀i≤k,j≤l δ �wi,j = α(t)n(v, i, j, t)(�x(t) − �wi,j(t)),

where

� δ �wi,j is the resulting change in the weight of neuron S[i, j],
� α(t) is the current learning rate, and
� n(v, i, j, t) ∈ [0, 1] is a neighborhood function, which gives 1 for the winning neu-

ron, close to 1 for nearby neurons, and close to 0 for neurons far away. (A com-
monly used neighborhood function is

e−
‖v−(i,j)‖2

2σ2 ,

where σ2 is the variance describing how far the neighborhood extends from the
winning neuron.)

The process is repeated until the map converges or until all the data in X have been
consumed. In order to prevent weights from becoming saturated or unlimited, the
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learning rate α(t) ∈ (0, 1) needs to satisfy

lim
t→∞

∑
α(t) → ∞ and lim

t→∞ α(t) → 0.

Note that at the end of this training process, the resulting SOM can be used to cluster
points in X (as well as data points not seen yet): we expect that (if X is large enough),
at the end of the training phase,

� Similar-valued neurons will be close to each other in the grid;
� Yet there will also be cluster boundaries on the grid, where despite the spatial

closeness, the weight vectors will have significant differences.

Such boundaries can be found using segmentation algorithms, such as the ones we
have discussed in Section 2.3.3. Once the cluster boundaries are discovered, each
point can be placed into a cluster based on the location of the winning neuron.

8.7.3 Distance-Preserving Self-Organizing Maps

In addition to clustering, self-organizing maps can also be used for other nonsuper-
vised learning tasks, such as distance-preserving dimensionality reduction, as in mul-
tidimensional scaling (Section 4.3.1) and PCA (Section 4.2.6).

To achieve this, in addition to cluster topology (nearby neurons having similar
weights), the mapping should also preserve distances (similar vectors mapped to
nearby neurons). Yin [2002] and Yin [2007] achieve this by decomposing the weight
update term �x(t) − �wi,j(t) into

(�x(t) − �wv(t)) + ( �wv(t) − �wi,j(t)) .

The first term represents the correction due to the winner ( �wv(t) is the weight of
the winning neuron); the second term is a lateral force that essentially brings neigh-
boring neuron at position (i, j) closer to the winner at position v. In order to help
preserve the distances, the weight update term, δ �wi,j, is revised as follows:

∀i≤k,j≤l δ �wi,j = α(t)n(v, i, j, t)((�x(t) − �wv(t)) + β( �wv(t) − �wi,j(t))),

where β = �( �wv(t), �wi,j(t))
λ‖v−(i,j)‖ − 1 regularizes this lateral contraction force in such a way

that interneuron distances on the resulting SOM are in proportion to the distances
in the data space (that is , λ‖v − (i, j)‖ ∼ �( �wv(t), �wi,j(t)) for the given constant λ).
In other words, as in MDS, the distances between the points onto which data are
mapped reflect the corresponding distances in the original data space.

8.8 CO-CLUSTERING

The various clustering techniques we have introduced earlier in this chapter all
take a matrix describing object-to-object or object-to-feature mappings and analyze
this mapping to obtain clusters of objects. In other words, while the mapping pro-
vides bidirectional information (for instance, a matrix describing objects in terms of
features simultaneously describes features in terms of objects), the clustering algo-
rithms return only object clusters.
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8.8.1 SVD and LSI as Co-clustering Schemes

As we have seen in Section 4.4.1.1, on the other hand, it is possible to operate on
both aspects of the database matrix simultaneously: the latent semantic indexing
(LSI) scheme, based on the singular-valued decomposition (SVD) technique, takes
a document-term matrix A and decomposes it into three matrices U, V, and �, such
that

A = U�VT,

where the columns of U can be thought of as the eigen documents of the given doc-
ument collection, each corresponding to one independent concept, and the columns
of V can be thought of as the eigen terms of the collection, each, once again, corre-
sponding to a concept in the database. The � matrix gives the strength of the cor-
responding concepts in the database. In other words, the LSI technique leverages
the inherently symmetric nature of the SVD to extract concepts that can be used for
clustering both documents and terms simultaneously. This is commonly referred to
as co-clustering.

8.8.2 Information-Theoretical Co-clustering

Dhillon et al. [2003] introduced an alternative, information-theoretical co-clustering
technique for simultaneously clustering the rows and the columns of the input ma-
trix. The algorithm views the database matrix as a joint probability distribution of
two discrete random variables and poses the problem of optimal co-clustering as
maximizing the mutual information between the clustered random variables5:

Definition 8.8.1 (Mutual information): Let U and V be two sets of events (or
random variables). Let P1(u) denote the probability of event u ∈ U. Let P2(v)
denote the probability of event v ∈ V. The mutual information of P1 and P2 is
then defined as

MI(U; V) =
∑

u∈U,v∈V

P(u ∧ v) log
P(u ∧ v)

P1(u)P2(v)
,

where P(u ∧ v) is the joint probability of events u and v.

To understand the definition of mutual information and why it can represent the
dependency between two random variables, remember from Section 3.1.3 that rel-
ative entropy (or the Kullback-Leibler divergence) can be used for measuring the
similarity between two probability distributions, Pa and Pb, both defined over a set
of events E:

RE(Pa, Pb) =
∑
e∈E

Pa(e) log
Pa(e)
Pb(e)

.

We also know that if two random variables X and Y are independent from each
other, then

∀u∈U,v∈VP(u ∧ v) = P1(u)P2(v).

5 Also see Table 4.2 in Section 4.2.4.
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Thus, if U and V are independent, we would expect that RE(P(u ∧ v), P1(u)P2(v)) =
0; furthermore, the more U and V are related (i.e., the more similarly they are dis-
tributed), the higher will be RE(P(u ∧ v), P1(u)P2(v)). Thus, MI(U; V), which is in
fact equal to RE(P(u ∧ v), P1(u)P2(v)), measures the dependence between the two
random variables. Thus, because mutual information reflects the dependency be-
tween the row and column variables (e.g., documents and terms), Dhillon et al.
[2003] define the optimal co-clustering as the clustering that minimizes the differ-
ence in mutual information between the original random variables and the mutual
information between the clustered ones.

The co-clustering algorithm operates in stages and mixes row clustering and
column clustering: row clustering is performed by measuring the similarity of
each row distribution to a row-cluster prototype in terms of relative entropy (i.e.,
the Kullback-Leibler divergence); similarly for column clustering. The row- and
column-clustering stages are iterated, incrementally improving the co-clustering
quality, until a locally optimal clustering is found. Let X be a random variable de-
noting the rows and Y be a random variable denoting the columns; let also X̂ and Ŷ
denote the clustered row and column random variables. Dhillon et al. [2003] define
the objective function as

minimize MI(X; Y) − MI(X̂; Ŷ).

In other words, an optimal co-clustering minimizes the information loss between the
mutual information of the original matrix and the co-clustered matrix. The outline
of the co-clustering algorithm is as follows:

(i) Start with an initial row (column) clustering, such that the row-cluster
(column-cluster) distributions are maximally apart from each other.

(ii) REPEAT
(a) Given the current column clusters, compute row-cluster prototypes,

which act similar to centroids of the row-clusters.
(b) Reassign each row to a new row cluster whose row-cluster prototype is

closest in terms of Kullback-Leibler divergence.
(c) Given the new row clusters, compute column-cluster prototypes, which

act similar to centroids of the column clusters.
(d) Reassign each column to a new column cluster whose column cluster

prototype is closest in terms of Kullback-Leibler divergence.
UNTIL the drop in mutual information loss between consecutive iterations
of the algorithm is smaller than a given threshold.

The foregoing co-clustering algorithm has a complexity of O(num nonzeros ×
num iter × (k + l)), where num nonzeros is the number of nonzeros in the input ma-
trix, k is the desired number of row clusters, and l is the desired number of column
clusters. The value of num iter is the number of iterations required to converge on a
local optimum. Although this number depends on the data, Dhillon et al. [2003] re-
port that empirically, 20 iterations seem to suffice. Note that because the complexity
of the algorithm does not depend on the size of the database matrix, but depends on
the number of nonzero entries in it, the algorithm is especially suitable for clustering
sparse matrices.
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(a) (b) (c)

Figure 8.9. Discovering cross-associates: the resulting matrix has a simpler form. Note that
one of the resulting cross-associates (i.e., rectangular regions of the matrix dense with 1s)
is imperfect: (a) Original matrix, (b) row/cluster permutations, and (c) the final matrix.

8.8.3 Cross-Association

Although it is highly efficient, especially for sparse matrices, a shortcoming of
the co-clustering scheme presented in the previous subsection is that as input
parameters it requires the target numbers of row and column clusters. As we have
discussed earlier, however, picking the target number of clusters is not always
straightforward. Thus, instead of relying on user-supplied values, Chakrabarti et al.
[2004] present an information-theoretic scheme for choosing the number of row and
column clusters and computing cross-associations between these groups in a fully
automated manner.

Unlike the algorithm of Dhillon et al. [2003], which performs a lossy transfor-
mation that gets less and less lossy as the numbers of row and column clusters in-
crease, the cross-association scheme aims to losslessly represent the input matrix
in terms of a set of cross-associates (Figure 8.9). The main idea behind the cross-
association algorithm is that a matrix describing cross-associations of a given in-
put matrix should have a simpler form than the original matrix (Figure 8.9), and
thus it must be cheaper to describe than the input matrix. Based on this obser-
vation, Chakrabarti et al. [2004] rely on the minimum description length principle
[Rissanen, 1978] to pick the appropriate numbers of rows and columns. Let D be an
M × N binary data matrix.6 Chakrabarti et al. [2004] describe the problem of finding
an optimal cross-association as finding

� a number, k, of row groups,
� a number, l, of column groups,
� a mapping, � : {1, 2, . . . , M} → {1, 2, . . . , k}, from rows to row groups, and
� a mapping � : {1, 2, . . . , N} → {1, 2, . . . , l}, from columns to column groups,

such that the number of bits required for encoding all the information in sufficient
detail that the original matrix can be constructed is minimized. This involves en-
coding (a) the matrix dimensions M and N, (b) the row and column permutations
used in simplifying the matrix, (c) the values of k and l, (d) the number of rows
and columns in each row group and column group, and (e) lossless compressions
of the resulting binary matrices using a compression algorithm, such as arithmetic
coding [Howard and Vitter, 1991].

6 Note that unlike the other schemes we discussed earlier, cross-associations assume that the input matrix
is binary, each “1” describing an association between a row and a column.
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The algorithm starts with small values of k and l and increases them as needed
while rearranging rows and columns of the input matrix. At each iteration, as
in [Dhillon et al., 2003], the algorithm first keeps the columns fixed and operates on
the rows. For each row, x, the algorithm reassigns the row into the row group such
that the resulting description length will be the smallest. Then, the algorithm keeps
the rows fixed and similarly operates on the columns. After each iteration, the algo-
rithm recomputes the best k and l values based on the current arrangement. For this
purpose, at each iteration, the algorithm first picks the row group with the maximum
entropy per row and splits it into two such that the overall entropy of the group de-
creases.7 Then, the algorithm tries to obtain cheaper-to-describe cross-associations
with the new group. If such a cross-association is found, the new grouping is kept;
otherwise, the original row groups are maintained. After this, before the next itera-
tion starts, the algorithm also tries to increase the number of columns to see if such
an increase would help reduce the description length. Only if the description length
drops is the number of column groups increased.

8.9 SUMMARY

Clustering is a fundamental operation in multimedia databases: it serves many roles,
from helping reduce query processing costs by pruning parts of the database that is
not likely to contribute to the query result to helping identify strongly related com-
ponents of a data object to help summarize its content. Many of the techniques
we have covered here are also fundamental in summarizing videos, long text docu-
ments, or the Web into their respective information units.

Clustering, however, is rarely perfect. In many cases, there are conflicting cri-
teria that need to be taken into account simultaneously. Furthermore, many times,
there is not sufficient evidence to properly treat objects at the cluster boundaries
effectively and map them to the most appropriate cluster. In Chapter 11, we discuss
how to evaluate retrieval quality when such imperfections cause false hits or misses.

7 Remember from Section 4.2.2 that reducing the entropy means reducing the uncertainty and random-
ness in the data.
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Classification

Unlike indexing and clustering processes which aim to place similar media objects
together for efficient access and pruning, the classification process aims to associate
media objects into known semantically meaningful categories. A classifier learns
how to recognize, from a given set of media objects preclassified into a set of cat-
egories, what the critical features of these categories of interest are and, based on
these, associates new media objects to these categories.

In a classification algorithm, the input data (i.e., the training set) are objects with
multiple attributes or features, and each training object is labeled with a class label.
The goal of the classification process is to analyze the input data and develop a de-
scription, or a model, for each class using the characteristics of the corresponding
training data. Thus, the classification algorithms detect patterns, or sets of features,
which define categories. Because the input training data have been labeled, this set
of algorithms are also called supervised learning algorithms. In contrast, the cluster-
ing algorithms covered in the previous chapter are often referred to as unsupervised
learning techniques.

9.1 DECISION TREE CLASSIFICATION

Decision tree based classification is a simple, efficient, and often effective scheme
for partitioning a given set of observations into homogeneously labeled classes.

Let us be given a set of observations, O, where each observation is a pair, 〈�x, y〉,
where �x ∈ R

n is a vector in an n-dimensional vector space and y ∈ Y is the label
associated with the observation. A corresponding decision tree, T(V, E), is such that

� leaf nodes in V are sets of observations with the same label,
� internal nodes in V are tests on one or more dimensions of �x, and
� each edge in E corresponds to a test outcome.

In a decision tree, a given path from the root of the tree is interpreted as a conjunc-
tion of all the tests associated to the internal nodes of this path.

Decision trees are commonly created by partitioning the available observations
into subsets based on tests on the features (i.e., �x) of the observations until each

297
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partition of observations is homogeneously labeled. The simplest decision tree clas-
sifier operates a single feature at a time and builds the tree in a top-down fashion.
Initially, it creates a root node v0 ∈ V and a single leaf node and assigns all available
observations (i.e., training data) to this node. If this set of observations are hetero-
geneous in terms of their labels, then it iterates over the following steps until all leaf
nodes correspond to observation sets with homogeneous labels:

(i) It picks a leaf node with a set, L, of heterogeneous class labels and removes
the leaf node from the tree.

(ii) It picks a feature dimension, f i, and associates this as the decision attribute
to the parent, vpar, of the eliminated leaf.

(iii) For each distinct value, aj, of the selected feature dimension, f i,1

(a) it creates a new child node, v, under the node vpar,
(b) it associates the test outcome, “f i = aj” to the edge between vpar and v,
(c) it creates a new leaf node under v and associates the set, Lfi=aj ⊂ L, of

observations such that the feature attribute f i of each observation has
the value aj.

The algorithm stops when all leaf nodes are homogeneous.
Decision tree classification algorithms differ from each other in the way they

choose the decision test corresponding to the internal nodes of the tree and the way
they build the tree (bottom-up or top-down).

9.1.1 Selecting the Feature Dimension for Partitioning
a Given Set of Observations

Selecting a feature dimension, f i, for splitting a given observation set, L, into subsets
requires a way to compare the benefits (or gains) of using different feature dimen-
sions. One approach to formulating a measure for benefit analysis is to note that the
ultimate goal in classification is to reduce the uncertainty in the class labels. Picking
the features in such a way that the label uncertainties are lower closer to the root is
likely to result in shallower decision trees. This would also mean that classification of
new data would require fewer tests. Thus, a measure of “reduction in uncertainty”
can be used as a suitable measure for judging which feature dimension is likely to
contribute better to the classification of the available observations.

Remembering from Section 4.2.2 that entropy is a measure of uncertainty, we
can formulate gain(L, f i) in terms of the expected reduction in entropy due to the
partitioning of the set L based on the values of the feature dimension f i:

Definition 9.1.1 (Information gain by entropy): Let L be a set of observations
and fi be a feature dimension. Information gain by entropy, gainentropy(L, f i),
is defined as follows:

gainentropy(L, f i) = entropy(L) −
∑

aj∈domain(f i)

|Lfi=aj |
|L| entropy(Lfi=aj ),

where given an observation set O = {〈�x1, y1〉, . . . , 〈�xo, yo〉},

1 Continuous valued features are usually discretized by setting test boundaries.
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(a)

(b)

(c)

Figure 9.1. A feature is most discriminant with respect to two classes when the means of
these classes are far apart and the variances of the classes are low along the corresponding
feature dimension (i.e., case (c)): (a) Low variance, but close means; (b) far means, but also
high variance; (c) low variance and far means.

entropy(O) =
∑
y∈Y

|{〈�xl, yl〉 ∈ O s.t. yl = y}|
|O| log

( |{〈�xl, yl〉 ∈ O s.t. yl = y}|
|O|

)
,

and

Ofi=aj = {〈�xl, yl〉 ∈ O s.t. �xl[i] = aj}.

Commonly used algorithms, ID3 [Quinlan, 1975], C4.5 [Quinlan, 1996, 1993], and
C5.0 [Quinlan, 2008] all rely on this definition of information gain. An alternative
measure of gain, commonly referred to as the Gini impurity, is used by another com-
monly used scheme called Classification And Regression Tree (CART [Breiman
et al., 1984]):

Definition 9.1.2 (Information gain by impurity): Let L be a set of ob-
servations and fi be a feature dimension. Information gain by impurity,
gainimpurity(L, f i), is defined as follows:

gainimpurity(L, f i) = impurity(L) −
∑

aj∈domain(f i)

|Lfi=aj |
L

impurity(Lfi=aj ),

where, given O = {〈�x1, y1〉, . . . , 〈�xo, yo〉}, the observation set is said to be im-
pure if the chance of seeing two different labels in the set is high:

impurity(O) =
∑

ya �=yb∈Y

|{〈�xl, yl〉 ∈ O s.t. yl = ya}|
|O|

|{〈�xl, yl〉 ∈ O s.t. yl = yb}|
|O| .

Intuitively, the impurity of a set of observations, O, is low if all observations have
the same label.

Fisher’s discriminant ratio is another measure commonly used for selecting fea-
tures based on their discrimination power (Figure 9.1).
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Definition 9.1.3 (Fisher’s discriminant ratio): Let y1 and y2 be two class
labels. For a given feature, f i, Fisher’s discriminant ratio for these two class
labels is defined as

(µi,1 − µi,2)2

σ2
i,1 + σ2

i,2

,

where µi,∗ are the means and σ2
i,∗ are the variances of the corresponding class

labels along the given dimension, f i.

A feature dimension with a high ratio is likely to separate the two classes from
each other better.2 Fisher’s discriminant ratio can be extended to handle cases with
more than two class labels by computing ratios for pairs of feature dimensions and
combining these using a suitable merge function, such as average or min.

9.1.2 Overfitting

Decision tree classifiers are simple to implement and usually highly efficient. The
simplicity and the efficiency, however, come with the risk of overfitting trees to the
observations. Especially when the observations are noisy, that is, there are entries
that have similar feature vectors but different labels, the greedy nature of the basic
decision tree construction may result in trees having a single or a few observations
per leaf node. This would mean that each observation becomes its own class, possi-
bly deteriorating the effectiveness of the decision tree classifier.

One method for eliminating overfitting of the tree to the observations is to al-
low leaves that are not perfectly homogeneous; in other words, the tests associated
with the branches almost partition the observations to homogeneously labeled sets,
but not quite. This can be achieved by either changing the stopping condition of the
tree construction algorithm such that the partitioning stops before homogeneous
partitions are obtained, or pruning the decision tree based on further evidence. This
second approach is usually achieved by using a separate validation set of observa-
tions to evaluate classification effectiveness and pruning those branches of the tree
that do not classify the validation observations well.

Although overfitting elimination is now widely used in improving the effective-
ness of decision tree classifiers, it has also been argued that any overfitting avoid-
ance strategy may, in fact, degrade performance instead of improving it, and the
appropriate strategy must be based on an understanding of the data and applica-
tion [Schaffer, 1993].

9.1.3 Random Forests

Random forests aim at improving the classification performance by relying on an
ensemble of decision trees [Breiman, 2001; Ho, 1995] instead of a single one. A given
not-yet-classified data object is classified separately by each tree, and the class label
with the highest support is picked as the class label of this data object.

2 Fisher’s discriminant ratio measures separability along a given feature dimension. Having low ratios
for all available dimensions does not necessarily mean that the classes are not separable, but may mean
that the separation boundary is not parallel to any of the feature dimensions.
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In the bagging approach [Breiman, 1996], for example, each decision tree in the
random forest is constructed by using a random subset of the observations in O.
In random split selection approach [Dietterich, 2000], on the other hand, all obser-
vations are used, but the feature used for partitioning the available observations is
selected randomly among the best partitioning candidates. The random subspace
method [Ho, 1998] picks in advance a random subspace (i.e., a set of dimensions)
for constructing each decision tree in the random forest.

Naturally, the accuracy of a random forest depends on the strength of the indi-
vidual tree classifiers and their independence from each other [Amit and Geman,
1997]. However, random forests with large numbers of trees are shown to converge
in way that eliminates overfitting [Breiman, 2001; Ho, 2000].

9.2 k-NEAREST NEIGHBOR CLASSIFIERS

The k-nearest neighbor (k-NN) classification scheme is voting-based, where an
object is classified based on the majority vote of its k most similar already-classified
objects. k-NN classifiers differ from each other in the similarity/distance measure
they use and in the way they choose the order in which they consider the unclassi-
fied objects. The efficiency of the k-NN classifier depends on the value of k and the
dimensionality of the vector space, as well as the index structure used to identify
the k nearest neighbors (Section 10.1). The value of k also affects the quality of the
classification. Although having larger k values ensures that the class selection is not
distorted by a few unrepresentative neighbors, very large k values may cause distant
but large classes to overvote nearby smaller classes.

9.3 SUPPORT VECTOR MACHINES

As we discussed in Section 7.2, one way to keep related data objects together is to
rely on space-partioning techniques. For efficiency purposes, most multidimensional
index structures partition the space along the dimensions of the given vector space.
We have also seen, however, that it is not always the case that the most discrim-
inant features are properly aligned with the given dimensions. Although this may
be somewhat corrected by techniques such as principal component analysis, when a
similarly labeled set of observations cover differently shaped regions of space, such
global techniques, which treat the given set of vectors as a uniform collection, cannot
work effectively.

While introducing decision trees in Section 9.1, we have seen that the discrimi-
natory power of a feature dimension with respect to a given set of class labels can be
measured using information gain and Fisher’s discriminant ratio. However, we have
also seen that these discrimination-based feature selection techniques can fall short
when the most discriminating hyperplane is not aligned with the dimensions of the
space.

9.3.1 Linear Discriminant Analysis

In Section 4.3.2, we learned the FastMap approach for finding the direction along
which the data are best separated. The method was designed specifically for
efficiency. Another common approach for discovering a hyperplane that best
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Figure 9.2. (a) Linear regression to find a hyperplane that best distributes the data and
(b) partitioning the space using linear discriminants.

distributes the data is the linear regression analysis. In this approach, given a collec-
tion of vectors, X ⊂ R

n, one looks for a hyperplane, H : �w · �x + b = 0, which best fits
the data (Figure 9.2). Although FastMap and linear regression work well for iden-
tifying most discriminant directions of a given set of vectors, they do not explicitly
consider class labels.

An alternative formulation of the problem takes into account the class labels
as well: given a set of observations, O, where each observation is a pair, 〈�x, y〉 and
y ∈ Y is the (numeric) label associated with the observation, we look for a family of
hyperplanes, such that

∀y∈Y∀〈 �xi,yi〉∈O s.t. yi=y Hyi : �w · �xi + b = yi.

In other words, each hyperplane is a predictor for a given class label and, thus, sepa-
rates the observations with different class labels from each other. This task is usually
formulated as a least-squares minimization problem,

min
∑

〈 �xi,yi〉∈O

( �w · �xi + b− yi)2,

which minimizes the L2 norm. Alternatively, one can minimize the L1 norm
instead:

min
∑

〈 �xi,yi〉∈O

| �w · �xi + b− yi|.

This is referred to as the least absolute regression deviation (LAD).

9.3.2 Overfitting and Regularization

One frequently observed problem with linear learners and other classification and
machine learning algorithms is that it is possible to create complex models and pre-
dictors that overfit the observations well, while being ineffective in classifying unla-
beled data. This often occurs when the number of unknown parameters of the model
is more than what can be determined given the number of observations.

In order to avoid overfitting, most classification techniques introduce additional
constraints that reduce the degrees of freedom (i.e., complexity) of the models. In
linear learning algorithms, such as linear regression, the constraints that can be
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introduced to reduce overfitting include the least absolute shrinkage and selection
operator (LASSO), L1-, and L2-regularization strategies.

As we mentioned in Section 9.3.1, given a collection of vectors, X ⊂ R
n, linear

regression analysis involves searching for a hyperplane, H : �w · �x + b = 0, that best
fits the data, by solving the least-squares minimization problem,

min
∑

〈 �xi,yi〉∈O

( �w · �xi + b− yi)2.

The LASSO method [Tibshirani, 1996] constrains the hyperplane by putting a limit
on �w; in particular a solution to the minimization problem is subjected to the fol-
lowing additional constraint:∑

j

| �w[j]| ≤ t,

where t ≥ 0 is the tuning parameter. Imposing this constraint on �w results in some
coefficients of �w shrinking exactly to 0; thus, in a sense LASSO uses the t parameter
to implement and control an automatic feature selection process. Because this con-
straint can be seen as the length of the �w in L1 metric space, this approach is also
referred to as the L1-regularization. In contrast, ridge regression uses the constraint∑

j

( �w[j])2 ≤ t

to constrain the length of the vector in the L2 metric space and is also known as
L2-regularization.

9.3.3 Max-Margin Classification and SVMs

Support vector machines (SVMs) [Bennett and Campbell, 2000; Burges, 1998;
Vapnik, 1979] also perform linear discriminant analysis; but, unlike the linear
regression approach (which tries to find linear predictors for class labels), SVMs
looks for linear boundaries that best separate given classes from each other. Thus,
SVMs are in the class of algorithms often referred to as max-margin learning algo-
rithms [Guo et al., 2007].

Let us be given a set of observations, O, where each observation is a pair, 〈�x, y〉,
where �x ∈ Rn is a vector in a given n-dimensional vector space and y is the label as-
sociated with the observation. The goal of the SVMs is to partition the space using
these observations (i.e., the training data) into regions, such that each region con-
tains observations with a single label (Figure 9.2). Assuming that the data and ob-
servations on the data have the same distribution, this would mean that the regions
would partition the data into single-label classes. SVMs are becoming increasingly
popular supervised learning tools because of their many desirable properties: they
always find global optima and there are usually only a few parameters (called kernel
parameters) to be picked in advance.

Let us initially assume that each observation label has only one of the two values,
−1 or 1. Let us also assume that the observations are linearly separable; that is, there
exists at least one plane in the given n-dimensional space that can separate the two
sets of observations from each other. When two sets of observations are linearly
separable, it is possible that there may actually be more than one such plane that can
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Figure 9.3. Linear SVM partitioning with a hyperplane with the largest margin (the two support
vectors are highlighted); the hyperplane also bisects the line defined by the two closest points
on the convex hulls.

separate these sets. The SVM method tries to find a plane that is as far from both
sets of observations as possible: this ensures that the effect of any observations, at
the boundary of the two sets, missing due to sampling will be less likely to introduce
classification errors.

Let H be some hyperplane separating the two sets of observations. We can de-
scribe the points lying on this hyperplane using the equation �w · �x + b = 0, where
�w = 〈w1, w2, . . . , wn〉 is normal (i.e., perpendicular) to the hyperplane and b/‖ �w‖ is
the perpendicular distance from the hyperplane to the origin (Figure 9.3). Let δ+
be the shortest distance from this hyperplane to any observation with label 1, and
let δ− be the shortest distance to any observation with label −1. SVM looks for the
hyperplane, Hsep , with the largest margin, � = δ+ + δ− (Figure 9.3).

Because so far we assume that the observations are separable, the observation
vectors will fall onto either side of the plane. Let us pick ‖ �w‖ and b such that all the
observations with label 1 satisfy

�w · �xi + b ≥ 1,

with at least one observation point on the hyperplane H+ : �w · �xi + b = 1. Let also
‖ �w‖ and b such that all observations with label −1 satisfy

�w · �xi + b ≤ −1,

with at least one observation point on the hyperplane H− : �w · �xi + b = −1. Note
that Hsep, H+, and H− are all parallel to each other. It can also be shown that the
distance between Hsep and H+ in the direction of the normal is 1/‖ �w‖. Similarly,
under these conditions, the perpendicular distance between Hsep and H− can be
shown to be equal to 1/‖ �w‖. Thus, the two hyperplanes with the largest margin, � =
δ+ + δ− = 2/‖ �w‖, can be found by minimizing ‖ �w‖/2 subject to linear separation
constraints implied by the observations; that is,

yi( �w · �xi + b) ≥ 1,
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for all observations 〈�xi, yi〉 ∈ O. This can be formulated as a quadratic optimization
problem3 by rephrasing the minimization function as

min‖ �w‖2/2 or as min
n∑

j=1

wj
2

2
.

Note that the result is determined by those observation points (also called support
vectors) that lie on the hyperplanes H+ and H−; if these points are removed from the
set of observations, the solution would change. These points also lie on the convex
hulls of the two sets of observations. Thus, as a solution strategy, we can consider
the convex hulls of each set of observations, find the closest points on the two convex
hulls, and find a plane that bisects these points (i.e., perpendicular to the line defined
by the two closest points on the convex hulls and equidistant to both of these points).

9.3.4 Lagrangian Formulation

Although the preceding quadratic optimization problem can be solved directly,
most systems rely on an alternative Lagrangian formulation, which enables sim-
pler constraints and more efficient solutions. The Lagrangian method introduces
a new scalar, αi, for each constraint, Ci, of the optimization problem and com-
bines all in the form of a single function, L, referred to as the Lagrangian function.
The optimal solution to the optimization problem is then found by minimizing the
Lagrangian function subject to the constraint that δL/δαi = 0 for all constraints. In
other words, once the optimal points are found, there would not remain any reason
to change or tweak the Lagrangian scalars.

The dual Lagrangian formulation for the SVM optimization problem is obtained
by introducing Lagrangian multipliers, αi ≥ 0, for each of the observations. The
result is the Lagrangian,

L = 1
2
‖ �w‖2 +

∑
〈�xi,yi〉∈O

αiyi(�xi · �w + b) +
∑

〈�xi,yi〉∈O

αi,

to be minimized subject to the constraints αi ≥ 0 and δL
δαi

= 0 for all 〈�xi, yi〉 ∈ O. An
alternative formulation of this is to minimize the Lagrangian,

L′ = 1
2


 ∑

〈�xi,yi〉∈O

∑
〈�xj,yj〉∈O

αiαjyiyj(�xi · �xj)


−

∑
〈�xi,yi〉∈O

αi,

subject to the constraints, αi ≥ 0 and∑
〈�xi,yi〉∈O

yiαi = 0.

3 Note that the problem is quadratic only if the Euclidean definition of space is used. Computing the
length of �w using the L1 norm as opposed to the Euclidean (L2 norm) would render the optimization
problem linear,

min
n∑

j=1

wj,

and thus more efficient to solve. Also as it is the case for linear regression (Section 9.3.1), using the L1
norm instead of L2 norm to define SVMs also has the affect of setting many of the coefficients to zero,
thus helping SVMs act as feature selectors [Bradley and Mangasarian, 1998].
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An advantage of this alternative formulation is that the input observations (i.e.,
training data) appear only in dot products with each other. This means that it might
be possible to precompute and reuse these dot products. Bennett and Bredensteiner
[2000] show that this representation, in fact, corresponds to the convex hull–based
formulation of the linear separation problem described earlier.

9.3.5 Classification with Non–“Linearly Separable” Observations

Not all observations will be linearly separable. Some observations will have so much
noise that the observation sets will intermingle in space to some degree. Some others
will be separable, but not by planar surfaces.

Let us first focus on the case where the observations are separable, but a hyper-
plane is not sufficient as a boundary between observations. The naive approach in
this case is to formulate the optimization problem explicitly using a hypersurface of
higher degree instead of a hyperplane. This, however, would complicate the formu-
lation of the problem significantly. Fortunately, this problem can be surmounted by
leveraging a side effect of the Lagrangian formulation: in the Lagrangian form of
the optimization problem, the input observations (i.e., training data) appear only in
dot products with each other. Thus, nonlinear classification can be achieved simply
by replacing the dot product with an appropriate nonlinear kernel function that, in-
directly, distorts the space in such a way that each hyperplane on the distorted space
corresponds to a hypersurface of a higher degree in the original space.4 Nonlinear
kernels commonly used for this purpose include the following:

� Polynomial, K(�u, �v) = (�u.�v + c)p , for some p and c
� Gaussian radial basis, K(�u, �v) = e−γ‖�u−�v‖2/2σ2

, for some γ and σ

� Sigmoid, K(�u, �v) = tanh(κ�u.�v + c) for some κ and c

The effect is that the underlying vector space is distorted, and although the same
maximum-margin based hyperplane selection algorithm is used for classification in
the distorted space, the resulting boundary is nonlinear.

Soft-margin SVM optimization handles nonseparable observations: soft-margin
formulation of the problem does not require picking a nonlinear kernel but simply
allows for a few observations to fall on the wrong side of the H+ and H− surfaces.
Thus, this approach can handle the cases where there is no appropriate distortion
of the space that can separate the sets of observations. The approach introduces a
nonnegative error variable, ei, to the constraints that enforce observations falling
only on the required side of the H+ and H− surfaces. Naturally, to ensure that the
number of errors is not high, it also modifies the objective term to minimize the total
amount of error in the solution:

min
‖ �w‖2

2
+ C

∑
〈�xi,yi〉∈O

ei,

such that

yi( �w · �xi + b) + ei ≥ 1

4 This kernel trick can be applied in other domains where dot products are used. Schölkopf et al. [1998]
develop a nonlinear version of PCA with a similar use of nonlinear kernels.
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and ei ≥ 0 for all observations 〈�xi, yi〉 ∈ O. Here C is a constant for trading off the
size of the margin against the degree of errors allowed in classification.

9.3.6 N -ary Classification

The SVM classifier as just discussed is binary: there are only two possible labels
for the observations, +1 and −1. In many cases however, we have more than two
classes of observations. Thus, we need to extend the basic binary SVM to handle
cases where there are multiple classes.

A common and simple solution to the problem is to use multiple binary
SVM classifiers, each trained for one class against all the others. For each point,
then, the best matching class (highest distance from the separating hyperplane)
is used [Boser et al., 1992]. A slightly different non-binary classification problem
involves observations with ordinal (i.e., rank) as opposed to nominal (i.e., arbitrary
class) labels. An ordinal regression SVM [Herbrich et al., 2000] searches for a linear
function h() such that

h(�xi) > h(�xj) ←→ yi > yj

by formulating a soft-margin SVM that minimizes the number of pairs of observa-
tions that are out of their specified order. Waegeman and Boullart [2006] formulate
the same problem as an ensemble of N − 1 binary weak classifiers, where N is the
number of different ordinals (ranks) used as labels. Joachims [2006], on the other
hand, proposes a solution which uses a single SVM.

9.3.7 SVM versus Other Classifiers

As discussed earlier, SVM has many advantages against other classifiers, including
always having a global optimum and the lack of parameters to be set for good per-
formance. Compare this, for example, with neural networks, where local minima
can render classification erroneous [Burges, 1998]. Fortunately, this simplicity does
not come with performance degradations. In fact, many studies showed that linear
SVMs perform very well for text classification tasks.

9.3.8 Complexity of SVMs

The quadratic programming problem is, in its most general form, NP-hard in terms
of its input variables and constraints [Pardalos and Vavasis, 1991]. In practice, how-
ever, many existing algorithms handle large number of dimensions efficiently, but
have super-linear training behavior in terms of the number, o = |O|, of observa-
tions. The training time of SVMs is shown to be polynomial, op , with p ranging
between 1.7 and 2.1 [Chakrabarti, 2002]. Joachims [2006] presents a cutting plane–
based SVM that has training time O(so) for classification problems and O(s o log(o))
for ordinal regression problems. Here, s is the maximum number of nonzero dimen-
sions the input observations have. Thus the nominal classification algorithm per-
forms in linear time if the number of features each training data has is bounded by
a constant. For applications with a dense feature space and large number of feature
dimensions, this algorithm is not efficiently applicable.
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9.3.9 Voted Perceptron Classification

Freund and Schapire [1998] present a simpler algorithm, called voted-perceptron,
for linear max-margin classification. Taking advantage of data that are linearly sep-
arable with large margins, this algorithm builds on the iterative perceptron algo-
rithm [Rosenblatt, 1958] rather than solving quadratic programming problems.

Let us again be given a set of observations, O, where each observation is a
pair, 〈�x, y〉, where �x ∈ R

n is a vector in a given n-dimensional vector space and y
is the label associated with the observation. Let us also assume that the observa-
tion labels can have only one of the two values, −1 or 1. The perceptron algorithm
(commonly used in online learning scenarios where only a single pass over the data
is allowed) starts with an initial prediction vector, �v = 0, and predicts the label of
the first observation instance �x1 to be Q = sign(�v�x1). If this prediction is different
from y1, it updates the prediction vector to �v = �v + y1�x1. If the prediction is cor-
rect, then �v is not changed. The process then repeats with the next example. It has
been shown that if the observations are linearly separable, then the perceptron al-
gorithm will make a finite number of mistakes [Novikoff, 1963] (upper bounded by
a function of the gap between positive and negative observations); therefore, if pro-
vided a sufficiently large data set, the algorithm will eventually converge to a correct
classifier.

Freund and Schapire [1998] convert this online algorithm into a batch setup,
where the data might not be separable or the user might not want to wait till con-
vergence is achieved. In this case, given the various prediction vectors (i.e., clas-
sifiers) the algorithm generates, we need to pick one as the best prediction rule.
One approach is to test the prediction rules on a second observation set [Little-
stone, 1989]. A second alternative is to pick the prediction rule that has survived
for a long time [Gallant, 1986]. Freund and Schapire [1998] leverage the leave-one-
out method for weak learning [Helmbold and Warmuth, 1995]: given the set, O,
of labeled observations and given an unlabeled data object, �x, for all 0 ≤ r ≤ |O|,
the voting-based algorithm picks the first r observations from O and appends the
unlabeled data to the end to obtain a sequence of length r + 1. Then the online per-
ceptron algorithm is run for each resulting sequence, to obtain a total of |O| + 1
predictions for �x. Finally, the majority label is used as the class label for this un-
labeled data object. Freund and Schapire [1998] show that if E is the expected
number of mistakes the online perceptron algorithm would make on a sequence
of |O| + 1 randomly generated (independent and identically distributed) observa-
tions, then the expected probability that the voted perceptron makes a mistake is
only 2E

|O|+1 .

9.4 RULE-BASED CLASSIFICATION

Rule-based systems are very convenient as a knowledge representation and rea-
soning paradigm, for many different reasons. Such systems are a plausible model
of human reasoning, because it is quite natural to model the heuristic nature of
human expertise in terms of rules. Moreover, the paradigm separates the knowl-
edge component (i.e., the state of the system and the set of rules) from the control
component (the interpreter, or “inferential engine”). Rule-based systems also allow
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tracking and explanation of the adopted resolution process. A rule-based system for
classification has the following three major components:

� A set of assertions collectively form the working memory and represent the
knowledge on which the classification is based.

� A set of rules specify how to use the assertion set for classification. Rules can
be seen as if-then statements that encode the knowledge of a (hypothetical) do-
main expert and reproduce the reasoning that the expert would apply during
classification based on the available data. The production rules, or simply pro-
ductions, are of the form antecedent → consequent, where
– the antecedent is a schema (or pattern) expressing the firing condition for the

rule (determining the conditions under which the rule is applicable) and
– the consequent determines the action to be taken when the antecedent is sat-

isfied. For example, the action can ask for the addition to or the removal from
the knowledge base of some fact.

The rules may have priority values that play a role when multiple (possibly con-
flicting) production rules can be fired at the same time.

� A termination condition determines that the classification has been finalized or
that no classification is possible with the present knowledge.

The activity of a rule-based system can be described as a loop, which ends when the
termination condition is reached. Every iteration of the loop acts through the fol-
lowing steps. (i) First, all the antecedent conditions of the rule are checked to isolate
the set of conditions that are satisfied in the current working memory. If the identi-
fied set is empty, the system stops (even if the specified termination condition is not
yet reached). Otherwise, from the set of applicable rules (referred to as the conflict
set), one candidate will be chosen to be fired. The choice of the rule to be triggered,
among all the candidates in the conflict set, depends on the conflict resolution
strategy associated to the system. One commonly used conflict resolution strategy
is the best rule strategy: each rule is given a salience, which specifies its priority over
the alternatives, and the candidate rule with the highest salience is chosen. When
the selected rule is fired, all the actions specified in its consequent clause are carried
out. These actions can have multiple effects, on different targets. In some cases, they
simply modify the working memory. In other cases, they also update the rule base
or execute any actions coded by the system programmer in the consequent clause.

For a rule-based system to be used for classification, assertions and rules have
to be properly specified. This can be either performed by a human domain expert
or automatically extracted from another pattern learning tool that extracts classi-
fication rules from a given training set. Candidates for this process include neural
networks [Nauck and Kruse, 1999], genetic algorithms [Ishibuchi et al., 1999], clus-
tering [Setnes and Roubos, 2000], and decision trees [Han and Kamber, 2001]. In
the rest of this section, we focus on the use of decision trees for the identification of
(crisp as well as fuzzy) rules for classification.

9.4.1 From Decision Trees to Rule-Based Classifiers

As described in Section 9.1, decision trees are one of the simplest and most widely
used classification tools. A decision tree (also called a classification tree) is a tree
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structure whose leaf nodes correspond to class labels, while branches denote the sets
of properties that lead to classification of objects under these labels. Each internal
node of the decision tree can be thought of as a macro-class, that is, the union of
all the classes represented by its descendants. Moreover, each internal node has a
corresponding predicate, called a splitting condition, which determines how the data
corresponding to the class labels under this node are partitioned among this node’s
children. Thus, the set of production rules needed for classification can be generated
from a given decision tree.

Let O be a set of observations and let T(V, E) be a decision tree created from
these observations. Each path from the root of this tree to any leaf vk can be read as
a rule of the form

if (�a ∧ �b ∧ . . . ∧ �z) then ck,

where ck denotes the class label corresponding to leaf vk, while va, vb, . . . , vz are the
nodes along the path from the root to vk. Each node, vi, on this path, expresses a
condition of the form “feature dimension f i satisfies θi(f i)”; thus, �a,�b, . . . , �z are
Boolean variables expressing conditions of the form �i = θi( f i).

9.4.2 Simplifying Rule-Based Classifiers

A decision tree with φ leaves corresponds to φ distinct production rules. If there
are different leaves of the decision tree corresponding to the same class label, then
this corresponds to a set of rules, all of which infer the same label based on the dif-
ferent aspects of this label. While being distinct from each other, the set of rules
for the same label may be redundant. The logical formalism in which the rules are
formulated enables simplification of these rule sets, using logical equivalences, thus
resulting in classifiers that are more compact than the original decision trees. Heuris-
tics can also help eliminate conditions and rules that are less needed than the others,
further reducing the complexity of the classifier [Han and Kamber, 2001]:

(i) Condition pruning based on estimated accuracy: After generating all the
possible rules (one per leaf), the rules are simplified by removing from ev-
ery rule those conditions whose presence does not increase the estimated
accuracy of the rule. Note that this is a lossy process and, after the elimina-
tion, there is no guarantee that all of the original classes are reproduced.

(ii) Rule elimination based on estimated accuracy: Rules are grouped based on
their class labels, and for each class only the rules with the highest estimated
accuracy are kept. Once again, this is a lossy step.

(iii) Rule set ordering and elimination based on actual accuracy: Rule groups are
ordered according to each group’s ability to accurately classify the training
set, and those groups whose overall accuracies are low are eliminated.

(iv) Rule elimination based on actual accuracy: The contribution of each remain-
ing rule to the accuracy is computed using the training set. Those rules that
give a low contribution to the overall accuracy of the corresponding rule set
are removed.

The preceding four steps are iterated until the set of rules stabilizes, that is, until the
set of rules cannot be reduced and compacted any further.
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9.5 FUZZY RULE-BASED CLASSIFICATION

Fuzzy extensions of rule-based systems are useful when dealing with classification
of multimedia objects whose characterizing properties (i.e., features) are partial,
incomplete, or imprecise. In fuzzy rule-based classification systems, the if-then rules
that define the pattern used for classifying media objects are of the form:

if (�a ∧ �b ∧ . . . ∧ �z) then ck,

where ck is a class label and �a through �z are fuzzy predicates. For example, in the
sample fuzzy classification rule,

if (HIGH(obj.motion) ∧ SHORT(obj.length)) then is commercial,

HIGH and SHORT are linguistic terms expressed as fuzzy predicates.
Note that in the foregoing rule, the satisfaction of the antecedent is inherently

fuzzy, while the rule itself is inherently crisp; that is, this rule specifies a certain
correlation between the antecedent and the consequent, which are themselves fuzzy.
A different type of rule-based system associates “certainty degrees” to the rules:

if (�a ∧ �b ∧ . . . ∧ �z) then ck with wk.

Here wk is the weight or confidence associated with the inference stated by the rule.
For example,

if (HIGH(obj.motion) ∧ SHORT(obj.length)) then is commercial with 0.7

indicates that if a media object has high degrees of motion and is short, the system
can be 0.7 confident that the object can be classified as a commercial. In this case,
fuzziness is not limited to the tests that are combined to form the antecedent of the
rule, but applies to the implication stated by the rule as well.

Let Y be the set of class labels and R be a fuzzy rule base. Given an object, obj,
to be classified, the fuzzy rule base will return a set, {〈yi, Si〉 | yi ∈ Y}, where Si is
the set of confidence scores of rules that fired for label yi. Which class label will be
associated with object obj depends on how the scores in sets Si are interpreted and
combined to obtain a single value (Section 3.4.1). Alternative combination functions
include minimum, maximum, and average. Once the scores corresponding to each
class label are combined to obtain a single score, these scores can be compared to
select the unique class label for the observation. Note that the weights (i.e., the
certainty degrees) associated to the rules affect the overall classification result when
there are multiple rules firing for the same object. Thus, the weights must reflect
the confidence associated with the underlying patterns learned from the training set
used as input.

9.5.1 Fuzzy Decision Trees for Fuzzy Classification

Fuzzy rules are composed of fuzzy predicates and (optionally) confidence weights
associated with the rules. In general, the confidence weight corresponds to the clas-
sification accuracy associated with the path in the decision tree corresponding to
the rule. On the other hand, the predicates associated with the internal nodes of a
regular decision tree are crisp and, thus, associating fuzzy predicates to the internal
nodes of a decision tree requires a different decision tree construction mechanism.
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Han and Kamber [2001] present a fuzzy decision tree construction algorithm
that “fuzzifies” the decision predicates. In this approach, each fuzzy predicate is
described using a value interval and a membership function. The construction of
the decision tree takes into account the fact that a given value can fit – with possibly
different memberships degrees – in more than one such interval.

The fact that an attribute value can fit, at the same time, in several different
intervals (each corresponding to a different fuzzy predicate) has an impact on the
definitions of measures, such as information gain relied upon during the decision
tree construction (Section 9.1). In particular, the definitions of information content
and entropy need to be revised to accommodate the fact that an observation (i.e.,
attribute value) may satisfy not only one, but multiple predicates.5 Remember from
Section 9.1.1 that given a crisp observation set, O = {〈�x1, y1〉, . . . , 〈�xo, yo〉} where �xi

are training data and yi are the corresponding class labels, the corresponding en-
tropy is defined as

entropy(O) =
∑
y∈Y

|{〈�xl, yl〉 ∈ O s.t. yl = y}|
|O| log

( |{〈�xl, yl〉 ∈ O s.t. yl = y}|
|O|

)
.

In the case of a fuzzy observation set O = {〈�x1, Y1〉, . . . , 〈�xo, Yo〉}, where Yi is a set
of 〈yi,j, wi,j〉 pairs, each corresponding to an observation label and its weight, the
definition of entropy is revised as follows:

weighted entropy(O) =
∑
y∈Y

total weight(y, O)
total weight(O)

log
(

total weight(y, O)
total weight(O)

)
,

where total weight(y, O) is the total weight of all observations labeled y,

total weight(y, O) =
∑

{wl,k | 〈�xl, Yl〉 ∈ O ∧ 〈yl,k, wl,k〉 ∈ Yl ∧ yl,k = y},
and total weight(O) is the total weight of all observations,

total weight(O) =
∑
y∈Y

total weight(y, O).

Given this revision, the definition of the information gain is also revised by using
weighted entropy as opposed to entropy and, similarly to crisp decision trees, the
choice of the feature on which the subdivision will be based is made by maximizing
this refined information gain measure.

9.5.2 Learning Fuzzy Classification Rules Directly from Observations

As stated earlier, there are many different approaches to learning classification
rules. Examples for fuzzy classification include neuro-fuzzy methods [Nauck and
Kruse, 1999], genetic algorithms [Ishibuchi et al., 1999], combinations of fuzzy clus-
tering and genetic algorithms [Berlanga et al., 2006; Setnes and Roubos, 2000], and
other data mining techniques [Hu et al., 2003].

Roubos et al. [2003] propose an approach for the construction of rule-based fuzzy
classifiers from a training set without having to generate a decision tree as a prior
step. In this approach, each rule, rulej, is of the form

if (θj,1(�x[1]) ∧ θj,2(�x[2]) ∧ . . . ∧ θj,n(�x[n])) then cj,

5 This is similar to the normalization performed in Section 8.1 for computing cluster entropies when
clusters are overlapping.
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where θj,1 through θj,n are fuzzy predicates, �x[l] is the value of the lth dimension of
the n-dimensional vector �x, and cj is the class label corresponding to rulej. Given an
observation set O = {〈�x1, y1〉, . . . , 〈�xo, yo〉}, the initial rule set is determined through
a three-step process that relies on clustering techniques that partition the training
data around class labels:

(i) The first step identifies regions in the feature space that can be approxi-
mated by a single fuzzy rule. This initial partitioning of the feature space
can be performed using various clustering algorithms that would identify
the regions that correspond to each class label.

Under the hypothesis that the shape of the obtained sets can be approx-
imated by ellipsoids, Roubos et al. [2003] represent each class region by a
center and its covariance matrix (see Sections 3.1.3, 3.5.1.2, and 4.2.6). If
the hypothesis supporting this first step (i.e., each class can be described
by a single compact construct in the feature space) does not hold, one can
create multiple clusters, each corresponding to a different fuzzy rule for the
same class label. In the rest of this section, we assume that each class has
one single corresponding cluster.

(ii) The second step of the algorithm computes the Mahalanobis distance be-
tween each observation vector and the centers of all clusters (remember
from Section 3.1.3 that the Mahalanobis distance reflects the distribution of
the data and, thus, is particularly useful when different clusters have differ-
ent data distributions). The membership value, µ(�xi, yj), of an observation
(i.e., training data object) �xi to class yj is then computed as a function of
the Mahalanobis distance between �xi and the cluster center of class yj. For
example, Roubos et al. [2003] compute the membership degree µ(�xi, yj) as
follows:

µ(�xi, yj) = 1∑
〈�xk,yk〉∈O

(
Di,j

Dk,j

)α ,

where α is an empirical constant and Dk,j is the distance between vector �xk

and the center of the cluster corresponding to class label yj.
(iii) The third step of the algorithm computes the fuzzy scoring functions corre-

sponding to the predicates θj,l in the rule base. Remember that each rule,
rulej, is of the form

if (θj,1(�x[1]) ∧ θj,2(�x[2]) ∧ . . . ∧ θj,n(�x[n])) then cj,

where �x[l] is the value of the lth dimension of the n-dimensional vector �x.
The fuzzy scoring function for the predicate θj,l in the rule, rulej, corre-
sponding to class label yj is computed by considering pairs,

〈�xi[l], µ(�xi, yj)〉,
for all training data vectors �xi and approximating this set of pairs with a
suitable parametric function.

This initial rule set is then improved iteratively through feature selection based on
class separability and rule simplification methods, similar to the ones discussed in
Section 9.4.2.
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Once the rules are computed, given an object �xi, the overall score, w, of the rule
is computed based on the scores of the individual predicates. In particular, the logic
connective ∧ is modeled through the “product” semantics (Section 3.4.1):

θ1(�xi[1]) × θ2(�xi[2]) × . . . × θn(�xi[n]).

The output of the classifier is, then, determined by the rule with the highest score.

9.6 BAYESIAN CLASSIFIERS

Once again let us consider a set of observations, O, where each observation is a pair,
〈�x, y〉 such that �x ∈ R

n is a vector in an n-dimensional vector space and y ∈ Y is the
label associated with the observation.

Bayesian classifiers start with the assumption that each class label y ∈ Y has a
prior probability P(y). Furthermore, given a class label, the corresponding vectors
are generated with probability P(�x|y), conditioned on the class label. Given these,
Bayes’ rule can be used to formulate the conditional probability of a given vector �x
having label y ∈ Y as follows:

P(y|�x) = P(y)P(�x|y)∑
yi∈Y P(yi)P(�x|yi)

.

Note that to use this formulation to find the most likely label for �x, we need to lever-
age the available observations, O, to compute the values P(yi) and P(�x|yi) for all
yi ∈ Y. Computing P(yi) using O is relatively easy: one can simply count the number
of observations with class label yi and divide this by |O|.

Computing the probability of P(�x|yi) is not as easy. In particular, because �x has
not been seen before, counting vectors and dividing them by the size of the class of
observations labeled yi does not help. Instead, we need to formulate this in terms of
things that we can count more easily.

9.6.1 Independence Assumption

The problem can be significantly simplified if one can assume that the dimensions
of the vector space are statistically independent from each other. In that case,

P(�x|yi) =
n∏

j=1

P(�x[j] | yi),

where �x[j] is the value of �x along the jth dimension. Thus, it is sufficient to be able
to estimate the probability of having value �x[j] given class label yi. This is usually
achieved using maximum likelihood estimation (MLE), a statistical technique for
finding the best fit between the parameters of a model and given data. For example,
if one assumes that the values along the jth dimension have a normal distribution,
then one can first estimate the parameters (mean and variance) of the underlying
distribution (by studying the values along the jth dimension of all the observations
with label yi) and use this distribution to compute P(�x[j] | yi).

A particular risk with this approach is that if a feature value does not occur at all
in the given set of observations, then the corresponding probability estimate will be
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Figure 9.4. (a) A 4-feature PD graph and (b) its maximum spanning tree (rooted at f1).

zero. This will then result in P(�x|yi) = 0 irrespective of what the other probabilities
are. Of course, if the statistical model used for MLE is accurate, this problem is less
severe. However, when, for example, the MLE is implemented simply by counting
how many times a feature value is observed in the given set and dividing by the
set size, any feature value that is missing in the observation set will cause errors in
estimation. This situation is usually prevented by the help of a smoothing (or small-
sample correction) technique, such as the Laplace law of succession: “if of m ob-
servations, s have the feature value a, then the probability that the feature value is
observed in the next observation is approximately s+1

m+2 .” When the observation set
is empty, the prior distribution of the feature value is assumed to be 1/2. If s = 0,
then the likelihood, 1

m+2 , of a decreases with the number of observations, but never
reaches 0; in other words, the probability of the unseen feature has been smoothed
to a value larger than 0.

9.6.2 Relaxing the Independence Assumption

Bayesian classifiers that rely on the independence assumption are also referred
to as naive Bayesian classifiers. The name highlights the fact that it is rare
that the dimensions of the vector space are statistically independent from each
other.

One way to relax the independence assumption is to account for the dependence
between the probability distributions of different features. This is done by mea-
suring the mutual information between two distributions (Section 8.8.2) and com-
puting the dependence between the jth and kth features, given a class label yi, as
MI(P(�x[ j] | yi), P(�x[k] | yi)). Thus, if we consider all pairs of features, we can create
a complete pairwise dependence graph, PD(V, E, mi), where each node in V is a fea-
ture dimension and E contains an edge between all pairs of nodes (Figure 9.4(a)).
Also, for each edge, e = 〈 j, k〉 ∈ E, mi( j, k) = MI(P(�x[ j] | yi), P(�x[k] | yi)) is the
weight of the edge.

Although PD(V, E, mi) captures the feature dependence between all pairs of
features, it is not easy to leverage PD for computing the joint feature distribution
P(�x|yi) directly. The lack of reliable joint distributions, however, is the very rea-
son why P(�x|yi) cannot be computed directly relying on MLE (i.e., by counting the
matching observations in O). Instead, the common approach (see, for example, [van
Rijsbergen et al., 1981]) to leveraging the knowledge about the available feature de-
pendencies is to extract a directed, tree-structured Bayesian network, PDtree from
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PD using a rooted maximum spanning tree [Cormen et al., 2001]. This keeps those
edges denoting the highest dependencies, but eliminates edges that correspond to
pairs of features that are almost independent (Figure 9.4(b)). The advantage of the
tree representation is that the joint distribution can be written in such a way that
for each feature, its dependence on only one other feature needs to be considered.
For example, the PD graph in Figure 9.4(a) and its maximum spanning tree in Fig-
ure 9.4(b) can be used for computing the joint distribution of features, f1, f2, f3 and
f4 as follows:

P( f1 ∧ f2 ∧ f3 ∧ f4) = P( f1) P( f2|f1) P( f3|f1) P( f4|f2).

Note that in formulating the product for joint distribution, only the dependen-
cies of the children features in PDtree to their parents are considered. Thus, this
formulation is imperfect; but, most significant dependencies are captured.

Given the foregoing approach to joint probability computations, based on the
tree-structured Bayesian networks, we can write P(�x|yi) as

P(�x|yi) =
n∏

j=1

P(�x[j] | �x[parent( j)], yi),

where parent( j) denotes the parent of the jth feature dimension in the correspond-
ing PDtree.6 Thus, the only probabilities that need to be computed from the available
observations (by counting feature occurrences) are of the form P(�x[j] | �x[k], yi) for
pairs of dimensions, j and k = parent( j).

9.7 HIDDEN MARKOV MODELS

Hidden Markov models (HMMs) are a type of Bayesian graph, commonly used in
machine-learning–based multimedia pattern recognition, especially when the corre-
sponding classification task has a temporal or sequence-based nature. Underlying an
HMM there is a finite-state machine with probabilistic state transitions. As the name
implies, some of these states are hidden (i.e., they are not directly observable), but
some variables, whose values depend on these hidden states, are in the open (and
thus observable).

Example 9.7.1: For example, consider the task of extracting portions of a long text
document relevant to a given query [Jiang and Zhai, 2006; Li et al., 2008; Rabiner,
1990]. This task can be modeled using HMMs by treating the document as an observ-
able symbol (word) chain and assuming that there is a state chain revealing whether
a given word in the document falls in the relevant portion or not (Figure 9.5(a)). Be-
fore the relevant and irrelevant parts of the given document are identified, we do not
know when the switch between the underlying generative models occurs. In other
words, the process that governs the switching between the two models is hidden.

HMM-based classification involves two complementary tasks: given a sequence
of observations, training involves learning the parameters of the underlying HMM.
Then, given the learned parameters of a specific HMM, classification/pattern

6 The feature at the root of the PDtree does not have a parent; thus it depends only on the class label yi .
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Figure 9.5. (a) Representation of a document as an HMM (S j is the hidden state of the
corresponding word, wj, in the document) and (b) the underlying hidden state transition
probability graph (r means relevant and r̄ not relevant).

recognition finds the most likely sequence of states that would produce a particu-
lar output.

Example 9.7.2: For the previous example, let us assume that each document has
only one relevant part. Thus the underlying process that governs the hidden states
of the HMM can be modeled as the state transition probability graph shown in Fig-
ure 9.5(b). r means that the current word falls into the relevant portion of the doc-
ument. The irrelevance states are split into two: r̄1 denotes the irrelevance state
before the relevant portion is met and r̄2 denotes the irrelevance state after the rel-
evant portion of the document has been consumed. In this model, e is the end state
matching the special end-of-file (EOF) character.

In the training phase, the parameters (i.e., the transition probabilities) of the
graph in Figure 9.5(b) will be discovered. In the classification phase, using the
learned model, the words of the document will be classified into states, “before
the relevant portion” (r̄1), “in the relevant portion” (r), and “after the relevant
portion” (r̄2).

In a standard Markov chain, all the states of the underlying state machine are
observable; thus, the state transition probabilities can be learned directly from the
available observations, including the input sequence and the corresponding state
changes (Section 3.5.4). In the case of HMMs, on the other hand, the states
are not directly observable. Instead, we can observe output symbols produced by
the hidden states. Thus, we first have to discover the probability of a given hidden
state resulting in a particular output.

9.7.1 Markov Models with Hidden States: Formal Definition

Unlike in the regular Markov models (Section 3.5.4), where the states themselves
are observable and only state transitions are stochastic, in Markov models with hid-
den states, the model is doubly stochastic: the current state of the model cannot be
observed directly, and the variables that are observable are governed by a second
set of stochastic processes that determine their values. A hidden Markov model,
H(V, E, O, pτ, po, �π0), is a discrete-time stochastic process, such that

� V = {v1, . . . , vn} is the set of hidden states of the process,
� edges in E are the possible transitions between these states,
� O = {o1, . . . , on} is the set of observation symbols,
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� pτ : E → [0, 1] is a function associating transition probabilities to the edges of
the graph,

� po : V × O → [0, 1] is a function associating observation symbol probabilities to
each state, and

� �π0 is the probability distribution in the initial state.

9.7.2 Computing the Probability of an Observation Sequence
from an HMM

Let us first focus on the task of computing the likelihood of a particular observation
sequence. Although this problem is not directly related to the classification task, it
serves as a stepping stone for the steps of the HMM classification procedures.

A given HMM, H, can be thought of as a generator of observation sequences,
where each sequence is generated with a probability governed by the three distri-
butions, pτ, po, and �π0, of H. Given an observation sequence, seq = o(0) : o(1) : . . . :
o(k − 1), where o(i) ∈ O is the value observed at state Si at time t = i, the probability
of H generating this observation sequence can be computed as

P(seq) =
∑

S0:S1:...:Sk−1

P(o(i)|Si)P(Si) =
∑

S0:S1:...:Sk−1

po(Si, o(i))P(Si).

This can also be written as

P(seq) =
∑

S0:S1:...:Sk−1

π0(S0)po(S0, o(0))


k−1∏

j=1

pτ(Sj−1, Sj)po(Sj, o( j))


 .

The naive computation of this by enumerating all possible state sequences would re-
quire O(knk) time. The forward-backward procedure [Baum and Sell, 1968; Baum
and Eagon, 1967], a dynamic programming algorithm which exploits the overlaps in
the set of all possible state sequences to reduce the time complexity of the compu-
tation, solves this in O(kn2) time. Forward-backward has two components:

(i) Computation of the forward probability, α(seq0,t, vi), of a partial observation
sequence, seq0,t = o(0) : o(1) : . . . : o(t) (from time 0 until some time t ≤ k −
1) with the final state being St = vi

(ii) Computation of the backward probability, β(seqt+1,k−1, vi), of a remaining
partial observation sequence, seqt+1,k−1 = o(t + 1) : . . . : o(k − 1) (from time
t + 1 until time k − 1) given that at time t, the state is St = vi

Note that the computation of P(seq) requires only the forward component of the
forward-backward procedure. The backward component, on the other hand, comes
handy in other HMM tasks (Section 9.7.4).

9.7.2.1 Forward Algorithm
The forward probabilities, α(seq0,t, vi), for all t and vi are computed simultaneously
using dynamic programming based on an indicative formulation. For the base case,
t = 0, forward probabilities are set based on the parameters of the given HMM as
follows:

∀1≤i≤n α(seq0,0, vi) = �π0[i]po(vi, o(0)).
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The inductive step reuses the forward probabilities computed during the earlier
steps:

∀1≤j≤n∀0≤t≤k−2 α(seq0,t+1, vj) =

∑

1≤i≤n

α(seq0,t, vi)pτ(vi, vj)


 po(vj, o(t + 1)).

Note that this is where the power of dynamic programming lies. Once α(seq0,t, vi)
is computed for some t and state vi, it is repeatedly used to compute α(seq0,t+1, vj)
for different states vj at time t + 1. There are overall O(kn) forward probabilities to
compute, with each computation requiring n inductive summations. Thus, the cost
is O(kn2). Finally, the forward component is completed by computing P(seq):

P(seq) = P(seq0,k−1) =
∑

1≤i≤n

α(seq0,k−1, vi).

We discuss the solution to the backward component of the forward-backward pro-
cedure in Section 9.7.4.

9.7.3 Classification by Predicting the Sequence of Hidden States

Given an HMM, H, the classification problem can be formulated as predicting
the underlying hidden state sequence S0 : S1 : . . . : Sk−1 from an observation se-
quence seq = o(0) : o(1) : . . . : o(k − 1). In other words, the classification problem
is equivalent to the problem of identifying the hidden state sequence that best ex-
plains the given observation sequence. This problem is commonly solved by finding
the state sequence that maximizes P(S0 : S1 : . . . : Sk−1 , o(0) : o(1) : . . . : o(k − 1)).
This probability can be computed efficiently using a dynamic programming–based
method called the Viterbi algorithm [Forney, 1973; Viterbi, 1967].

The Viterbi algorithm computes the probability of the most likely state sequence
ending at state vi at time t; that is,

δ(seq0,t, vi) = max
S0:S1:...:St−1

{P(S0 : S1 : . . . : St = vi, o(0) : o(1) : . . . : o(t))},

where the base case can be stated as

δ(seq0,0, vi) = �π0[i]po(vi, o(0)).

These together give rise to the following inductive formulation:

δ(seq0,t+1, vj) =
(

max
1≤i≤n

{δ(seq0,t, vi)pτ(vi, vj)}
)

po(vj, o(t + 1)).

Given this formulation, the probability, Pmax, of the most likely state sequence,
Smax,0 : Smax,1 : . . . : Smax,k−1, can be computed as

Pmax = max
0≤i≤n

{δ(seq0,k−1, vi)}.

Note, however, that Pmax is not sufficient for the classification task. We instead
need the state sequence that corresponds to this maximum probability. The Viterbi
algorithm identifies this most likely state sequence by using a separate array,
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ψ(seq0,t, vi), which keeps track of the contributing state for each time t and
state vi:

∀1≤i≤n ψ(seq0,0, vi) = 0,

∀1≤j≤n∀1≤t≤k−1 ψ(seq0,t, vj) = argmax
1≤i≤n

{δ(seq0,t−1, vi)pτ(vi, vj)},

Smax,k−1 = argmax
1≤i≤n

{δ(seq0,k−1, vi)}.

The intermediary states can then be enumerated by backtracking on the ψ array:

∀0≤t≤k−2 Smax,t = ψ(seq0,t+1, Smax,t+1).

In order to apply Viterbi for a classification problem, in many cases, we first
need to find the parameters of the HMM; that is, we need to identify the initial state
distribution (π0), and the output (po) and transition (pτ) probability distributions
using the available set of observations.

9.7.4 Learning the Parameters of a Hidden Markov Model

The major challenge with learning the HMM that best describes a given set of
input sequences is that there is no optimal way of estimating the parameters �π0,
po, and pτ, of an HMM, H(V, E, O, pτ, po, �π0), with a given structure. Thus, this
problem is commonly solved in a locally optimal manner, using the Baum-Welch
method [Baum et al., 1970]. This method builds on the forward-backward algorithm
to compute initial estimates and then iteratively improves the probability estimates
in a hill-climbing fashion.

9.7.4.1 Backward Algorithm
Given HMM, H(V, E, O, pτ, po, �π0) (with known structure and probabilities) and
an observation sequence, seq = o(O) : o(1) : . . . : o(k − 1), the backward algorithm
computes the backward probability, β(seqt+1,k−1, vi), of a remaining partial observa-
tion sequence, seqt+1,k−1 = o(t + 1) : . . . : o(k − 1) (from time t + 1 until time k − 1)
given that at time t, the state is St = vi.

As in the forward algorithm, the backward probabilities are computed simulta-
neously for all t and vi in a bottom-up fashion using dynamic programming, based
on an inductive formulation of β:

∀1≤i≤n β(seqk,k−1, vi) = 1,

∀1≤j≤n∀0≤t≤k−2 β(seqt+1,k−1, vj) =
∑

1≤i≤n

pτ(vj, vi)po(vi, o(t + 1))β(seqt+2,k−1, vi).

Note that seqk,k−1 is an empty sequence. Like the forward algorithm, the backward
algorithm also requires O(kn2) time to compute the β values for all vi ∈ V and 0 ≤
t ≤ k − 2.

9.7.4.2 Baum-Welch Method
Given an HMM, H, and an observation sequence, seq : o(0) : o(1) : . . . : o(k − 1) of
length k, let ξ(seq, t, vi, vj) = P(St = vi, St+1 = vj|seq) be the probability of being at
state vi at time t and at state vj at the next time unit, t + 1. Using the forward, α, and
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backward, β, probabilities for time t and t + 1 respectively, we can write
ξ(seq, t, vi, vj) as follows:

ξ(seq, t, vi, vj) = α(seq0,t, vi)pτ(vi, vj)po(vj, o(t + 1))β(seqt+2,k−1, vj)
P(seq)

,

where

P(seq) =
∑

1≤i,j≤n

α(seq0,t, vi)pτ(vi, vj)po(vj, o(t + 1))β(seqt+2,k−1, vj).

Given the observation sequence, seq, let us denote the probability of being at state
vi at time t with the term, γ(seq, t, vi):

γ(seq, t, vi) = P(St = vi|seq) = α(seq0,t, vi)β(seqt+1,k−1, vi)∑
1≤i≤n α(seq0,t, vi)β(seqt+1,k−1, vi)

.

Given a new observation sequence, seq, the Baum-Welch method uses the current
estimates for the parameters, π0, po, and pτ, of H, to compute ξ and γ values based
on seq. These are then used for updating the estimates for the three HMM parame-
ters in light of the new evidence:

π′
0[vi] = γ(seq, 0, vi).

p ′
τ(vi, vj) =

∑
0≤t≤k−2 ξ(seq, t, vi, vj)∑

0≤t≤k−2 γ(seq, t, vi).

p ′
o(vi, o) =

∑
0≤t≤k−1 s.t. o(t)=o γ(seq, t, vi)∑

0≤t≤k−1 γ(seq, t, vi)
.

Baum and Eagon [1967] showed that π′
0, p ′

o, and p ′
τ are at least as likely as π0, po,

and pτ; more specifically, the a posteriori estimate of probabilities increases the like-
lihood of the given input observation. Thus, the repeated execution of these steps
based on the new evidence leads to improved estimates of the HMM parameters.
Of course, this greedy, hill-climbing–based approach is not guaranteed to reach the
best (globally optimal) solution. Rather, the Baum-Welch method leads to a local
maximum.

9.7.4.3 Expectation Maximization (EM)
The Baum-Welch method is an instance of a class of algorithms, called expecta-
tion maximization (EM) algorithms [Dempster et al., 1977; Welch, 2003], for finding
maximally likely parameter estimates for models with variables hidden from the ob-
server. As in the Baum-Welch method, the EM algorithms have two distinct phases.
The expectation phase (E) formulates a function that links the current estimates, λ,
of the hidden parameters to their revised estimates, λ′. The maximization step (M)
maximizes over possible values of λ′.

More formally, EM algorithms maximize P(y, λ), where y denotes the incom-
plete observation, which is linked to a larger hidden model, x. There is an underlying
mapping function, F(x) = y, which relates the observed data values to the values of
the hidden data. Given this function, the distribution, q, of incomplete observations
is linked to the distribution of the hidden data as follows:

q(y, λ) =
∑

x s.t. F(x)=y

p(x, λ).
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Thus, the conditional distribution of the hidden data given the observed data, y, can
be computed as follows:

∀F(x)=y p(x|y, λ) = p(x, λ)
q(y, λ)

.

Using this conditional probability, the expectation phase of EM formulates the
function, Q(λ, λ′), to link the current estimate, λ, to the next estimate, λ′. More
specifically, Q(λ, λ′) is the expected value of log(p(x, λ′))7 given the current estimate,
λ, and the observation, y:

Q(λ, λ′) =
∑

x s.t. F(x)=y

p(x|y, λ)log(p(x, y|λ′)).

The maximization step then maximizes Q by varying over λ′.
In the case of the Baum-Welch method for learning the parameters of the hidden

Markov model, H,

� the computation of p(x|y, λ) corresponds to finding the likelihood of the se-
quence, x, of hidden states, given the current estimates of the model, λ =
〈π0, pτ, po〉, and the current observations, y, and

� the computation of p(x, y|λ′) = p(x|y, λ′)p(y|λ′) corresponds to
– estimating the likelihood of the sequence of hidden states, x, based on obser-

vation, y, and HMM parameters, λ′ = 〈π′
0, p ′

τ, p ′
o〉, and

– estimating the likelihood of the sequence of observations, y, given the HMM
parameters λ′.

Note, however, that the Baum-Welch method does not explicitly formulate Q(λ, λ′)
in one phase and maximize this by enumerating all possible λ′ in a second one. In-
stead, it computes the gradients for the HMM parameters and climbs along the di-
rection of these gradients. Dempster et al. [1977] and Welch [2003] showed that this
is equivalent to the EM formulation of the problem.

9.8 MODEL SELECTION: OVERFITTING REVISITED

As discussed in Sections 9.1.2 and 9.3.2, for many classification algorithms, overfit-
ting of the models to the provided set of observations (or training data) is a serious
problem. Especially when using classification schemes where one can pick among
different models with varying complexities (or free parameters), it is often more
desirable to pick classification models that are simpler and thus less prone to over-
fitting, even if they are not able to provide the best available fits to the input obser-
vations.

In order to reduce the risk of overfitting, model selection techniques quantify

� the degree of complexity of the given model and
� the degree of fit of the model to the observations

7 Remember from Section 4.2.2 that −log(p(e)) is the information content of event, e, which measures
the uncertainty of e, that is, how rare the event is. Thus, log(p(x, λ′)) measures how certain the pair
〈x, λ′〉 is.
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and pick models that provide a reasonable trade-offs between these two measures.
The LASSO technique we discussed in Section 9.1.2 was an example where a con-
straint on the complexity was introduced in the linear regression process, along with
a measure capturing the degree of fit of the hyperplane to the data, in order to pre-
vent overfitting.

More general criteria, which can be used in any model selection scenario, include
the Bayesian information criterion (BIC), Akaike’s information criterion (AIC),
and the minimum description length (MDL).

9.8.1 Bayesian Information Criterion (BIC)

As introduced in Section 3.5.3, the Bayes’ rule relates the conditional and marginal
probabilities of two events a and b:

P(a|b) = P(b|a)P(a)
P(b)

.

Consequently, given an observation �x and two models M0 and M1 and the user’s
prior judgements, P(M0) and P(M1), of the two models, the ratio

P(M0|�x)
P(M1|�x)

= P(�x|M0)P(M0)
P(�x|M1)P(M1)

can be used to judge whether M0 or M1 fits the observation �x better. In other words,
the (relative) likelihood of a model, M, is proportional to P(�x|M)P(M). For a para-
metric model, M(R), we can generalize this using the weighted average of the like-
lihoods at all possible values of the set, R, of parameters; that is, the likelihood of
the model M is proportional to

∫
�r∈R P(�x|M(�r))P(�r, M)d�r, where P(�r, M) is the prior

probability distribution for the parameters of the model M.
For a model with k parameters and a set O of N samples over which the

likelihood of the model is computed, the Bayesian Information Criterion or
BIC [Raftery, 1986, 1999; Schwarz, 1978; Weakliem, 1999] approximates the neg-
ative log likelihood as

−2ln(P(O|M(�r ∗))) + kln(N),

where �r ∗ is the vector of maximum likelihood estimates of the parameters of the
model. Note that, intuitively, in the definition of BIC, the first term measures the
degree of fit, whereas the second term penalizes for the complexity of the model.
Often, this is further simplified as

−2ln(L) + kln(N),

where L is the maximized value of likelihood of the observations for the given
model. Since the likelihood terms are negated in the definition of BIC, given two
models, the model with small BIC value is more desirable.

9.8.2 Akaike’s Information Criterion (AIC)

Akaike’s Information Criterion or AIC [Akaike, 1974] is defined very similarly to
BIC:

−2ln(P(O|M(�r ∗))) + 2k.
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Once again, k is the number of parameters of the model, and P(O|M(�r∗)) is the
maximized value of the likelihood of the set, O, of the observations for the given
model. Note that, unlike BIC, the penalty for the complexity is not multiplied by
ln(N) = ln(|O|), but multiplied only by the constant 2; thus AIC tends to penalize
the complexity of the model less strongly than BIC does.

9.8.3 Minimum Description Length (MDL)

The concept of minimum description length (MDL) is related to the Kolmogorov
complexity we discussed in Section 5.5.5. The Kolmogorov complexity K(q) of a
given object q is the length of the shortest program that outputs q [Burgin, 1982].
Because the Kolmogorov complexity is generally not computable, often approxima-
tions, such as compressed code length [Cilibrasi and Vitanyi, 2005], are used instead
of the Kolmogorov complexity.

Compression algorithms, such as Huffman coding [Huffman, 1952], are based
on the observation that given a set of events with a probability distribution, P, it
is possible to minimize the code length needed to represent this set of events by
associating to each event e a code of length −log2P(e). That is, there is a strong rela-
tionship between the probability distribution of a given set of observations and the
minimum code length needed for representing them. The MDL principle for model
selection argues that, given two models M0 and M1, the model whose corresponding
probability distribution results in the shortest encoding of these observations plus
the model itself should be preferred [Hansen and Yu, 2001]. It has been shown that,
under Bayesian statistics, the MDL principle leads to BIC as the valid code length,
whereas under other interpretations of the available statistics, the MDL principle
may lead to other measures of complexity.

9.9 BOOSTING

As we have seen in this chapter, there are many different ways one can solve the
classification problem, each with different assumptions, advantages, and disadvan-
tages. Sometimes, it may be possible to merge results from multiple classifiers to
obtain better and stronger classification results. In Section 9.1.3, for example, we
learned the random forests technique, which improves the classification perfor-
mance by relying on an ensemble of decision trees instead of a single one: the object
to be classified is considered by multiple decision trees and the class label with the
highest support is assigned as the class label of this data object. Another example
is the voted perceptron classifier (Section 9.3.9), where, given a set of prediction
vectors (i.e., classifiers), the majority label is selected as the class label for a given
unlabeled data object.

Boosting is the name of the general approach where a stronger classification is
obtained by combining multiple, weak classification results. The weak classification
results that are being combined often correspond to the results obtained using dif-
ferent parameter settings of a single weak classifier. In fact, the simplest way to
achieve the boosting effect is to vary the parameters of a given classifier and take
weighted average of the corresponding classification results. Of course, the real



9.9 Boosting 325

Inputs: A set, O, of observations

(i) ∀oi ∈ O D1(i) = 1
|O| ; here D1 is the initial distribution, intuitively indicating

the importance of each observation instance
(ii) for t = 1 . . . T do

(a) train the weak learner using distribution Dt to obtain a hypothesis func-
tion, ht()

(b) compute the weight, αt, of this iteration,
(c) compute the importance distribution, Dt+1, for the next iteration:

∀oi ∈ O Dt+1(i) = Dt(i)e−αt ht(xi) yi

Zt
,

where Zt is a normalization factor to ensure that Dt+1 is a probability
distribution; i.e.,∑

oi∈O

Dt+1(i) = 1.

(iii) h∗(x) = sign
(∑T

t=1 αtht(x)
)

.

Figure 9.6. AdaBoost algorithm.

challenge is choosing the weights for different parameter settings. Uniformly as-
signing the same weight to all alternatives may not give the best results. AdaBoost
algorithm [Freund and Schapire, 1995, 1997] solves the weight assignment problem
iteratively and tries to reduce the cumulative loss (with respect to the best combina-
tion strategy) progressively.

The basic AdaBoost algorithm applies boosting to binary classification prob-
lems. More recently, AdaBoost has also been extended to multilabel classification
problems. Schapire and Singer [1999] also describe how to assign confidence rat-
ings to the predictions of the strong classifier obtained through AdaBoost. In Sec-
tion 12.8.4.1 we see an application of the boosting technique to collaborative filtering
problems.

In this section, we present a slightly generalized version of the AdaBoost algo-
rithm, presented by Schapire and Singer [1999]. Let us be given a set of observations,
O, where each observation is a pair, 〈x, y〉, where x is an instance of some domain X
and y ∈ {−1,+1} is the classification label associated with the observation (i.e., we
focus on the binary classification problems). Let us also assume that we are given a
weak classifier producing a hypothesis given an instance of the domain X. The hy-
pothesis h(x) is real-valued, where the sign of h(x) denotes the predicted label and
the magnitude, |h(x)|, gives the confidence of this weak hypothesis.

The outline of the AdaBoost algorithm is presented in Figure 9.6; the output
of the algorithm is the final strong hypothesis function h∗(). Note that, instead of
averaging many randomly selected classifiers, the algorithm in Figure 9.6 uses the
importance distribution, D, associated with the objects in the given observation set,
to train the weak classifier in such a way that the predictions are more precise with
respect to the observations that are more critical. In fact, it is this importance distri-
bution that is iteratively computed based on the current importance distribution and
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the matches and mismatches between the results of the corresponding weak classi-
fier and the input training observations. This enables AdaBoost to help focus the
training of the weak classifier on the critical parts of the observation space. Freund
and Schapire [1997] showed that using the iteration weight

αt = 1
2

ln
(

1 + rt

1 − rt

)
,

where rt =
∑

i Dt(i)ht(xi)yi is sufficient to bound the training errors. Once the it-
erations are over, the final strong classifier is constructed by combining the weak
classifiers obtained during the iterations of the algorithm using the iteration weights
discovered through the process.

9.10 SUMMARY

In this chapter, we have introduced the most commonly used techniques for classify-
ing media data into predetermined categories, based on prior knowledge, available
in the form of training data. Most of these techniques are based on identifying fea-
tures or feature sets that can help discriminate objects in different categories. As
such, the measures used in assessing features to support the classification process
show a strong resemblance to the feature quality measures discussed in Chapter 4.
The major difference is that the measures we covered in Chapter 4 did not have
prior knowledge about the semantic labels attached to the media objects, whereas
classifiers have the distinct advantage of being able to analyze training data for more
informed discrimination-power analysis.

In a multimedia database, classification is not only used for attaching semantic
tags onto media objects, but also leveraged in assessing the relevance (or irrele-
vance) of media and features to a user, based on his or her past feedback. In fact,
the relevance feedback and recommendation processes we cover in Chapter 12 can
be considered as biclassification: the given set of objects is partitioned into relevant
and irrelevant subsets, based on the prior evidence and the user’s current context
and feedbacks.
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Ranked Retrieval

Ranked query processing is important in many application domains, including in-
formation retrieval and multimedia, where results presented to the user need to be
ordered based on their scores of matching.

As discussed in earlier chapters, fuzziness is inherent in multimedia retrieval
for many reasons, including similarity of features, imperfections in the feature ex-
traction algorithms, imperfections in the query formulation methods, partial match
requirements, and imperfections in the available index structures. Data (whether
captured in real time through sensory measurements or processed, materialized,
and stored for later use) are many times accurate only within a margin of error.
Also, in many cases the importance of a feature depends on how dominant it is in a
particular data object and how discriminatory/rare the feature is in the entire data
collection. The popular term frequency/inverse document frequency (TF-IDF) key-
word weights (Section 4.2) used in text retrieval rely on this principle. The impor-
tance of the feature can also reflect the retrieval context. For example, a keyword,
say, “entropy,” may carry different meanings and relevance and imply different se-
mantic similarity relationships when used within a computer science context versus
within its physics context. Thus, in many applications, the utility of a data element
to a particular retrieval task depends on the user’s query and the usage context.
Consequently, users are usually not interested in obtaining all possible matches to
a query, but only the k best results, where k is application specific or provided by
the user.

Because the number of candidate matches is usually large (potentially each ob-
ject in the database is a match to the user’s query, but most of these objects have
very low scores), the retrieval system often cannot rely on processing strategies that
would require it to touch or enumerate all candidate objects. Instead, multimedia
systems prefer to use data structures and algorithms that can prune unpromising
data objects from consideration without having to evaluate them at all. This is often
referred to as ranked or top-k query processing.

327
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10.1 k-NEAREST OBJECTS SEARCH

A commonly used ranked query processing strategy is the k-nearest neighbor
search [Broder, 1990; Fukunaga and Narendra, 1975; Hjaltason and Samet, 1999;
Kamgar-Parsi and Kanal, 1985; Larsen and Kanal, 1986; Roussopoulos et al., 1995;
Samet, 1990], often applied when the data and queries are all in a multidimensional
vector or metric space. Given a set of data points (or vectors) in the space, and
a query vector, the goal of k-nearest neighbor queries is to identify those k data
points that are closest to the query point, based on the underlying distance measure
(see Figure 7.1(b)).

10.1.1 Branch and Bound–Based Nearest Neighbor Search

As also briefly mentioned in Section 7.2.2.1, a common strategy for performing near-
est neighbor searches is to rely on an existing hierarchical partitioning of the data,
such as multidimensional search trees, and perform branch and bound search on
this structure until k objects are found [Fukunaga and Narendra, 1975]: The basic
algorithm visits elements in the hierarchy (in a depth first manner), while continu-
ously updating a candidate list consisting of the k closest points seen so far. If the
system can determine that a visited partition cannot contain any points closer to the
query point than the k candidates found so far, the node and all of its descendants
are eliminated from further consideration.

Let us be given a database, D, with |D| = n objects and a hierarchical search hi-
erarchy, T, which partitions the database into subsets (or partitions), such that each
node in T is a subset of D and children of any given node cover the set correspond-
ing to the parent. Given a query object q, the basic branch-and-bound technique is
as follows:

� First pick a (random) object o ∈ D and compute the distance dist(q, o); this is the
first nearest neighbor candidate.

� Start a range search on the hierarchy using the range, r = dist(q, o).
Usually, the range search involves a depth-first traversal of the hierarchy,

where at every node the distance lower bound for the subtree is computed and
those subtrees with lower bounds greater than the search range are pruned.

However, for nearest neighbor search, whenever we find a data object o′ such
that the distance dist(q, o′) < r, where r is the current nearest-neighbor range, o′

is picked as the new nearest neighbor candidate and r is set to dist(q, o′).

The time savings in this branch-and-bound search process is due to the tightening of
the pruning range as better nearest neighbor candidates are discovered. The best-
first or best-bin-first branch-and-bound search modifies this basic strategy slightly
to promote more effective pruning. In particular, instead of using a depth-first
traversal of the hierarchy (where the data partitions are met in the order implied
by the hierarchy), a priority queue is maintained for the active partitions that have
been met, but not yet further explored. At each iteration, the priority queue is used
to pick the partition with the smallest lower-bound distance to the query for further
exploration: (a) the lower bounds are computed for the children of the selected
partition, (b) those children whose lower bounds are above the current range are
eliminated, and (c) those that are not eliminated are placed into the priority queue
for further exploration.
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There are various algorithms for nearest neighbor searches for different data
structures. For example, Friedman et al. [1977] and Sproull [1991] propose algo-
rithms for KD-trees, and Samet [1981] and Samet and Shaffer [1985] for quadtrees,
and Roussopoulos et al. [1995] present a branch-and-bound–based search algorithm
for R-trees. The common aspect of all these algorithms is their reliance on the un-
derlying distance measure (commonly metric, or more often Euclidean) to identify
appropriate pruning (or bounding) strategies that help decide whether a partition
may contain a promising candidate or whether any point in the partition is likely to
be worse than the points already discovered. These algorithms also rely on different
criteria for deciding the order in which the subpartitions will be visited (branching).

The efficiency of a k-nearest neighbor search algorithm depends on its effec-
tiveness in selecting the most promising branches to visit so that a higher degree
of bounding can be achieved earlier in the search. While performing a depth-first,
branch-and-bound search for k nearest neighbors, the optimal visit ordering of the
partitions depends on the distance from the query point to partitions as well as on
their sizes and layouts in space. However, considering all relevant factors to identify
an optimal ordering can be too costly. Therefore, often heuristics that rely on a few
cheap-to-compute measures are used to give ordering and pruning decisions.

10.1.1.1 Nearest Neighbor Searches in Euclidean Vector Spaces
Roussopoulos et al. [1995] present two distance-based measures for ordering and
pruning minimum bounding regions (MBRs) to be used with hierarchical search
data structures that form rectangular minimum bounding regions with boundaries
aligned with the axes of the space (e.g., R-trees):

� MINDIST: Given a query point, �q and MBR, m, the MINDIST measure esti-
mates the minimum possible distance between the query and the objects con-
tained within the MBR. In particular, Roussopoulos et al. [1995] observe that
each face of the MBR must contain at least one data object (otherwise, a smaller
MBR could have been created); consequently, given a query point, �q, and an
MBR, m, the smallest possible distance of any object in the MBR and �q is the
minimum distance, MINDIST, between �q and any of the faces of m. In other
words, MINDIST is an optimistic lower bound on the distances of the objects in
m and the query point �q. Roussopoulos et al. [1995] show that MINDIST can be
computed in O(d) time, where d is the number of dimensions of the space.

� MINMAXDIST: Unlike MINDIST, which is a lower bound on the distances, the
MINMAXDIST forms an upper bound. Given a query point, �q, and an MBR,
m, MINMAXDIST is the minimum of all the maximum distances between the
query point, �q, and points on each of the axes of the vector space: For each axis of
the space, the algorithm selects the MBR face that is closest to the query point
and orthogonal to this axis and picks the furthest vertex from the query point
on this face. MINMAXDIST is the minimum of the distances to each of these
points. Roussopoulos et al. [1995] show that there is at least one object within
the MBR at a distance less than or equal to MINMAXDIST; in other words, a
search distance larger than or equal to MINMAXDIST would always find some
object inside this MBR, but a smaller distance would miss at least one object.
Roussopoulos et al. [1995] also show that MINMAXDIST can be computed in
O(d) time, where d is the number of dimensions of the vector space.
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Roussopoulos et al. [1995] experimentally show that, although optimistic and not
necessarily the theoretically optimal ordering, (at least in R-trees with minimal
dead-space, constructed with data that were spatially pre-sorted) MINDIST order-
ing of the partitions provides good pruning opportunities. Roussopoulos et al. [1995]
present three pruning strategies:

� Downward pruning: An MBR, m, with MINDIST greater than the MIN-
MAXDIST of another MBR, m′, cannot contain the nearest neighbor.

� Object pruning: An already discovered object �o whose distance from the query
point, �q is greater than the MINMAXDIST of an MBR, m, can be discarded,
because the MBR contains at least one object that is better than �o.

� Upward pruning: An MBR, m, with MINDIST greater than the distance of an al-
ready discovered object, �o, to the query point can be discarded because it cannot
contain an object closer than �o.

In general, the search algorithm maintains a sorted buffer of k current nearest ob-
jects and prunes active MBRs (those that have been discovered, but not yet ex-
plored) according to the distance of the furthest nearest neighbor in this buffer.

10.1.1.2 Search Data Structures in Metric Spaces
As mentioned before, the foregoing pruning and ordering heuristics are applica-
ble for hierarchical search data structures that form rectangular minimum bounding
regions with boundaries aligned with the axes of the space. Furthermore, in many
cases, the hierarchical partitioning may be in a metric space, but not in a vector
space: that is, the distances between the objects satisfy the conditions of being met-
ric, but there are no explicit dimensions of the space [Chavez et al., 1999; Hjaltason
and Samet, 2003; Wang and Shasha, 1990]. Hierarchical metric-space data structures
that do not assume knowledge about the axes of the space include the vantage-
point tree (VP-tree) [Yianilos, 1993], Burkhard-Keller tree [Burkhard and Keller,
1973], MVP-tree [Bozkaya and Ozsoyoglu, 1999], post-office tree [Knuth, 1998],
M-trees [Ciaccia et al., 1997], generalized-hyperplane tree (GH-tree) [Uhlmann,
1991], and geometric near-neighbor access tree (GNAT) [Brin, 1995]. For these and
other metric-space data structures, the pruning strategies specified previously can-
not be used, and more general pruning strategies that do not rely on the availability
of axes of the space are needed.

Fukunaga and Narendra [1975], Kamgar-Parsi and Kanal [1985], and Larsen and
Kanal [1986] propose four general pruning rules for branch-and-bound search in
hierarchically partitioned metric spaces: Let distk be the distance from the query
point, q, to the currently known kth nearest object.

� An active MBR,1 m, with mean centerm and distance MAXm from centerm to the
farthest object in m cannot contain the kth nearest neighbor if

distk + MAXm < dist(q, centerm).

Intuitively, this implies that the two hyperspheres, one (Sq) centered around
the query and extending until the current kth nearest neighbor and the other

1 Because these heuristics also apply for the special case of Euclidean-based data structures, here we use
MBR, commonly used in the context of Euclidean-based structures, to refer to the partition of objects
and the minimum space covering these objects.
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(Sm,outer) centered around centerm and extending until the outermost object in m,
are nonintersecting. Consequently, there cannot be any object in m that is closer
to q than its current kth nearest neighbor.

� An MBR, m, with mean centerm and distance MINm from centerm to the closest
object in m cannot contain the kth nearest neighbor if

distk + dist(q, centerm) < MINm.

This implies that q and the kth nearest neighbor are both spatially contained
within the boundaries of m (but not in the partition – or set – of data associated
to m); moreover, the hypersphere Sq centered around the query and extending
until the current kth nearest neighbor falls into the dead space, Sm,inner, between
the center point centerm and the closest point to it in the data partition m.

� An object o in MBR m, with mean centerm cannot be the kth nearest neighbor if

distk + dist(o, centerm) < dist(q, centerm).

This rule is similar to the first one above, but it can be used in cases where,
while MAXm is not tight enough to enable the pruning of the entire MBR, a
specific object discovered in the data partition of m can be pruned because of its
closeness to centerm.

� An object o in MBR m, with mean centerm cannot be the kth nearest neighbor if

distk + dist(q, centerm) < dist(o, centerm).

This rule is similar to the second one just given, but it can be used in cases where,
although MINm is not lax enough to contain the entire hypersphere Sq centered
around the query and extending until the current kth nearest neighbor, a specific
object discovered in the data partition of m is far enough from centerm to define
a hypersphere that contains Sq.

For the special case where k = 1, Larsen and Kanal [1986] propose that given an
MBR m, with mean centerm and distance MINm from centerm to the closest ob-
ject in m, the distance, dist1, between q and its nearest object cannot be larger than
dist(q, centerm) + MINm. Thus, even before MBR, m, is explored, the upper bound
on the distance from q to its nearest object can be updated, leading to further prun-
ing opportunities. This is similar to the MINMAXDIST pruning described earlier:
the maximum distance (MINMAXDIST) from q to its nearest neighbor in m is cal-
culated and is checked as to whether this is closer to q than its current nearest neigh-
bor. Samet [2005] shows that this can also be extended to the cases where k > 1.

During search, child MBRs can be considered in the order of MINDIST,
MINMAXDIST, or simply based on the distance from the query point to the means
of the regions. Hjaltason and Samet [1999] show that, as was the case for search
data structures with rectangular bounding regions, in general, MINDIST order is
the most effective solution.

10.1.2 Nearest Neighbor Search without Hierarchical Partioning

Not all nearest neighbor search algorithms assume the existence of a vector space
or even a hierarchical partitioning of the objects that can help guide and prune the
search process. One approach to handle nearest neighbor searches in this case is
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to map (or embed) the database objects into a multidimensional vector space (see
Section 4.3) and create an index structure on the database objects in this space.
Because the mapping from the distances to the vector space is generally imperfect,
the index serves as a filter and the retrieved objects have to pass through a refinement
process for correctness [Korn et al., 1996; Orenstein, 1989; Seidl and Kriegel, 1998].
In the rest of this section, we focus on algorithms and data structures that do not
rely on such vector-space embeddings.

10.1.2.1 Delaunay Graphs
The most traditional nonhierarchical approach to the nearest neighbor search
involves the creation and use of Voronoi decomposition and/or Delaunay graphs
[Navarro, 2002, 1999]. Given a set of data objects in a d-dimensional metric space,
the Voronoi decomposition splits the space into cells, each containing one single
data object: Let oi be a data object and celli be the corresponding Voronoi cell; the
partitioning is such that, for any point v in celli, the distance between v and oi is less
than or equal to the distances between v and other data objects in the space. Given
n points in space, the complexity of the process is known to be O(nd+ε), for ε > 0
[Sharir, 1994]. The Delaunay graph is then obtained by connecting data points in
neighboring cells to each other. Because of the way the space is split, on this graph,
if q is closer to o than to any of the neighbors of o, then o is the object closest to q.
Based on this observation, the nearest neighbor search starts with a random data
point and continues by checking all the neighbors of this data point on the Delaunay
graph. If any of the neighbors is closer to the query, q, then the search moves to
that point. The search continues until there are no closer neighbors. The GH-tree
[Uhlmann, 1991] and geometric near-neighbor access tree (GNAT) [Brin, 1995]
data structures, mentioned earlier, try to split the space hierarchically into cells that
have the foregoing Voronoi property. Unfortunately, Navarro [1999] showed that
given only the distances between the pairs of objects, there can be multiple Delau-
nay graphs corresponding to different metric spaces. In fact, the only superset of
the Delaunay graph that works for any arbitrary metric space is the complete graph
of the data. Therefore in an unknown metric space, Delaunay graph-based data
structures cease to be effective. The SA-tree [Navarro, 1999], on the other hand,
creates a spanning tree of the data points in a way that approximates the Delaunay
graph to help guide the search, without having to consider too many edges.

10.1.2.2 Orchard’s Algorithm
Given a set of objects in metric space, the Orchard’s algorithm [Orchard, 1991] starts
with picking a random object o ∈ D and declaring it as the current nearest neighbor.
It then inspects all the other objects in D in the order of their distances to the current
nearest neighbor. Whenever an object closer to the query than the current nearest
neighbor is found, this new object is declared as the new nearest neighbor and the
remaining objects are visited by their distances to the new object. The search stops
when an object o′, whose distance to q is twice the distance of the current nearest
neighbor to the query object, is found.

An alternative approach, which tends to converge more quickly on the near-
est neighbor, first randomly organizes the data, D, into l sets, such that D1 ⊂ D2 ⊂
· · · ⊂ Dl−1 ⊂ Dl and |Di |

|Di−1 | � α > 1. The algorithm starts from D1 and identifies the
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nearest neighbor in this set. The process is repeated incrementally for all the re-
maining layers by using the result obtained in the previous layer as the starting
point.

10.1.2.3 AESA, LAESA, and TLAESA
The approximating and eliminating search algorithm (AESA [Vidal, 1994; Vilar,
1995]) computes and stores all O(n2) distances between object pairs in the database.
Given a nearest neighbor search query, the algorithm first computes the distance
from the query, q, to an arbitrary object, p, in the database. This establishes a lower
bound that can be used to prune objects whose lower-bound distances from the
query are larger than this distance, thus reducing the total number of distance com-
putations. This relies on the following observation: Let q be a query and p and o be
two objects in the database; then, in metric spaces, triangular inequality implies that

dist(q, o) + dist(p, o) ≥ dist(q, p) and dist(q, o) + dist(q, p) ≥ dist(p, o)

and, thus,

|dist(q, p) − dist(p, o)| ≤ dist(q, o).

Consequently, if P is the set of objects whose distances from q have already been
computed, the lower bound on the distance between o /∈ P and q is simply

dist⊥(q, o) = max
p∈P

{|dist(q, p) − dist(p, o)|}.

This implies that, given P, any object in the database whose distance lower bound
computed as just shown is greater than the known kth nearest neighbor candidate
can be eliminated. At each step, after the unpromising objects are eliminated, the
next object in the data set such that dist⊥(q, o) is the smallest is selected and its dis-
tance to the query object is computed. This helps tighten the distance lower bound
to promote the potential for more effective pruning.

Experiment results reported in [Vidal, 1994] showed that AESA is at least
an order faster (in terms of run-time distance calculations) than other methods.
The main shortcoming of the technique, however, is the O(n2) pre-processing
and storage costs associated with it. The methods proposed by Shapiro [1977],
Wang and Shasha [1990], and the linear AESA (LAESA) [Micó et al., 1994] meth-
ods pick c maximally separated pivot objects in advance and compute the dis-
tance between all objects in the database and these c pivots, resulting in O(cn)
pre-processing and storage costs. Although this approach reduces the prepro-
cessing and storage, it potentially results in inefficiencies during the run time.
In particular, not all distance computations in run time can be used to tighten
the lower bound and, thus, help prune more data. This is because only the
pivot objects’ distances to all objects in the database are known, and hence only
they can help tighten distance lower bounds. Consequently, it is better to select,
whenever possible, pivot objects over others for distance computations and to
avoid early pruning of pivots, which may be needed to help tighten the distance
lower bounds. To further reduce the run-time costs, Vilar [1995] partitions the set
of unvisited objects into two, alive and not-alive, and limits the lower-bound dis-
tance updates to only those objects that are in the alive set: in the first round, the
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lower-bound distances are computed between all objects in the database and the ini-
tially picked object; then, in the following iterations, objects are made alive only if
their currently known distance lower bounds are less than both the current nearest
neighbor candidate and the minimum lower bound of the currently alive objects.

The TLAESA [Micó et al., 1996] method combines distance lower bounding and
hierarchical partitioning–based methods and leverages the distance lower bounds
computed through the LAESA process to reduce the number of distance computa-
tions needed during the branch-and-bound–based nearest neighbor search.

10.1.3 Incremental Nearest Neighbor Search

The depth-first search with branch-and-bound technique, presented previously, will
stop when there are no MBRs left that were not either explored or pruned. At the
end of the process, the k objects that are nearest the query point will be available
to be returned to the user. However, during the search process itself, there are no
guarantees that these k objects will have been identified progressively, from the
closest object to the furthest one: for example, although the MINDIST ordering
scheme tries to order the MBRs in a way that those that have the closest object
to the query are visited first, the depth-first nature of the traversal prevents the k
nearest objects from being discovered incrementally, in a ranked manner.

Intuitively, processing nearest neighbor search in an incremental manner re-
quires the search range to grow progressively from being close to 0 to being ≥�k,
where �k is the distance of the kth nearest neighbor of the query. This can be, for
example, done by finding the first-nearest neighbor, removing the found element,
and repeating the process k times, until k nearest objects are found. If different it-
erations start from scratch, this of course will be wasteful, as the same MBRs will
be visited again and again for each iteration. Thus, instead, it will be more effec-
tive to use data structures that will enable continuing with a search to the (i + 1)th
nearest neighbor, after the ith nearest neighbor is identified. This can be done by
maintaining data structures that remember the pruned MBRs when looking for the
ith nearest neighbor when the (i + 1)th nearest neighbor is searched and consider
only the relevant ones. Hjaltason and Samet [2000]2 present a generalized best-first
search strategy, where at each step, the algorithm explores the active MBR with the
smallest distance from the query, q. This is achieved by putting all active MBRs into
a priority queue based on their MINDIST values and visiting them in the order im-
plied by the priority queue as opposed to a depth-first manner. Using two priority
queues, one for the current candidates and another for the MBRs, the algorithm
presented by Hjaltason and Samet [2000] is able to leverage the distance of the kth
current nearest neighbor candidate to reduce the number of operations on the pri-
ority queue of MBRs: those MBRs whose distances are larger than the distance
of the kth current nearest neighbor candidate do not need to be enqueued. Samet
[2005] shows that the priority queue of MBRs can also be leveraged to help speed
up the convergence, by leveraging the MINMAXDIST-based estimates to prune
unpromising objects from the priority queue of the current candidates.

2 Hjaltason and Samet [2000] also present an extension of the generalized best-first strategy that can
return the farthest neighbors instead of the nearest neighbors.
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Hjaltason and Samet [2000] show that other, originally nonhierarchical schemes,
such as AESA and LAESA, can also benefit from this best-first strategy in identify-
ing k nearest neighbors in an incremental manner.

10.1.4 Approximate Nearest Neighbor Searches

As is the case for range searches in multidimensional spaces, nearest neighbor
search also suffers performance degradations as the number of dimensions of the
space increases. The lack of efficient solutions for spaces with a large number of
dimensions implies that it may be more effective to accept approximate nearest
neighbor solutions that can be identified quickly, as opposed to waiting for exact
ones [Ciaccia and Patella, 2000].

10.1.4.1 Branch and Bround based Approximate Nearest Neighbors
Arya et al. [1994, 1998], Clarkson [1994], and Kleinberg [1997] define the (1 + ε)-
approximate ith nearest neighbor as a data point, p, such that

dist(p, q) ≤ (1 + ε)dist(pi, q),

where pi is the true ith nearest neighbor.
Arya et al. [1994] present an algorithm that, given n data points in a d-

dimensional Minkowski space, constructs an index structure in O(dn log n) time and,
given ε > 0, identifies k (1 + ε)-approximate nearest neighbors in O((cd,ε + kd)log n)
time, where cd,ε is a constant such that cd,ε ≤d�1 + 6d/ε d. The algorithm first lo-
cates, in O(log n) time, the leaf partition containing the query point using a simple
root-to-leaf point search. Starting from this leaf node, the remaining leaf cells (each
containing a single point by construction) are enumerated in increasing distance
from the query point. When the distance from q to the current leaf cell exceeds
dist(q,p)

1+ε
, where p denotes the closest point seen so far, the search terminates: any

point in the remaining nodes cannot be close enough to q to be the approximate
neighbor instead of p. This priority search process is performed in O(d log n) time
using a heap-based priority queue. The algorithm is generalized to k nearest neigh-
bors by maintaining the k closest data points to q, met during priority search. The
search terminates when the distance from the current cell to q exceeds distk

1+ε
, where

distk is the distance from the query point to the currently known kth nearest point.
Hjaltason and Samet [2000] also present an approximate version of their best-

first based algorithm. In the approximate version, the key values for MBRs are mul-
tiplied by (1 + ε) before they are inserted into the priority queue. Consequently, if
an object p is returned as the ith nearest neighbor instead of the true ith nearest
neighbor, pi, then

dist(q, p) ≤ (1 + ε)dist(q, pi).

10.1.4.2 Locality Sensitive Hashing
As described earlier in Section 5.5.4, Indyk and Motwani [1998] define a locality-
sensitive hash (LSH) function as a hash function, h, where given any pair, o1 and
o2, of objects and a similarity function, sim(), the probability of collision between
hashes of the objects is high for similar objects. Approximate nearest neighbor
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search algorithms that rely on LSH [Andoni and Indyk, 2006b, 2008; Indyk
and Motwani, 1998] hash the data points using multiple independent locality-
sensitive hash functions. Then, given a nearest neighbor query, matches can be
determined by hashing the query point and retrieving those elements that are
stored in the corresponding hash buckets. Recently, Tao et al. [2009] proposed a
locality sensitive B-tree (LSB-tree) data structure for processing approximate near-
est neighbor queries more efficiently.

More formally [Andoni and Indyk, 2006b], an LSH family,3 H, is said to be
(r, cr, P1, P2)-sensitive if it consists of a set of hash functions, such that for any hash
function h ∈ H and two objects oi and oj,

� if dist(oi, oj) ≤ r then prob (h(oi) = h(oj)) ≥ P1,
� if dist(oi, oj) ≥ cr then prob (h(oi) = h(oj)) ≤ P2, and
� P1 > P2.

Given a (r, cr, P1, P2)-sensitive hash family, H, L composite hash functions4 gj(o) =
(h1,j(o), . . . , hk,j(o)), for 1 ≤ j ≤ L, are constructed by picking L × k hash functions,
hi,j ∈ H, independently and uniformly at random from H. Once the L compos-
ite hash functions are constructed, the objects in D are hashed against gj(), for
1 ≤ j ≤ L, and placed into the corresponding hash buckets. Because the proba-
bility of collision is much larger for objects that are closer to each other than for
those that are further, given a query, q, the contents of hash buckets g1(q) through
gL(q) are collected and the distances from the objects in these buckets to q are
computed.

Andoni and Indyk [2006b] showed that if L is chosen such that L = log1−(P1
k)δ,

then, any object within range5 r is found in these buckets with probability at least 1 −
δ. Moreover, if the search stops after finding the first 3L objects, where L = �(nρ)
and ρ = ln(1/P1)

ln(1/P2) , then the algorithm returns objects within range cr with probability
at least 1 − δ (i.e., for any given δ < 1 it is possible to select L and k in such a way
that the condition is satisfied). In this second case, the algorithm is shown to run in
sublinear time (proportional to nρ, where ρ < 1).

10.1.5 Nearest Neighbor Search with Batch-Oriented Data Sources

Most of the nearest neighbor search algorithms described previously assume that all
the necessary data and/or index structures are available locally for query processing.
This, however, may not always be true. In cases where data are stored remotely, data
sources may not provide fine-grained access to the data or, even if the data are stored
locally, index structures may not be available a priori. Moreover, there may be mul-
tiple remote data sources (or local algorithms) that may be available, and one has to
choose among these the most promising ones to answer the nearest neighbor query.

Yu et al. [2003] propose a two-step method to execute nearest neighbor queries
under these conditions. In the first step, the algorithm ranks the available candidate

3 Several LSH families exist for different types of data representations [Andoni and Indyk, 2006a,b;
Broder, 1997; Broder et al., 1997; Charikar, 2002; Datar et al., 2004; Indyk and Motwani, 1998; Terasawa
and Tanaka, 2007].

4 The goal of creating these composite hash functions is to amplify the effect of the difference between
P1 and P2 if P1 and P2 are close to each other.

5 Andoni and Indyk [2006b] refer to these as the r-near neighbors of q.
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data sources based on their likelihood of containing the nearest neighbors to the
given query object. Yu et al. [2003] argue that given a set of data sources D, Di ∈ D
are optimally ranked with respect to a given query, q, as D1, D2, . . . , Dn, if for every
user-specified k, there exists a threshold, t, such that D1, D2, . . . , Dt collectively con-
tain all the k nearest neighbors of q and each Di , 1 ≤ i ≤ t, contains at least one of
the k nearest neighbors. This implies that, for a given query, q, if the available data
sources are ranked in ascending order of their distances of their closest objects to q,
then they are ranked optimally. This can be achieved either by requesting the best
match from all the sources and ranking the sources based on the distances of their
best matches from the query point or by using histograms that can help estimate the
distances of the best matching objects.

In the second step, a subset of the data sources are accessed and the results are
merged to obtain the nearest neighbors. Yu et al. [2003] provide two algorithms to
help select tuples from the databases ranked in the first step. The merge-1 algorithm
accesses the databases in the order in which they are ranked, one at a time. For
each new database accessed, the algorithm first receives and stores the top-k tuples.
Consider the case where the jth database, Dj, is accessed and dj is the distance of
the best match in the database Dj to the query q. Merge-1 considers all objects in the
databases D1 through Dj and all the objects in those databases closer to the query
than dj units. If k objects are found, then the algorithm stops (t = j); otherwise, the
algorithm continues with the next database, Dj+1.

The min-2 algorithm first accesses D1 and D2, finds the closest of the two best
matched tuples (one from each source), sets d = min{d1, d2}, and identifies those
objects in D1 ∪ D2 whose distances to the query are ≤d units. If at least k objects are
found, the process stops; otherwise, a new database is accessed. When the database,
Dj, is accessed, the algorithm computes d = min{dj−1, dj} and retrieves all objects in
D1 ∪ D2 ∪ . . . ∪ Dj whose distances to the query are ≤d units. The process stops
when k objects are found in this manner. A slightly modified version of the al-
gorithm runs both merge-1 and min-2 and maintains only those that have lower
distances.

Note that, if only estimates are available to rank the databases, then the resulting
top-k results may not be the actual top-k objects. Yu et al. [2003] show that Merge-1
requires fewer database accesses per query, but min-2 is likely to retrieve more of
the actual top-k objects.

10.2 TOP-k QUERIES

All nearest neighbor algorithms described in the previous section assume that there
is an explicitly provided target object, which enables the definition of nearness along
with a suitable distance measure. Moreover, most of the algorithms also assume that
the objects in the database can be mapped to points in a multidimensional space that
can then be indexed by a suitable multidimensional index structure. Both of these
assumptions, however, may fail in many real-world applications:

� It is, for example, possible that the user does not have a target object (or an
example) in mind, but simply wants to order the objects available in the database
based on some criterion.
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� It is also possible that the various features of the objects are extracted and sepa-
rately indexed by different subunits of a multimedia processing environment. In
other words, although the objects can still be considered as points in a multidi-
mensional space, these points are never explicitly materialized; instead, projec-
tions of the points along each dimension of the space are available independently
from each other.

Consider for example, the following SQL-like query (see also Example 1.2.1 in
Section 1.2):

select image P, imageobject object1, object2 where
contains(P, object1) and contains(P, object2) and

(semantically_similar(P.semanticannotation, "Fuji Mountain") and
visually_similar(object1.imageproperties, "Fujimountain.jpg")) and
(semantically_similar(P.semanticannotation, "Lake") and
visually_similar(object2.imageproperties, "Lake.jpg")) and
above(object1, object2).

This query is asking for images that best satisfy a given set of criteria, some of which
are visual in nature, some others are semantic, and still others are spatial. Each of
these features is indexed and searched using algorithms and data structures espe-
cially designed for it. For example, whereas visual match may require indexes built
on color and shape features, finding semantic matches may be best performed using
available taxonomies. Consequently, although we can consider each image in the
database as a point in a multidimensional space, where different dimensions rep-
resent visual, semantic, and spatial aspects of the data (with respect to the given
criteria), these points can never be materialized without doing an exhaustive pass
over the entire database. Instead, what we need is algorithms and data structures
that can efficiently and progressively join data from these different dimensions to
identify the best matches to the query in the database.

Let us consider a simple query with two criteria, formulated as a fuzzy statement
(see Section 3.4):

q(X) ← p1(X) ∧ p2(X),

where p1 is the semantic match predicate and p2 is the visual match predicate. Let us
also assume that the merge function corresponding to the fuzzy logical operator ∧ is
average: that is, if there is an image that has a semantic annotation with a matching
score µp1 and a visual match of µp2 , then the combined score of this image will be
µp1+µp2

2 . Let us also consider six images, o1 through o6, in the database, with the
following scores:

� semantic (p1): 〈o1, 0.5〉, 〈o2, 0.9〉, 〈o3, 0.4〉, 〈o4, 0.6〉, 〈o5, 0.8〉, and 〈o6, 0.7〉;
� visual (p2): 〈o1, 0.74〉, 〈o2, 0.75〉, 〈o3, 0.85〉, 〈o4, 0.7〉, 〈o5, 0.8〉, and 〈o6, 0.74〉.

Let us also assume that the user is interested in identifying the top three matches
to the query. The naive way of executing this query would be to join the sets of
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semantic and visual scores, based on the object IDs, to obtain the combined scores
for the images:

� combined scores: 〈o1, 0.62〉, 〈o2, 0.825〉, 〈o3, 0.625〉, 〈o4, 0.65〉, 〈o5, 0.8〉, and
〈o6, 0.72〉.

Out of these six combined scores, the best three (corresponding to images o2,
o5, and o6) can then be selected easily. The problem with this naive approach,
however, is that it requires each and every object in the database to be accessed
at least once for each of the two dimensions. In fact, if the two data sets are not each
sorted along the object IDs, processing this query could take as much as O(|D|2)
time for a database, D. Naturally, the cost would grow exponentially with the num-
ber of independent query criteria (or predicates) one has to join to obtain the com-
bined scores. Therefore, it is more desirable to develop algorithms that will support
progressive, top-k query processing, where only those objects that are likely to be in
the top-k are considered.

As introduced in Section 3.4.2, the meaning of a fuzzy query (i.e., the score of
the whole clause, given the constituent predicate scores) depends on the semantics
associated to the fuzzy logical operators used for combining the constituting predi-
cates. As we also discussed in that section, these semantics are usually represented
in terms of functions that are used for combining the scores returned by the individ-
ual predicates. For example, min, product, and average are three of the commonly
used semantics associated to the fuzzy- and operation.

A key property of many commonly used combination or merge functions (in-
cluding min, product, and average) is that these functions are monotonic: if µ is
an m-way merge function, which combines m scores, then monotonicity implies
that

∀1≤i≤m si ≤ s′i → µ(s1, . . . , sm) ≤ µ(s′1, . . . , s′m).

In other words, an object that is as good as another one in all aspects should not
have a combined score lower than that object. This property is critical in the design
of efficient ranked join algorithms.

10.2.1 Fagin’s Algorithm (FA)

Fagin [1996, 1998] proposed an efficient top-k query execution algorithm (com-
monly known as Fagin’s algorithm or FA) for ranked, top-k processing for mono-
tonic, fuzzy queries. Let us consider a query

q(x) ← �(p1(x), p2(x), . . . , pm(x)),

where � is a fuzzy clause with a monotonic merge function, µ�. Let us also assume
that each of these predicates is indexed in such a way that two access strategies are
possible:

� Sorted access: for all pis, the system is able to return objects in D in the non-
increasing order of the predicate scores; i.e., if µpi (o) > µpi (o′), then o is enu-
merated before o′.

� Random access: for any pi and given any o ∈ D, the system is able to quickly
identify the corresponding score µpi (o).
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(i) M = ∅; C = ∅;
(ii) repeat

(a) perform sorted access on one of the m predicates in an interleaved fashion (let
o be the object met)

(b) check if you have already seen o in all of the remaining m− 1 predicates sorted
object streams

(c) if o has already been met in all m predicates then
1. remove o from M
2. insert 〈o, µ�(o)〉 into C

(d) else if o is met for the first time, then
1. put o into M

until |C| = k.
(iii) for each object o ∈ M

(a) perform random access to all remaining predicates to obtain all missing scores
and compute µ�(o)

(b) insert 〈o, µ�(o)〉 into C

(iv) pick and return the highest scoring k objects from C.

Figure 10.1. Fagin’s top-k ranked join algorithm.

Fagin’s algorithm operates as described in Figure 10.1. To see how this algorithm
works, let us reconsider the query

q(X) ← p1(X) ∧ p2(X),

and the six objects with the corresponding scores for predicates p1 and p2:

� semantic (p1): 〈o1, 0.5〉, 〈o2, 0.9〉, 〈o3, 0.4〉, 〈o4, 0.6〉, 〈o5, 0.8〉, and 〈o6, 0.7〉;
� visual (p2): 〈o1, 0.74〉, 〈o2, 0.75〉, 〈o3, 0.85〉, 〈o4, 0.7〉, 〈o5, 0.8〉, and 〈o6, 0.74〉.

Let us assume once again that the user is interested in finding the best three
objects under the average merge function. As shown in Figure 10.2(a), the FA al-
gorithm first accesses objects in the database in nonincreasing order of scores for
both p1 and p2 until three candidate objects (C = {o2, o5, o6}, with combined scores
0.825, 0.8, and 0.72, respectively) are found. Monotonicity of the average merge
function implies that any object not met yet during the decreasing order of the visit
cannot have a higher score than the lowest score found so far, that is, 0.72. On the
other hand, there is a chance that o3 ∈ M, which was met in p2, but not yet in p1,

(b)(a)

Figure 10.2. Sorted and random access phases of Fagin’s algorithm: (a) Sorted access,
(b) Random access.
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Figure 10.3. Top-k processing with the min merge function.

may have a higher combined score than 0.72. Therefore, in its second stage, the
FA algorithm performs a random access to obtain the score of o3 for predicate p1

and, using this, computes the combined score, 0.625. Because this score is less than
0.72, o3 is not in the top three; and the top three results for this query are o2, o5,
and o6.

Note that, taking advantage of the monotonicity of the underlying merge func-
tion, FA found these three best objects without having to consider objects o1 and
o4 at all. Fagin [1996] showed that, given a query with m predicates, the cost of the
algorithm (in terms of the number of objects visited), with a very high probabil-
ity, is O(k

1
m |D|1− 1

m ). Note that when m = 2, the query processing cost, O(
√

k|D|), is
much smaller than the full scan of the database; on the other hand, as the number
of predicates increases, the cost of top-k query processing using the FA algorithm
approaches the cost, O(|D|), of the full scan of the database. This is another instance
of the dimensionality curse problem (Section 4.1).

10.2.2 Threshold Algorithm (TA)

FA has special cases, for instance when the min is used as the underlying merge
function. In this case, one of the predicates can be chosen for the sorted access and
the others used only for random access. First, the top-k objects for the predicate that
provides sorted access are considered. The combined min scores for these objects
are computed through random accesses on the remaining predicates (Figure 10.3).
Let the score of the kth candidate be τ. The object enumeration process continues
until the next value in the sorted list is less than τ. For example, in Figure 10.3, the
lower-bound threshold, τ, is equal to 0.7, and the next element in the sorted list is
0.6. Therefore, the process stops right away: under the min merge semantics, the top
three objects in the database are o2, o5 and o6, and objects o1, o3, and o4 have not
been considered at all during the process.

The threshold algorithm (TA) [Fagin et al., 2001; Güntzer et al., 2000; Nepal and
Ramakrishna, 1999] generalize this approach to more general merge functions. Like
FA, TA assumes that we are given m sorted lists, where each object has a single
score in each list and a monotone merge function that will be used to combine
objects’ scores from each list. The TA algorithm is similar to FA in its structure,
but it incorporates the use of an explicit threshold to minimize unnecessary object
enumerations. It is also similar to the min variant of the FA algorithm in its eager
use of random accesses to calculate and maintain the threshold value, τ, which es-
tablishes a lower bound of the possible scores of the elements in the top-k result
(Figure 10.4).
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(i) C = ∅; τ = 0;
(ii) repeat

(a) perform sorted access on one of the m predicates in an interleaved fashion (let o
be the object met)
1. perform random access to all remaining predicates to obtain all missing scores

and compute the combined score, µ�(o)
2. if |C| < k

A. insert 〈o, µ�(o)〉 into C
B. minscorek = min{µ�(oi) | oi ∈ C}

3. else if minscorek < µ�(o)
A. remove the object with the smallest score from C
B. insert 〈o, µ�(o)〉 into C
C. minscorek = min{µ�(oi) | oi ∈ C}

4. if at least one object has been seen for each predicate
A. Let τi be the score of the last object seen under sorted access for predicate

pi

B. τ = µ�(τ1, . . . , τm)
until at least k objects have been seen with grade at least τ.

(iii) return C

Figure 10.4. Threshold algorithm (TA).

To establish the optimality of the TA algorithm, Fagin et al. [2001] introduced
the notion of instance optimality. Let A be a class of algorithms and let D be a class of
databases. Let cost(A, D) be the total I/O accesses incurred when executing A ∈ A
on D ∈ D. A is said to be instance optimal over A and D if for every B ∈ A and
D ∈ D, there exist two constants c, c′ > 0 such that

cost(A, D) ≤ c × cost(B, D) + c′.

In other words, cost(A, D) = O(cost(B, D)). Fagin et al. [2001] showed that, whereas
FA is optimal only for certain cases, TA is always optimal with regard to the total
number of accesses. In addition, TA uses much less buffer space as it does not need
to maintain objects seen earlier for a late random-access phase. The cost of the
algorithm can, however, still be high because of the potentially large number of
random accesses that the algorithm may need to perform. Lang et al. [2004] present
a variant of the TA algorithm that selects the next predicate for which the random
access will be performed based on a cost-estimation strategy, instead of relying on
a simple round-robin–based interleaving. Other cost-aware algorithms that aim to
minimize the cost of random accesses for top-k query processing include [Chang and
Hwang, 2002; Marian et al., 2004; Yu et al., 2001].

Fagin et al. [2001] also proposed an approximation version of the TA algorithm
that stops the accesses early: given a φ > 1, the φ-approximation to a top-k query is
defined as the set, C, of k objects such that for each o ∈ C and each o′ /∈ C, φµ�(o) ≥
µ�(o′). In other words, the objects returned in the results set are only a constant
factor away from the actual top-k objects. This is achieved simply by changing the
stopping condition of the algorithm presented in Figure 10.4 from “until at least k
objects have been seen with grade at least τ” to “until at least k objects have been seen
with grade at least τ/φ”. Other variants of the TA algorithm include [Arai et al., 2007;
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Let τd
i denote the score of the object at depth d (i.e., object with rank d) for

predicate pi

Let wd(o) denote the worst-case estimate for the score of object o when the
sorted access is at depth d;
Let bd(o) denote the best-case estimate for the score of object o when the sorted
access is at depth d;

(i) repeat
(a) perform sorted access on one of the m predicates in an interleaved fashion (let o

be the object met)
1. compute the worst case combined score, wd(o), for o by replacing missing

scores with 0
2. compute the best case combined score, bd(o), for o by replacing each missing

score with the corresponding τd
i

3. let Cd be the current set of top-k objects at depth d based on their worst-case
scores (if two objects have the same worst case scores, then the one with the
better best-case score is used)

4. let minscorek be the smallest worst-case score in Cd

until
� at least k objects have been seen (|Cd| = k) and
� µ�(τd

1 , . . . , τ
d
m) ≤ minscorek (i.e., there are no viable objects left outside of Cd).

(ii) return Cd

Figure 10.5. No random access algorithm (NRA).

Bansal et al., 2008; Chakrabarti et al., 2006; Ilyas et al., 2003; Theobald et al., 2004;
Tsaparas et al., 2003].

10.2.3 No Random Access Algorithm (NRA)

Although both FA and TA algorithms rely on random accesses to compute the com-
bined score of the objects obtained through sorted accesses, such random accesses
may not always be available [Fagin et al., 2001; Güntzer et al., 2001; Marian et al.,
2004].

The no random access algorithm (NRA) and stream-combine [Güntzer et al.,
2001] both avoid random accesses completely by maintaining worst- and best-score
bounds for objects based on available partial knowledge. The stopping condition of
the top-k ranked join algorithm is modified to compare the worst score of the kth
result with the best possible score of all other candidate objects. Figure 10.5 shows
the pseudocode of the NRA algorithm presented by Fagin et al. [2001, 2003]. Note
that NRA identifies top-k results, but does not compute output scores since the pro-
cess stops as soon as it is decided based on the current upper- and lower-bounds that
there are no unseen viable objects in the database.

Ilyas et al. [2003] propose an NRA-like algorithm, called RANK-JOIN. For each
new retrieved object from one of the streams, the algorithm first generates all new
valid join combinations with all the objects seen so far from other streams, and for
each resulting combination the algorithm computes a score. Then, the algorithm
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computes an upper bound, T, of the scores of join combinations not seen so far:

T = max{ µ�(τd1
1 , τ1

2, . . . , τ
1
m),

µ�(τ1
1, τ

d2
2 , . . . , τ1

m),

. . .

µ�(τ1
1, τ

1
2, . . . , τ

dm
m ) },

where µ�() is the score combination function, τd
i denotes the score of the object

at depth d (i.e., object with rank d) for predicate pi, and di denotes the number of
objects retrieved for pi at a given point in time. The algorithm stops when the lowest
score of the best k results seen so far is greater than T. Ilyas et al. [2003] show that
RANK-JOIN is instance optimal.

Fagin et al. [2001] present a combined algorithm (CA) that merges TA and NRA
in such a way that the random access costs (relative to the cost of the sorted ac-
cesses) are taken into account. In particular, the algorithm considers a random ac-
cess periodicity parameter, h. In the extreme case, if h > |D|, the algorithm works as
NRA, because no random accesses are allowed. On the other extreme if h = 1, the
algorithms works similar to TA and performs random accesses for all of the missing
predicates of a subset6 of the objects seen during sorted access.

Probabilistic versions of the NRA algorithm, which rely on probabilistic estima-
tions to decide when it is safe to prune candidates, are presented by Arai et al. [2007]
and Theobald et al. [2004]. These probabilistic algorithms take different score distri-
butions (such as uniform or Poisson) or histograms for the predicates to predict the
score of an object, for which some of the predicate scores are known, without having
to wait to obtain all m predicate scores. More recently, various researchers [Gurský
and Vojtáš, 2008; Mamoulis et al., 2006; Xin et al., 2007] refined the NRA top-k al-
gorithm to improve its computational costs in terms of sorted and random accesses
as well as the memory requirement. Arai et al. [2007] present anytime versions of
the TA and NRA algorithms, which start with imperfect top-k results and improve
the quality of the results as more computation time is allocated to the process. At
any point during the top-k query execution, these algorithms are able to assess the
current set of answers and provide guarantees in terms of the following:

� Confidence: The probability that the current set of top-k objects are indeed true
top-k tuples.

� Precision: The ratio of the current top-k objects that belong to the true top-k
objects (see Section 11.1 for more details on this measure).

� Rank distance: The sum of the absolute differences between the current ranks
and real ranks of the objects that are currently in the top-k list (see Section 11.1
for more details on this rank correlation).

� Score distance: A probabilistic upper bound on the difference between the lowest
score of the true top-k objects and the current set of top-k objects.

6 Remember from Section 10.2.2 that TA algorithm performs random accesses for all of the missing
predicates of all of the objects seen in sorted access. Consequently, TA never makes more sorted
accesses than CA, but CA is more selective about random accesses.
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Arai et al. [2007] show that these measures are monotone for TA and probabilis-
tically (in expectation) monotone for NRA, enabling implementation of anytime
versions of these algorithms that are able to provide appropriate guarantees.

10.2.4 Partial Sorted Access Algorithm (PSA) and Minimization
of Random Accesses

In contrast to NRA, which tackles the problem of predicates for which there is no
random access, the partial sorted access (PSA) [Candan et al., 2000b] algorithm fo-
cuses on situations where one or more of the predicates are nonprogressive; that is,
do not have sorted access facilities.

As described in Section 10.2.2, a special variant of the FA algorithm under the
min merge function can limit the sorted access to only one of the predicates and
use random accesses for all the remaining ones. This, however, does not gener-
alize to arbitrary monotonic merge functions. Relying on the available statistics
about the score distributions, PSA is able to compute an approximate result to
the top-k query; in particular, PSA takes a probability, ρ, and identifies k objects
such that each of these objects is in the actual top-k result with probability greater
than 1 − ρ. The PSA query evaluation algorithm is similar FA, but, for each object,
based on the partial scores available and the score distributions for the predicates,
the algorithm computes the probability of seeing a better scoring object in the fu-
ture. The algorithm stops when k objects that are likely to be in the top-k list are
identified.

As in PSA, Chang and Hwang [2002] also focus on situations where some of
the predicates (e.g., those that have precomputed indexes on the score attributes)
are available for sorted access, while others require potentially expensive per-
object random accesses (or probes) to evaluate object scores. Because in multi-
media databases, such probe predicates may often necessitate costly media pro-
cessing and matching functions, reducing the number of probes is critical for the
efficiency of top-k processing. This means that if one can avoid probing for those
objects that are not promising or stop probing as soon as one can determine that
an object cannot be in the top-k, this will help reduce the overall top-k execution
cost. Thus, as in the NRA algorithm, Chang and Hwang [2002] limit the execu-
tion to only those probes that are necessary for the computation of the top-k re-
sults, regardless of the algorithm or the results of other probes. This is achieved by
maintaining a ceiling score for each object by substituting the unknown predicate
scores with their maximal-possible value. Objects are ranked based on their current
ceiling scores, and probes are executed only for those objects that are currently in
top-k. When there are multiple probe predicates to be executed for a given object,
probes are scheduled in the order implied by a predicate rank metric, which puts
those predicates with high filtering rates and low costs before the others (also see
Section 10.4).

Chakrabarti et al. [2006] and Marian et al. [2004] present other NRA-like algo-
rithms that maintain upper- and lower-bound scores of partially seen objects. Rely-
ing on the observation that any object whose upper-bound score is lower than the
lower bounds for at least k objects cannot be in the top-k, such objects are pruned



346 Ranked Retrieval

right away. Moreover, as observed by Marian et al. [2004], if o is the object with the
highest upper-bound score, then one of the following is true for this object:

� If the score of this object is completely known, then none of the other objects can
have a better score, so this object can be returned right away, without having to
wait for the whole top-k set to be identified.

� If the score of this object is partial, then
– If o is in the top-k set, then the system needs to probe all of its attributes to

identify its score (note that NRA does not identify final scores);
– On the other hand, if o is not actually in the top-k result set, then o requires

further probes to reduce its upper bound before the top-k set is identified.
In short, the object with the highest upper bound will have to be probed be-
fore the set of objects in the solution to the top-k query and their scores are
identified.

Marian et al. [2004] refer to this as the upper strategy. To select which of the avail-
able predicates to probe, as in [Chang and Hwang, 2002], Marian et al. [2004] use a
predicate rank measure that ranks those predicates that are expected to have high
impacts on the score range, while being also fast. Marian et al. [2004] also present
a pick strategy that tries to measure the distance between the current state of the
top-k set and the final state, where all the top-k objects and their scores are known.
Let M be the set of objects that have already been identified through sorted access.
Marian et al. [2004] compute the following to measure the distance of the current
state from the final state:

B =
∑
o∈M

max{0, upper bound(o) − max{lower bound(o), expected(o′)}},

where o′ is the object with the kth highest expected score in M. Intuitively, when
the algorithm reaches its final state, o′ will be the object with the actual kth highest
score, and all objects in M that are not in top-k will be known not to have scores
above that of o′. This means that B will be 0:

� For an object in top-k, the upper bound will be equal to the lower bound, and
this lower bound will be greater than the score of o′; thus the contribution of
such an object to B will be zero.

� For an object not in top-k, the upper bound will be lower than the score of o′;
thus the contribution of such an object to B will also be zero.

Because the goal is to help B reach 0 as quickly as possible, unlike in the case of
upper, the pick strategy selects the probe that is likely to decrease B the fastest.
Also unlike the upper strategy, pick needs to retrieve all objects that might belong
to the top-k answer (based on the upper and lower bound scores) during an initial
sorted access phase, but this might in fact result in all objects from the database
being retrieved.

10.2.5 Pre-Processing for Layer Ordering

Layer ordering methods evaluate top-k queries in terms of precomputed layers
of objects: the first layer consists of a set of data objects that is guaranteed to
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Figure 10.6. Layers of convex hulls.

contain the top data element; the first two layers together make up of a set of ob-
jects that is guaranteed to contain the top two objects, and so on. Thus, starting from
the first layer, the top-k query is answered by touching at most k layers of data ob-
jects. Especially for cases where the data objects can be represented as vectors in
a multidimensional space, where each dimension corresponds to a different query
predicate, a common approach to identify these layers a priori to the top-k query
processing is to leverage the layout of the data points in the space to partition the
data into dominance sets.

10.2.5.1 Onion Technique
Some algorithms focus on linear combination functions, which help them parti-
tion the space using certain geometrical characteristics of the underlying vector
space [Chang et al., 2000b; Dantzig, 1963]. In particular, given a set of points in a
multidimensional space and a linear maximization (or minimization) criterion, the
maximum (or minimum) objective value is known to be located at one or more ver-
tices of the convex hull of the data points (Figure 10.6). Relying on this observation,
the Onion technique, presented by Chang et al. [2000b], create layers of objects in
such a way that the convex hull corresponding to the outer layers encloses the con-
vex hull corresponding to inner layers (Figure 10.6). Each data object is indexed
by the corresponding layer number (e.g., 1 for object A and 2 for object G in Fig-
ure 10.6). The objects in the database are considered from outer layers to inner lay-
ers. An optimal object at a given layer is always better than any object from inner
layers. However, given k > 1 there may be objects in the inner layers dominating
some objects in the outer layers. Therefore, to ensure that no object is missed, the
algorithm selects the best object from the outer convex hull, the second best object
from the outer two convex hulls, the third best object from the outer three convex
hulls, and so on.

10.2.5.2 Robust Indexing
Xin et al. [2006] observe that it is beneficial to create the layers in such a way that
nonpromising objects appear in the deeper layers so that they have less chance to
be considered during query evaluation. Thus, for minimizing the worst-case per-
formance for the layered top-k processing, for any l, the number of objects in the
top l layers should be minimal in comparison with all other layering alternatives.
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(a) (b)

Figure 10.7. (a) Object A ranks first for any linear, monotone combination function, if the
combination function corresponds to l1, then B ranks second, whereas for the combination
function corresponding to l2, then C ranks second instead. (b) the line corresponding to the
critical combination function where B and C are equi-ranked: any change in the slope would
cause either B or C to become the second-ranked object in the database.

Intuitively, this requires the computation of the minimum ranking for all objects
in the database for all possible linear combinations, which would be prohibitively
expensive. Fortunately, the ranking of a given object does not change with each
combination function. In fact, when the combination functions are linear, the rank
of each object can be determined by considering the (hyper)planes combining the
objects. Consider the three-object database shown in Figure 10.7:

� The object A has higher f1 and f2 values with respect to objects B and C; thus it
ranks 1 for all linear (in fact monotone) combination functions.

� The rank of the object B can be determined by comparing the angle of the line
connecting it to the object C against the angle implied by the linear combination
function.

To compute the minimum ranking of a given object, Xin et al. [2006] leverage the
foregoing property to limit the evaluation to such boundaries formed by the other
objects in the space: the algorithm sorts these boundary hyperplanes by their angles
relative to the hyperplane implied by the combination function and then traverses
them in this order to obtain the minimum ranking of the object. Xin et al. [2006]
also present an approximation algorithm that reduces the number of boundaries
to consider for a given object by partitioning the space into only a fixed number
of boundaries around this object and counting the number of objects in each re-
gion implied by these boundaries. The numbers of objects in the subregions of the
space are then used for finding the lower bound on the layer corresponding to this
object.

10.2.6 Relaxing the Monotonicity Requirement

Unlike most earlier work in ranked joins, which all require that the combination
function be monotonic, Zhang et al. [2006] focus on supporting arbitrary ranking
functions. The authors achieve this by handling top-k query processing fundamen-
tally different from the various methods we have seen so far. In particular, they
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formulate top-k retrieval as an optimization task: the optimization function captures
the Boolean expression underlying the join condition (it returns zero for those
tuples that do not satisfy the join criterion) as well as the ranking function that ranks
the tuples. The optimization problem is stated such that the optimization function
has the maximum value when the k tuples with the highest scores are selected. The
problem is solved using a search algorithm based on A∗ [Hart et al., 1972], which
explores the solution state space based on a heuristic function that guides state-to-
state transitions. Xin et al. [2007] also handle nonmonotonic score functions, as long
as they are lower bounded. Once again, the proposed ranked join algorithm is very
different from the algorithms described so far: instead of considering data as sorted
input streams, the authors propose an INDEX-MERGE approach, where the input
data are assumed to have been indexed using B-trees or R-trees (depending on the
type of data). Instead of directly joining the tuples, the algorithm merges the index
nodes and prunes those that are guaranteed not to have any tuples that will be in
top-k as descendants. The lower bounds on the scores are used for deciding the
order in which the index nodes will be merged and the state space will be explored.

Qi et al. [2007] and Kim and Candan [2009] recognize that specialized versions
of the ranked join algorithms can also be implemented in various situations where
the combination function is not monotonic in the strict sense, but exhibits proper-
ties that are partly monotonic. Next we discuss these two algorithms, horizon-based
ranked join (HR-Join) and skip-and-prune join (SnP-Join), which leverage special
properties of commonly used, yet nonmonotonic, score merge functions.

10.2.6.1 Sum-Max Monotonicity
Qi et al. [2007] focus on top-k query evaluation in applications where the underly-
ing data (the Web, an XML document, or a relational database) can be seen as a
weighted graph.

Top-K Tree Pattern Query Evaluation in Weighted Graphs
As described in Section 6.3.6, the weights associated to the edges of the graph can

denote various application-specific desirability/penalty assessments, such as popu-
larity, trust, or cost. Let G(V, E), denote a node- and edge-labeled directed graph.
Furthermore, let tag(v) denote the data label corresponding to the data node v ∈ V
and cost(e) denote the cost label for edge e ∈ E. The type of queries Qi et al.
[2007] consider on this graph are referred to as twig or tree pattern queries: tree
patterns can be visualized as trees, where nodes correspond to tag-predicates and
edges correspond to “/” or “//” axes (Figure 10.8(a)). More formally, a given query,
q, can be represented in the form of a node- and edge-labeled tree, Tq(Vq, Eq),
where tag pred(qv) denotes the tag predicate corresponding to the vertex qv ∈ Vq

and axis pred(qe) denotes the axis predicate (“/” or “//”) associated with the edge
qe ∈ Eq. An answer to query q = Tq(Vq, Eq) over the data graph G(V, E) is a pair,
r = 〈µnode, µedge〉, of mappings:

� µnode is a mapping from the nodes of the query tree to the nodes of the data
graph, such that given qv ∈ Vq and the corresponding data node, µnode(qv),
tag(µnode(qv)) satisfies tag pred(qv).

� µedge is a mapping from the edges of the query tree to simple paths in the
data graph, such that given qe = 〈qvi, qvj〉 ∈ Eq, the path µqe, from µnode(qvi)
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(c)(b)(a)

Figure 10.8. An example query twig and two matches on a weighted graph, where the weighs
denote cost: the first match with weight 17 is more desirable and should be enumerated and
ranked before the second result. (b) cost = 17, (c) cost = 24.

to µnode(qvj), satisfies edge pred(e): a path consisting of a single edge can satisfy
both “/” and “//” axes, whereas a multiedge path can satisfy only “//” axes.

Let E denote the set of edges used in the answer to q:

E = {e ‖ e ∈ µedge(qe) for a query edge qe ∈ Eq}.
E does not define a cycle.

Moreover, given an answer r = 〈µnode, µedge〉 to query q = Tq(Vq, Eq) over the data
graph G(V, E), Qi et al. [2007] define the cost, cost(r), of the answer7 as the sum
of the costs of the relevant edges in the graph. When there are overlaps among
paths matching query edges, the cost of the shared edges needs to be counted only
once (Figures 10.8(b) and (c)). Qi et al. [2007] refer to this as the nonredundancy
property of the results. As a consequence, as illustrated in Figures 10.8(b) and (c),
the cost of an answer is not necessarily equal to, but is bounded by, the sum of the
path costs. Thus, the cost order of the data paths matching query edges may not
correspond to the cost order of the query results. In other words, two costly sub
results (i.e., paths) with large overlaps may provide a combined result cheaper than
two other individually less costly, but non-edge overlapping sub-results: in short, the
cost function, or its inverse that one can use for ranking the results, is not monotonic.

Sum-Max Monotonicity
Although the monotonicity condition does not hold, Qi et al. [2007] show that

one can establish a range for the costs of query results in terms of the costs of their
subresults; in particular, if we let q = Tq(Vq, Eq) be a twig query, r = 〈µnode, µedge〉 be
a corresponding answer, and let SR = {sr1, sr2, . . . , srm} be a set of subresults that
give r, then per Qi et al. [2007], the following is true:

max
sri∈SR

(cost(sri)) ≤ cost(r) ≤
∑

sri∈SR

cost(sri).

This observation enables Qi et al. [2007] to introduce a sum-max monotonicity prop-
erty for twig results: Let q = Tq(Vq, Eq) be a twig query and let r1 and r2 be two

7 Note that, because edge weights are costs, in this case, the top-k results are those that have the smallest
costs.



10.2 Top-k Queries 351

(a) Horizon = ∞ (b) Horizon = 14

(d) Horizon = 14(c) Horizon = 11

Figure 10.9. Ranked join by the sum-max monotonicity: (a) no results yet; (b) the first can-
didate with cost 14 is found; (c) a second candidate with lower cost of 11 is found; and
(d) the stopping sum-max condition is reached for returning the current best candidate.

answers. Let also R1 and R2 be the corresponding sets of subresults that give r1 and
r2, respectively. Then, the following is true:

∑
sri∈R1

cost(sri) ≤ max
srj∈R2

(cost(srj))


 → cost(r1) ≤ cost(r2).

Horizon-Based Ranked Join (HR-Join)
Qi et al. [2007] leverage this property of twig queries to implement a ranked join

algorithm for cost-ordered inputs. The sum-max monotonicity property of answers
enables the algorithm to leverage the cost evaluations of initial, candidate, matches
as horizons that limit the candidates that need to be explored before a confirmed
result can be produced. Let us consider a twig query, q, which consists of two path
subqueries, m1 and m2, that join on a query node. Let us also assume that m1 and m2

can return paths in cost order, progressively. Figures 10.9(a)–(d) show the various
stages of the two path streams matching m1 and m2, respectively. The individual
paths are shown as rectangles, each containing the ID of the data vertex (matching
the query vertex common in m1 and m2) and the total cost of the path. Each stream
grows with subresults arriving in ascending order of cost. The stages of the process
are as follows:

(i) In Figure 10.9(a), we are seeing a state where none of the subresults, match-
ing m1 and m2, can be joined. At this stage, because there is no join, the
upper bound on the cost of the first result is ∞.

(ii) In Figure 10.9(b), a match is found. The cost of the combined match is 14.
Note that, although this is the first discovered match, it is not necessarily
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the best one. Per the sum-max monotonicity property, this first match sets
the horizon for the best match to 14. Thus, the process has to continue until
all the subresults of cost up to 14 are considered.

(iii) In Figure 10.9(c), a second match, with cost 11, is found. Per the sum-max
monotonicity property, this match lowers the horizon from 14 to 11. Thus,
the process now has to continue only until all the subresults of cost up to 11
are considered.

(iv) In Figure 10.9(d), the stopping condition is reached: in both subresult
streams, all the paths of cost less than or equal to 11 have been consid-
ered. Thus, among the two matches found so far, the best (with cost 11) can
be returned as the top-1 result.

(v) When further results are required, the process continues by setting a new
horizon. In this example, because there is a known candidate match, the
cost (14) of this candidate will be used as the new horizon value.

Note that, unlike the ranked join algorithms, which stop the sorted-access process as
soon as a prescribed number of candidates are found, the stopping condition of the
foregoing process is based not on the cardinality of initial candidates but on their
costs.

10.2.6.2 Skip-and-Prune: Cosine-Based Top-K Query Processing
As we introduced in Section 3.1.3, in most text retrieval systems, given a query vec-
tor �q and a document vector �d, the match between the vectors is computed using the
cosine similarity:

simcos( �d, �q) = cos( �d, �q) =
�d · �q

‖ �d‖ ‖�q‖ ,

where “·” denotes the dot product operator. Intuitively, simcos( �d, �q) measures the
degree of alignment between the interests of the user and the characteristics of the
document: in the best case, when the vectors are identical, the similarity score is
1. In fact, to get a perfect match, the vectors do not need to be identical; as long
as the angle between the vectors is 0 degrees (i.e., their relative keyword composi-
tions are equal), then the document and query vectors are said to match perfectly
(simcos( �d, �q) = 1). Naturally, as the angle between the two vectors grows, the differ-
ence between the query and the document also gets larger.

The key obstacle in query processing with cosine similarity function is that most
top-k ranked query processing schemes assume that the underlying scoring function
is monotonic (e.g., max, min, product, and average). These scoring functions guar-
antee that a candidate dominating (or equal to) the other one in its subscores will
have a combined score better than (or as good as) the other one. This, however, is
not the case for a scoring function based on cosine similarity. For example, given
two pairs, 〈0.2; 0.2〉 and 〈0.2; 0.8〉, the second pair is dominating the first one, yet we
have

cos(〈1; 1〉, 〈0.2; 0.2〉) = 1 > 0.857 = cos(〈1; 1〉, 〈0.2; 0.8〉).
Thus, a scoring function of the form score(x) = cos(〈1; 1〉, x) would not be mono-
tonic. We can easily generalize this and state that, in general, a cosine-based
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Figure 10.10. Skip-and-prune: partially observed candidate documents are pruned based on
their maximum possible scores.

scoring function, which compares documents in the database to the user’s query,
is not monotonic. Because a cosine-based scoring function is not monotonic, the use
of existing top-k algorithms would lead to errors in the ranked results.

Kim and Candan [2009] present an efficient query processing algorithm, skip-
and-prune (SnP), to process top-k queries with cosine-based scoring functions. Let
w(d, t) be the weight of the keyword or term t in document d and w(q, t) be the
weight of t in the query. The outline of the algorithm is shown in Figure 10.10. The
algorithm relies on inverted lists, maintained in the database in decreasing order
of document-keyword weights. These inverted lists are consumed as input streams.
The SnP algorithm maintains partial vectors of the candidate results, based on the
keyword scores seen so far in the input document/keyword streams. A cutoff score,
min score, corresponding to the lowest score in the current top-k candidate list, is
also maintained. Given the user’s query, �q, and the min score,

� For any candidate document, di, whose keyword scores are fully available, SnP
computes the matching score between di and �q and updates the current list of
top-k documents if di’s score is better than min score.

� Any document, dj, whose term vector is only partially available is pruned from
consideration if the maximum possible score, upj, it can eventually have (based
on the current knowledge) is less than min score.

If dj is eliminated from consideration, there is no need to enumerate the remain-
ing term scores of dj. Thus, the algorithm maintains a skip set, which consists of
the IDs of the documents pruned from further consideration. Note that unlike the
TA family of the algorithms, the foregoing process cannot end before the sorted in-
verted files are completely consumed. In that sense, SnP is similar to the inverted-file
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based scheme discussed in Section 5.1. The major difference is that the skip set mech-
anism ensures that documents are pruned early from the input streams; thus the to-
tal processing needed by the algorithm is much less than that of the inverted files.
The key to the efficiency, therefore, is data structures for efficient pruning of docu-
ments in the skip list from further consideration.

Under the vector model, each document, di, corresponds to a point (or vector)
in the keyword space. Kim and Candan [2009] observe that if one of the weights is
not known, the possible vectors will define a line in the space; if two weights are not
known, then the possible vectors will define a plane, and so on. Thus, given a query
vector, �q, and a partially observed document, di, computing the maximum possible
score simmax

cos (di, �q) involves measuring the minimum possible angle between the �q
and the hyperplane corresponding to di. Given a document only partially observed
during the top-k processing, the corresponding line, plane, or hyperplane is bounded
by the current upper bounds on the scores of its missing keywords. As the streams
corresponding to these keywords are consumed, these upper bounds will also get
increasingly tight.

10.2.7 Top-K Query Processing within Traditional Databases

Because of the increasing demand for top-k query processing, many relational
DBMSs,8 including Microsoft SQL Server, MySQL, PostgreSQL, Oracle, and
Sybase, provide mechanisms to limit the number of tuples returned as a result
of a query. Although the language constructs provided by different DBMS sup-
pliers to express top-k queries vary (e.g., “SELECT TOP k...” in SQL Server versus
“SELECT..FROM... LIMIT k...” in MySQL), they are functionally similar to each other,
and the recent ISO SQL:2008 standard [SQL-08] aims to unify these different SQL
dialects under one standard convention. In particular, the standard uses a new
“FETCH FIRST k” clause along with the existing “ORDER BY” clause to express top-k
queries. Most importantly, though, both “FETCH FIRST” and “ORDER BY” clauses can
be used not only in top-level query expressions, but also in subqueries and views
enabling the expression of rich top-k queries.

10.2.7.1 Filter-Based Implementation of Ranking Expressions
The work of Chaudhuri and Gravano [1999] was one of the first attempts for ex-
pressing and processing top-k queries within traditional databases. In the framework
proposed by Chaudhuri and Gravano [1999], and later extended by Gravano et al.
[2004], a top-k query is formulated as

SELECT oid
FROM Repository
WHERE Filter_condition
ORDER[k] by Ranking_expression

where the filter condition specifies thresholds on the grade of match of the admis-
sible objects, whereas the ranking expression describes how the results should be

8 See Section 2.1.2 for an overview of relational databases.
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ranked. Attribute handling differs significantly from traditional systems; in partic-
ular, attribute values can be compared using a Grade function that evaluates the
degree of match between the input values. For example, the following is a top-10
query in the proposed language:

SELECT oid
FROM Repository
WHERE (Grade(color_histogram,’’yellow’’)>= 0.5 and

Grade(shape,’’circle’’)>=0.9)
ORDER[10] by max (Grade(color_histogram,’’blue’’),

Grade(annotation,’’sunny’’))

The combination function in this example is max applied over color histogram and
annotation features of the objects in the repository. To execute query plans for this
type of query, Chaudhuri and Gravano [1999] rely on three index-supported access
methods:

� GradeSearch(attribute, value, min grade) returns objects whose match to the
given attribute/value pair is higher than the given min grade threshold.

� TopSearch(attribute, value, count) returns count many highest scoring objects for
the given attribute/value pair.

� Probe(attribute, value, {oid}) gets the grade of an object for a given at-
tribute/value pair.

The query execution algorithm presented by Chaudhuri and Gravano [1999] selects
a cost-optimal subset of the filter conditions for searching for candidate objects, and
the residual filter condition is used for probing the grades to verify admissibility.
Because the underlying DB engine does not have a ranked query processor, the
ranking expressions are also processed as filter conditions; however, the algorithm
uses knowledge about the grade distribution (e.g., selectivity estimates) to convert
each ranking expression into a filter condition (i.e., a range query). In other words,
based on the available knowledge about how the grades are distributed, the algo-
rithm picks a lower bound of the grades for each atomic filter expression, processes
the new filter condition, and outputs the top objects. If there are not sufficient tu-
ples because of the selected cutoff threshold, then a smaller cutoff is selected and
the process is repeated. On the average, the algorithm searches no more objects
than the FA algorithm.

10.2.7.2 Stop and Restart
Carey and Kossmann [1997a] also extend SQL with support for limiting the cardi-
nality of the results. The proposed SQL extension relies on a STOP AFTER clause to
declare the number of tuples the result should contain:

SELECT ... FROM ... WHERE ...
GROUP BY ... HAVING ...
ORDER BY (sort specification)
STOP AFTER (value expression)
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The value expression, which specifies the maximum number of tuples desired, can
be an integer constant or a subquery that evaluates to a constant. The ranking condi-
tion is specified using SQL’s ORDER BY clause, but unlike the earlier SQL standards,
the ORDER BY columns do not need to appear in the SELECT clause and ORDER
BY clauses can be used in sub-queries. Carey and Kossmann [1997a,b] also propose
an extension to the relational database engine. In particular, the extension involves
a new stop operator that produces, in order, the top or bottom k tuples of the in-
put stream data. The operator takes three parameters: k; a sort directive that states
whether the data will be sorted in increasing or decreasing order; and a sort expres-
sion that corresponds to the ordering expression associated to the ORDER BY clause.
Carey and Kossmann [1997a,b] also propose policies to insert the stop operators into
the traditional relational query plans. A conservative policy avoids the insertion of
stop operators at points in the query plan where it can cause tuples to be discarded
that may be required to obtain the requested k tuples. The aggressive policy, on the
other hand, inserts stop operators wherever they can provide savings and relies on
a restart operator that restarts the query if the result stream is exhausted before k
tuples are produced. Carey and Kossmann [1998] present range partitioning-based
strategies to reduce the cost of executing STOP AFTER clauses. To avoid sorting a large
collection of data and then discarding a significant portion of it to obtain the top-
k results, Carey and Kossmann [1998] present “range-based braking” algorithms
that divide data into buckets based on attribute values and prune unpromising
ranges.

Note that the stop operator requires at least a partial sorting of the input data
stream. Donjerkovic and Ramakrishnan [1999] avoid sorting of the data except for
the outputs. Recognizing that every top-k query is in fact equivalent to a selection
query with a specific cutoff value on the output scores, Donjerkovic and Ramakrish-
nan [1999] focus on identifying the appropriate cutoff parameters using the available
statistics about data distributions. The main challenge is that a lax cutoff will result
in unnecessary processing, whereas a tight cutoff will cause multiple restarts due to
having fewer than k results in the outputs. Given a cutoff threshold, τ, the expected
cost of a query execution plan with restart is

E(cost) � E(initial cost(τ)) + E(restart cost(τ))Prestart,τ,

where E(initial cost(τ)) is the expected cost of the initial query with cutoff threshold
τ, E(restart cost(τ)) is the cost of the restart that would complete the query,9 and
Prestart,τ is the probability that fewer than k results have been generated with cutoff
τ. Given a τ value, each of the foregoing terms can be estimated using a traditional
query optimizer. The value of the τ itself is estimated by using a golden section search
technique, which repeatedly tries different τ values until the expected cost converges
to a fixed, minimum value [Kiefer, 1953; Press et al., 1988].

Hristidis et al. [2001] recognize that different users may ask the same query, us-
ing different ranking expressions to express different preference criteria. To lever-
age past computations, instead of executing the query from scratch and reranking
query results each time according to the new ranking criterion, Hristidis et al. [2001]

9 Note that this is a worst-case assumption. In reality, instead of searching for the complete answer to
the query, the restart operation will repeatedly relax τ until k matches are identified. Therefore, there
is a chance that the complete answer to the query will never be needed.
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recompute top-k queries using the old results (or views) for queries that have “simi-
lar” preference criteria to the current one. Given two linear preference criteria (µq,
for the query and µv , for the available view), Hristidis et al. [2001] compute a water-
mark threshold as the maximum score, τ, such that

∀t (µv(t) < τ) → (µq(t) < µq(t′)),

for the top result t′ in the view. Intuitively, if the score of a tuple t in the view is
below the watermark, τ, then t cannot be the top result of the query, because there
is at least one other tuple t′ in the view better than t. Consequently, the top result
according to the query preference criterion µq must also be above the watermark in
the view. The algorithm reorders (according to µq) all the tuples in the view above
the watermark and picks the set of tuples until t′ in the new order. Hristidis et al.
[2001] show that the tuples in this set are the highest ranking answers to the query
according to µq. If the size of the set is less than k, the process is repeated by identi-
fying a new, lower, threshold.

10.2.7.3 Specialized Top-K Join Operators
Unlike the foregoing algorithms that emulate top-k joins using existing relational
operators, a number of other works attempt to inject specialized versions of the TA
and NRA top-k operators within more traditional (e.g. relational) databases.

Natsev et al. [2001], for example, introduce a pull-based, no-random-access, J ∗

join operator that performs an A∗ type search in the join space. A∗ type of search
algorithms estimate the gain of candidate solutions and use these estimates to guide
the search; as long as the gain estimate never underestimates the true gain, A∗

search will find the optimal solution in the fewest number of steps [Hart et al., 1972;
Russell and Norvig, 1995]. J ∗ estimates an upper bound of the combination score
for each partial result and maintains a priority queue of partial join combinations
ordered on these upper bounds. Thus, partial joins are processed in the order of
these estimates. At each step, J ∗ considers the combination at the top of the priority
queue and selects the next stream from which to pull the next tuple to join to the
partial result in a way to complete this top combination. The top-1 retrieval pro-
cess terminates when the join combination at the head of the queue is complete; the
next top results are found incrementally by repeating the process until k results are
obtained. In order to reduce the database access cost (i.e., the number of tuples con-
sidered from each stream) and to reduce the space requirements, Natsev et al. [2001]
propose an iterative deepening heuristic which divides the computation into succes-
sive rounds. In particular, J ∗ defines the ith round to include all computation from
depth i × s to depth i × s + s − 1, for some constant s ≥ 1. Solution correctness and
optimality are still guaranteed because solutions in earlier rounds are better than
the ones in later rounds. To leverage indexes when they are available, Natsev et al.
[2001] also present a random-access variation, J ∗

PA, which (when processing an in-
complete result at the top of the priority queue) first checks whether the result is
instantiated sufficiently to allow completion by predicate access. Similar to the CA
algorithm discussed in Section 10.2.3, the threshold is determined dynamically by
balancing the sorted access and random access costs.

Ilyas et al. [2002] introduce another NRA-like join operator, NRA-RJ, to be
used in current database engines for key-equality conditions. Unlike NRA, which
does not associate scores to the results in the output stream, NRA-RJ associates a
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score range for each output object. To enable composability of multiple NRA-RJ
operators within a single query plan, NRA-RJ also allows ranges of scores asso-
ciated to the objects in the input stream. The algorithm maintains best and worst
possible scores for each partial object; as new objects are observed from the input
streams, these best and worst possible scores are updated. If, at any point, an object
whose worst possible score is greater than the highest scores of all other objects is
found, then this object is returned. Also, as in iterative deepening J ∗, which layers
the input objects, NRA-RJ also proceeds in stages, where only some of the inputs
are considered at each stage.

Ilyas et al. [2004a] propose a pipelined rank join operator, HRJN, which is able to
perform join operation under general join conditions (as opposed to being limited
to equality joins as in NRA-RJ). HRJN implements the NRA-like RANK-JOIN
algorithm presented in Section 10.2.3. The instance optimality of the underlying
RANK-JOIN algorithm plays an important role in the optimization of the I/O cost.
Remember from Section 10.2.3 that, for each new retrieved object from one of the
streams, the basic RANK-JOIN algorithm generates all new valid join combinations
with all the objects seen so far from other streams, and for each resulting combina-
tion the algorithm computes a score. The physical implementation of HRJN is sim-
ilar to those of symmetric hash joins [Hong and Stonebraker, 1993; Mokbel et al.,
2004] or hash ripple-joins [Haas and Hellerstein, 1999]: in the binary version of the
HRJN operator, internally, two hash tables hold input tuples seen so far, and a pri-
ority queue holds the valid join combinations ordered on their combined scores. Im-
plementing an N-ary ranked join operator involves staging multiple binary HRJN
operators in a pipelined manner; the order of the binary HRJN operators is se-
lected in a way that minimizes the number of intermediary results that need to be
considered. When the score distributions are heterogeneous (such as large values
in one input and much smaller ones in the other), the rates at which objects from
different input streams are consumed are selected in such a way that the value of the
RANK-JOIN threshold is reduced faster, potentially leading to faster completion
of the ranked join operation: let µ� be the score merge function, Ltop and Lbottom

be the best and worst known scores for the left input, respectively, and Rtop and
Rbottom be the corresponding scores for the right input; because in the binary ver-
sion of the RANK-JOIN algorithm we had discussed in Section 10.2.3, the thresh-
old would be computed as max(µ�(Ltop , Rbottom), µ�(Lbottom, Rtop)), more inputs are
fetched from the input which would reduce this threshold the most; for example, if
the first merged term is larger than the second one, it is better to fetch results from
R to reduce the first merged score.

10.2.7.4 Extended Algebraic Formulations
Extending traditional databases with top-k or ranked query processing functionality
may require significant revisions of the underlying database engines. A particular
requirement is being able to generate query plans that include ranking operators
along with the more traditional algebraic operators, such as select, project, and join.
Adali et al. [2004, 2007] and Li et al. [2005] extend the relational algebra, which is the
basis of query planning and optimization in relational databases, to support ranking
as a first-class construct.

With the goal of supporting multimedia database applications, Adali et al.
[2004, 2007] consider ranks as properties of media objects that can be queried and
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compared with each other. In particular, the data schema is assumed be composed
of two types of attributes: property attributes and order attributes. The property at-
tributes describe information about the features of the objects, whereas each order
attribute describes the ordering of objects in the relation with respect to a given
criterion. Adali et al. [2007] also introduce order distance functions, which are
used to compute the distance between two order attributes based on the object rank-
ings that they imply,10 and order functions, which are essentially rank aggregation
functions [Dwork et al., 2001] that can be used to obtain a new ranking based on ex-
isting object rankings. Given these, Adali et al. [2007] extend the relational algebra
with the following operators that operate on ordered relations:

� The order operator adds a new order column to an order relation by evaluating
a given order function on the relation.

� The merge operator puts together the same objects in two ordered relations and
their corresponding ranks into a single ordered relation (if an object in one re-
lation is missing in the other, similarly to the behavior of traditional outer join
operator, the missing rank is set to a special null-rank, ().

� The order group by operator is analogous to the group by operator used in rela-
tional algebra for partitioning the data to support aggregate computations (such
as max, min, and count). In the case of ordered relations, the operator also takes
an order distance function and a pair of order attributes and, for each group by
partition, computes and returns the distance between the corresponding rank-
ings in the partition.

As an example, consider two ordered relations TVRankings1(ShowName,
Network, Rank) and TVRankings2(ShowName, Network, Rank) storing TV ratings
for two subsequent weeks. For finding how much the rankings for TV channels
changed over time, we need to first merge the two ordered relations based on show
names and then apply group by on the resulting ordered relation with respect to
the channel name attribute. Finally, an order distance function is applied to each
individual partition [Adali et al., 2007].

Note that, under the algebraic formulation proposed by Adali et al. [2007], a
ranked join operation is represented by a merge operator that pulls together data
from different sources and a following order operator that associates a new, com-
bined ranking to the objects in the resulting ordered relation. For instance, if, in
the foregoing example, we wanted to compute the average ratings of the shows, we
would merge the two ordered relations based on show names and then apply the
order operator with the avg() function on the two rank attributes. RankSQL, pro-
posed by Li et al. [2005], on the other hand, treats ranked operation in an atomic
fashion, instead of splitting this operation into two suboperations as in [Adali et al.,
2007]. Similarly to Adali et al. [2007], Li et al. [2005] also define a rank-relation as a
relation with its tuples scored by some scoring function. However, unlike in [Adali
et al., 2007] (where the ranking attribute is materialized, yet the order of the ob-
jects is only implicit), in rank-relations, scores of the tuples are implicit, whereas
the tuples are physically ordered according to the underlying scoring function. The
algebraic framework underlying RankSQL builds upon the relational algebra by in-
troducing a new operator, rank, and extending the various existing operators to be

10 See Section 11.5 for more details on rank comparison functions.
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Figure 10.11. The skyline of the data set in this figure consists of three objects: {A, B, C};
all other objects are dominated by one of these three.

rank aware. The rank operator takes as input a ranked relation R (already ordered
based on a set of ranking predicates, P) and a new ranking predicate p and reorders
the objects in R based on P ∪ p.

The traditional relational algebraic operators, select (σ), project (π), union (∪),
intersection (∩), difference (−), and join (�), are all redefined to both determine
membership (based on the associated Boolean predicate) and order (based on the
ranking predicate). Unary operators, such as select, process the tuples in the in-
put relation as in their relational counterparts, but simply maintaining the input tu-
ple orders. Binary operators (except for difference) also perform similarly to their
Boolean counterparts, but they reorder output tuples using ranking predicates from
both operands; the difference operator outputs tuples in the order of the outer rela-
tion, because the tuples from the inner one are eliminated by the operation. The
rank operator enables a complex ranking predicate to be split and evaluated in
stages, predicate by predicate; thus, ranking can be interleaved with other opera-
tors and pushed down joins if required for query optimization.

10.3 SKYLINES

A nearest neighbor query locates a predetermined number of objects that are the
closest to a given query object based on a given distance measure. Similarly, a top-k
query identifies a predetermined number of objects that are the best according to a
given scoring function. A skyline operation, on the other hand, simply searches for
a set of objects that are not dominated by other objects in the database [Borzsonyi
et al., 2001]. Consider a database, D, of objects, each represented as a vector in a
d-dimensional space. Object oi in the database D is said to dominate object oj ∈ D
(denoted as dominating(oi, oj)) iff

( �oi �= �oj) ∧ (∀1≤l≤d �oi[l] ≥ �oj[l]) .

The skyline of the data set, D, consists of objects that are not dominated by any
other object in D (Figure 10.11):

skyline(D) = {oj | (oj ∈ D) ∧ (� ∃oi∈D dominating(oi, oj))}.
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Intuitively, the skyline is the set of maximal vectors in the space [Kung et al., 1975;
Preparata and Shamos, 1985]. In other words, given a set D, the set of objects in
skyline(D) consists of the set of interesting objects, where:

� No object in the skyline is better (or more interesting) than any other one in the
skyline set with respect to all the dimensions of the space.

� No object in the data set, D, is in the skyline if there is at least one other object
that is better (or more interesting) in all dimensions.

This is also known as the Pareto frontier (or Pareto curve), where for any object in
this frontier, it is not possible to improve any of its features (by picking some other
object in the database) without worsening some other feature [Papadimitriou and
Yannakakis, 2001]. Note that, unlike the top-k queries, for skyline queries, there
is no scoring function that combines the weights of the different features of the
objects: the domination relationship between objects is simply defined in terms of
a ≥ relationship on the values of the data features. Moreover, the number of objects
in the skyline set is not known in advance. Yet the set of skyline objects is very much
related to top-k query results [Borzsonyi et al., 2001]:

� For any monotone scoring (or preference) function, if the object o maximizes the
scoring function (i.e., o is the result to the top-1 query), then o is in the skyline.

� Moreover, each object in the skyline is the top object for some monotone scoring
function.

The first of these properties implies that, whenever available, the skyline set can po-
tentially be used to prune irrelevant objects for top-k query processing. The second
property, on the other hand, states that the skyline represents the closure over the
highest scoring objects with respect to all monotone scoring functions, and thus the
skyline set is minimal (it does not contain any objects that are not top according to
somebody’s preference). A more tightly coupled combination of top-k and skyline
queries, called the top-k dominating query, is introduced and studied by Yiu and
Mamoulis [2007] (see Section 10.3.4).

10.3.1 Skylines without Indexes

Skyline queries can be executed over indexed or nonindexed data sets. Often, when
the set of dominating objects of an ad-hoc data set (such as results of a user query)
is needed, a suitable index may not be available to help speed up the skyline com-
putation.

10.3.1.1 Nested-Loops–Based Skylines
In its simplest implementation, computing a skyline of a given data set, D, involves
comparing all possible pairs of objects in the database to identify and eliminate those
that are dominated by others. This can be represented as a self-join operation on the
data set D,

skyline(D) = D − �oj

(
D1 �

oi∈D1,oj∈D2 dominating(oi ,oj )
D2

)
,
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(i) window = ∅
(ii) in temp file = D; out temp file = ∅

(iii) in count = 0; limit = ∞
(iv) repeat until in temp file = ∅

(a) repeat until in temp file = ∅
1. get an oi ∈ in temp file
2. oi.timestamp = in count
3. in count = in count + 1
4. if there exists oj ∈ window such that dominating(oj, oi) is true, then drop oi

5. else if there exists oj ∈ window such that dominating(oi, oj) is true,
A. drop all oj ∈ window such that dominating(oi, oj) is true from window
B. insert oi into window

6. else (oi is incomparable with all tuples in window)
A. if window is not full, insert oi into window
B. else (if window is full),

� insert oi into out temp file
� if limit == ∞ then limit = oi.timestamp

(b) for all oi ∈ window

1. if oi.timestamp < limit then output oi

2. else oi.timestamp = 0
(c) in temp file = out temp file; out temp file = ∅
(d) in count = 0

(v) for all oi ∈ window

(a) output oi

Figure 10.12. Block-nested-loop based skyline computation.

where D1 = D2 = D, and can easily be implemented using a nested-loop algorithm
consisting of two for-loops, where

(i) the outer-loop scans the data set, D, one object at a time and for each object,
oi, encountered
(a) the inner-loop scans all objects, oj, in D;

1. for each object pair, 〈oi, oj〉, if oi is found to be dominating oj, then oj

is dropped from the set, D.

The remaining set of objects will be those that are not dominated by any object in
D and can be returned as the skyline set.

Although this algorithm is very easy to implement, it has a high, O(|D|2) cost.
A more efficient alternative, which still relies on nested loops but uses the main
memory more efficiently, was presented by Borzsonyi et al. [2001]. This algorithm,
which the authors refer to as the block-nested-loops skylines, is reminiscent of the
block-nested-loop joins commonly used by DBMSs to implement joins when no in-
dex structures are available. Unlike the naive algorithm described earlier, the block-
nested-loops skylines algorithm keeps the set of incomparable pairs (those that are
not dominated by each other) in the main memory.

The algorithm, presented in Figure 10.12, keeps as many of the skyline can-
didates in the main memory (in a set called window) as possible to ensure that
comparing other objects to these candidates is as efficient as possible. If the sky-
line is small and fits into the main memory (allocated to hold the window data
structure), then the algorithm makes only one full pass of the data, resulting in only
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(a) (b)

Figure 10.13. (a) During this iteration, object o6 in the database is checked against all the
objects in the window and found to be not dominated by any one; however the window is
currently full, so o6 is written into a temporary file. (b) When the iteration is over, some
objects in the window moved to trash because they were dominated by o7, which is not in
the window. At the end of this iteration we know that all objects in the trash are dominated
by at least one object in the window, and we also know that there are no object pairs in the
window that dominate each other; however, we do not know if those objects in the temporary
file dominate each other or not. Moreover, we also do not know if any of the objects (such as
o7) that were put into the window after o6 are dominated by any other object in the temporary
file. In this example, only o2 can be included in the skyline at the end of this iteration.

O(|D|) disk accesses. On the other hand, if the skyline does not fit into the main
memory, then those objects that do not fit need to be written into a temporary file
(Figure 10.13(a)). At the end of each iteration, the algorithm considers the current
objects in the window (Figure 10.13(b)):

� Those objects that have been inserted into the window set before any object is
pushed to the temporary file have been vetted against all the objects considered
in the iteration; therefore they are guaranteed to be in the skyline and can be
included in the output.

� Those objects that have been inserted into the window after some objects have
been pushed into the temporary file have not been compared against those ob-
jects in the temporary file; therefore, there is a chance that they are not in the
skyline and, thus, cannot be provided to the user yet.

Each subsequent iteration considers those objects that were not committed yet and
compares them to objects remaining in the temporary file.

Improvements of the algorithm described by Borzsonyi et al. [2001] include (a)
ordering the candidates in the window set in such a way that those objects in the
window that are more likely to prune others are considered first so that the number
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(a) (b)

Figure 10.14. (a) 〈20, 15〉 dominates 〈17, 10〉; thus if f is a monotonic function, then
f (20, 15) > f (17, 10); for example 20 + 15 > 17 + 10. (b) This implies that, if the data
are sorted using a monotonic function (such as “+”) before the iteration starts, then later
objects cannot unseat objects that are already in the window; moreover, at the end of the
iteration, we can be sure that no objects in the temporary file can dominate any object in
the window and, thus, all objects (o′

1, o′
2, and o′

3) in the window can be provided to the user
as part of the skyline before the next iteration starts (compare this with the situation in
Figure 10.13(b), where data are not presorted).

of in-memory comparisons is reduced; and (b) instead of pushing to the disk simply
those tuples that are considered later than the others, using a replacement policy that
keeps in the window those objects with higher pruning power (likely to cover more
objects11), while pushing to the disk those that have less. The worst-case complexity
of the window-driven algorithm is O(|D|2) like the naive algorithm, but the window-
driven algorithm tends to be more efficient because of the use of main memory as
buffer, which limits the input/output (I/O) activity.

10.3.1.2 Presorting-Based Skylines
The disadvantages of block-nested loop–based skylines include heavy reliance on
the availability of the main memory and the fact that it has to scan the entire data
file before it can provide any single skyline object. To reduce the cost of skyline com-
putations, the sort-filter-skyline algorithm [Chomicki et al., 2003, 2005] first sorts D
based on a monotone function. Any total order of the objects in the database with
respect to any given monotone scoring function is a topological sort with respect
to the skyline dominance partial relation; in other words, no object can dominate
another object that comes before it in the sorted order (Figure 10.14(a)). Conse-
quently, sorting ensures that an object o dominating an object o′ is included in the
list before o′, and this helps improve the pruning effectiveness of the overall process,

11 In [Borzsonyi et al., 2001], this is measured by the volume of space defined by the origin and the vector
corresponding to the objects: the higher the volume, the more likely that it will cover other objects.
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(b)(a)

Figure 10.15. (a) Space partitioning results in two seperate partial skylines. (b) Merging
of these two skylines into one (i.e., removing of nonskyline objects from these two partial
skylines) may involve further partitioning of the two partial skylines to be compared until they
fit into memory.

ensuring that, at each iteration, a large number of objects can be output as part of
the skyline (Figure 10.14(b)).

The foregoing algorithm requires an external (i.e., disk-based) sort process
which potentially performs multiple passes over the entire data set to obtain the ini-
tial sorted data. The linear elimination sort skylines algorithm [Godfrey et al., 2005]
improves on the sort-filter-skyline by using these sorting related passes in a way that
they also contribute to the elimination of nonskyline objects: (a) the first pass of the
external sort algorithm is modified with an elimination-filter window that identifies
and eliminates some of the dominated objects; (b) the final pass of the external sort
is combined with the first pass of the skyline filtering process.

A similar sorting-based approach is also used by Tan et al. [2001], who map the
multidimensional data points onto a single dimensional space. Unlike the foregoing
algorithms, however, Tan et al. [2001] insert objects into a B+-trees: the leaves of the
B+-tree are then scanned to access the objects in sorted order (see Section 10.3.2.1).

10.3.1.3 Divide-and-Conquer–Based Skylines
In order to reduce the cost of the skyline query processing, the divide-and-conquer
schemes break up D recursively into smaller and smaller partitions, until each small
partition fits into main memory. Individual skylines are computed for each partition,
and these skylines are combined to identify those points that are not dominated by
any others [Borzsonyi et al., 2001; Kung et al., 1975].

The merging of the partial skylines has to be performed carefully, because sky-
lines themselves may not fit into the main memory, resulting in a significant amount
of I/O. Consider, for example, the two partitions and the corresponding two sky-
lines, {A, D} and {B, C}, shown in Figure 10.15(a). If neither of these partitions fits
into the main memory, then merging of these two skylines involves repartitioning
the skylines across a new dimension as shown in Figure 10.15(b). In this figure, it
is easy to see that any skyline object in partition P11 (say A) will be incomparable
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with any skyline object (say C) in partition P22. Therefore, skyline objects in these
partitions do not need to be compared against each other. Merges of the remaining
three pairs of skylines are performed by recursively applying the foregoing merge
operation, until either there are no more dimensions left for partitioning or one of
the pairing partitions fits into the memory.

The cost of this algorithm is O(|D|(log|D|)d−2) + O(|D|log|D|). Improvements,
such as using multi-way partitioning strategies for obtaining smaller partitions early
on or block-based schemes that load as many objects into main memory as possi-
ble to eliminate objects that are dominated by others earlier, provide gains of only
constant factor.

10.3.2 Skylines over Indexed Data

The skyline algorithms just described (except for [Tan et al., 2001]) did not lever-
age any preconstructed index structures. Naturally, when available (and if properly
used) index structures can help improve skyline execution performance.

10.3.2.1 B-trees
Borzsonyi et al. [2001] provide a B-tree–based method for computing skylines effi-
ciently. Assuming that all d dimensions have B-tree indexes on them, the skyline is
processed by scanning all indexes simultaneously (in decreasing order of value) to
find a first match:

� Because this object is not dominated by any other, it is definitely in the skyline
set and can be included in the output without further investigation.

� Any object that has not been seen yet in any of the dimensions is dominated by
this first object and thus cannot be in the result.

� Any object that has been seen during the initial scan is a candidate. The remain-
ing skyline objects can be picked among these using any other skyline algorithm.

Note that this scheme is using the B-tree simply to access each dimension in a (de-
creasing) sorted order of values; thus it is reminiscent of the top-k join algorithms we
discussed in the previous subsection. The hierarchical nature of the B-tree indexes
is not leveraged.

An alternative to using multiple B-trees for skyline computation is to rely
on a transformation that maps the multidimensional data points onto a single
dimensional space so that they can be indexed [Tan et al., 2001]. A suitable trans-
formation is presented by Ooi et al. [2000] and Tan et al. [2001]. This transformation
organizes the data in such a way that the resulting B+-tree orders (and thus implic-
itly partitions) the data based on the dimension that has the largest value. Moreover,
in each partition, data are sorted based on the values along this dimension. For ex-
ample, consider the following points in a three-dimensional space:

{〈1, 4, 5〉, 〈5, 1, 3〉, 〈6, 8, 7〉, 〈7, 9, 6〉, 〈8, 5, 1〉, 〈2, 3, 4〉}.
For each point, the dimension in bold corresponds to the dimension that has the
largest value among all dimensions. The transformation would sort the data based
on these highlighted values as follows:

〈8, 5, 1〉〈5, 1, 3〉 〈7, 9, 6〉〈6, 8, 7〉 〈1, 4, 5〉〈2, 3, 4〉.
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Here the gaps correspond to the boundaries between the logical partitions of the
sorted list of points. Note that the sort order in each partition allows the algorithm
to examine points that are likely to be skyline points first. Second, the algorithm is
able to prune some of the points without having to consider them explicitly: if the
minimum value among all dimensions for object o1 is larger than the maximum value
among all dimensions for object o2, then the o1 dominates o2 and o2 can be elimi-
nated. Because each partition of the structure is organized in sorted order based on
the maximum value, this means that once an object is found to be eliminated, all
subsequent objects in the partition can be eliminated.

10.3.2.2 Bitmap Skylines
Tan et al. [2001] present a bitmap-based method to compute skylines, pro-
gressively. Let 1 ≤ l ≤d be one of the d dimensions of the space and let pl1 >

pl2 > · · · > plul be the ul unique values along this dimension. Each data vector,
�o, corresponding to object o ∈ D is represented in the form of an m-bit vector as
follows:

� The lth dimension of the space is represented using ul bits, where ul is the
number of unique values along this dimension. Consequently, the length of the
bitmap signature for an object in the database is m =∑d

l=1 ul.
� Let �o[l] (i.e., the value of the lth feature dimension for object o) be the qth dis-

tinct largest value. The ul bit signature segment corresponding to this dimension
is constructed by setting bits 1 to q− 1 to 0 and bit q to ul to 1.

Consequently, given two objects, o1 and o2, it is possible to look at their bit represen-
tations for any given dimension and quickly tell which of these objects has a higher
value along that dimension. For example, if the bit representation for o1 along the
lth feature dimension is “0111” and for o2 the corresponding bit representation is
“0001”, it is clear that o1 has a higher value along dimension l than o2.

Given the foregoing representation, the resulting set of signature vectors are
transposed and indexed in the form of bitslices,12 where a unique bitslice signature
of length d is associated to each signature position. Let BSl,q denote the bitslice cor-
responding to the qth bit position along the lth dimension. Intuitively, this bitslice
will tell for each object in the database whether the value of the object’s lth feature
dimension is greater than or equal to the qth largest (distinct) value along the dimen-
sion. Given these bitslices and a data object o, where �o[l] is the qlth largest distinct
value along the lth dimension, let A(o), B(o), and C(o) be bit-strings such that

� A(o) = BSl,q1 & BS2,q2 & · · · & BSd,qd ,
� B(o) = BSl,(q1−1) | BS2,(q2−1) | · · · | BSd,(qd−1), and
� C(o) = A(o) & B(o),

where “&” is the bitwise and operation and “|” is the bitwise or operation. A(o)’s
nth bit is 1 if and only if the nth object in the database has value greater than or
equal to the corresponding value of o in each of the d dimensions. On the other hand,
B(o)’s nth bit is 1 if and only if the nth object in the database has value greater than
the corresponding value of o in at least one of the d dimensions. Thus, if C(o) has

12 This is similar to the bitslices used for keyword-based document search in signature files (Sec-
tion 5.2.2).



368 Ranked Retrieval

(a) (b) (c)

Figure 10.16. Repeated use of nearest neighbor queries to identify the skyline objects:
(a) nearest neighbor query, (b) elimination of all dominated objects and partitioning of the
space, and (c) execution of nearest neighbor queries (and potentially repeating this process
recursively) in each partition to identify the remaining skyline objects.

any single nonzero bit, then o is dominated by at least one object in the database;
therefore it cannot be in the skyline and can be eliminated from consideration.

10.3.2.3 Nearest-Neighbor Based Skylines
Kossmann et al. [2002] observe that there is a very close relationship between near-
est neighbor queries and skylines and uses this observation to develop an index-
supported divide-and-conquer style algorithm for skyline computation. Consider a
point, represented by a d-dimensional vector �pmax, which dominates all points in the
database. Kossmann et al. [2002] observe that

� if the point �o (corresponding to an object, o ∈ O) is the nearest object to �pmax ac-
cording to some monotonic distance function, then o is in the skyline; moreover,

� if Dom(m) is a region of the space containing all the points dominating some �m
and if the point �o, in the region Dom(m), is the nearest object to �pmax according
to some monotonic distance function, then �o is in the skyline of O.

The first observation implies that a nearest neighbor query can be used for identify-
ing the first element of the skyline quickly (Figure 10.16(a)) and the portion of the
space dominated by this object can be eliminated from further consideration (Fig-
ure 10.16(b)). The second observation implies that the skyline objects found so far
can be used to partition the space in such a way that the new skyline objects can be
found by executing nearest neighbor queries (and repeating this process recursively)
in each partition (Figure 10.16(c)).

Kossmann et al. [2002] show that, although the foregoing algorithm is correct, for
d > 2 the partitioning process may lead to overlapping partitions and, hence, to du-
plicate objects (identified once for each partition containing it) in the skyline. This
problem can be addressed by a postprocessing phase in which the duplicate skyline
objects are found and eliminated, by progressively removing points that are discov-
ered from all not-yet-visited partitions, or by repeatedly modifying (repartitioning
or merging) the space partitions based on the skyline objects that are discovered.

10.3.2.4 Branch-and-Bound Skylines
Borzsonyi et al. [2001] also propose a scheme that leverages R-tree index struc-
tures for skyline queries when they are available. In particular, Borzsonyi et al.
[2001] use a branch-and-bound technique, similar to the ones considered for
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executing nearest neighbor queries, to eliminate unpromising branches of the tree.
The scheme traverses the R-tree in a depth-first manner, and for every skyline object
found in the process, it eliminates the branches of the R-tree that are guaranteed to
contain only objects that are dominated by this object.

Papadias et al. [2005] also leverage R-trees for supporting progressive, branch-
and-bound–based skyline computation. However, unlike the work of Borzsonyi
et al. [2001], the proposed branch-and-bound algorithm also leverages the nearest
neighbor search described earlier. Thus, in addition to the R-tree that supports
branch-and-bound search, Papadias et al. [2005] also construct a priority queue
(heap) to arrange objects based on their distances from �pmax.13 The branch-and-
bound process is similar to the best-first nearest neighbor algorithm discussed in
Section 10.1.1: The process starts from the root node and inserts all its children
into the heap. Then, the node with the minimum distance is picked from the heap
and expanded and its children are inserted back into the heap. As in [Borzsonyi
et al., 2001], the process continues examining the remaining nodes one by one, while
recording any skyline objects found in the process and pruning those nodes that
are dominated by these skyline objects. Unlike the work of Borzsonyi et al. [2001],
however, the order in which nodes are visited is not depth-first, but based on their
distances to �pmax, as enforced by the priority queue.

10.3.3 Skylines with Partially Ordered Data

The skyline algorithms described so far all assume that the individual dimensions of
the objects are all totally ordered. However, there are many cases in which the val-
ues taken by the relevant features do not come from a totally ordered domain (such
as integers or real numbers), but a partially ordered domain (such as intervals, sets,
and probability distributions; see Section 3.4). A partially ordered set (or poset),
denoted as (S,)) is such that ) has the following properties: for all s1, s2, s3 ∈ S,

� reflexivity: s1 ) s1,
� antisymmetry: (s1 ) s2) ∧ (s2 ) s1) → (s1 = s2),
� transitivity: (s1 ) s2) ∧ (s2 ) s3) → (s1 ) s3).

For example, let Q be a set of normally distributed quality assessments: that is, for
all qai ∈ Q, we have qai = N(qi, ξi), where qi represents the expected quality of an
observation, whereas ξi represents the variance: Then [Peng et al., 2010],

� the ordered set (Q,)c) defined as

(qai )c qaj) ≡def

(∫ ∞

c
qai(q) dq

)
≤
(∫ ∞

c
qaj(q) dq

)
is totally ordered, because qai is mapped to a single scalar value belonging to a
totally ordered domain; on the other hand,

� the ordered set (Q,)p) defined as

(qai )p qaj) ≡def (qj ≥ qi) ∧ (ξj ≤ ξi)

13 Papadias et al. [2005] use L1-norm; also, the distance an MBR to �pmax is computed using its top-right
corner point.
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Figure 10.17. A partially ordered data set: the dashed edges show the dominance relation-
ships that are implied by transitivity; the graph consisting of the solid edges is also referred
to as a lattice or a Hasse diagram.

is partially ordered. For example, qai = (0.8, 0.1) and qaj = (0.9, 0.05) are com-
parable by the definition of )p , but qai = (0.8, 0.05) and qaj = (0.9, 0.1) are not.

Partially ordered data sets form lattices that can be visualized using Hasse diagrams
as shown in Figure 10.17.

10.3.3.1 Interval Mapping–Based Branch-and-Bound
Chan et al. [2005a,b] argue that, although it is possible to evaluate skylines over par-
tially ordered value domains by modifying the block nested-loop algorithms, this
will be likely to produce inefficient solutions. Chan et al. [2005b] also argue that,
although partitioning the partially ordered data onto multiple totally ordered do-
mains (in such a way that the original partial order is preserved14) might be possi-
ble, the increase in the number of dimensions would be very costly. Instead, Chan
et al. [2005b] map partially ordered data onto an interval domain in such a way that
the original partial order is preserved in the transformed domain. In other words,
the domain mapping f is such that, for any pair of distinct values v1 and v2, if f (v1)
contains f (v2), then v1 > v2 in the original space [Agrawal et al., 1989].

Furthermore, to account for the partially ordered nature of the interval domain
itself, the definition of dominance is extended as follows: Given two objects o1 and
o2, o1 m-dominates o2 if

� for any totally ordered dimension, the value of o1 along that dimension is greater
than or equal to that of o2,

� for any partially ordered dimension, the interval transformation of the value of
o1 along that dimension is equal to or contains that of o2, and

� there exists at least one totally (or partially) ordered dimension, where the value
(or interval transformation of the value) of o1 along that dimension is greater
than (or contains) that of o2.

14 Once the total orders are obtained, objects are indexed and skyline objects are found using an index-
based scheme.
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Figure 10.18. Levels of a partially ordered value domain.

Because the mapping is not precise, however, skyline processing in this interval
space may result in false positives that need to be cleaned before returning sky-
lines. Therefore, Chan et al. [2005b] modify branch-and-bound–based skyline search
in such a way that false positives are found and eliminated as skyline objects are
identified.

10.3.3.2 Weak Pareto Dominance and l -cuts
An alternative approach to the problem is proposed by Balke and Güntzer [2005]
and Chomicki [2003]. These authors replace the Pareto dominance condition (one
object having better or equal values with respect to all dimensions and being strictly
better in at least one) between objects with that of weak Pareto dominance as fol-
lows: object o1 weakly dominates object o2 with respect to partially ordered dimen-
sions if and only if there is at least one dimension along which o1’s value dominates
the corresponding value of o2 and there exists no dimension along which o2’s value
dominates the corresponding value of o1. The set of all non–weakly dominated ob-
jects in O is referred to as the restricted skyline. Balke and Güntzer [2005] show that
restricted skylines are part of the Pareto set (or skyline) and that restricted skylines
can be computed more efficiently than the full Pareto skyline.

The algorithm assumes that data along each dimension are sorted in such a way
that high values are returned on smaller ranks. This is achieved by associating a level
to each value in the domain representing this value’s distance from the maximum
value in the underlying lattice (Figure 10.18). These levels have the property that,
given a partially ordered set, (S,)), and two distinct values s1 and s2 in this set, the
following is true:

(s2 ) s1) → (level(s1) > level(s2)).

The values in each partially ordered domain are sorted in their levels by perform-
ing a breadth-first topological sort on the lattice. Note that this is analogous to the
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(i) Perform sorted access along each subdimension
(a) Consider all minimum l-cuts among the objects accessed so far
(b) When all objects of some cut have been accessed along all dimensions

1. Prune all objects on lower levels
2. For the remaining objects, perform random accesses and compare the objects

for pairwise Pareto dominance
3. Remove all weakly dominated objects and return the remaining set as the re-

stricted skyline

Figure 10.19. l-Cuts–based skyline computation over partially ordered value domains.

distance based sorting in nearest neighbor–based skyline algorithms described in
Section 10.3.2.3.

Let l-cut denote a set of values that dominate all values below the lth level. Al-
though the set of all values at level l would trivially form an l-cut, there may be a
subset of values at level l that may dominate all values below the lth level as well.
Balke and Güntzer [2005] prove that if a set, O ⊂ D, of objects form an li cut for
each dimension i, then no object that occurs on a higher level than li for all i can be
part of the restricted skyline under weak Pareto dominance. This gives rise to a sort
and merge based algorithm for computing restricted skylines (Figure 10.19). Balke
and Güntzer [2005] achieve efficiency by focusing the skyline processing to only the
minimum l-cuts of the domains of the dimensions.

Balke et al. [2006] further extend this level-based processing approach by consid-
ering additional (possibly user-provided) equivalence relationships between values
in the partial domain, for example to represent indifference of a user: under this
model, an object o1 is said to dominate o2 if and only if it explicitly dominates o2

with respect to at least one dimension and either it also dominates o2 with respect
to all remaining dimensions or can be considered equal based on the explicit equiv-
alence relationships. Other models and algorithms for considering explicitly pro-
vided equivalence and preference relationships include works by Chomicki [2003],
Kiessling [2002, 2005], and Wong et al. [2008].

10.3.4 Top-K Dominating Queries

Papadias et al. [2005] and Yiu and Mamoulis [2007] focus on a special case of sky-
lines, where the user is not interested in obtaining all skyline objects, but only the k
most dominating ones in terms of the number of data objects they dominate. Note
that, unlike the skyline objects, the top-k most dominating objects are not necessar-
ily mutually nondominating; it is, for example, possible that the second most dom-
inating object in the database is covered (or dominated) by the first object, and so
on. Papadias et al. [2005] extend existing progressive skyline schemes for top-k dom-
inating queries as follows: first, a skyline is computed for the given data set; then the
most dominating object in the skyline is found and removed from the data; and the
process is repeated until top-k dominating objects are located.

Yiu and Mamoulis [2007] propose branch-and-bound–based schemes that rely
on a specialized R-tree, called the aggregate R-tree (or aR-tree [Lazaridis and
Mehrotra, 2001]), where each nonleaf node is annotated with the number of data
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Figure 10.20. Let N1 through N4 denote four different MBRs in the aR-tree: it is easy to see
that no point in N1 dominates any point in N2, some points in N1 may dominate some points
in N3, and any point in N1 is dominating all points in N2. In other words, the number of
points in the region defined by the origin O and the point A is an upper bound, whereas the
number of points in the region defined by O and B is a lower bound on the number of points
dominated by the aR-tree node N1.

points contained with the corresponding minimum bounded region. These counts
are used in developing counting-guided and priority-based tree traversal schemes.
The counting-guided scheme is a best-first approach, where for each aR-tree node
encountered, a tight upper score on the number of data points dominated by this
node (Figure 10.20) is computed in an eager fashion by using the aggregate values
whenever possible, and these bounds are used to determine the order in which the
nodes are visited. The alternative, priority-based scheme, on the other hand, avoids
eager computation of tight upper bounds and instead maintains upper and lower
bounds that become gradually refined as more tree nodes are accessed. The nodes
of the aR-tree are visited based on a priority order, and those nodes whose upper
bounds are worse than the lower bounds of other nodes are pruned. The effective-
ness of the pruning process depends on the tightness of the lower bounds. Thus,
in order to minimize the likelihood of partially dominating entry pairs (such as N1

and N3 in Figure 10.20), the priority-based scheme proposed by Yiu and Mamoulis
[2007] prioritize the visited nodes based on their levels in the tree. Moreover, among
the nodes at the highest level, the priority scheme chooses those nodes with highest
upper bound to promote the early discovery of points with the highest domination
scores.

10.4 OPTIMIZATION OF RANKING QUERIES

As we discussed in Sections 1.3 and 2.1.2, the role of a query optimizer is to take a
user-provided (often declarative) query specification and create an execution plan
for it that is not likely to require unnecessary disk accesses or run-time process-
ing. For example, it is the job of the query optimizer to pick between the two
query plans shown in Figure 10.21. The query optimizer achieves this by employing
various heuristics (such as processing predicates that can eliminate irrelevant ob-
jects earlier to eliminate costly joins – as we discuss later) and leveraging statistics
about relations, tuples, and disk characteristics. Also taking into account statistical



374 Ranked Retrieval

π
name

gpa>3.7

sal<1000

Empoyee.ssn=Students.ssn

Employee Students

π
name

gpa>3.7

sal<1000

Empoyee.ssn=Students.ssn

Employee Students

πname

gpa>3.7
sal<1000

Empoyee.ssn=Students.ssn

Employee Students

πname

gpa>3.7
sal<1000

Empoyee.ssn=Students.ssn

Employee Students

(b)(a)

Figure 10.21. Two equivalent query plans; in terms of efficiency, though, the second plan is
likely to be more efficient because the restriction predicates are pushed down.

knowledge about available indexes, the query optimizer estimates the query exe-
cution cost for different query plans and chooses a plan that is relatively cheap ac-
cording to some suitable cost model. The reasons why, most of the time, the plan
returned by a query optimizer will not be the best possible plan are that (a) the cost
models are often imperfect, (b) the statistics are often rough, and (c) the number
of alternative plans is too large to be completely enumerated. Instead, most opti-
mization algorithms aim to avoid costly query plans rather than trying to find the
cheapest plan possible.

As we see in this section, the process of optimizing and executing queries that
contain top-k clauses and expensive predicates (such as those involving media pro-
cessing) is fundamentally different from optimizing relational queries.

10.4.1 Cost Estimation for Multidimensional Queries and Power Law

Query optimizers have to estimate the cost of query plans (often in terms of the I/O
they will require) to be able to select a low-cost plan. This often requires estimation
of the selectivity of the query in terms of the number of database objects that will
satisfy the query criterion. For nearest neighbor and top-k queries where the num-
ber of output objects is fixed, however, the system needs to estimate the number of
database objects that need to be considered before those that are in the query result
are identified.

Selectivities can be estimated either globally, that is, one selectivity for the com-
plete data set (e.g., [Belussi and Faloutsos, 1995]), or locally, that is, different se-
lectivities for the different regions in the data space. Spatial histograms [Acharya
et al., 1999; Theodoridis et al., 2000], which divide the data space into regions (re-
ferred to as buckets) and record the number of objects in each region, can be used
to obtain location-sensitive estimates for query selectivities. Unfortunately, because
histograms often assume that points in small regions of the space are uniformly dis-
tributed, they are not effective for most real data. The primary reason behind this is
that, as we have seen in Section 4.1 on the dimensionality curse, the density of the
space changes significantly with the distance from any given point in the space.

In order to deal with the deficiency of histograms in estimating the costs of mul-
timedia queries, Tao et al. [2003] propose a power law based selectivity estimation
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technique, which leverages the knowledge about the exponential behavior of the
data-distance distribution to obtain more accurate predictions. The power law states
that, given a point, �p, and a radius, r, the number, n, of points within r distance from
�p can be computed as

n(�p, r) = c�p × rm�p ,

where c�p is the local constant and m�p is the local exponent. Because, as described
in Section 4.1, the exponent depends on the number of dimensions of the space, m�p
captures the intrinsic dimension of the region �p lies in. The constant c�p on the other
hand, reflects the density of points in the vicinity of �p. Given a ρ-neighborhood (a
hypersphere, centered around �p with ρ radius), this constant can be computed by
dividing the number of points in the neighborhood by ρm�p .

Let us be given a data set with N elements and power-law behavior. Tao et al.
[2003] estimate the selectivity for a range search with query point, �q, and radius, r,
as follows:

selrange(�q, r) = 1
N

× c �q × rm�q .

Based on this selectivity, and assuming R-tree data structure to support searches,
Tao et al. [2003] estimate the cost (number of leaf accesses) of the preceding range
search as follows:

costrange(�q, r) = c �q
f

×
[(

f
c �q

) 1
m�q + r

]m�q

,

where f is the average fanout of the R-tree. Using the same model, Tao et al. [2003]
also estimate the cost of k nearest neighbor searches as follows:

costknn(�q, k) = 1
f
×
[

f
1

m�q + k
1

m�q

]m�q
.

10.4.2 Dealing with Expensive Filtering Predicates

Another major difference between relational and multimedia query processing is
that, in relational databases, verifying whether a given object/tuple satisfies a given
selection predicate is cheap: usually, the whole tuple fits into the main memory, and
verifying whether the tuple satisfies the given numeric or alphanumeric condition
can be done extremely fast. So these restriction predicates, which can be used to
identify unpromising tuples, are often pushed down in the query plan as much as
possible (i.e., they are processed as early as possible to eliminate nonproductive
tuples). Consider, for example, the two equivalent relational algebraic statements

πname(σgpa>3.7(σsal<1000(Employee �Employee.ssn=Students.ssn Students)))

and

πname((σgpa>3.7(Students)) �Students.ssn=Employee.ssn (σsal<1000(Employee))).

Because, the second plan processes restriction predicates earlier than the join op-
eration that will need to combine data from two different relations (and thus will
potentially have a cost quadratic in the number of input tuples), it is often preferred
to the first one.
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Because multimedia processing can be costly, however, performing restriction
predicates that involve media processing early might in fact be counterproductive
in terms of overall query processing cost. Consider, for example, the two foregoing
statements, but with image matching predicates instead of GPA and salary restric-
tions. In that case, it might in fact be more efficient to perform the join predicates
(checking SSN match) earlier to reduce the number of tuples that will be passed to
image match operators (see Figure 10.21). Hellerstein [1998] focuses on the place-
ment of these restriction predicates within a query plan. In particular, it proposes a
predicate migration algorithm, which assigns a rank to each predicate, p,

rank(p) = selectivity(p) − 1
cost per input tuple(p)

,

where the selectivity term corresponds to the ratio of the database that satisfies the
restriction predicate and shows that applying the restriction predicates in an ascend-
ing order of ranks (i.e., the more negative the rank is, the earlier it is applied) pro-
vides an optimal query plan for single table queries. For multitable queries, first the
join plan is created using a traditional query optimizer, such as the ones described
in [Chaudhuri, 1998], and then the restriction predicates are appropriately placed
(or migrated) in the plan. For this purpose, the definition of the predicate rank is
expanded to reflect the global cost of the restriction predicate p(x1, x2, . . . , xk) with
respect to the entire query q(x1, x2, . . . , xn):

rank(p) = selectivity(p) − 1
global cost(p)

,

where global cost(p)

= cost per input tuple(p) × cardinality(x1) × . . . × cardinality(xk)
cardinality(x1) × . . . × cardinality(xn)

= cost per input tuple(p)
cardinality(xk+1) × . . . × cardinality(xn)

reflects the total expected execution cost of the predicate p within the context of
the query q, normalized with respect to the database size. The placements of the
restrictive predicates within an optimal join query plan need to conform to these
(modified definitions of) ranks as well as the order implied by the join operations: in
particular, it is not possible to apply a filtering predicate that requires two attributes
that are originally in two different sources, without combining these two sources (or
predicates) using a join operation first. Thus, Hellerstein [1998]

(i) first optimizes the query plan consisting of only the join operations to obtain
a join tree describing the order in which data from different sources will be
combined; and

(ii) pushes all predicates as far down in the tree as possible:
� For any two predicates p1 and p2 such that p1 needs to precede p2 due

to the data constraints but rank(p1) > rank(p2), then, p1 is put before p2,
with no other unconstrainted predicates in between.
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This is achieved by repeatedly applying the series-parallel algorithm using
parallel chains [Monma and Sidney, 1979] to each leaf-to-root branch in the
tree, until no more progress can be made.

The result is a plan such that, along each branch of the query-plan tree, any set of
operations that have the same data constraint relationship with all the operations
outside of the set has an optimal rank ordering.

10.4.3 Dealing with Expensive Join Predicates

Unlike Hellerstein [1998], Mahalingam and Candan [2004] treat both restriction and
join predicates in a similar manner and recognize that media-related predicates can
be implemented using multiple user-defined functions or indexes, each correspond-
ing to different ways the same predicate can be invoked. For instance, a query pred-
icate, extract pattern(image,pattern), can have three different implementations that
can be picked by the query planner:

� Given an image, one implementation extracts a predetermined number of pat-
terns using a pattern extraction function.

� Given a pair of an image and a pattern, another implementation searches for the
pattern in the image using a pattern-matching algorithm.

� Given a pattern, a third implementation may retrieve all matching images using
a cache of preextracted pattern/image pairs maintained in a multidimensional
index structure.

Moreover, each implementation may return different sets of results reflecting the
particular implementation of the algorithm: For example, whereas the first alterna-
tive above limits the matches to a predetermined number of pairs per image, the sec-
ond alternative may be able to identify any match without a predetermined bound.
From the accuracy perspective, on the other hand, both the first and third alterna-
tives may result in candidate objects that are not identified because of limitations
of the data structures. Therefore, optimization algorithms have to consider (a) the
variations in the expected query result sizes as a function of the query execution
plan and (b) the expected result qualities of the different execution orders.

Mahalingam and Candan [2004] present cost, fanout, and quality models to
help in optimizing such queries. The cost model predicts the cost of a query
execution plan, fanout predicts the number of output objects, and the quality model
predicts the expected quality of the query plan. In particular, the authors show
that the traditional query optimization schemes, which assume that the number
of resulting tuples for a query or a subquery will not vary for different query
plans, are not suitable for optimizing queries that use user-provided predicates
that may return different number of tuples for different execution orders. Based
on this observation, Mahalingam and Candan [2004] introduce different cost- and
fanout-based query plan desirability criteria, including min cost, min unit cost,
and min fanout, and shows that min unit cost and min fanout schemes lend them-
selves to the traditional dynamic programming-based query optimization schemes
commonly used in relational databases. Min-cost, however, cannot be implemented
using dynamic programming, because optimal min cost plans may not have optimal
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min cost subplans and, thus, we cannot use any recursively structured algo-
rithm, such as dynamic programming, for optimization. To address this problem,
Mahalingam and Candan [2004] use the min unit cost as a heuristic to reduce the
search space at every level of a dynamic programming algorithm. In other words,
at each level of dynamic programming, the algorithm (1) ranks subplans based
on their unit costs and (2) considers only those plans with small unit costs. The
amount of pruning is controlled to achieve different levels of optimization speed
and optimality. Mahalingam and Candan [2004] also integrate the expected result
quality with cost and fanout to obtain criteria that reflect all three aspects of media
queries.

10.4.4 Rank-Aware Query Optimization

Traditional query optimizers often assume that the subplans of an optimal plan must
be optimal themselves. This assumption enables the development of relatively effi-
cient dynamic programming-based optimization algorithms that can leverage this
recursive optimality property to prune the large solution space [Chaudhuri, 1998].
However, even these systems recognize that there are exceptional cases in which
the subplan optimality may not hold. This, for example, is true when the final result
needs to be sorted: a costlier subplan that is able to provide ordered intermediate
results may be better in the long run than a cheaper subplan that fails to provide
ordered intermediate results and thus necessitates a much costlier postprocessing
step to sort the final results. Thus, in addition to maintaining cheap subplans, query
optimizers also maintain additional subplans that (though they are not the cheap-
est subplans available) may be useful in the future steps of the optimization to help
obtain interesting orders of the data cheaply.

Ilyas et al. [2004b] leverage the idea of interesting orders to extend the capa-
bilities of traditional query optimizers to handle ranked join operators along with
the more traditional join operators. For example, because for top-k ranked joins it
is useful to have input data sorted, the optimizer can be told to generate subplans
that will provide intermediate results sorted in the corresponding score attributes.
In addition to this, though, the query optimizer also needs new costing mechanisms
that will enable the optimizer to prune plans that are both higher cost and weaker in
terms of the interesting orders they satisfy. A traditional join operator consumes all
its inputs and therefore has a relatively predictable processing cost; a top-k ranked
join operator, however, does not need to consume all its inputs and can stop process-
ing as soon as the first k results are found. Therefore, the cost of the top-k ranked-
join operator can be estimated based on k, the distribution of the input data, and
the selectivity of the join operator (i.e., the likelihood of data from different input
streams to join with each other).

As in Mahalingam and Candan [2004], RankSQL [Li et al., 2005] also ex-
tends bottom-up dynamic programming style optimization with rank-aware fea-
tures. Remember from Section 10.2.7.4 that rank relations possess two properties:
membership to the relation and a ranking order implied by a given set of ranking
predicates; moreover, new ranking predicates are only introduced using the rank
operators (all other operators operate on ranking predicates that have been intro-
duced earlier). Each subplan (R,P) is defined based on the set, R, of relations and
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the set, P , of ranking predicates in the subplan; subplans with the same pairs of sets
result in the same rank relation. The plan (R,P) is obtained by

� joining two plans (R1,P1) and (R2,P2), such that R = R1 ∪R2 and P = P1 ∪
P2,

� adding a new ranking predicate to an existing subplan, or
� using a scan that reads the ranked relations from secondary storage.

Because, unlike the approach proposed by Ilyas et al. [2004b], RankSQL does not
consider top-k predicates, but only ranking predicates (with score lower bounds), it
is possible to show that no suboptimal subplan can be part of the optimal execution
strategy; hence, for all the different ways a subplan (R,P) can be obtained, only the
best plan is maintained and the others are discarded. Because the cardinality of the
results depends on the score distribution, during plan enumeration the optimizer es-
timates the output cardinality and the cost of each considered subplan by executing
it on a small set of samples and extrapolating the costs to the full database.

10.5 SUMMARY

In this chapter, we have seen that the fuzziness and imprecision inherent in multi-
media data necessitate various types of ranked query processing techniques, each
suitable for different data models and retrieval scenarios. The k-nearest neighbor
search algorithms mostly assume that the data objects can be mapped into a
multidimensional feature space and that there exists an explicit distance function
to measure how similar or different the objects are. Furthermore, these algorithms
are generally applicable when the query itself is (or can be described) within the
same feature space as the objects in the database. Top-k ranked join algorithms, on
the other hand, assume that the query can be described in the form of a fuzzy logical
statement, which in turn can be represented as a monotonic score merge function.
This function is used for combining the various scores the multimedia object has
with respect to the individual query predicates into a single score representing how
well the object matches the query. Skyline algorithms, however, focus on identify-
ing the minimal yet complete set of objects in the database that are all desirable for
a different reason. Consequently, unlike the nearest neighbor or ranked join algo-
rithms, which both require an input, k, that specifies the number of objects in the
result, the number of skyline objects is determined simply by the distribution of the
data within the feature space.
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Evaluation of Retrieval

In the previous chapters, we have covered various feature extraction, indexing, clus-
tering, and classification techniques, all of which transform the raw data collected
through various capture devices into models and data structures that support effi-
cient and effective matching and retrieval. Many of these techniques are, however,
lossy in nature:

� Feature extraction algorithms need to map a potentially infinite, continuous fea-
ture space into a finite feature model that can be represented using a finite data
structure.

� Feature selection (to avoid the dimensionality curse) for indexing and query pro-
cessing usually involves some transformation of the data to highlight important
features and to eliminate others that are not as important from consideration.

� Indexing, clustering, and classification algorithms often trade efficiency against
effectiveness. Therefore, they can introduce both false hits and misses.

As we briefly discussed in Section 4.2.1, all forms of information loss may not have
the same impact on the retrieval effectiveness. For example, false hits (which can
be eliminated through postprocessing) are often acceptable, whereas misses (which
cannot be eliminated) are not. On the other hand, in many other applications (es-
pecially in those cases where user queries are not precise and, thus, there are large
numbers of matches), completeness of the result set is less important than the pre-
cise ranking of the few initial results: a ranking that can help the user pick a promis-
ing result from the first few is better than a ranking that is complete but puts the
most promising results in the bottom of a long list.

Thus, evaluating the effectiveness of a particular multimedia retrieval process
(or a particular feature extraction, feature selection, indexing, clustering, or classifi-
cation algorithm) requires an understanding of the characteristics of the particular
application and a measure that can reflect how well this process or algorithm bridges
the underlying semantic gap between the user and the system (Section 1.1.2). Thus,
effectiveness measures have to rely on ground truth collected from the users of the
application.

380
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11.1 PRECISION AND RECALL

Consider a database, D, of multimedia objects and a user query, Q, on this database.
Let Rs ⊆ D be the set of objects identified by the system as being a match for Q. Let
Ru ⊆ D be the set of objects identified by the user (after considering all the objects in
the entire database) as matches to this query. The precision of the retrieval process
for this query is defined as the ratio of the system-returned objects that are also
identified as a match by the user:

precisionQ,D(Rs, Ru) = |Rs ∩ Ru|
|Rs| .

Essentially, precision measures the impact of false hits and thus needs to be used
when false hits are detrimental for the retrieval effectiveness. The precision values
are often reported as averages of the precision rates for multiple queries.

For the same situation as before, the recall of the retrieval process is defined
as the ratio of the user-identified matches that are also identified as a result by the
system:

recallQ,D(Rs, Ru) = |Rs ∩ Ru|
|Ru| .

Thus, recall measures the impact of misses and thus needs to be used when com-
pleteness of the result set is critical for the application. The recall values are also
reported as averages of the recall rates for multiple queries.

11.2 SINGLE-VALUED SUMMARIES OF PRECISION AND RECALL

Given two systems, their precision and recall values can be compared to get an idea
about which of these two is more effective in retrieval. If a system has both better
precision and better recall than the other, then this system is clearly the better one.
However, when one of the systems has a better precision and the other has a bet-
ter recall, comparing the effectiveness of these two systems requires a combination
function that can aggregate the precision-recall behaviors of each of these systems
into a single score; the resulting two scores then can be compared against each other
to choose between the two systems.

11.2.1 Arithmetic and Harmonic Means

A straightforward way to create a single-valued summary to evaluate a system is to
use the arithmetic average (or mean) of the precision and recall rates. Let us consider
two systems, A and B, with average precisions, pA and pB, and average recalls, rA and
rB; if pA+rA

2 >
pB+rB

2 , then it is possible to argue that the system A is more effective
than the system B. Based on this, the arithmetic average, avg(p, r), measure for
assessing the effectiveness of retrieval is defined as avg(p, r) = p+r

2 .
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Using the arithmetic average as a summary of the precision/recall behavior of a
system, however, has a significant disadvantage. Let us consider three systems, A, B,
and C, where

� pA = 0.1, rA = 0.9
� pB = 0.5, rB = 0.5
� pC = 0.9, rC = 0.1

All these three systems have the same average precision/recall value of 0.5, yet sys-
tems A and C fail significantly in one or the other aspect of retrieval effectiveness.
Therefore, arguably, B is more desirable than another system that is able to pro-
vide either very high precision or very high recall, but fails significantly in the other.
The arithmetic average, however, is not able to distinguish among the systems A, B,
and C.

The harmonic mean H(p, r) (also known as the F-measure) of the precision and
recall is defined as

H(p, r) = 2pr
p + r

.

Unlike arithmetic average, which cannot differentiate between systems if the sums
of their precision and recall values are identical, the harmonic mean tends to return
high values only in cases where both precision and recall are high. For example,
for the foregoing three systems, we have H(pA, rA) = 2(0.1×0.9)

0.1+0.9 = 0.18, H(pC, rC) =
2(0.9×0.1)

0.9+0.1 = 0.18, and H(pB, rB) = 2(0.5×0.5)
0.5+0.5 = 0.5. Thus, the harmonic mean measure

would pick the system B over the other two.

11.2.2 Weighted Arithmetic and Harmonic Means and the
Effectiveness Measure

As we mentioned earlier, different applications may associate different degrees of
importance to precision and recall. The arithmetic and harmonic mean measures
described earlier are balanced in that they do not assign a preference to precision or
recall. Therefore, in applications where either precision or recall is more preferred,
we need to use single-valued measures that can take this preference into account.

Let wp and wr (where 0 ≤ wp , 0 ≤ wr, and wp + wr = 1.0) denote the user’s pref-
erence of precision and recall, respectively. The weighted arithmetic average (or
weighted arithmetic mean), w avg(p, r), measure for assessing the effectiveness of
retrieval is simply defined as w avg(p, r) = wp × p + wr × r. When wr = wp = 0.5,
this measure naturally reduces to the balanced arithmetic mean measure given
earlier.

Let β denote how much the user prefers recall in retrieval against preci-
sion. Given β, the weighted harmonic mean of precision and recall is defined
as

Hβ( p, r) = (1 + β2)( pr)
β2p + r

.

Hβ( p, r) has the property that when r
p = β, we also have δHβ

δp = δHβ

δr . In other words,
when r = βp, the contributions of precision and recall to the effectiveness measure
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(a) (b)

Figure 11.1. (a) A query Q, the set, Rs, of results returned by the system, and the set, Ru,
of objects identified as correct matches by the user (note that |Rs| = 16, |Ru| = 14, and
|Rs ∩ Ru| = 12). (b) As k increases from 1 to 16, the recall-precision value pairs vary as
follows: 〈 1

14 , 1
1 〉; 〈 2

14 , 2
2 〉; 〈 3

14 , 3
3 〉; 〈 4

14 , 4
4 〉; 〈 5

14 , 5
5 〉; 〈 6

14 , 6
6 〉; 〈 7

14 , 7
7 〉; 〈 7

14 , 7
8 〉; 〈 7

14 , 7
9 〉; 〈 8

14 , 8
10 〉;

〈 9
14 , 9

11 〉; 〈 9
14 , 9

12 〉; 〈 10
14 , 10

13 〉; 〈 11
14 , 11

14 〉; 〈 11
14 , 11

15 〉; and 〈 12
14 , 12

16 〉.

are identical; that is, Hβ is balanced with respect to the changes in precision and re-
call exactly at the point where recall is β times the precision. Note also that, when β

is equal to 1, the weighted harmonic mean measure is identical to the balanced har-
monic mean measure given earlier. The Hβ measure (also known as the Fβ-function)
is a simplified version of the effectiveness, E, function introduced by van Rijsbergen
[1979]:

E(p, r) = 1
α
p + 1−α

r

, where E(p, r) = 1 − Fβ(p, r) and α = 1
β2 + 1

.

11.3 SYSTEMS WITH RANKED RESULTS

In many retrieval systems, such as when the underlying retrieval algorithm is based
on range (or nearest neighbor) search, it is possible to trade precision with recall
by choosing tighter or lax query ranges (or small or large numbers of neighboring
objects to be returned by the system). In effect, in these cases, the objects in the
result set, Rs ⊆ D, have an implicit order (Figure 11.1(a)). Thus, potentially, the
user can control the number, 1 ≤ k ≤ |Rs|, of the objects in Rs that are returned by
the system.

Let Rs(k) denote the first k objects in the result set. The k-precision (also known
as the precision at k) of the retrieval process is defined as the ratio of the first k
system-returned objects that are also identified as a match by the user:

precisionQ,D(Rs, Ru, k) = |Rs(k) ∩ Ru|
|Rs(k)| = |Rs(k) ∩ Ru|

k
.

Similarly, the k-recall of the retrieval process (also known as the recall at k) for this
query is the ratio of the user-identified matches that are also included in the first k
results returned by the system:

recallQ,D(Rs, Ru, k) = |Rs(k) ∩ Ru|
|Ru| .
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11.3.1 Precision-Recall Curve

The precision-recall curve of the retrieval system is obtained by plotting and inter-
polating the recallQ,D(Rs, Ru, k) and the corresponding precisionQ,D(Rs, Ru, k) val-
ues on a two-dimensional plot.

Note that as the value of k increases, the recall rate either increases or stays the
same, but it never decreases. The precision values, on the other hand, tend to start
high, but they decrease as objects that are not identified by the user as matches are
returned by the system (Figure 11.1(b)). Therefore, when plotting precision-recall
curves, the x axis is often used for representing the (monotonically increasing) recall
values, whereas the y axis represents the corresponding precision values. Because
the precision values are not monotonic, the resulting curve can have a saw shape,
where the precision values can drop and rise; this behavior is often avoided by plot-
ting an interpolated curve, where for each recall point, r, the highest precision cor-
responding to all recalls higher than r is used instead of the original precision value.
Consequently, as shown in Figure 11.1(b), the precision values reported by a given
precision-recall curve monotonically decrease as recall increases.

The precision-recall curves are often reported as averages of the precision-recall
curves for multiple queries. In order to simplify the process of averaging precision-
recall curves for multiple queries, the precision-recall curves are often reported by
using an 11-point interpolated average precision mechanism, where the precision val-
ues at the recall levels 0.0, 0.1, 0.2, . . . , 1.0 are computed through interpolation and
the corresponding eleven recall-precision pairs are reported instead of the original
recall-precision pairs.

11.3.2 Receiver Operator Characteristic (RoC) Curve

A commonly used alternative to the precision-curve is the receiver operator charac-
teristic (RoC) curve [Davis and Goadrich, 2006; Provost et al., 1998]. Whereas the
precision-recall curve is generated by plotting recall on the x-axis with respect to
precision on the y-axis, the RoC curve is created by plotting the false positive rate
(i.e., the fraction of objects that should not be in the result but have been included in
the result) on the x-axis with respect to the true positive rate (the fraction of all the
relevant objects that are included in the result) on the y-axis. Note that, whereas the
true positive rate is analogous to recall, the false positive rate does not directly mea-
sure precision; thus the precision-recall curve and the RoC curve visualize different
characteristics of the retrieval system.

When dealing with a highly skewed system (where the false positive rate grows
much faster than the true positive rate), precision-recall curves are known to give a
more accurate indication of the retrieval performance [Davis and Goadrich, 2006].

11.4 SINGLE-VALUED SUMMARIES OF THE
PRECISION-RECALL CURVE

Given two systems, their precision-recall curves can be compared to get an idea
about which of these two systems is more effective in retrieval. As shown in Fig-
ure 11.2(a), if the curve of one of these systems provides a better precision rate
for each recall value, then the corresponding system is the best of the two. If,
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(a) (b)

Figure 11.2. (a) Precision-recall curves for two systems: one of the systems is clearly better
than the other because it is able to provide a higher precision rate for each degree of recall (or,
equivalently, a higher recall for each precision value). (b) Two systems whose precision-recall
curves intersect: these two systems are harder to compare.

on the other hand, the precision-recall curves intersect as in Figure 11.2(b), then
comparing the effectiveness of these two systems requires a more careful study of
the corresponding curves. This is commonly done by computing single-value sum-
maries of the precision-recall behaviors of the two systems and comparing these
summaries instead of the curves themselves.

11.4.1 Area under the Precision-Recall Curve

Remember from Figure 11.2(a) that the curve that provides the highest precision
for each recall rate is preferable to the others. Thus, the area under the curve can
be used as an indicator of the overall effectiveness of a system. Given a precision-
recall curve c (where p = c(r)), let area(c) = ∫ 1

0 c(r)δr; then, given two precision-
recall curves cA and cB, if area(cA) > area(cB), then we can argue that the system
corresponding to the precision-recall curve, cA, is more effective than the system
corresponding to cB.

11.4.2 R-Precision

An alternative measure that can be used to compare two systems, both of which
return results in a ranked manner, is the ranked precision (or R-precision) measure.
R-precision does not rely explicitly on the precision-recall curve; instead, it indi-
rectly relates the precision of a given system to the number of relevant objects it
identifies.

Let � to be the number of relevant objects in the database; that is, � = |Ru|. R-
precision deems the given system effective if it is able to return all of the � relevant
objects in the database as its first � matches:

R−precisionQ,D(Rs, Ru) = |Rs(�) ∩ Ru|
�

, where � = |Ru|.

Note that (assuming that |Rs| ≥ �) we have

precisionQ,D(Rs, Ru, �) = |Rs(�) ∩ Ru|
|Rs(�)| = |Rs(�) ∩ Ru|

�
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and

recallQ,D(Rs, Ru, �) = |Rs(�) ∩ Ru|
|Ru| = |Rs(�) ∩ Ru|

�
.

Thus, in a sense, R-precision reflects both recall and precision of the system at
rank ρ:

R−precisionQ,D(Rs, Ru) = precisionQ,D(Rs, Ru, �) = recallQ,D(Rs, Ru, �).

In Figure 11.1, the total number of relevant objects in the database is � = |Ru| = 14.
The number of relevant objects among the first 14 returned by the system is 11.
Therefore, the R−precisionQ,D(Rs, Ru) for this example is 11

14 = 0.786.

11.4.3 (Noninterpolated) Average Precision

The (noninterpolated) average-precision (NIAP) measure [Manning and Schtze,
1999], commonly used by the TREC community for assessing the effectiveness of
text document retrieval systems [TREC], reports the average of the precision val-
ues obtained for the retrieved documents after each relevant document:

NIAPQ,D(Rs, Ru) = 1
|Rs ∩ Ru|

∑
oi∈Rs∩Ru

precisionQ,D(Rs, Ru, ranks(oi)).

11.4.4 Recall at � Precision

Unlike the R-precision and average-precision measures, which report the precision
as a function of the ranks of the relevant documents, the recall at � precision mea-
sure reports the recall at the rank where precision drops below �. As such, it mea-
sures what portion of the relevant documents the system will be able to identify
(without having to eliminate irrelevant results through a post-processing step) if the
application has a lower-bound on precision.

11.4.5 Rank First Relevant

In some applications, the user is interested in finding a relevant match quickly. In
other words, it is important that at least one relevant match is ranked close to 1, but
it is not as important that all the relevant documents are ranked close to 1. In these
cases, a rank first relevant measure, which reports the rank of the highest-ranked
relevant document, might be appropriate. Note that the closer this measure is to 1,
the better the retrieval effectiveness.

11.5 EVALUATING SYSTEMS USING RANKED
AND GRADED GROUND TRUTHS

So far, we have assumed that the system is able to rank the objects in the database
according to their degrees of matching to the given query, whereas the user who
is providing the ground truth only separates the results into relevant and nonrele-
vant sets. Naturally, a more precise way to assess the system’s ranking performance
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would be to collect a preferred ranking from the user as the ground truth and eval-
uate the degree of matching between system’s and user’s rankings.

Given an object o ∈ D, let ranku(o) be the user’s ranking of the object, whereas
ranks(o) is the system’s ranking for the same object. In general, given two objects,
oi, oj ∈ D, an effective retrieval system would ensure that

(ranku(oi) > ranku(oj)) ←→ (ranks(oi) > ranks(oj)) .

Therefore, one can compare the user’s ranking assessment with the system’s ranking
by counting the number of violations of the foregoing condition:∣∣∣{〈oi, oj〉 | (oi �= oj ∈ D) ∧

(
rank u(oi)−rank u(oj)
rank s(oi)−rank s(oj)

< 0
)}∣∣∣

|{〈oi, oj〉 | (oi �= oj ∈ D)}| .

This measure, however, would fail to capture the difference between the impacts of
errors at different ranking levels: in many retrieval applications, because the users
are only interested in the best few matches, it is more critical to ensure that the
preceding condition is satisfied for user and system rankings close to 1, whereas
violations of the condition for cases where ranks are very large are not as important.
Thus, a more precise generic measure of ranking effectiveness would be∑

〈ox,oy〉∈
{
〈oi,oj〉 | (oi �=oj∈D)∧

(
rank u(oi )−rank u(oj )
rank s(oi )−rank s(oj ) <0

)} sig ranks(ox, oy)∑
〈ox,oy〉∈{〈oi,oj〉 | (oi �=oj∈D)} sig ranks(ox, oy)

,

where sig ranks(ox, oy) represents the application dependent significance of the user
and system rankings (ranks(ox), ranks(oy), ranku(ox), and ranku(oy)) for a given pair
of objects, ox and oy.

In addition to system and user rankings, in some cases, the scores (scores and
scoreu) that the system and the user associate to the objects in the database may
also be available. In the rest of this section, we introduce various measures used in
the literature to assess the alignment between user- and system-provided rankings
and/or scores.

11.5.1 Pearson’s Correlation, Spearman’s Rank Correlation Coefficient,
and the Kendall-Tau Rank Coefficient

Given a result object, o, we expect that its system-assigned score, scores(o), will be
positively correlated with its user-supplied score scoreu(o). The Pearson’s correla-
tion coefficient (ρ), discussed in Section 3.5.1.2, is the standard measure to assess the
linear correlation between two variables, in this case the system- and user-assigned
scores of the objects in the database. When only the ranking information is available,
the correlation coefficient can be computed using object ranks instead of the object
scores as the input variables. Alternatively, when there are no ties in the rankings,
Spearman’s rank correlation coefficient [Spearman, 1904] can be used instead of the
more complex Pearson correlation coefficient:

SRCCQ,D = 1 − 6
∑

oi∈D(diffi)
2

|D| × (|D|2 − 1)
,
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where D is the database and diffi = |ranku(oi) − ranks(oi)| is the difference between
the user- and system-provided ranks for object oi.

However, both Pearson’s and Spearman’s correlation measures assume that the
relationship between the two variables being compared is linear; thus, they are
not necessarily suitable to assess the alignment between system- and user-supplied
scores which may have nonlinear relationships. In such cases, the Kendall-tau rank
coefficient, which does not make the assumption of linearity can be used [Candan
et al., 2008; Joachims, 2002; Kendall, 1938]. Let D be a database and Q be a query.
Let n denote the total number of object pairs, nc denote the number of concordant
object pairs where the ranking agreement condition is satisfied, and nd denote the
number of discordant object pairs, where the ranking agreement condition is vio-
lated. The Kendall-tau rank coefficient is defined as

τQ,D = nc − nd

n
.

Note the similarity between this and the general definition of rank assessment mea-
sures presented earlier.

11.5.2 Maximum and Minimum F-Measure Scores

In general, a result presented to the user is good if it has a high user score (rank-
ing) as well as a high system score (ranking). In some applications, however, the
user expects only that the best matching result will be in the candidate list with
a high score (ranking), but does not care about the rest of the candidates in the
result set (this is especially the case when there are only a few real matches to
a user query, but the system identifies a predetermined number anyhow). In such
cases, a retrieval system is good if the best user result is in the result list with a high
score (ranking). As we introduced in Section 11.2.1, given two values 0 ≤ x, y ≤ 1,
the F-measure (defined as 2xy

x+y ) is known to give a high score only if both x and y
are large. Therefore, given a set of results, Rs, and their scores or rankings, we can
quantify an F-measure value, Fi, for each object oi ∈ Rs. Given the F-measures of
the results, the maximum F-measure value would show whether the result set con-
tains any result matching the user’s ground truth with a very high score [Candan
et al., 2008]. Note that this is similar to the rank first relevant measure introduced in
Section 11.4.5.

In other applications, the user may require that all results presented to her be
good. In those cases, the minimum F-measure value would show whether the result
set consists only of results matching the user’s ground truth with very high scores.

11.5.3 Normalized Discounted Cumulative Gain

Unlike the foregoing measures, which consider either the results’ scores or their
ranks in assessing the retrieval effectiveness, the discounted cumulative gain mea-
sure considers both simultaneously. Let Q be a query and Rs be a set of results. As
before, for each object oi ∈ Rs, let scoreu(oi) denote the relevance score associated
the oi by the user. In addition, for 1 ≤ r ≤ |Rs|, let oid[r] denote the index (or the ID)
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of the object at rank r in the result. Then, the discounted cumulative gain measure at
rank r is defined as

DCGQ,D(Rs, Ru, r) = scoreu(ooid [1]) +
|r|∑

i=2

scoreu(ooid [i])
log2i

,

or, alternatively as

DCGQ,D(Rs, Ru, r) =
|r|∑

i=1

2scoreu(ooid [i]) − 1
log2(1 + i)

.

Intuitively, these measures associate a cumulative gain score for each position in the
result; the gains, however, are discounted by the (logarithm of the) position, because
gains at ranks closer to 1 are generally assumed to be more important than the gains
at ranks that are larger.

The normalized discounted cumulative gain (NDCG) measure, on the other
hand, associates an ideal discounted cumulative gain value, idcgi to each rank po-
sition, i, based on the score expected at that position. The normalized discounted
cumulative gain of the result set is then computed as

NDCGQ,D(Rs, Ru) = 1
|Rs|

|Rs|∑
i=1

DCGQ,D(Rs, Ru, i)
idcgi

.

Note that the normalized discounted cumulative gain measure is close to 1 only if the
discounted cumulative gain at each position is close to the corresponding ideal (or
expected) cumulative gain. In a sense, unlike the previous measure, the normalized
discounted cumulative gain measure takes into direct account the expected score-
rank relationship when assessing the retrieval effectiveness.

11.5.4 Normalized Modified Retrieval Rank

The normalized modified retrieval rank measure is defined as part of the MPEG-7
standard [MPEG-7xm] to measure the effectiveness of retrieval algorithms. Similar
to R-precision, the normalized modified retrieval rank (NMRR) measure also picks
a particular result size, k, to focus on; however, in this case, k is selected based on
the number of ground truth objects available. In particular, given a query Q, NMRR
examines the first k = 4 × |Ru| results, where Ru is the set of (ground truth) objects
identified by the user for Q.1 For any object oi ∈ Rs, NMRR defines rank(oi) as
follows:

rank(oi) =
{

ranks(oi), if oi ∈ Ru

k + 1, otherwise.

Given this, the modified retrieval rank (MRR) for the query, Q, is defined as

MRRQ,D(Rs, Ru) =

 ∑

oi∈|Ru|

rank(oi)
|Ru|


− 0.5 − |Ru|

2
.

1 When NMRRs of multiple queries are averaged to obtain a single average normalized modified re-
trieval rank, k = min(4 × |Ru|, 4 × gtm), where gtm is the maximum number of ground truth objects
for all queries.
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This MRR measure has the property that, if the objects in Ru are the top retrievals
in Rs, then its value is equal to 0. The normalized modified retrieval rank normalizes
this measure in such a way that the scores are always in the range of [0, 1]:

NMRRQ,D(Rs, Ru) = MRRQ,D(Rs, Ru)

k + 0.5 − |Ru|
2

.

Note that, unlike most other measures we presented in the chapter, the smaller the
NMRR value, the better the effectiveness of retrieval.

11.6 NOVELTY AND COVERAGE

The effectiveness measures described so far treat retrieval as a one-shot process and
assume that the user has no prior knowledge of the data in the database. In many
cases (including when relevance feedback, which we discuss in detail in Chapter 12,
is used), however, retrieval is an interactive process by which the user approaches
the desired result set incrementally, one request at a time. Consequently, the effec-
tiveness measures have to take into account how fast the user discovers the relevant
objects and what she already knows about the database.

As before, given a query, Q, over the database, D, let us assume that the system
returns the set, Rs, of results, whereas the set of correct matches to Q is Ru. In
addition, let us assume that before the query is posed, the user already knows that
R′

u ⊆ Ru is relevant to her query. The novelty measure aims to assess how many new
results the system is able to identify beyond the ones already known by the user
before query processing:

noveltyQ,D,R′
u,(Rs, Ru) = |Rs ∩ (Ru − R′

u)|
|Rs ∩ Ru| .

The coverage measure, on the other hand, aims to assess whether the system is able
to identify at least those objects that are already known by the user to be relevant:

coverageQ,D,R′
u,(Rs, Ru) = |Rs ∩ R′

u|
|R′

u|
.

Note that, given a fixed number of results to be returned by the system, novelty
and coverage are potential conflicting goals: if a result contains more unknown but
relevant results, it may not be able to cover those that are already known by the
user; conversely, if the system covers the results that are already known by the user
(and its precision is already high), it may not be able to return any unknown but
relevant results. In many cases, the most desirable situation is when an iterative
process trades irrelevant results in one iteration with relevant and unknown results
in the following one.

11.7 STATISTICAL SIGNIFICANCE OF ASSESSMENTS

As discussed in previous sections, virtually all effectiveness measures for assessing
retrieval systems require collection of ground truth from a set of users (preferably
for multiple queries) and comparing retrieval results against this ground truth. It is
important, however, to recognize that given a query, different human assessors may
have different relevance judgments. Similarly, some queries may be easier to process
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than the others. Thus, the number of assessors and the queries used for assessing a
system need to be selected in such a way that the results will be statistically signif-
icant. This requires precise formulation of the hypotheses that are being tested for
statistical significance and the use of appropriate statistical measures for verifying
or refuting these hypotheses.

11.7.1 T-Test

Let us consider an assessor comparing two systems X and Y, where given a set of
questions X has an average precision larger than Y. Before publishing these results,
however, the assessor may want to check whether, based on the available assess-
ment points, she can in fact state that the system X is better than Y in a statistically
significant manner. In other words, the assessor needs to provide evidence that the
observed difference in the average precision is not due to chance. To verify the sta-
tistical significance of her results, this assessor can formulate the (null) hypothesis

� “there is no significant difference between systems X and Y,”

and see if she can refute this hypothesis based on the available experimental data.
If she is able to refute this null hypothesis, then she can state, with confidence, that
the average precision of X is larger than the average precision of Y in a statistically
significant manner. Otherwise, she cannot make any statistically meaningful claims
and may decide to run more experiments.

The statistical test that is commonly used to assess whether the means of the data
sets are statistically different from each other or not is known as the t-test. The t-test
assumes that the per-query scores are distributed normally (an assumption that it-
self may need to be verified) and each result is a random sample from a broader
population (of queries that the user could have used if she ran the same experiment
using a larger collection of queries). Based on these assumptions, the t-test deter-
mines whether two sets of samples (i.e., sets of results) are from the same population
(i.e., there is no statistical difference between them) or from different populations
(i.e., the results are statistically different from each other). In particular, the t-test
judges the difference between the means of two sets of samples relative to the spread
of their corresponding scores. A small difference between means will be hard to de-
tect if the spread is high, whereas a large difference will be easy to detect if the
variability (or the noise) in the observations is low. Thus, the t-test discounts for the
size of the variances of the samples.

The t-test is applied differently if the observations in the two sets are paired (e.g.,
when the same set of queries are used for assessing the two systems) or independent
(e.g., when the queries used to assess the two systems are possibly different from
each other).

� Independent t-test: Let us be given two sets, X and Y, with means µX and µY and
variances σ2

X and σ2
Y, respectively. Let |X| be M and |Y| be N. The formula for

the independent t-test2 is

t = µX − µY√
σ2

X
M + σ2

Y
N

.

2 Note the similarity of this formula to Fisher’s discriminant ratio discussed in Section 9.1.1.
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� Paired t-test: Let us be given two sets, X and Y, with means µX and µY and vari-
ances σ2

X and σ2
Y, respectively. Let also |X| = |Y| = N, and let the samples be

paired. The formula for the paired t-test is

t = µX−Y − µ0

σX−Y/
√

N
,

where µX−Y and σ2
X−Y are mean and variance of the differences of the pairs, re-

spectively, and µ0 is the expected average difference between the means of X
and Y; for example, if we are testing for equivalence of the means of X and Y, we
set µ0 to 0.

Once the t-value is computed, the significance of the difference between the groups
can be assessed by first picking a level, 0 ≤ s ≤ 1, of statistical significance (or,
equally, a risk level, α = 1 − s) and checking whether the number of data points
in the samples is sufficient to match this level of statistical significance. A degree of
freedom, df, parameter is used to keep track of the number of samples. The value
of df is M + N − 2 for independent t-tests and N − 1 for paired t-tests. Statistical
tables that list lower bounds on the α for given t and df values are commonly avail-
able. This lower bound (i.e., the probability that a variate takes a value greater than
or equal to the observed value by chance) is also known as the p-value. Statistical
significance of results depends on the selected risk level α. The common practice is
to seek 95% significance (or aim for α ≤ 0.05).

11.7.2 Wilcoxon Signed-Rank Test

A commonly used alternative to the paired t-test is the Wilcoxon signed-rank test.
Unlike the t-test, the Wilcoxon signed-rank test [Wilcoxon, 1945] does not as-
sume that the data are normally distributed; thus it can be applied in more general
cases.

Let us be given two sets of values, X and Y, where |X| = |Y| = N, and let the
samples be paired (values Xi and Yi refer to the values corresponding to the related –
paired – observations; e.g., the performance assessment for the same query for two
different systems). Once again, let us assume that the evaluator formulates the (null)
hypothesis

� “there is no significant difference between X and Y,”

and tries to see if she can refute this hypothesis based on the available experimental
data. More specifically, she defines the set Zi = Yi − Xi and tests whether the median
of the values in Z is equal to 0.

Let Ri denote the rank of |Zi| among all absolute values (omitting those cases
where Zi = 0 and using average ranks where ties are observed), |Z1| through |ZN|.
The Wilcoxon signed rank parameter is defined as

W =
N∑

i=1

φiRi,

where φi = 1 if Zi > 0 and φi = 0 otherwise. Let N′ be the number of Zi, where
Zi �= 0. Assuming that the median difference really is zero, the probability that the
random sampling would result in a median difference as far from zero as observed
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(i.e., the p-value) is found using a statistical table for values W and N′. If the p-value
is small, then the difference from 0 is not by coincidence, and the null hypothesis
can be rejected. If the p-value is large, on the other hand, there is no compelling
evidence to conclude that there is a significant difference between X and Y.

The Mann-Whitney U test extends the Wilcoxon test for nonpaired independent
sample sets with potentially different sample sizes.

11.7.3 Analysis of Variance (ANOVA) Test

The analysis of variance (ANOVA) test also examines whether the differences be-
tween means of different (normally distributed) groups are significant or not. This
test, however, is useful when the evaluator is comparing the means of more than two
sample sets. Consider, for example, a researcher who has collected performance re-
sults for a set of alternative retrieval algorithms and wants to check whether there
is a statistically significant difference between the average behaviors of these al-
gorithms before further investigating these differences. Instead of comparing the
algorithms one pair at a time using the t-test, this evaluator can use the (so called
one-way) ANOVA test to compare all of the algorithms, collectively, for statistically
significant differences.

11.7.3.1 One-Way ANOVA
The (null) hypothesis the evaluator aims to reject in a one-way ANOVA test is

� “there is no significant difference between the means of the underlying popula-
tions.”

Consider a set, {X1, . . . , Xk}, of experiments, where each experiment, Xi, consists of
Ni observations. Let Xi,j denote the value of the jth observation in the ith experi-
ment (or system). One-way ANOVA treats Xi,j as

Xi,j = µ + τi + εi,j,

where µ is the common mean for all observations, τi represents the difference from
the mean in the ith experiment, and εi,j is the difference in the jth observation of the
ith experiment. In one-way ANOVA, εi,j are assumed to be normally and indepen-
dently distributed. On the other hand, the effects of individual experiments, that is,
τi, either can be fixed such that

∑
τi = 0 or can themselves be normally distributed

with a mean of 0.
The main idea in ANOVA is that if the null hypothesis is true, then the variance

due to different experiments (or treatments) and due to different observations (or
errors) should be approximately equal in magnitude. This is tested by computing
two values, mean square treatments (MST) and mean square errors (MSE), where

MST =
∑k

i=1(µi − µ)2

k − 1

and

MSE =
∑k

i=1

∑Ni
j=1(Xij − µi)2

(
∑k

i Ni) − k
.
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If the null hypothesis is false, then we should be able to argue in a statistically sig-
nificant manner that MST is larger than MSE. Thus, the so called F-value

F = MST
MSE

is used to test the equality of experiments. However, simply comparing the F-value
against 1.0 is not sufficient to reject the null hypothesis in a statistically significant
manner. Instead, the F-value obtained from the experiments needs to be compared
against the minimum F-value sufficient to reject the null hypothesis for the user-
provided risk level, α, and the degrees of freedom, k − 1 and (

∑k
i Ni) − k. If the

F-value obtained through the experiment is larger than this critical F-value, then
there is sufficient evidence to reject the null hypothesis in a statistically significant
manner (i.e., there is a significant difference in the experiments). Otherwise (i.e., the
F-value is less than the critical F-value), there is not sufficient evidence to reject the
null hypothesis claim.

The one-away ANOVA test between two samples and the t-test are essentially
identical (t2 = F). Other tests that are commonly used to assess differences across
multiple sets of values include Friedman’s analysis of variance by ranks test, the
Cochran test for binary outcomes, and the Kruskal-Wallis one-way analysis of vari-
ance by ranks (which does not assume normality of the input groups).

11.7.3.2 Two-Way ANOVA
Unlike one-way ANOVA, where there is only one independent variable (differ-
ent experiments) accounting for the variance, in two-way ANOVA there are two
variables, also referred to as the factors, affecting the dependent variable being ob-
served. Consequently, unlike the one-way ANOVA, where the only null hypothe-
sis is

� “there is no significant difference between the means of the underlying popula-
tions,”

in two-way ANOVA, there are three different null hypotheses:

� “there is no significant difference between the means of the populations for the
first factor,”

� “there is no significant difference between the means of the populations for the
second factor,” and

� “there is no significant interaction between the two factors.”

To understand the meaning of these null hypotheses, let us organize all the obser-
vations in the form of the following table:

F2,1 F2,2 . . . F2,n AVG(1)
F1,1 o1,1 o1,2 . . . o1,n avg1,1

F1,2 o2,1 o2,2 . . . o2,n, avg1,2

. . . . . . . . . . . . . . . . . .

F1,m om,1 om,2 . . . om,n avg1,m

AVG(2) avg2,1 avg2,2 . . . avg2,n
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where

� the row F1,i corresponds to the ith unique value of the first factor,
� the column F2,j corresponds to the jth value of the second factor, and
� the entry oi,j corresponds to the observed value given F1,i and F2,j.

Given these observations, the first two null hypotheses in two-way ANOVA state
the following:

� “there is no significant difference among avg1,i for different values of i (i.e.,
different values of the first factor have no impact on the observed results)”
and

� “there is no significant difference among avg2,j for different values of j (i.e.,
different values of the second factor have no impact on the observed results).”

The final null hypothesis argues that the two factors are independent. In two-way
ANOVA, there is a separate F-test for each of these three null hypotheses.

11.7.3.3 ANOVA with Repeated Measures
Let us revisit the notation we used when introducing the standard one-way ANOVA
(in Section 11.7.3.1): we have a set {X1, . . . , Xk} of experiments, where each exper-
iment, Xi, consists of Ni observations; Xi,j denotes the value of the jth observation
in the ith experiment.

Now, let us consider the jth observations of two different experiments, Xi

and Xl. In the standard one-way ANOVA, there is nothing that ties these two
observations (Xi,j and Xl,j) to each other. In some experiment designs, however,
jth observations of two different experiments are paired to each other by some
common factor, Fj (e.g., both corresponding to the evaluation of the system by
the same jth user or both corresponding to the measurement on the same jth data
set):

X1 X2 . . . Xk AVG
F1 X1,1 X1,2 . . . X1,k avgF1

F2 X2,1 X2,2 . . . X2,k, avgF2

. . . . . . . . . . . . . . . . . .

Fm Xm,1 Xm,2 . . . Xm,k avgFm

AVG avgX1 avgX2 . . . avgXk

In this case, using standard one-way ANOVA to analyze the results would not
be appropriate because this would fail to account for the correlation between the
repeated measures for the same pairing factor. In contrast to one-way ANOVA
(where there is only one null hypothesis), in ANOVA with repeated measures, one
formulates and verifies (or rejects) multiple null hypotheses:

� “there is no significant difference among avgXi for different values of i (i.e., there
is no difference between the experiments results),”

� “there is no significant difference among avgFj for different values of j (i.e., there
is no difference between the pairing factor – e.g., users of the system),” and
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� “there is no significant interaction between the experiments and the pairing
factors.”

11.7.4 Confidence Intervals and Two-Step Sampling

The number of experiment samples (assessors and queries) is important for the ac-
curacy of the estimates obtained from the sampling data. Naturally, few samples will
not provide a close approximation of the actual distribution. As more samples are
collected (by adding assessors and/or queries) to the evaluation, the performance
of the overall evaluation will likely improve because the samples will more closely
reflect the actual distribution.

However, as more and more samples are collected (and, thus, the sample mean
approaches the real mean of the data), the benefits of the additional samples will
get smaller and smaller. Unfortunately, it is usually impossible to specify in advance
how many samples will be sufficient for reaching conclusions that are statistically
significant. In such cases, a two-step sampling technique can be used [Brewer and
McCann, 1997]. In two-step sampling, an initial small set of samples is leveraged to
predict how many additional samples will be needed to achieve the target level of
statistical reliability.

Let X be a set of M samples, with mean µX and variance σ2
X. Let also the t-value

tα,d f denote the t-value corresponding to the risk level α and degree of freedom df.
The confidence interval corresponding to the set X at the risk level α and degree of
freedom dfX = M − 1 is defined as[

µX − tα/2,d fX

(
σX√

M

)
, µX + tα/2,d fX

(
σX√

M

)]
.

Intuitively, given X, we can be certain that the true mean of X is within the foregoing
confidence interval with 1 − α certainty. Obviously, for a given standard deviation,
an increase in the sample size will make the confidence interval tighter, leading to
more accurate conclusions from the sample set. The two-step sampling process uses
the mean and variance values obtained during the first sampling process to deter-
mine how many additional samples are needed to obtain a confidence interval with
the required size. Once again, let X be a set of M values (initial samples) with mean
µX and variance σ2

X. Let us assume that the experimenter wants to be 1 − α certain
that the results are within ±c of the true mean. To achieve this, the experimenter
needs a set, Y(⊇ X), of observations with N(≥ M) samples such that

tα,d fY

(
σY√

N

)
≤ c, or equivalently N ≥ t2

α,d fY
× σ2

Y

c2
.

To solve for N using this inequality, we need the values of the tα,d fY
and σY param-

eters. However, these are unknown; thus, they need to be approximated based on
the information collected during the initial, small sampling phase. In particular, the
standard deviation, σX, of the initial set of samples can be used as an approxima-
tion of the unknown σY. The value of tα,d fY

can also be approximated using tα,d fX
(if

M ≤ N, tα,d fX
is likely to be larger than tα,d fY

; therefore this will provide a relatively
pessimistic estimate of the number of additional samples needed).
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11.8 SUMMARY

Given that for various reasons multimedia retrieval is imperfect, it is important to
assess the effectiveness of various candidate retrieval algorithms, before selecting a
particular one for implementation. The choice of effectiveness measure for assess-
ing retrieval algorithms depends on the characteristics of the application (e.g., are
misses or false positives more important? Are we interested in a one-shot execu-
tion of the algorithm, or are we interested in a sequence of executions where the
user discovers more about the data at each iteration?), as well as the availability
and the type of the ground truth (e.g., is the ground truth available for assessment
simply a set of relevant objects in the database identified by the users, or have the
assessors provided more detail – such as ranks and/or relevance grades – for the as-
sessed objects?). Moreover, because the comparison of candidate systems generally
requires comparing the average behaviors of these systems, assessed based on mul-
tiple queries with ground truth provided by multiple users, it is important that these
comparisons be made in a statistically significant manner. The statistical significance
of the statements made about the systems being evaluated can be (and should be)
validated using appropriate statistical tests.



12

User Relevance Feedback
and Collaborative Filtering

As we discussed in Section 1.2, retrieval in multimedia databases is inherently im-
precise and subjective. Consequently, multimedia query processing usually involves
answering ill-posed questions: there may be multiple ways to interpret the query and
data, and the appropriate query processing strategy may be user- and use context-
dependent.

Imprecisions in retrieval can be due to many factors, including feature extraction
algorithms that are imprecise, partial matching requirements in the query, and the
imperfections in the underlying indexing, clustering, and classification algorithms.
Moreover, in the absence of precise knowledge about the objects in the database,
users’ initial queries may be too vague. The set of results provided by the system
in response to such imprecisely formulated queries, however, may contain hints to
help users make their (initially vague) specifications iteratively more precise. Espe-
cially when users are not sufficiently informed about the data (or sometimes of their
interests) to formulate a precise initial query, feedback-based data exploration plays
a critical role in helping users find the relevant information.

Given a query (say, an image example provided for similarity search), which
features of the query object are relevant (and how much so) for the user’s query
may not be known in advance. Consequently, it is almost impossible to expect that
a multimedia database will be able to provide perfect answers to a user’s query in
its first attempt. Furthermore, most of the (large number of) candidate matches are
only marginally relevant to the user’s query and must be eliminated from conside-
ration.

Thus, multimedia data management systems often complement the query pro-
cessing engine with a user relevance feedback process that can help the user
explore the result alternatives: (1) Given a query, using the available index struc-
tures, the system (2) identifies an initial set of candidate results; because the number
of candidates may be large, the system presents a small number of samples to the
user. (3) This initial set of samples and (4) the user’s relevance/irrelevance inputs
are used for (5) learning the user’s interests (in terms of relevant features), and this
information is provided as an input to the next cycle for (6) having the retrieval

398
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Figure 12.1. User relevance feedback process. See color plates section.

algorithm suitably update the query or the retrieval/ranking scheme (Figure 12.1).
Steps 2–6 are then repeated until the user is satisfied with the results returned by the
system. This process helps the system reduce the underlying imprecision and bridge
the semantic gap between the system and the user. Cao et al. [2010] differentiate
between hard and soft user feedback:

� After observing the initial set of results returned by the system, the user may
identify certain aspects of the objects or features that are critical to her interests,
but not included in the original query. These explicit assertions of additional re-
quirements are referred to as the hard feedback. Often, hard feedback is suitable
for expert users who know what they are looking for but do not know the data
to formulate “accurate” queries in advance.

� When the user does not have well-defined query criteria in mind yet, she may
want the system to rank the results in the next iteration according to the state-
ments of desirability or undesirability she provides on the current results. This is
referred to as soft feedback.

In many applications, the user is not an expert to formulate explicit assertions and,
thus, the soft user feedback is most suited for improving retrieval effectiveness. In
fact, when the database is large and dynamically growing, the user may not even be
able to provide sufficient feedback to identify the relevant objects in the database.
In such cases, collaborative filtering, where analysis of similarities between different
users’ preferences are used for predicting whether a given user will find a given
object relevant or not, may be more appropriate. In this chapter, we first focus on the
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(a) (b)

Figure 12.2. (a) A query and results and (b) the user’s relevance feedback. See color plates
section.

single user relevance feedback process. In Section 12.8, we then discuss techniques
for implementing collaborative filtering-based recommendation systems.

12.1 CHALLENGES IN INTERPRETING THE USER FEEDBACK

Consider the basic relevance feedback process:

(i) User submits a query, Q (Figure 12.2(a))
(ii) System retrieves and ranks a set, S, of objects (Figure 12.2(a))

(iii) User selects sets of relevant, R, and irrelevant, I, objects from S or provides
a preferred ranking (Figure 12.2(b))

Given the feedback, the system has to decide how to improve the retrieval results.
In its simplest form, the relevance feedback process can be thought of as a “clas-
sification” task: Given a query, Q, and the corresponding set of results, S, the user
marks some of the results in S as relevant and some others as irrelevant; with this
knowledge, the system has to classify the rest of the database into relevant and irrel-
evant objects. In this process, the interpretation of the user’s feedback by the system
may be complicated by a multitude of factors:

� Feature granularity: There are a multitude of features that can be used to de-
scribe a given media object. Therefore, understanding which features are af-
fecting the relevance/irrelevance of objects requires a feature selection process.
Available features can be of different granularities (e.g., “color” feature versus
“blue” feature). The knowledge “color is more important than shapes” will im-
ply a different adaptation mechanism from “blue is more important than red”;
thus, the system has to determine at what granularity the feedback has to be
analyzed and processed.

� Little evidence: During relevance feedback, the number of objects labeled by
the user is often very small. Moreover, most often users find it easier to express
relevance than irrelevance (possibly because there are many more ways an object
can be irrelevant to the query). Therefore, the relevance feedback process has
to be performed with only a small set of relevance/irrelevance labels.
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� Small and biased sample set: Very often, the number of objects in S available for
the user to provide relevance feedback does not exceed 10 or 20. This is sim-
ply because most users do not prefer to go over hundreds of objects to provide
relevance feedback. Moreover, this small set of objects made available to the
user are biased by the initial user query and the previous user feedback. Conse-
quently, the objects in this set are related to the query and, thus, the set is not
necessarily a good representative of the objects in the entire database.

Especially during negative feedback, when the user marks objects that are ir-
relevant to the query, this bias can be detrimental: because most objects marked
irrelevant will contain query-related features, if the bias is not taken into ac-
count, the system may incorrectly identify that these query-related features are
the causes of irrelevance.

� Early errors and the user drift: Because the initial sample set and the set of objects
labeled by the user tend to be small, the feedback process often requires multi-
ple iterations. Assuming that the user always provides consistent feedback, this
iterative process can help direct the user to the relevant objects in the database.
However, the user’s feedback over time may not be consistent. First of all, espe-
cially in earlier iterations, the user (who does not know the database well) may
provide poorly selected feedback. Even if the user is able to provide good feed-
back, because of the small size of the initial sample set, the system may not be
able to properly interpret this feedback. Moreover, during subsequent iterations,
the user may change her mind about what is most relevant. Thus, the feedback
process must be able to lower the contributions of old feedback statements rela-
tive to the newer ones.

12.2 ALTERNATIVE WAYS OF USING THE COLLECTED FEEDBACK
IN QUERY PROCESSING

Once the user’s relevance feedback is interpreted, this knowledge can be leveraged
in query processing in various ways:

� Modification of the query: Assuming that the user’s initial query was poorly
phrased, the feedback can be used to modify the user’s query in a way that elim-
inates irrelevant results (Figure 12.3(a)).

� Modification of the range: If the system recognizes that the initial query range
is too tight (missing a lot of potentially relevant results) or too lax (return-
ing a lot of false positives), the query range can be appropriately modified
(Figure 12.3(b)).

� Modification of the distance/similarity function: In the previous chapters, we
have seen that for many types of media objects, different distance or similarity
measures may be used for supporting retrieval. Relevance feedback may be used
to identify whether the measure currently being used by the system for indexing
the media objects is the most suitable one or not and for modifying the distance
measure accordingly [Yu et al., 2008] (Figure 12.3(c)).

� Modification of the feature importance/significance: One of the ways subjectiv-
ity affects retrieval is through the importances users associate to the differ-
ent features of the media objects. For example, in image retrieval, while one
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(a) (b)

(c) (d)

(e) (f)

Figure 12.3. Alternative mechanisms for relevance feedback based adaptation: (a) Query
rewriting, (b) query range modification, (c) modification of the distance function, (d) feature
reweighting, (e) feature insertion/removal, and (f) reclassification (the numbers next to the
matching data objects indicate their ranks in the result). See color plates section.

user may place more importance on color features, for another user the shape
features might be more critical. The relevance feedback process may be used
to learn the significance of different features for different users and queries
(Figure 12.3(d)).
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Note that feature importance may mean different things in different contexts:
(a) the user might be interested in seeing more (or less) of one particular feature
in the results (e.g., a user looking for images that contain a higher percentage of
“red” pixels) or (b) the user might want the retrieval to be more precise about
one of the features (e.g., a user wanting the retrieved objects to be more faithful
to the shades and amount of red in the query).

Obviously, these two different semantics require different mechanisms for
reflecting the feature significance learned through the relevance feedback pro-
cess. The first interpretation can be handled by modifying the query itself as in
the first item earlier. Depending on the feature model and the underlying query
processing scheme, the second interpretation can be implemented by
– modifying the similarity/distance function in a way that amplifies differences

along the more important features, or
– reweighting the combination function used for combining different feature

scores (see Section 3.4.3).
� Modification of the feature set: This is a special case of the previous item. Because

of the dimensionality curse in retrieval (Section 4.1), most indexing algorithms
use only a subset of the available features for indexing media objects. Based on
the relevance feedback, the constituents of the feature set used for retrieval can
be altered (by removing a less important feature and including a more impor-
tant one, Figure 12.3(e)). In other words, in this approach, the feature signifi-
cance learned through the relevance feedback process is used for supporting the
feature selection process we had discussed earlier in Section 4.2.

� Reclustering/reclassification: In most cases, media objects are preclustered
(Chapter 8) or classified (Chapter 9) to prune the database and, thus, improve
efficiency. The results of the relevance feedback process can be used to improve
the underlying clustering or classification scheme (Figure 12.3(f)). Examples of
such adaptive clustering schemes were discussed in Section 8.6.

Obviously, costs of these different feedback handling schemes are not equivalent.
Changes in the distance measure, feature set and clustering/classification scheme
(Figures 12.3(c),(e), and (f)) require changes in the organization of the data. Thus,
these three alternatives cannot be applied for each query; because they involve the
redesign of the database, they need to be applied only after sufficient feedback evi-
dence is collected after many user queries. Modifications of the query, query range,
or feature significance (Figures 12.3(a),(b), and (d)), on the other hand, do not in-
volve redesign of the database. Thus, they are relatively cheaper to execute and can
be applied for each new query.

It is also important to note that, given a query Q and the corresponding set of
results S, user feedback can be used either to reprocess the (modified) query on the
database to obtain a completely new set of results or to filter or rerank the existing
result set, S. Because it involves processing of the whole query, the first alterna-
tive is costlier than the second one, which only involves reevaluation of the media
objects already in the result set. However, because this second approach cannot help
discover previously unseen relevant objects, it can only be applied when the initial
result set, S, is thought to contain all the relevant results.
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12.3 QUERY REWRITING IN VECTOR SPACE MODELS

One of the oldest, and arguably simplest (yet often quite effective), relevance feed-
back mechanisms in information retrieval is the query rewriting (or query adjust-
ment) in the vector space (Figure 12.3(a)).

Let D be a data set consisting of media objects represented as vectors. Let
R ⊆ D be the set of all relevant items and D − R be the set of nonrelevant items.
Rocchio [1971] showed that, if R is known, under the dot product similarity mea-
sure, the optimal query can be described in terms of the elements in R:

�q = 1
|R|

∑
oi∈R

�oi

| �oi| −
1

|D − R|
∑

oi∈(D−R)

�oi

| �oi| .

The foregoing equation assumes that all the relevant objects are already known;
however, it can also be generalized for supporting the relevance feedback pro-
cess [Ide and Salton, 1971b]: Let �qj be the query at the start of the jth iteration
of the relevance feedback process, R be the set of relevant objects, and I be the set
of irrelevant objects; then, the query can be rewritten as follows:

�qj+1 = α �qj + β

|R|
∑
oi∈R

�oi

| �oi| −
γ

|I|
∑
oi∈I

�oi

| �oi| .

Here, α, β, and γ are weights that control how much emphasis is placed on the
query, positive (relevance) feedback, and negative (irrelevance) feedback, respec-
tively. Note that, in general, appropriate values for α, β, and γ themselves can vary
from user to user and query to query; thus, learning the appropriate values for a
given user and query itself can be a challenge [Yu et al., 1976].

When α = β = γ = 1, this is often referred to as the standard Rocchio scheme.
A special case of the general formulation, where the set R contains all relevant
items retrieved in the previous iterations, whereas I contains only the top-most non-
relevant items, is referred to as the Ide Dec-Hi scheme [Ide and Salton, 1971a].

12.4 RELEVANCE FEEDBACK IN PROBABILISTIC MODELS

An alternative formulation of the relevance feedback problem can be stated as fol-
lows [Robertson and Jones, 1976; Robertson and Sparck Jones, 1988; van Rijsber-
gen, 1979]: Let D be a set of objects in the database, R be the set of objects known
to be relevant, and I be the set of objects known to be irrelevant; then the goal of
the relevance feedback process is to estimate the probability p(rel|oi); that is, the
probability that an object oi ∈ D is relevant to the user query. If this probability is
correctly estimated, the only thing the system has to do is to order the objects in the
database such that

p(rel|oi) > p(rel|oj) ↔ rank(oi) < rank(oj);

in other words, those objects that are predicted to be more relevant will be ranked
closer to top, whereas objects that are not as likely to be relevant will have worse
ranks.
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The probability, p(rel|oi), is often rewritten in terms of p(oi|rel) and p(oi|rel)
(i.e., the probabilities that a relevant or nonrelevant item, respectively, looks like
oi) using the Bayesian theorem, which relates the conditional and marginal proba-
bilities of the available observations (Section 3.5.3):

p(rel|oi) = p(oi|rel)p(rel)
p(oi)

= p(oi|rel)p(rel)

p(oi|rel)p(rel) + p(oi|rel)p(rel)
,

where p(rel) is the probability that a randomly picked object in D is relevant and
p(rel) is the probability that the object is irrelevant. Because p(rel) and p(rel) are
not always known in advance, even if one can compute p(oi|rel) and p(oi|rel), it may
not be possible to directly arrive at p(rel|oi). However, using the foregoing Bayesian
formulation, the inequality p(rel|oi) > p(rel|oj) can first be rewritten as

p(oi|rel)p(rel)

p(oi|rel)p(rel) + p(oi|rel)p(rel)
>

p(oj|rel)p(rel)

p(oj|rel)p(rel) + p(oj|rel)p(rel)

and then can be further simplified as

p(oi|rel)

p(oi|rel)
>

p(oj|rel)

p(oj|rel)
.

In other words, the larger the ratio p(oi |rel)
p(oi |rel)

is, the better the rank of the object oi must
be. The relevance feedback task, therefore, is reduced to the problem of estimating
p(oi|rel) and p(oi|rel) for each object, oi.

12.4.1 Estimating p(oi |rel) and p(oi |rel)

Once again, let D be the set of objects in the database, R be the set of objects known
to be relevant, and I be the set of objects known to be irrelevant. Estimating p(oi|rel)
and p(oi|rel) using these requires the analysis of distributions (in D, R, and I) of the
features that constitute the object oi:

� If a feature dominant in R is also dominant in oi, then p(oi|rel) is likely to be
high.

� If a feature dominant in R is not dominant in oi, then p(oi|rel) is likely to be low.
� If a feature dominant in I is also dominant in oi, then p(oi|rel) is likely to be low.
� If a feature dominant in I is not dominant in oi, then p(oi|rel) has greater chance

of being high.

Similar observations can also be used to relate p(oi|rel) to the distributions of the
features in oi, R, and I. Using these to compute p(oi|rel) and p(oi|rel), however,
requires an appropriate object model.1

1 Note that probabilistic relevance feedback is especially suitable for systems with Boolean features; that
is, a given feature either exists in the media object or does not. If the feature model is not Boolean, then
when computing probabilities, a threshold is often used to decide whether a given feature is sufficiently
dominant in a given object or not.
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Let us model each object, oi, in the form of a binary vector, �oi, where if feature
fj is dominant in oi, �oi[ j] = 1, and otherwise, �oi[ j] = 0. If features are independently
distributed2 in the data set, then we can write

p(oi|rel) =

 ∏

�oi[ j]=1

p( fj = 1 | rel)




 ∏

�oi[ j]=0

p( fj = 0 | rel)


 .

Similarly,

p(oi|rel) =

 ∏

�oi[ j]=1

p( fj = 1 | rel)




 ∏

�oi[ j]=0

p( fj = 0 | rel)


 .

Therefore, the problem reduces to estimating the terms p( fj = 1 | rel), p( fj =
0 | rel), p( fj = 1 | rel), and p( fj = 0 | rel).

12.4.2 Estimating the Probabilities of Feature Occurrences
in Relevant and Nonrelevant Objects

As before, let D be a set of objects in the database. Let �q be the vector representa-
tion of the user query. Let R be the set of objects known to be relevant and I be the
set of objects known to be irrelevant. Also, let fj be an object feature. If the distribu-
tion of fj in R is similar to the distribution of fj in all relevant documents in D, then
we can simply write

p( fj = 1 | rel) = p( fj = 1 | R) = |{oi‖(oi ∈ R) ∧ ( �oi[ j] = 1)}|
|R| .

This is often assumed to be the case when fj is not dominant in the query. In contrast,
when fj is dominant in the query, then fj is more likely to occur in the result set S
than it is likely to occur in the database, D. Consequently, the distribution of fj in R
(which is the set of result objects that are marked relevant by the user) is biased and
dissimilar to the distribution of fj in D.

When this is the case (i.e., fj is dominant in the query), then we first need to
eliminate the bias on the feature by considering (instead of q) the query q(−j), where
∀fk �= fj �q(−j)[k] = �q[k] and �q(−j)[ j] = 0. Let S(−j) be the set of answers to this modi-
fied query. Then we can write

p( fj = 1 | rel) = |{oi‖(oi ∈ S(−j) ∩ R) ∧ ( �oi[ j] = 1)}|
|S(−j) ∩ R| .

The other terms, p( fj = 0 | rel), p( fj = 1 | rel), and p( fj = 0 | rel), are also similarly
computed using R and I.

When relevance information is not available or is insufficient to assess a given
feature, then p( fj = 1 | rel) and p( fj = 0 | rel) are replaced by constants, often 0.5.
The two probabilities, p( fj = 1 | rel), and p( fj = 0 | rel), on the other hand, are of-
ten approximated using the distribution of fj in the whole data set, D [Croft and
Harper, 1979; Salton and Buckley, 1990]. Also, when R is available but I is not

2 See Section 9.6.2 for algorithms for relaxing the independence assumption when the features are not
independently distributed.
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(i.e., when the user provides only positive relevance feedback), I is often approx-
imated by D − R.

12.4.3 Query Adjustment

As a corollary of the observation(
p(oi|rel)

p(oi|rel)
>

p(oj|rel)

p(oj|rel)

)
↔ rank(oi) < rank(oj),

we can argue that the best query, qopt, that the system can formulate based on user
feedback should be such that(

p(oi|rel)

p(oi|rel)
>

p(oj|rel)

p(oj|rel)

)
↔ sim(qopt, oi) > sim(qopt, oj).

Relying on the observations that

� if a feature dominant in R is also dominant in oi, then p(oi|rel) is likely to be
high,

� if a feature not dominant in I is dominant in oi, then p(oi|rel) has a higher chance
of being high,

� if a feature not dominant in R is dominant in oi, then p(oi|rel) has a higher chance
of being high, and

� if a feature dominant in I is also dominant in oi, then p(oi|rel) is likely to be high,

the term on the right-hand side can be further expanded and rewritten as∏
fk

(
�oi[k]

p( fk|R)(1 − p( fk|I))
p( fk|I)(1 − p( fk|R))

)
>
∏

fk

(
�oj[k]

p( fk|R)(1 − p( fk|I))
p( fk|I)(1 − p( fk|R))

)
.

If we take the logarithm of both sides, we have3

sim(qopt, oi) ∼ log


∏

fk

(
�oi[k]

p( fk|R)(1 − p( fk|I))
p( fk|I)(1 − p( fk|R))

) ,

and, thus, assuming the use of the dot product similarity function, we obtain

qopt ∼
〈
log

(
p( f1|R)(1 − p( f1|I))
p( f1|I)(1 − p( f1|R))

)
, log

(
p( f2|R)(1 − p( f2|I))
p( f2|I)(1 − p( f2|R))

)
, . . .

〉
.

It has indeed been shown empirically that

�qopt[k] = log
(

p( fk|R)(1 − p( fk|I))
p( fk|I)(1 − p( fk|R))

)
performs well in capturing the significance of the features; thus, it is often used as
the feedback-adjusted term weight in modified queries [Robertson and Jones, 1976;
Ruthven and Lalmas, 2003; Salton and Buckley, 1990]. Robertson [1990], on the
other hand, suggests that, although the preceding term can indeed be used for query

3 Here, we are using p( f|X) as a shorthand for p( f = 1|X).
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adjustment, for feature significance ranking, the term

log
(

p( fk|R)(1 − p( fk|I))
p( fk|I)(1 − p( fk|R))

)
× (p( fk|rel) − p( fk|rel))

is more suitable. Note that, when I = D − R, this term can be computed as

log
(

rk(|D − R| − (dk − rk))
(dk − rk)(|R| − rk)

)
×
∣∣∣∣ rk

|R| −
dk − rk

|D − R|
∣∣∣∣ ,

where rk is the number of objects in R such that fk exists and dk is the number of
objects in D with fk.

12.4.4 Dealing with the Boundary Cases

Let us consider the simplified formulation

�q′[k] = log
(

rk(|D − R| − (dk − rk))
(dk − rk)(|R| − rk)

)

for the weight of the feature fk in the adjusted query, q′. This formula can be prob-
lematic for small values of |R| and rk. In the extreme case, where

� the number of objects marked as relevant by the user is 1 (i.e., |R| = 1) and
� the feature fk does not occur or is not sufficiently dominant in this single relevant

object (i.e., rk = 0),

the term becomes log(0) = −∞. To prevent this, p( fk|R) and p( fk|I) are often ap-
proximated as

p( fk|R) = rk + 0.5
|R| + 1

and p( fk|I) = (dk − rk) + 0.5
|D − R| + 1

,

instead of rk
|R| and dk−rk

|D−R| , respectively. The fixed correction (0.5), however, is not
necessarily effective in all cases. Based on the observation that when |R| = 0 (and
hence rk = 0) the best estimate for p( fk|R) is the probability of the feature fk in
the whole database, Salton and Buckley [1990] suggest the use of the following
variation:

p( fk|R) =
rk + dk

|D|
|R| + 1

and p( fk|I) =
(dk − rk) + dk

|D|
|D − R| + 1

.

12.5 RELEVANCE FEEDBACK IN PROBABILISTIC
LANGUAGE MODELING

Remember from Section 3.5.3.2 that language modeling is a special case of the
Bayesian probabilistic models often applied in text retrieval [Lafferty and Zhai,
2001; Ponte and Croft, 1998]. Lafferty and Zhai [2001] (as was also discussed in de-
tail in Section 3.5.3.3), for example, reduce the problem of estimating the relevance
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of object oi to the problem of estimating probabilistic query and object models, θq

and θo, where

� the query model encodes user’s preferences as well as the context in which the
query is formulated, and

� the object model encodes information about the document and the data source.

Using these models, Lafferty and Zhai [2001] seek to find a set, R, of result objects
that minimizes the amount of imprecision, I = L(R, θq ∪ θo), where L is an infor-
mation loss function measuring the distance between the returned objects and the
theoretically optimal objects given the query and object models. For example, the
KL-distance (Section 3.1.3) can be used to measure the relative entropy between
the query and the document probability distributions [Zhai and Lafferty, 2001].
Note that user preferences (which are often represented in the form of P( f |u),
where u is a user and f is a feature) are inherently captured by the query model,
θq. Therefore, this and other language models are very suitable for the application
of probabilistic relevance feedback techniques.

12.5.1 Feedback using a Generative Model

Zhai and Lafferty [2001] rewrite the query model θq as

θ′q = (1 − α)θq + αθ+,

where θq is the query model based on the original assumptions, θ+ is the feedback
model, and α is a mixture parameter that controls the impact of feedback. θ+ is esti-
mated assuming that the (positive) feedback objects are generated by a probabilistic
model, p(F+|θ), which generates each feature in the set, F+, of feedback objects in-
dependently; in other words,

p(F+|θ) =
∏
oj∈D

∏
fi∈oj

p( fi|θ)count( fi,oj),

where count( fi, oj) is the amount of the feature fi in object oj and p( fi|θ) is the
probability of the feature fi given the user feedback. The probability p( fi|θ) is
often smoothed using a background collection language model p( fi|D) to reduce the
impact of the non-critical background content in the objects marked as feedback by
the user:

p(F+|θ) =
∏
oj∈D

∏
fi∈oj

((1 − λ)p( fi|θ) + λ p( fi|D))count( fi,oj) .

Intuitively the query model will be based on features that are common in the feed-
back objects, but not very common according to the collection language model. The
mixture parameter, λ, can be estimated or set empirically. The feedback model θ+ is
estimated by selecting the appropriate θ based on the maximum likelihood criterion
using an expectation maximization process (EM, see Section 9.7.4.3).
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12.5.2 Feedback using Divergence Minimization

Zhai and Lafferty [2001] also propose an alternative feedback scheme that, unlike
the preceding method (which assumes that the feedback objects are generated by
a mixture of feedback and background models and estimates the underlying feed-
back model using the maximum likelihood criterion), chooses the query model that
has the smallest average KL-distance from the smoothed feature distribution of the
feedback objects:

�KL,avg(θ, F+) = 1
|F+|

∑
oj∈D

�KL(θ, θoj ),

where θoj is the feature distribution in object oj and �KL is the KL-distance function
(Section 3.1.3). Once again, this is smoothed by incorporating the background model
in a way that reduces the impact of the background content:

�KL,smooth(θ, F+) = 1
|F+|

∑
oj∈D

�KL(θ, θoj ) − λ�KL(θ, p(.|D)),

where 0 ≤ λ < 1 is a mixture parameter and p(.|D) is the collection language model.
Given this θ+ is estimated by minimizing the KL-distance:

θ+ = argmin
θ

�KL,smooth(θ, F+).

12.5.3 Negative Feedback

Note that both of the foregoing schemes use only positive feedback in adapting the
query model based on the user feedback. Consequently, they cannot leverage the
user’s irrelevance feedback. Wang et al. [2007] propose an extension to the language
modeling approach to deal with negative feedback. In particular, similarly to the
Rocchio scheme discussed in Section 12.3, Wang et al. [2007] first estimate a negative
topic model based on the negative example documents and then penalizes objects
whose models are similar to the negative topic model. Given a set, F−, of negative
feedback objects, one possible way to achieve this is to create a negative feedback
model, θ−, through an approach similar to the ones discussed in the previous two
subsections (but using F− instead of F+).

One complication that needs to be taken into account, however, is the bias in
the sample set used for negative feedback: as discussed in Section 12.1, most objects
marked irrelevant by the user will contain query-related features; hence, if this bias
is not corrected, the system may incorrectly identify that these features cause the
irrelevance. Wang et al. [2007] eliminate the query features from the negative model
by setting their probabilities to zero.

Another complication that is specific to negative feedback is that, whereas usu-
ally there is one (or only a few) reasons why an object might be relevant, there are
often a multitude of reasons why it might be irrelevant; thus, while a single feed-
back model is often sufficient for capturing the positive feedback, multiple models
might be needed to capture the negative feedback. Wang et al. [2007] handle this by
learning subtopics from the objects marked as negative feedback using probabilistic
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latent semantic indexing (Section 4.4.2) and using each individual subtopic to learn
a different negative model. Then, given this set of negative models, the minimum
of the corresponding KL distances is used as the combined divergence. Wang et al.
[2008] show that modeling multiple negative models is more effective than a single
negative model; the authors also argue that (especially when considering negative
feedback) language model–based approaches are more effective than vector space
model–based approaches.

12.6 PSEUDORELEVANCE FEEDBACK

Several researchers [Buckley et al., 1995; Croft and Harper, 1997; Mitra et al., 1998]
suggested that one can leverage relevance feedback techniques even when user rel-
evance feedback is not available. This pseudo-relevance feedback is performed by
picking top-ranked matches to the user query as being relevant and using the fea-
tures of these in a positive feedback cycle (Figure 12.4). Although experiments
showed that pseudo-relevance feedback can be useful in improving the relevance
of the results to the user’s query, there is the risk that (especially when the initial
query results are very poor) the pseudo-relevance feedback process will actually
hurt the results more than it helps. Buckland and Gey [1994] propose an alternative
two-stage retrieval process where first a high-recall strategy is used to retrieve re-
sults to the user’s query and, then, a high-precision strategy is used to pick the best
answers within this initial result set. Essentially, the first (high-recall) stage helps
remove noise (without by mistake removing any of the real results); the second
(high-precision) stage, then, focuses on getting a more complete and precise set of
results.

12.7 FEEDBACK DECAY

As discussed in Section 12.1, a particular challenge in relevance feedback is the drift
in the user’s feedback across multiple iterations: in general, there is no guarantee
that the user’s feedback across multiple iterations will be consistent. Such inconsis-
tencies may be due to the user focusing on different aspects of the query or simply
changing her mind about what is relevant to her as she explores the available media
objects. To prevent old feedback from unnecessarily constraining the exploration
and to help the feedback process focus on the most recent feedback statements,
ostensive relevance techniques lower the contributions of old feedback statements
relative to the newer ones [Campbell, 2000a, 1995; Ruthven et al., 2002]. This is also
referred to as feedback decay or aging of user feedback.

The decay or aging factor can be inserted into the feedback models in differ-
ent ways. Campbell [2000b], for example, incorporates decay into the probabilistic
model by changing the definitions of p( fj = 1 | rel), p( fj = 0 | rel), p( fj = 1 | rel),
and p( fj = 0 | rel) in a way that accounts for feedback aging. Remember from Sec-
tion 12.4.2 that, given a feature fj (if the distribution of fj in R is similar to the distri-
bution of fj in all relevant documents in D), we can write

p( fj = 1 | rel) = p( fj = 1 | R) = |{oi‖(oi ∈ R) ∧ ( �oi[ j] = 1)}|
|R| .
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(a)

(b)

(c)

Figure 12.4. Psudo-feedback process. (a) The user’s initial query is used to receive a set of
results; (b) the top-most few results are used as positive feedback to obtain a new query;
and (c) this new query is used to get a new set of results.

To account for feedback aging, we can rewrite the foregoing equation as

p( fj = 1 | rel) =
∑

oi∈R contrib(oi) × xi,j∑
oi∈R contrib(oi)

,

where

� xi,j = 1 if oi contains feature fj and xi,j = 0 otherwise; and
� contrib(oi) ∈ [0, 1] is the probability that oi can still be accounted in the set, R, of

relevant objects (given the chosen decay behavior).
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For example, when the user feedback does not decay, contrib(oi) is simply 1 for
all objects in R and 0 otherwise. A contribution function, contrib(oi) = 2−age(oi), on
the other hand, will quickly reduce the contribution of objects in R that have been
marked as relevant in the past.

The other terms, p( fj = 0 | rel), p( fj = 1 | rel), and p( fj = 0 | rel), are also simi-
larly aged.

12.8 COLLABORATIVE FILTERING

As we have briefly discussed in Section 6.3.3, collaborative filtering [Brand, 2005;
Goldberg et al., 1992; Sarwar et al., 2000; Zunjarwad et al., 2007] is a recom-
mendation generation approach where the analysis of similarities between objects
and/or individuals’ preferences is used for predicting whether a user will prefer to
see/purchase a given media object or not. As such, collaborative filtering can be
thought of as an indirect and transparent mechanism for relevance feedback: in-
stead of the user providing explicit feedback, similar users’ past behaviors are used
as an implicit feedback to improve retrieval.

As formalized earlier in Section 6.3.3, in collaborative filtering analysis, the input
is a bipartite graph, G(Vu, Vo, E), where

� Vu is a set of N (= |Vu|) individuals in the system.
� Vo is the set of M (= |Vo|) objects in the data collection.
� E is the set of edges between users in Vu and objects in Vo denoting past ac-

cess/purchase actions or ratings provided by the users. In other words, the edge
〈ui, oj〉 ∈ E indicates that the user ui declared his preference for object oj through
some action, such as purchasing the object oj. Moreover, each edge 〈ui, oj〉 ∈ E
may have an associated vote or rating label, votei,j describing the degree of pref-
erence expressed by the user for this object.

This graph can alternatively be represented in the form of an N × M user-object
voting matrix, V , where

� if 〈ui, oj〉 ∈ E, then V[i, j] = votei,j and takes values within the domain of possible
user ratings, and

� if 〈ui, oj〉 /∈ E, then V[i, j] = votei,j = ⊥.

Note that, in addition to this graph/matrix that provides information about which
users prefer/access which objects, we can also have additional information about
users and objects to support more informed recommendations:

� Each user ui ∈ Vu may be associated with a vector �ui denoting any metadata (e.g.,
age, profession) known about the user ui.

� Each object oj ∈ Vo may be associated with a vector �oj describing the content
and metadata (e.g., title, genre, tags) of the object oj.

Relying on the assumption that similar users will prefer similar objects, collaborative
filtering systems leverage the graph G(Vu, Vo, E) and the available user and object
metadata vectors to generate recommendations.
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Collaborative Filtering as a Classification Task
The collaborative filtering process can be thought of as a classification problem

where, given a set of preference observations (the edges in E), the system is aiming
to associate a recommendation label or rating to each of the remaining user-object
pairs (i.e., (Vu × Vo) − E). For example, Breese et al. [1998] present a decision tree–
based algorithm to predict scores for unrated movies in a movie database.

Collaborative Filtering as a Top-k Retrieval Task
Alternatively, given a user ui and a query, q, collaborative filtering can be

thought of as a top-k object retrieval process, where the best k objects are selected
within the context of query q using the similarities of the users (in terms of metadata
and prior histories) and the objects they access (again in terms of metadata/content
and access histories). Given a user ui, let out(ui) denote the set of objects rated
by/accessed by ui (i.e., destinations of outgoing edges from ui); similarly, given an
object oj, let in(oj) denote the set of users who have accessed/rated oj (i.e., sources
of incoming edges to oj). Here,

� The similarity of two users, ui and uk, may be quantified using the similarity
of the metadata vectors, �ui and �uk, as well as the similarity of the users’ object
preferences (captured by the overlap between the sets, out(ui) and out(uk), of
outgoing edges in the graph).

� The similarity of two objects, oj and ol, may be measured through the similarity
of their content/metadata vectors, �oj and �ol, as well as the similarity of the sets of
users who have accessed these objects (i.e., in(oj) and in(ol), of incoming edges
in E).

Types of Collaborative Filtering Schemes
Breese et al. [1998] partition collaborating filtering algorithms into two broad

categories: in memory-based schemes the user/object database is directly used to
make predictions; in model-based approaches, on the other hand, first relevant
models (such as properties of a preferred genre or features of a user group in-
terested on a particular topic) are learned and these models are used to support
predictions.

Alternatively, collaborative filtering schemes can be classified into two cate-
gories based on whether object similarities are used in the collaborative filtering
process or not. If only the user metadata vectors are used to evaluate similarities
between the users, these are called user-based collaborative filtering schemes. When
the user-object graph or the corresponding user-object matrix is used for generating
recommendations, these are referred to as item-based approaches to collaborative
filtering [Deshpande and Karypis, 2004; Sarwar et al., 2001]. Because the relation-
ships between objects are relatively static (whereas relationships between the users
can evolve and be highly context-sensitive), in order to reduce the complexity of the
problem, item-based algorithms first focus on the relationships between objects and
then generate recommendations by finding items that are similar to other items the
user has liked.

Mooney and Roy [2000], for example, take the item-based approach to the ex-
treme and provide recommendations solely based on contents of the objects, rather
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than attempting to leverage other users’ preferences. Although such content-based
approaches have the advantage of being able to recommend previously unrated ob-
jects and to also provide explanations (in terms of object features) for their sug-
gested ratings, in most recommendation systems (e.g., [Basu et al., 1998]), object
information is used to complement the user preferences, rather than being treated
as the only information source to support recommendations.

12.8.1 Memory-Based Algorithms

In memory-based algorithms, the user-object graph, G(Vu, Vo, E), or the (equiva-
lent) voting matrix, V , is used directly for estimating the rating of a particular item
for a given user who has not already rated that item, based on the ratings of other
users on the same or similar objects.

12.8.1.1 Voting-Based CF
Breese et al. [1998] propose a voting-based approach to collaborative filtering. In
this scheme, the user-object database is represented as a voting matrix, V , where the
entry V[i, j] consists of the vote of user ui for object oj (or “⊥” if there is no voting
information). Given a user ui and object oj, where V[i, j] = ⊥, the predicted vote
for user the ui on object oj is computed as

voteavg,i +
n∑

l=1

(κ × sim(i, l))(votel,j − voteavg,l),

where

� voteavg,i is the average vote for user ui for all objects in the database,
� sim(i, l) is the similarity between users ui and ul, and
� κ is a normalizer such that the absolute values of user similarities sum up to unity,

As mentioned previously, sim(i, l) can be computed either based on available meta-
data about the objects or by leveraging the user-object database. For example,
Resnick et al. [1994] use the Pearson correlation coefficient of votes (see Sec-
tion 3.5.1.2) to measure the similarity between the users (who have at least one
matching item). However, because in general the number of objects that are voted
by both users ui and ul can be very low, Breese et al. [1998] propose a default vot-
ing strategy, where some number of additional nonvoted items are treated as being
voted by both users with a neutral or slightly negative vote. Intuitively, this has the
effect of assuming that there are some additional unspecified items on which neither
of the users has voted, but on which they would nonetheless agree.

Alternatively, Breese et al. [1998] propose to use the cosine similarity between
the voting vectors of the users to measure sim(i, l). As in the case of inverse doc-
ument frequency mechanism (see Section 4.2) used in text databases for reducing
the weights of commonly used terms, Breese et al. [1998] also suggest that reducing
the weights of the universally liked items (which are not as informative in capturing
similarity as less commonly liked items) can improve the recommendation qualities.
In particular, the term log N

Nj
, where N is the total number of users of the system and

Nj is the number of users who have voted for object oj, is used to adjust the ratings.
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Note that, in this scheme, if everyone has voted for object oj, then the contribution
of oj to the user similarity score is 0.

12.8.1.2 Nearest Neighbor–Based CF
Hill et al. [1995] look for correlations between the target user’s ratings and ratings
of known users. However, to reduce the number of correlations to be computed,
instead of using the entire user base for each prediction, Hill et al. [1995] use only
a small random subsample of the users. Among these the most similar users are
found and are used as variables in a multiple-regression equation to predict the
new user’s ratings. Such algorithms where only the few most similar users are used
for prediction are commonly referred to as “nearest neighbor”–based collaborating
filtering schemes.

One difficulty with the memory-based approaches is that, in general, only very
few truly similar users will exist in the system to support predictions. Recognizing
that simple correlation or nearest neighbor–based approaches will not be able to
overcome this data sparsity problem, Aggarwal et al. [1999] differentiate between
the concepts of horting (i.e., users being comparable in terms of their rating be-
havior) and predictability (i.e., a pair of users whose ratings are genuinely close or
opposite – but nevertheless predictive). Given a user ui, let out(ui) denote the set of
objects rated by/accessed by ui (i.e., destinations of outgoing edges from ui); simi-
larly, given an object oj, let in(oj) denote the set of users who have accessed/rated
oj (i.e., sources of incoming edges to oj). Aggarwal et al. [1999] define horting as
follows: user ui horts user uk if there is sufficient overlap between the sets of objects
they have accessed or rated: that is, if

|out(ui) ∩ out(uk)|
|out(ui)| ≥ F or |out(ui) ∩ out(uk)| ≥ G,

where F ≤ 1 and G are predetermined constants. Note that horting does not imply
predictability, because the definition of horting does not consider the values of the
ratings. A user ui is said to predict another user uk if

� uk horts ui (i.e., there is sufficient commonality among the jointly accessed or
rated objects to decide – from the perspective of uk – if ui predicts uk or not) and

� one can construct a linear transformation that translates ui’s ratings into uk’s
ratings. More specifically, ui’s ratings translate to uk’s ratings if there exist
s ∈ {−1, 1} and t such that

∑
oj∈(out(ui)∩out(uk))

|votei,j − (s × votek,j + t)|
|out(ui) ∩ out(uk)| < U,

for a given threshold U.

Let si,k and ti,k be the s and v values that minimize the foregoing term:

� If si,k ∼ 1 and ti,k ∼ 0, user ui behaves like user uk.
� If si,k ∼ 1 and ti,k > 0, user uk tends to give more positive ratings than ui.
� If si,k ∼ 1 and ti,k < 0, user uk tends to give more negative ratings than ui.
� If si,k ∼ −1, user ui behaves in a manner opposite of uk, but still predicts her.
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Aggarwal et al. [1999] create and maintain a directed graph whose nodes are the
users and whose directed edges correspond to the predictability relationships iden-
tified in the user-object database. To predict the rating of object oj for user ui, the
algorithm first identifies a set of prediction paths from the set, Uj, of users who have
rated object oj to user ui. Because the goal of these paths is to propagate predictions
from the source users to the destination user, ui, paths along which there already are
users who have rated oj are pruned. For each remaining path, the overall rating is
computed by considering all edges from the source and composing the linear trans-
formations corresponding to the edges on the path. The final rating is computed by
taking an average of the ratings predicted by all such paths.

12.8.1.3 Associative Retrieval–Based CF
Associative retrieval–based collaborative filtering techniques, such as the one pro-
posed by Huang et al. [2004], which build graph-based model of users and objects to
explore the transitive associations among them, further generalize the nearest neigh-
bor techniques. As we have already discussed in the context of web-summarization
in Section 6.3.1.3, intuitively, the higher the number of paths on the graph connect-
ing two nodes (such as an object and a user), the higher the association between
them. When we find that an object is strongly associated with a user, we can inter-
pret this as an indication that the object should be recommended to this user [Brand,
2005; Huang et al., 2004; Soboroff and Nicholas, 2000].

As we have seen in Section 6.3.2, associative retrieval algorithms are often im-
plemented through some form of graph-based spreading activation technique: when
some of the nodes in the graph are activated, spreading activation follows the links
of the graph iteratively to activate other nodes that can be reached from these initial
nodes. Once the iterations of the spreading process are completed, the final degrees
of activation of the nodes of the graph are treated as the degrees of association of
these nodes to the starting nodes. Huang et al. [2004] reduce the collaborative filter-
ing task into associative retrieval as follows: Given the bipartite user-object rating
graph, G(Vu, Vo, E), where

� Vu is a set of N (= |Vu|) individuals in the system,
� Vo is the set of M (= |Vo|) objects in the data collection, and
� E is the set of edges between users in Vu and objects in Vo denoting past ac-

cess/purchase actions or ratings provided by the users,

we create a single directed graph, G′(V′, E′), where

� V′ = Vu ∪ Vo,
� for edge 〈ui, oj〉 ∈ E, there are two edges, 〈ui, oj〉 and 〈oj, ui〉 in E′, and
� for all vi ∈ V′ there is an edge 〈vi, vi〉 in E′.

Given G′ and a user ui, the spreading activation process is applied starting from
ui ∈ V′. Here the amount of spreading can be regulated based on the ratings asso-
ciated with edges: users spread their activation levels more to the objects that they
rate higher; similarly objects spread their activations levels more to the users who
rated them higher. Finally, when the process stops, the object nodes (that are not
already in out(ui)) with the highest associations are recommended to the user ui.



418 User Relevance Feedback and Collaborative Filtering

12.8.2 Model-Based Algorithms

Memory-based schemes work reasonably well when the user for whom the predic-
tion is being made has rated a significant number of objects [Breese et al., 1998]. To
help where this is not the case, the model-based approaches aim to create seman-
tically richer models. Unlike the memory-based approaches, where the recommen-
dation is directly computed from the underlying user-object database, in the model-
based schemes, first an intermediary model is extracted and this model is used to
support predictions.

12.8.2.1 Classification-Based CF
One model-based approach is to see the collaborative filtering problem as a classi-
fication problem (where recommendation labels are attached to unlabeled objects
based on the discovered dependencies between the observed object ratings). Un-
der this formulation, many of the classification schemes presented in Chapter 9 can
be applied to solve collaborative filtering problem. Breese et al. [1998], for exam-
ple, create a Bayesian network where each node corresponds to an object in the
database and the states of the nodes correspond to the possible votes (including no
vote or “⊥”). The Bayesian network is trained using the available votes (including
“⊥”); in the resulting Bayesian network each object will have a set of predictor ob-
jects (which are the best predictors of the votes of this object). In particular, Breese
et al. [1998] use the learning algorithm presented by Chickering et al. [1997] to cre-
ate, for each object, a decision tree (see Section 9.1) that determines the probability
of this object being relevant for a given user, based on a set of other objects’ having
been preferred/accessed by the user.

Note that the predictability-based scheme we discussed in Section 12.8.1.2 is sim-
ilar to the scheme described above, except that the predictability is measured among
users (instead of among objects) and a linear model is used to quantify predictability
instead of a Bayesian probabilistic model as in Breese et al. [1998].

12.8.2.2 Clustering-Based CF
One problem with memory-based schemes is that the size of the user-object rating
database tends to be very large for run-time predictions. Moreover, the rating ma-
trix tends to be sparse, making predictive analysis less effective [Billsus and Pazzani,
1998]. Clustering-based collaborative filtering schemes deal with these problems by
recognizing that instead of treating individual users, it may be possible to identify a
set, T , of types of users that capture a common set of preferences or tastes [Breese
et al., 1998]. Similarly, the set of objects can also be clustered into a set, G, of genres,
representing different content or topic types. Given such clusters, then, the proba-
bility p(votei,j = k) can be formulated as

p(votei,j = k) =
∑
t∈T

∑
g∈G

p(votei,j = k | (ui ∈ t) ∧ (oj ∈ g))p(ui ∈ t)p(oj ∈ g).

Note that, for reducing the impact of the sparsity problem, metadata about the users
and the objects can be represented by additional random variables, and the preced-
ing model can be extended with prior and conditional probability distributions of
these variables. The foregoing model, where users are assumed to fall into certain
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latent classes and object ratings are conditionally independent of the user given the
user’s class, is often referred to as the mixture of multinomials model (or as the
aspect model).

Breese et al. [1998] use expectation-maximization (EM, see Section 9.7.4.3) to
cluster users into m types based on their votes. Hofmann [2001] also relies on EM
to identify to what extent a user participates in a common interest pattern, that is,
which fraction of a given user’s ratings are explained by a latent (hidden) reason. In
general many of the dimensionality reduction (such as PCA – see Section 4.2.6) and
clustering schemes covered in Chapter 8 can be used to put together users based
on preference types or objects based on access patterns. For example, the N × M
user-object rating matrix, V , can be analyzed through the latent semantic analy-
sis process to identify meta-users, meta-products, and their latent associations. Re-
member from Section 4.4.1.1 that the singular value decomposition can be used to
eigen-decompose the matrix V into three matrices, V = U�OT, such that

� the r column vectors of the N × r matrix U would form an r-dimensional basis
in which the N users can be described (i.e., the columns of U can be thought
of as the meta-users of the given system, each corresponding to a different taste
group);

� The r column vectors of the M × r matrix O (or the rows vector of OT) would
form an r-dimensional basis in which the M objects can be placed (i.e., the or-
thogonal columns of O can be thought of as independent genres, each of which
described as a combination of the objects in the database); and

� the values of the diagonal r × r matrix � can be used for representing the
strengths of the corresponding genre-tastes in the database.

Knowledge of such high-level user tastes, corresponding genres, and their strengths
in the database can be used in supporting cluster-based recommendations [Billsus
and Pazzani, 1998; Nati and Jaakkola, 2003]. Other alternative techniques one can
use for identifying user and object clusters include

� co-clustering applied on the user-object rating matrix, V (see Section 8.7), and
� graph clustering/partioning techniques (see Section 8.2) applied on the N × N

user-similarity matrix U and M × M object-similarity matrix O. These matri-
ces can be generated based on user-user and object-object correlation or co-
sine similarities, as is done in the voting-based collaborative filtering schemes
(Section 12.8.1.1).

12.8.3 Combining Model- and Memory-Based Approaches

Note that there are many different ways one can approach the collaborative filtering
problem, each with different assumptions. Experimental results showed that often
the predictions made by different collaborative filtering algorithms do not agree
with each other. One way to reduce the bias due to the use of a priori selection
of model- and memory-based approaches is to combine them into hybrid schemes.
Pennock et al. [2000], for example, present a probabilistic approach that combines
model- and memory-based schemes. In particular, instead of modeling taste groups
by clustering multiple users based on their preferences, the rating vector of each
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user is treated as an individual predictor as in the memory-based schemes. On the
other hand, differently from the purely memory-based schemes, the ratings in the
database are not treated as users’ ideal ratings, but only as noisy approximations of
users’ true ratings. More specifically, Pennock et al. [2000] model user ui’s person-
ality as an unknown vector, �̂ui, of true ratings of the user for all the objects in the
database. Pennock et al. [2000] also assume that users’ reporting of their ratings is
subject to noise (thus the same user may report different ratings on different occa-
sions); in particular user ui’s observed rating, votei,j, for object oj is drawn from an
independent normal distribution with mean �̂ui[ j]. In other words,

p(votei,j = k | �̂ui[ j] = l) ∼ e
(k−l)2

2σ2 .

Let us assume that there are N users of the system and M objects in the database.
Assuming that given a user’s personality type his or her ratings are independent and
assuming that the distribution of ratings vectors in the database is representative
of the distribution of personalities in the population of users (in a sense, each user
ui corresponds a different type ti), the probability that the user ui would rate an
(unrated) object oj with rating k can be modeled as

p(votei,j = k|votei,1, . . . , votei,M)

=
N∑

l=1

p(votei,j = k | �̂ui = �tl) p( �̂ui = �tl | votei,1, . . . , votei,M).

Here, the term p(votei,j = k | �̂ui = �tl) can be computed using the Gaussian distribu-
tion assumption stated earlier. In order to compute the second multiplier, we need
to apply Bayes’ theorem:

p( �̂ui = �tl|votei,1, . . . , votei,M)

∼

 M∏

j=1

p(votei,j | �̂ui[ j] = �tl[ j])


 p( �̂ui = �tl).

Once again, the term p(votei,j | �̂ui[ j] = �tl[ j]) can be computed using the Gaussian
noise assumption. Finally, relying on the aforementioned assumption that the distri-
bution of ratings vectors in the database is representative of the distribution of per-
sonalities in the target population of users, we can set the second term, p( �̂ui = �tl), to
1
N to complete the computation.

12.8.4 Ensemble (or Boosting) Style CF

Another approach to reduce the bias in the recommendations due to the a priori
selection of the collaborative filtering technique is to use multiple predictors and
pick the recommendations agreed by most.
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12.8.4.1 Combining Ratings
Nakamura and Abe [1998], for example, present an ensemble-style4 weighted ma-
jority scheme, where given a user ui and object oj, a large number of simple rec-
ommendation strategies (or weak recommenders, each one essentially modeling an
expert for predicting ratings for some subset of objects and users5) are used to pre-
dict the corresponding ratings. Each expert is given a weight based on its past correct
and incorrect predictions. Finally, a single combined rating is computed by taking
the weighted average of all the expert ratings.

One problem with this approach to combining recommendations is that using
absolute values of the ratings of individual objects (instead of the rankings of the
objects with respect to each other) is likely to be prone to errors: in general, the
rankings implied by the weak recommenders are likely to be more accurate than
the absolute ratings they associate to the objects. Therefore, an alternative approach
to combining recommendation evidence from multiple weak recommenders into
a single recommendation is to combine the rankings in a way that minimizes the
number of disagreements [Cohen et al., 1998; Freund et al., 2003].

12.8.4.2 Combining Rankings using AdaBoost
Cohen et al. [1998] present a two-stage approach to combining rankings. In stage
1, the algorithm learns a preference function, pref (oj, ol) : Vo × Vo → [0, 1], which
represents how certain the system is (based on the individual rankings provided by
the weak recommenders) that oj should be ranked before ol. In particular,

� if pref (oj, ol) ∼ 1 then oj should be ranked before ol;
� if pref (oj, ol) ∼ 0.5 then there is no sufficient evidence to rank oj before ol (or

vice versa); and
� if pref (oj, ol) ∼ 0 then ol should be ranked before oj.

In the second stage, this preference function is evaluated over all pairs of objects
in the database and an ordering that agrees best with this preference function is
selected.

Let R = {r1, . . . , rh} be the set of weak recommenders (or experts). Let ranki :
Vo × Vo → [0, 1] be the ranking returned by ri, such that for all object pairs oj

and ol,

� ranki (oj, ol) = 1, if the weak recommender ranks oj before ol;
� ranki (oj, ol) = 0, if the weak recommender ranks ol before oj; and
� ranki (oj, ol) = 0.5, if either oj or ol is unranked by the weak recommender.

Note that the rank() function ignores the absolute values of the ratings but focuses
solely on the recommendation ranking of the objects.

4 See Section 9.1.3 for other examples of ensemble-based classification process.
5 Note that, in the extreme case, each weak recommender corresponds to a single individual user of the

system; in this case, the boosting schemes generalize the voting-based collaborative filtering techniques
discussed in Section 12.8.1.1.
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Given a set, R, of weak recommenders and their rankings, Cohen et al. [1998]
first learn a preference function of the form

pref (oj, ol) =
∑
ri∈R

wi ranki (oj, ol),

where wi is the weight for the weak recommender ri. These weights are learned in-
crementally through user feedback using an AdaBoost-based strategy [Freund and
Schapire, 1997; Schapire and Singer, 1999] (see Section 9.9): the algorithm assumes
that the user feedback is a set of statements of the form “oj should be ranked before
ol”; those weak recommenders whose rankings agree with the feedback are given
higher weights than the weak recommenders whose rankings disagree with the user
statements.

Once the pref () function is learned, the next step is to find an optimal total or-
dering, >opt (where oj >opt ol iff oj is ranked before ol in the total ordering), that
agrees with this preference function; that is,

agree(>opt, pref ) =
∑

oj,ol s.t. oj>optol

pref (oj, ol),

is maximized. Cohen et al. [1998] show that finding a total order that maximizes this
agreement term is NP-complete. Thus, instead of an optimal algorithm, it provides
an approximate algorithm that can find a solution within a factor of 0.5 of the op-
timal agreement; that is, if >apx is the total order returned by the approximation
algorithm, then

agree(>apx, pref ) ≥ 1
2

agree(>opt, pref ).

This approximation algorithm proceeds, in a greedy fashion, as follows. Let Vr be
initially an empty set (i.e., Vr = ∅);

(i) The algorithm computes a weight π(oj) for each unranked object:

∀oj∈(Vo−Vr) π(oj) =
∑

ol∈(Vo−Vr)

pref (oj, ol) −
∑

ol∈(Vo−Vr)

pref (ol, oj).

Intuitively, the weight of the object oj corresponds to the amount of evi-
dence suggesting that oj should be ranked early relative to the other objects
in the database against the amount of evidence indicating that oj should be
ranked late relative to the other objects.

(ii) Next, the algorithm picks the highest weighted unranked object (i.e., the
object with the best evidence to be ranked early relative to the other un-
ranked objects); let this object be o∗:
(a) First, the object is included in the total order, >apx, such that

� ∀oj∈Vr (oj >apx o∗), and
� ∀oj∈(Vo−(Vr∪{o∗})) (o∗ >apx oj).

(b) Then, the object is included in the set of objects that have already been
ranked; that is, Vr = Vr ∪ {o∗}.

The foregoing process is repeated until Vr = Vo. Intuitively, at each iteration, the
weights of the objects are updated based on the ranking evidence relative to the
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remaining, not-yet-ranked objects. Based on this evidence, at the end of the itera-
tion, a winning object is selected and returned to be recommended to the user.

12.8.4.3 Combining Rankings using RankBoost
One problem with the preceding approach is that, because of the inherent compu-
tational complexity of the total order extraction process, the system has to rely on
a heuristic that can have, in the worst case, only half of the optimal agreement be-
tween the evidence provided by the individual rankings. RankBoost [Freund et al.,
2003] uses a similar problem formulation and solution framework, but avoids this
intractability problem. Once again, let R = {r1, . . . , rh} be the set of weak recom-
menders (or simply users of the system who provide their own preference rankings
for the objects in the database). This time, however, the ranking function of weak
recommender, ri, is defined slightly differently:

� For objects oj, ranki (oj) = ⊥ means oj has not been ranked by ri.
� For all object pairs, oj and ol, such that ranki (oj) �= ⊥ and ranki (ol) �= ⊥,

– ranki (oj) > ranki (ol), if the weak recommender ranks oj before ol; and
– ranki (oj) = ranki (ol), if the weak recommender ranks oj and ol the same.

RankBoost first finds a combined ranking, rank ′ : Vo → {0, 1} with a similar inter-
pretation, but without any ⊥; that is, all objects (even those that have not been
ranked by the weak recommenders) will be ranked by this combined recommender.
This initial combination, however, is still weak in the sense that it has not been
verified (and boosted) based on further user feedback. Thus, RankBoost uses ad-
ditional user feedback to improve the combined ranking into a final ranking func-
tion rank∗ : Vo → R. In RankBoost, the feedback used for boosting the rankings is
modeled as a set of statements of the form “oj should be ranked before ol.” More
specifically, feedback is represented as a function f :Vo → {0, 1} such that

� f(oj, ol) > 0 means oj should be ranked before ol,
� f(oj, ol) < 0 means oj should be ranked after ol, and
� f(oj, ol) = 0 means that there is no preference between oj and ol.

Given a set R = {r1, . . . , rh} of weak recommenders, a threshold, θ ∈ R, a default
value, α ∈ {0, 1}, and a weak recommender ri ∈ R, let us define rankθ,α,i : Vo → R as
follows: for all oj ∈ Vo,

� rankθ,α,i(oj) = 1, if ranki (oj) > θ,
� rankθ,α,i(oj) = 0, if ranki (oj) ≤ θ,
� rankθ,α,i(oj) = α, if ranki (oj) = ⊥.

Given a feedback function f(), RankBoost computes a weak-ranking function,
rank ′ : Vo → R by selecting θ, α, and ri in such a way that maximizes the term
|match(θ, α, ri)|, where

match(θ, α, ri) =
∑

f(oj,ol)>0

I(oj, ol) (rankθ,α,i(oj) − rankθ,α,i(ol)),

and setting rank ′ = rankθ,α,i. Here, I(oj, ol) is a probability distribution denoting
how critical it is to maintain oj ranked before ol (if oj does not need to be ranked
before ol, then I(oj, ol) = 0). Initially, I(oj, ol) is set to c × max(0, f(oj, ol)) and, to



424 User Relevance Feedback and Collaborative Filtering

ensure that I is a probability distribution, the constant c is selected in such a way
that ∑

oj,ol

I(oj, ol) = 1.

Note that, unlike in the greedy algorithm described earlier, RankBoost does not
treat each and every pair of objects equivalently: while maintaining the correct rel-
ative order may be very critical for one pair of objects in the database, it may be
less so for another pair. In fact, it is this importance function, I() that is boosted
iteratively by focusing the precision of the ranking on the most important object
pairs.

Given the pair importance function I(), the term match(θ, α, ri) can be simplified
as follows:

=
∑

f(oj,ol)>0

I(oj, ol) (rankθ,α,i(oj) − rankθ,α,i(ol))

=
∑
oj,ol

I(oj, ol) (rankθ,α,i(oj) − rankθ,α,i(ol))

=
∑
oj,ol

I(oj, ol) rankθ,α,i(oj) −
∑
oj,ol

I(oj, ol) rankθ,α,i(ol)

=
∑
oj,ol

I(oj, ol) rankθ,α,i(oj) −
∑
ol,oj

I(ol, oj) rankθ,α,i(oj)

=
∑

oj

rankθ,α,i(oj)

(∑
ol

I(oj, ol) −
∑

ol

I(ol, oj)

)

=
∑

oj

rankθ,α,i(oj)
∑

ol

(I(oj, ol) − I(ol, oj)).

=
∑

oj

rankθ,α,i(oj) π(oj).

Note that the object potential function,

π(oj) =
∑

ol

(I(oj, ol) − I(ol, oj)),

can be computed once for the given I() and used repeatedly when scanning alter-
native values of θ, α, and ri to search for the triple that will maximize the term
|match(θ, α, ri)|. Once the appropriate θ, α, and ri are found, the ranker, rankθ,α,i,
is selected as the weak ranker, rank ′, corresponding to I().

Starting from the initial distribution, I(oj, ol) = c × max(0, f(oj, ol)), RankBoost
iteratively adjusts the importance function I() (and the corresponding weak ranker
rank ′) to compute the final ranking function rank∗ as follows:

(i) ∀oj,ol I1(oj, ol) = c × max(0, f(oj, ol)).
(ii) Starting from t = 1 until t = T, the algorithm iteratively computes new weak

rankers and the associated weights:
(a) It first finds the weak ranker, rank ′

t, corresponding to It() as described
earlier.
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(b) Let mt = match(θ, α, ri) be the degree of match corresponding to rank ′
t;

RankBoost defines the weight corresponding to the weak ranker rank ′
t

as wt = 1
2 ln

(
1+mt
1−mt

)
.

(c) Next, the algorithm computes the next pair-importance function, It+1(),
as follows:

∀oj,ol It+1(oj, ol) = ct It(oj, ol) ewt(rank ′
t(ol)−rank ′

t(oj)),

where ct is selected in such a way that∑
oj,ol

It+1(oj, ol) = 1.

(iii) Finally, RankBoost computes the boosted ranking function rank∗ as a
weighted combination of all the weak rankers computed so far:

∀oj rank∗(oj) =
T∑

t=1

wt rank ′
t(oj).

This boosted ranking function (computed based on the recommendations provided
by the available weak recommenders and taking into account the user feedback)
can now be used for selecting and recommending the best objects to the user.

12.9 SUMMARY

In this chapter, we have discussed user relevance feedback and collaborative filter-
ing techniques, both designed to improve the relevance of the objects presented to
the users. The user relevance feedback process leverages an iterative framework,
where the semantic gap between what the user wants and what the system inter-
prets as what the user wants is incrementally bridged. The collaborative filtering
technique, on the other hand, takes a more proactive approach and (assuming that
there were in the past other users of the system who have made similar queries
and obtained results that they deemed relevant) relies on the relevance judgment of
other users to improve the quality of the results. In the extreme case, recommenda-
tion and social-networking systems completely avoid querying and, simply based on
similarities between the profiles of the users and based on their declared relation-
ships (such as “friend”), identify and present relevant objects even before the user
may think about searching for new objects. Achieving this in a most effective and
efficient manner is, in a sense, the holy grail of multimedia retrieval.
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Sibel Adali, K. Selçuk Candan, Su-Shing Chen, Kutluhan Erol, and V. S. Subrah-
manian. The advanced video information system: data structures and query pro-
cessing. Multimedia Syst., 4(4):172–186, 1996.

Sibel Adali, Corey Bufi, and Maria Luisa Sapino. Ranked relations: Query lan-
guages and query processing methods for multimedia. Multimedia Tools Appl.,
24(3):197–214, 2004.

Sibel Adali, Maria Luisa Sapino, and Brandeis Marshall. A rank algebra to support
multimedia mining applications. In MDM ’07: Proceedings of the 8th International
Workshop on Multimedia Data Mining, pages 1–9, 2007.

R. Adams and L. Bischof. Seeded region growing. IEEE Trans. Pattern Anal. Mach.
Intell., 16(6):641–647, 1994.

Charu C. Aggarwal, Joel L. Wolf, Kun-Lung Wu, and Philip S. Yu. Horting hatches
an egg: a new graph-theoretic approach to collaborative filtering. In KDD ’99:
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 201–212, 1999.

R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transitive
relationships in large data and knowledge bases. In SIGMOD ’89: Proceedings of
the 1989 ACM SIGMOD International Conference on Management of Data, pages
253–262, 1989.

427



428 Bibliography

A. V. Aho and M. J. Corasick. Efficient string matching: An aid to bibliographic
search. Communications of the ACM, 18(6):333–340, June 1975.

H. Akaike. A new look at the statistical model identification. IEEE Trans. Automat.
Contr. 19(6):716–723, 1974.

D. Akca. Generalized Procrustes analysis and its applications in photogrammetry.
In Internal Colloquium at Photogrammetry and Remote Sensing Group of IGP –
ETH Zurich, Zurich, Switzerland, 2003.

James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

James F. Allen. Towards a general theory of action and time. Artif. Intell., 23(2):
123–154, 1984.

D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean sum-
of- squares clustering. Cahiers du GERAD, G-2008-33, 2008.

Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126:183–235, 1994.

A. Amir, G. M. Landau, M. Lewenstein, and N. Lewenstein. Efficient special cases
of pattern matching with swaps. Inf. Proc. Lett., 68(3):125–132, 1998.

Yali Amit and Donald Geman. Shape quantization and recognition with random-
ized trees. Neural Comput., 9(7):1545–1588, 1997.

D. P. Anderson. Techniques for reducing pen plotting time. ACM Trans. Graph.,
2(3):197–212, 1983a.

John R. Anderson. A spreading activation theory of memory. J. Verbal Learn. Ver-
bal Behav., 22:261–295, 1983b.

Alexandr Andoni and Piotr Indyk. Efficient algorithms for substring near neigh-
bor problem. In SODA ’06: Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1203–1212, 2006a.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions. In FOCS ’06: Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science, pages 459–468,
2006b.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.

Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan.
An introduction to mcmc for machine learning. Mach. Learn., 50(1–2):5–43,
2003.

Benjamin Arai, Gautam Das, Dimitrios Gunopulos, and Nick Koudas. Anytime
measures for top-k algorithms. In VLDB, pages 914–925, 2007.

Hiroshi Arisawa, Takashi Tomii, and Kiril Salev. Design of multimedia database
and a query language for video image data. In ICMCS, 1996.

Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela
Y. Wu. An optimal algorithm for approximate nearest neighbor searching in fixed
dimensions. In ACM-SIAM Symposium on Discrete Algorithms, pages 573–582,
1994.

Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela
Y. Wu. An optimal algorithm for approximate nearest neighbor searching fixed
dimensions. J. ACM, 45(6):891–923, 1998.

Y. Alp Aslandogan, Chuck Thier, Clement T. Yu, Chengwen Liu, and Krishnaku-
mar R. Nair. Design, implementation and evaluation of score (a system for



Bibliography 429

content based retrieval of pictures). In ICDE ’95: Proceedings of the Eleventh
International Conference on Data Engineering, pages 280–287, Washington, DC,
USA, 1995. IEEE Computer Society.

Bengt Aspvall and Yossi Shiloach. A polynomial time algorithm for solving systems
of linear inequalities with two variables per inequality. SIAM J. Comput., 9(4):
827–845, 1980.

M. P. Atkinson, F. Bancillon, D. De-Witt, K. Dittrich, D. Maier, and S. Zdonik. The
object-oriented database system manifesto. In Proceedings of the First Deductive
and Object-oriented Database Conference, pages 40–57, Kyoto, 1989.

Jeffrey R. Bach, Charles Fuller, Amarnath Gupta, Arun Hampapur, Bradley
Horowitz, Rich Humphrey, Ramesh C. Jain, and Chiao-Fe Shu. Virage Image
Search Engine: an Open Framework for Image Management, Volume 2670, pages
76–87. SPIE, 1996.

R. Baeza-Yates and G. H. Gonnet. Fast text searching for regular expressions or
automaton searching on tries. J. ACM (JACM), 43(6):915–936, 1996.

R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. In
SIGIR ’89: Proceedings of the 12th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 168–175, 1989.

Ricardo Baeza-Yates and Gaston H. Gonnet. A new approach to text searching.
Commun. ACM, 35(10):74–82, 1992.

Ricardo Baeza-Yates and Gonzalo Navarro. New and faster filters for multiple ap-
proximate string matching. Random Struct. Algorithms, 20(1):23–49, 2002.

Ricardo Baeza-Yates and Gonzalo Navarro. Faster approximate string matching.
Algorithmica, 23:174–184, 1999.

Ricardo A. Baeza-Yates. A unified view to string matching algorithms. In SOFSEM
’96: Proceedings of the 23rd Seminar on Current Trends in Theory and Practice of
Informatics, pages 1–15, 1996.

Ricardo A. Baeza-Yates and Chris H. Perleberg. Fast and practical approximate
string matching. In CPM ’92: Proceedings of the Third Annual Symposium on
Combinatorial Pattern Matching, pages 185–192, 1992.

Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Re-
trieval. ACM Press/Addison-Wesley, 1999.

Gianfranco Balbo. Introduction to Stochastic Petri Nets, pages 84–155, 2002.
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Jong Wook Kim, K. Selçuk Candan, and Junichi Tatemura. Efficient overlap and
content reuse detection in blogs and online news articles. In WWW ’09: Pro-
ceedings of the 18th International Conference on World Wide Web, pages 81–90,
2009.

Michelle Y. Kim and Junehwa Song. Multimedia documents with elastic time. In
MULTIMEDIA ’95: Proceedings of the Third ACM International Conference on
Multimedia, pages 143–154, 1995.

M. Y. Kim and J. Song. Hyperstories: combining time, space and asynchrony in
multimedia documents. Technical Report RC19277(83726) (revised 1995), IBM
Computer Science/Mathematics Research, 1993.

Carolyn Kimme, Dana Ballard, and Jack Sklansky. Finding circles by an array of
accumulators. Commun. ACM, 18(2):120–122, 1975.

A. Klapuri. Sound onset detection by applying psychoacoustic knowledge. In
ICASSP ’99: Proceedings of the 1999 IEEE International Conference on Acous-
tics, Speech, and Signal Processing, pages 3089–3092, 1999.

Philip N. Klein. Computing the edit-distance between unrooted ordered trees. In
ESA ’98: Proceedings of the 6th Annual European Symposium on Algorithms,
pages 91–102, 1998.

Jon M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions.
In STOC ’97: Proceedings of the Twenty-ninth Annual ACM Symposium on The-
ory of Computing, pages 599–608, 1997.



Bibliography 451

Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46
(5):604–632, 1999.

D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM
J. Comput., 6(2):323–350, 1977.

Donald E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching
(2nd Edition). Addison-Wesley Professional, 1998.

J. J. Koenderink and A. J. van Doom. Representation of local geometry in the visual
system. Biol. Cybern., 55(6):367–375, 1987.

R. Koenen. Mpeg-4 overview (v.16 la bauleversion), iso/iec jtc1/sc29/wg11 n3747,
int’l standards organization, oct. 2000.

Teuvo Kohonen. Self-organized formation of topologically correct feature maps, in
Neurocomputing: Foundations of Research, J. A. Anderson and E. Rosenfeld,
Eds., MIT Press, Cambridge, MA, pages 509–521, 1988.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications.
SIAM Review, 51(3):455–500, September 2009.

Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot Siegel, and Zenon Pro-
topapas. Fast nearest neighbor search in medical image databases. In VLDB,
pages 215–226, 1996.

Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in the sky: an
online algorithm for skyline queries. In VLDB ’02: Proceedings of the 28th Inter-
national Conference on Very Large Data Bases, pages 275–286, 2002.

R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation Com-
put., 4(1):67–95, 1986.

Pieter M. Kroonenberg and Jan De Leeuw. Principal component analysis of three-
mode data by means of alternating least squares algorithms. Psychometrika,
1(45):69–97, 1980.

J. B. Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychome-
trika, 29(2):115–129, 1964a.

Joseph B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika, 1(29):1–27, 1964b.

J. B. Kruskal and W. Myron. Multidimensional Scaling. Sage Publications, Beverly
Hills, CA, 1978.

Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins.
Extracting large-scale knowledge bases from the web. In Proceedings of the 25th
VLDB Conference, pages 639–650, 1999.

H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors.
J. ACM, 22(4):469–476, 1975.

Tony C. T. Kuo and Arbee L. P. Chen. A content-based query language for video
databases. In ICMCS, pages 209–214, 1996.

S. Kurtz. Approximate string searching under weighted edit distance. In Proc.
WSP’96, pages 156–170. Carleton University Press, 1996.

John Lafferty and Chengxiang Zhai. Document language models, query models, and
risk minimization for information retrieval. In SIGIR ’01: Proceedings of the 24th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 111–119, 2001.

L. V. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian. Probview: A flex-
ible probabilistic database system. ACM Trans. Database Syst., 3(22):419–469,
1997.



452 Bibliography

G. M. Landau and U. Vishkin. Fast string matching with k differences. J. Comput.
Syst. Sci., 37:63–78, 1988.

G. M. Landau and U. Vishkin. Fast parallel and serial approximate string matching.
J. Algorithms, 10(2):157–169, 1989.

Christian A. Lang, Yuan-Chi Chang, and John R. Smith. Making the threshold algo-
rithm access cost aware. IEEE Trans. Knowl. Data Eng., 16(10):1297–1301, 2004.

Soren Larsen and L.N. Kanal. Analysis of k-nearest neighbor branch and bound
rules. Pattern Recogn. Lett., 4(2):71–77, 1986.

O. Lassila and R. Swick. Resource description framework (rdf) model and syntax
specification. http://www.w3.org/tr/rec-rdf-syntax., 1999.

Lieven De Lathauwer, Bart De Moor, and JoosVandewalle. A multilinearsingular
value decomposition. SIAM J. Matrix Anal. A., 21(4):1253–1278, 2000.

J. K. Lawder. The application of space-filling curves to the storage and retrieval of
multi-dimensional data. Technical Report JL/1/99, Birkbeck College, University
of London, 1999.

Iosif Lazaridis and Sharad Mehrotra. Progressive approximate aggregate queries
with a multi-resolution tree structure. In SIGMOD ’01: Proceedings of the 2001
ACM SIGMOD International Conference on Management of Data, pages 401–
412, 2001.

Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. A sparse texture representa-
tion using affine-invariant regions. IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, Volume 2, page 319, 2003.

Anthony J. T. Lee and Han-Pang Chiu. 2D Z-string: a new spatial knowledge rep-
resentation for image databases. Pattern Recogn. Lett., 24(16):3015–3026, 2003.

Jeong Ki Lee and Jae Woo Chang. Performance evaluation of hybrid access meth-
ods for efficient information retrieval. In Proceedings of the 20th EUROMICRO
Conference, pages 372–378, 1994.

John A. Lee and Michel Verleysen. Nonlinear Dimensionality Reduction. Springer,
2007.

S. Y. Lee and F. J. Hsu. Spatial reasoning and knowledge representation. Pattern
Recogn., 25(3):305–318, 1992.

S. Y. Lee, M. C. Yang, and J. W. Chen. 2D B-string: a spatial knowledge repre-
sentation for image database systems. In Second International Computer Science
Conference (ICSC), 1992.

Taekyong Lee, Lei Sheng, Tolga Bozkaya, Nevzat Hurkan Balkir, Meral Özsoyoglu,
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p-norms, 101, 103
∞-norm (Max-norm,Chebyshev distance), 101,

104
L1 (Manhattan, city block), 104, 209, 239, 265,

303, 305, 329, 369
L2 (Euclidean), 103, 105, 163, 238, 239, 265,

272, 303, 305, 329

Approximate sequence matching, 195
Deterministic finite automaton, 195
Filtering, see String fingerprinting, 198
Multiple, see Multiple approximate sequence

matching, 206
Non-deterministic finite automaton, 195, 206

Aspect model
Latent semantics, 176
Log-likelihood function

Maximization, 176
Audio models, 90

Beat/tempo, 90
Beat/tempo

Beats per minute (BPM), 91
Periodicity, 91

Chroma, 90
Pitch perception, 91

Frequency, 164
Loudness, 90

Phon, 91
Signal power, 91
Sone, 91

Onset strength signal, 91
Pitch, 90, 164

Bark scale, 91
Frequency analysis, 90
Frequency analysis, see Signal, 90
Mel (melody) scale, 91

Rhythm, 90, 91
Rhythmogram, 92

Timbre, 90, 92
Timbre

Timbregram, 92
Volume, 164

Bayesian models
Bayesian inference, 136
Bayesian information criterion (BIC), 323
Bayesian networks, 123, 136
Bayesian networks

Hidden Markov models (HMM), see Hidden
Markov models (HMM), 136

Bayesian theorem, 136, 314
Bayes’ rule, 135

Classification, 314
Expectation maximization (EM), see

Expectation maximization (EM), 136
Generative models, see Generative models,

137
Independence assumption, 314

Relaxing, 315
Language models, see Language models, 136
Markov Chain Monte Carlo (MCMC), 136
Maximum likelihood estimation (MLE), see

Maximum likelihood estimation (MLE),
314

Query answering, 136

Classification, 297
Bayesian, see Bayesian models, 314
Boosting, 324
Boosting

AdaBoost, 324, 421
Class label, 297
Decision trees, 297, 309

Fisher’s discriminant ratio, see Fisher’s
discriminant ratio, 299

Fuzzy, 311
Information gain, see Information gain, 298
Random forest, 300

Ensemble, 300, 324
Fuzzy, 311, 312
Hidden Markov models (HMM), 316, see

Hidden Markov models (HMM), 316
Linear discriminant analysis, 301

Least absolute regression deviation (LAD),
302

473
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Classification (cont.)
Max-margin learning, see Support vector

machines, 303, 308
Nearest neighbor classifiers, 301
Overfitting, 300–302, 322

Model selection, 322, see Model selection,
322

Random forest, 300
Bagging, 300
Random split selection, 300
Random subspace, 300

Regularization, 302
L1-, 303
L2-, 303
Least absolute shrinkage and selection

operator (LASSO), 303
Ridge-regression, 303

Rule-based, 308
Assertions, 309
Decision trees, 309
Fuzzy, 311, 312
Pruning, 310
Rules, 309
Simplification, 310

Strong classifier, 324
Supervised learning, 297
Support vector machines, see Support vector

machines, 301
Training set, 297
Unsupervised learning, 297
Voted perceptron, 308, 324

Batch, 308
On-line, 308

Voting-based, 301, 308
Weak classifier, 324

Clustering, 105, 271
Agglomerative, 282
Agglomerative

Bottom-up, 282
Hierarchical, 282

Cluster centroid, 273, 283
Cluster diameter, 272
Co-clustering, see Co-clustering, 292
Compactness, 272
Dynamic evidence, 288
Estimating the number of clusters, 284

Covering, 284
G-means, 286
Incremental, 285
Probabilistic, 284
X-means, 285

Graph-based, 275
Adaptive thresholding, 279
Angular clustering, 277
Connected components, 275
Maximal cliques, 276
Minimum cut-based, 46, 278
Random walk-based, 142, 277
Spectral partioning, 277

Iterative methods, 280
Multipass, 282
Single pass, 280

K-means, 46, 270, 282
FM algorithm, 283
G-means, 286

KL algorithm, 283
X-means, 285

Mixture Models, 287
Multipass

Agglomerative, 282
Iterative improvement, 282
K-means, 282

Multi-constraint, 286
Horizontal formulation, 287
Vertical formulation, 287

Online, 288
Confidence-based, 288
Perturbation-based, 289
User access patterns, 288

Quality measures, 272, 283
Cheeger’s ratio, 273
Cluster compactness, 272
Cluster homogeneity, 272
Cluster integrity, 274, 279
Cluster overlap, 273
Cluster separation, 273, 279
Cluster size, 273, 281
Clustering balance, 273
Clustering modularity, 274
Conductance, 274
Cut-based, 273
Entropy, 273, 281, 296
Expansion-based, 274
Root-mean-square-error (RMSE), 272
Sum-of-squares, 272

Self-organizing maps (SOM), 290
Cortex, 290
Distance preserving, 292
Neural networks, see Neural networks, 290

Single pass, 280
Adaptive leader selection, 281
Cluster quality, 281
Leader, 281
Max-a-min leader selection, 281
Scan order, 281
Threshold value, 282

Co-clustering, 292
Column clustering, 294
Cross-association, 294
Information theoretical, 293
LSI, 292
Row clustering, 294

Collaborative filtering, 1, 8, 10, 229, 230, 400, 413
AdaBoost, 325, 421
Associative retrieval–based, 417
Classification-based, 229, 414, 418
Clustering-based, 418
Data spaarsity problem, 416
Graph model, 413
Horting, 416
Item-based, 414
Memory-based, 414, 415, 419
Model-based, 414, 418, 419
Nearest neighbor–based, 416
Object metadata, 229, 413
Preferences, 229
RankBoost, 423
Ratings, 229

Combining, 421
Spreading activation, 417
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Top-K retrieval-based, 414
User metadata, 229, 413
User-based, 414
Voting matrix, 413
Voting-Based, 415

Color models, 99
Brightness, 38
Chroma, 38, 39

Energy, 39
Saturation, 39

CIELAB model
CIE space, 37
Lab space, 38

Color channels (components)
Blue (B), 35
Chrominance (I,Q), 37
Chrominance (U,V), 37
Green (G), 35
Hue (H), 39
L, a, b, 38
Luminance (Y), 37
Red (R), 35
Saturation (S), 39
Value (V), 39
X,Y,Z, 38

Color instance
Bit representation, 35

Color similarity, 107
Color table, 35

Median-cut algorithm, 36
Contrast, 32, 37
Distinct colors, 35
Histogram, 40, 107, 149
Histogram, see Histogram, 40

Matching, 40
HSV space, 39
RGB space, 35, 149

Color cube, 35
YIQ space, 37
YRB space, 37
YUV space, 37

Common factor analysis (CFA), 160, 161
Error terms, 160
Factor

Observed, 160
Unobserved (latent), 160

Linear combination, 160
Complexity, 99
Compression algorithms

Lossless
Arithmetic coding, 295
Huffman coding, 324

Lossy
JPEG (image), 165

Conceptual models, 21
Entity-relationship model (ER), 25
Extended entity-relationship model (EER), 25
Resource description framework (RDF), 21,

30
Object, 111
Predicate, 111
Properties, 30
Reification, 31
Resources, 30
Statements, 30

Subject, 111
Unified modeling language (UML), 21, 25

Content analysis
Web page, 225

CUR decomposition, 177
Sampling

Biased subspace sampling, 178
Uniform sampling, 177

Database system, 20
Components

Classification, see Classification, 14
Clustering, see Clustering, 14
Data registration, 13
Feature extraction, 13, 14
Index structures, 13
Index structures, see Index structures
Query interface, 13, 15
Query processing, 13, 16
Query processing, see Query, 13
Query refinement, 18
Ranking, 17
Ranking, see Query, 13
Recommendation, 15
Recommendation, see Recommendation

systems, 13
Relevance feedback, 17
Relevance feedback, see Relevance feedback,

13
Result visualization, 13

Data model, 14
Conceptual, see Conceptual models, 21
Content based, 20
Logical, see Logical models, 21
Metadata based, 20
Physical, see Physical models, 21
Schema, 20

Digital library, 112
Dimensionality curse, 143–145, 180, 263, 264, 267,

268, 341, 374, 380
Dimensionality reduction, 145, 148, 165,

167
Intrinsic dimensionality

Correlation fractal dimension, 156
Correlation, 153
Database compactness, 161
Feature selection, see Feature selection,

148
Intrinsic dimensionality, 153, 159
Transformations, see Vector space

transformations, 156
Dirichlet process

Base distribution, 139
Chinese restaurant process, 140
Concentration parameter, 139
Probability distribution, 139

Discrete cosine transform (DCT), 90,
163–165

2D-DCT, 164
Discrete Fourier transform (DFT), 164,

218
Discrete wavelet transform (DWT), 43, 163,

165
Discrete wavelet transform (DWT), see Wavelet

functions, 43
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Distance/similarity measures, 9, 11, 102
Graph model

Edit distance, see Graph edit distance, 209
Histogram similarity, 209, 231
Vector encoding similarity, 210

Information theoretic
Information distance, 201
Normalized compression distance, 201
Normalized information distance, 201

Probabilistic model
Jensen-Shannon divergence, 108
KL distance, see Kullback-Leibler (KL)

divergence, 293
Pearson’s Chi-square test, see Pearson’s

Chi-square test, 108
Properties

Metric, see Metric distance measures, 33
Symmetric, 33, 108
Triangular equality, 33, 170

Semantic
CP/CV, 221

Sets
Dice similarity, 105
Jaccard similarity, 105, 201

Signals
Signal-to-noise ratio (SNR), 108

Spatial model, see Spatial distance/similarity, 74
String model

Compression distance, 201, 218, 219
Edit distance, see String edit distance, 214
Fingerprint distance, see String

fingerprinting, 198
Ziv-Merhav cross-parsing, 202, 218, 219

Temporal model, see Temporal
distance/similarity, 68

Tree model
Alignment distance, 212, 216
Bottom-up edit distance, 217
Cousin set similarity, 218
Edit distance, see Tree edit distance, 212
Inclusion distance, 212, 216
Isolated-subtree edit distance, 216
Path set similarity, 218
String encoding similarity, 218
Top-down edit distance, 216
Vector encoding similarity, 220

Vector model
Cosine similarity, 104, 222
Dot product (scalar product) similarity, 104,

117
Intersection similarity, 105, 222
Mahalanobis distance, 105
Minkowski distance, 69, 103
Minkowski distance, see p-norms, 103
Quadratic distance, 107

Edges
Detection, 46, 50

Canny operator, 43
Sobel operator, 43

Gradient, 44, 45, 52
Histogram, 44
Histogram, see Histogram, 43

Directionality, 43

Frequency, 43
Linking, 46

Effectiveness, 380
Hβ measure, 383
Arithmetic mean of precision and recall, 381
Coverage, 390
F-measure, 382
False hit, 380
Graded ground truth, 386
Harmonic mean of precision and recall, 381
Kendall-Tau rank coefficient, 387
Maximum and minimum F-measures, 388
Miss, 380
Noninterpolated average-precision (NIAP),

386
Normalized discounted cumulative gain

(NDCG), 388
Normalized modified retrieval rank (NMRR),

389
Novelty, 390
Pearson’s correlation, 387
Precision, 381
Precision-recall curve, 384

Area under, 385
R-precision, 385, 389
Rank first relevant, 386, 388
Ranked ground truth, 386
Ranked results, 383
Recall, 381
Recall at � precision, 386
Receiver operator characteristic (RoV) curve,

384
Relevance feedback, 390
Spearman’s rank correlation coefficient,

387
Statistical significance, 390

One-way ANOVA, 393
P-value, 392, 393
T-test, 391
Two-step sampling, 396
Two-way ANOVA, 394
U-test, 393
Wilcoxon signed-rank test, 392

Eigen analysis, 230, 277
Adjacency matrix, 277

First eigenvector (portion of time), 278
Second eigenvector (proximity), 278

Eigen decomposition, 156, 172
Eigenvalue, 232

Singular value, 172, 173
Eigenvector, 157, 179, 226

First, 141, 226
Left, 157
Right, 157
Second, 141

Eigenvectors, 224, 277
Singular vector, 172, 173, 278

HITS, 224
Laplacian matrix, 277

Second eigenvector (connectedness), 278
Latent semantic indexing (LSI), see Latent

semantic indexing (LSI), 222
Principal component analysis (PCA), see

Principal component analysis (PCA), 156
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Singular value decomposition (SVD), see
Singular value decomposition (SVD), 292

Topic distillation, 224
Transition matrix, 226

Embeddings, 271
Distance-based, 167, 168

FastMap, see FastMap, 170
Multidimensional scaling (MDS), see

Multidimensional scaling (MDS), 168
Graphs

Spreading activation, 227, 228
Strings

String kernels, 200
Taxonomies

Concept propagation/concept vector
(CP/CV), 221, 227

Tensor-based
Tensor decomposition, see Tensor

decomposition, 178
Trees

Propagation vectors for trees (PVT), 220
Vector-based, 172
Vector-based

CUR decomposition, see CUR
decomposition, 177

Dimensionality reduction, see Dimensionality
reduction, 172

Probabilistic latent semantic analysis
(PLSA), see Probabilistic latent semantic
analysis (PLSA), 176

Singular value decomposition (SVD), see
Singular value decomposition (SVD), 172

Vector space transformations, see Vector
space transformations, 172

Entropy, 150, 273, 296
Entropy

Event, 150
Frequency, 150
Relative, 108, 202, 293
Shannon

Information content, 150
Uncertainty, 150

Expectation maximization (EM), 176, 321
Experiential computing, 109
Extensible Markup Language (XML), 113

Attribute, 28
Document type definitions (DTDs), 28
Element, 28

False hit, 148, 163, 184, 190, 238, 243, 296, 380
False positive, see False hit, 148
FastMap, 170, 271, 286

Pivot, 170
Projections, 171

Feature, 32, 143
Association, see Feature association, 153
Distribution, 151

Power law, 144, 374
Uniform, 144
Zipf’s law, 146

High level, 34
Importance/significance, see Feature

significance, 143
Indexing, see Index structures, 143

Joint distribution, 153
Low level, 34, 41, 45
Representation

Fuzzy, see Fuzzy models, 99
Graphs, see Graph model, 99
Probabilistic, see Probabilistic models, 99
Strings, see Sequence/string model, 99
Trees, see Tree model, 99
Vectors, see Vector model, 99

Selection, 380
Selection, see Feature selection, 145
Sparse, 153
Transformation

Distance bounding, 148
Lossy, 148, 162
Overestimating, 148, 162
Underestimating, 148, 162
Vector space, see Vector space

transformation, 156
Type

Audio, 67
Audio, see Audio models, 90
Color, see Color models, 99
Hierarchical, see Tree model, 99
Local, see Local feature models, 52
Semantic, 15
Shape, see Shape models, 99
Space, see Spatial models, 99
Texture, see Texture models, 99
Time, see Temporal models, 99

Feature association
Co-absence, 153
Co-occurence, 153, 316
Correlation, 102, 106, 158, 160, 161
Covariance, 106, 156, 160
Cross-presence, 153
Dependence, 293, 315
Independence, 143

Linear, 102
Statistical, 102, 107, 153

Joint distribution, 315
Measures

φ-coefficient, 153
Added value, AV, 153
Certainty factor, F , 153
Collective strength, S, 153
Confidence, c, 153
Conviction, V, 153
Cosine, 153
Gini index, G, 153
Goodman-Kruskal’s λ, 153
H-measure,negative correlation, H, 153
J-measure, J , 153
Jaccard, ζ, 153
Kappa, κ, 153
Klosgen, K, 153
Laplace, L, 153
Monotonic, 153
Mutual information, see Mutual information,

153
Null invariance, 153
Odd’s ratio, α, lift, 153
Piatetshy-Shapiro’s, PS, 153
Support, s, 153
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Feature association (cont.)
Symmetric, 153
Yule’s Q, 153

Semantic, 102
Feature selection, 102, 145, 148, 264, 301

Dimensionality reduction, see Dimensionality
reduction, 145

Feature significance, see Feature significance,
145

LASSO, 303
Relevance feedback, 400
Support vector machines, 305

Feature significance, 143, 145
Application requirements, 32
Database compactness-based, 161
Discrimination, 32, 145, 148, 151, 190

Data distribution, 151
Entropy, 151
Fisher’s discriminant ratio, see Fisher’s

discriminant ratio, 151
Variance, 151

Information theoretic, 150
Entropy, 150
Frequency, 150
Information gain, see Information gain, 151

Object description, 146
Perception, 32, 145
Query description, 32, 146
User preference, 32
Variance, 106

Field-based spatial relationships
Directional

Nine directional lower-triangular (9DLT)
matrix, 77

Topological
Nine intersection matrix, 78
UID-matrix, 77

Fisher’s discriminant ratio, 151, 299, 301, 391
Fractals, 240

Contraction mapping, 240
Hausdorff dimension, 240
Hilbert, 240, 241, 259
Iterated function system, 43, 240
Peano-Hilbert, 241
Scale-free, 231
Self-similarity, 43, 240
Z-order, 242

Fuzzy criterion
Relative importance, 120, 121

Partial derivative, 123
Weighting

Fagin’s generic weighting function, 121
Weighted artihmetic average, 121
Weighted product, 123

Fuzzy models, 10, 34, 99, 115
Crisp set, 115
Fuzzy logic, 115

Fuzzy criterion, see Fuzzy criterion, 120
Fuzzy score, 116
Operators, see Fuzzy operators, 116
Type-1 predicate, 116
Type-2 predicate, 116

Fuzzy Petri nets, 65
Fuzzy set, 115

Membership function, 115
Fuzzy operators

Average score, 118
Average semantics, 116, 339

Arithmetic, 117
Geometric, 117

Merge function, 116
Monotonic, 339

Min semantics, 116, 117, 339
Product semantics, 116, 117, 339
Score distribution, 119
Strong α-cut, 196
Triangular-norms (t-norms) and conorms

(t-conorms), 116
Associativity, 116
Boundary condition, 116
Commutativity, 116
Monotonicity, 116

Gaussian (normal) distribution, 53, 116, 125, 160
Anderson-Darling test, 286
Central limit theorem, 116, 125
Kolmogorov-Smirnov test, 160
Kurtosis test, 160
Negative entropy test, 160

Generative models
Collective model, 138
Dirichlet models

Dirichlet process, see Dirichlet process, 139
Infinite mixture model, 140
Rich-gets-richer phenomenon, 140
Stick-breaking construction, 140

Language models, see Language models, 137
Model estimation

Markov-chain based, 138
Object model, 138
Query model, 138
Random-walk based, 138

Object model, 137
Object relevance, 138
Query model, 137
Result imprecision, 138

Graph edit distance, 114, 208
Edit operations, 114

Edge deletion, 209
Edge insertion, 209
Edge update, 210
Vertex deletion, 209
Vertex insertion, 209
Vertex update, 209, 210

Graph matching, 208, 210
Alignment, 210, 217
Common subgraphs, 114
Edit distance, 209
Edit distance, see Graph edit distance, 208
Fingerprint, 209
GraphGrep, 208, 217
Histogram, 208, 209, 217
Isomorphism, 114
Mapping (correspondence), 210
Probe, 209, 217

Graph model, 33, 99, 111, 208, 227
Acyclic, 115

Cycle detection, 113
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Adjacency matrix, 222, 275, 277, 278
Applications

Citations, 111
Media composition, 111
Media references, 111
Sematic relationships, 111
Social relationships, 112
Spatiotemporal distribution, 111
Web links, 111, 208

Bipartite, 229
Clustering, see Clustering, 230
Conceptual

Resource description framework (RDF), see
Resource description framework (RDF),
30

Connected, 115
Edge, 111

Directed, 111
Labeled, 111
Nonlabeled, 111
Undirected, 111

Laplacian matrix, 275, 277, 278
Link analysis, see Link analysis, 222
Node, 111

Labeled, 111, 208
Nonlabeled, 111
Vertex, 111

Path, 112, 208
ID-path, 208
Label-path, 209
Shortest, 113, 210, 232, 233

Probabilistic, see Bayesian networks, 136, see
Markovian models, 140, see Hidden
Markov Models (HMM), 142

Problems
All-pairs shortest path, 210
Connected components, 113
Matching, see Graph matching, 114
Maximal cliques, 114
Minimum spanning tree, 113
Others, 114
Reachability, 113
Shortest-path, 113
Steiner tree, 113

Proximity search, see Proximity search, 232
Scale-free, 231
Spatial, see Spatial models, 79
Trees, see Tree model, 212
Undirected, 115, 208
Vertex degree (valence), 209, 210, 216, 231–233

Graph models
Temporal, see Temporal models, 63

Heterogeneity, 1, 3, 4, 92
Hidden Markov models (HMM), 316

Backward algorithm, 320
Baum-Welch method, 320

Expectation maximization (EM), 321
Classification, 316
Forward algorithm, 318
Forward-backward algorithm, 318
Hidden states, 317
Learning parameters, 320
Observation sequence, 318

Pattern recognition, 142, 316
Predicting the sequence of hidden states, 319
Probability of an observation sequence, 318
Training, 142, 316
Viterbi algorithm, 319

Histogram, 33, 90, 100, 149, 208, 209, 217, 231,
374

Bin, 40, 107
Vector representation, see Vector model, 40

Hough transform, 50, 83
Accumulator matrix, 51
Circle, 52
Histogram, 52
Histogram, see Histogram, 52
Line, 50
Voting, 50

Human eye
Cones (R,G,B), 34
Rods, 34
Sensitivity, 32, 34, 36, 37, 40

Hypermedia document, 109

Image representation, 21
Color, see Color models, 40

Nonspatial, 40
Feature locales, 75

Feature, see Feature, 76
Tile, 76

Hierarchical models, 62
Hierarchical models, see Tree model, 62
Object, 10, 62
Salient points, see Local feature models, 52
Segments, see Shape models, 76
Shape, see Shape models, 45
Spatial models, 10, 63
Spatial models, see Spatial models, 74
Texture, see Texture models, 43
Wavelet, see Discrete wavelet transform

(DWT), 43
Multiscale, 43

Imprecision, 8, 10, 65, 93, 99, 116, 123, 126, 138,
311, 379, 398, 399, 409

Statistical, 8, 123, 126
Index structures, 9

Graph/tree indexing, see Graph model, 208
Hierarchical, 235
Hierarchical

B-trees, B+-trees, 182, 236, 244, 255, 258,
267, 349, 365, 366

Balanced, 182, 203, 255, 258
Fanout, 182, 252, 253, 258, 262, 264, 267, 375

Multidimensional, see Multidimensional index
structures, 235

Sequence/string indexing, see Sequence/string
model, 181

Space-filling curves, see Space-filling curves, 238
Space subdivision, 235, 244

Information gain, 151, 298, 301
Entropy

C4.5, 298
C5.0, 298
ID3, 298

Gini impurity, 298
Information retrieval (IR), 99, 117, 136, 223
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Instant-based temporal relationships
=, 58
After, 58
Before, 58

Interval-based temporal relationships
Binary

=, 60
After, 60
Before, 60
Contains, 60
During, 60
Finished by, 60
Finishes, 60
Meets, 60
Met by, 60
Overlapped by, 60
Overlaps, 60
Started by, 60
Starts, 60

N-ary, 61
Inverted files, 181, 223

Multi-keyword, 183
Similarity accumulator, 183

Optimizations
d-gaps, 183
Compressed inverted list, 183
Elias code, 183
Golomb code, 183
Sorted inverted list, 183

Postings file, 181, 190
Search structure, 182
Signature file hybrid, 190
Word directory, 181

Kolmogorov complexity, 201, 324
Kronecker delta, 101
Kullback-Leibler (KL) divergence, 108, 222,

293

Language models, 136
Generative models, see Generative models, 137
Smoothing

Background (collection) model, 137
Dirichlet, 137
HMM-based estimation, 137
Linear interpolation, 137
Semantic, 137

Translation
Markov-chain based, 137

Laplace law of succession, 314
Latent semantic analysis (LSA), see Latent

semantic indexing (LSI), 173
Probabilistic, see Probabilistic latent semantic

analysis (PLSA), 176
Latent semantic indexing (LSI), 173, 222, 277, 292

Eigen documents, 173
Latent semantic analysis (LSA), 174
Latent semantics, 173
Latent semantics

Concepts, 173
Matrix

Document-document, 173
Document-term, 173
Term-term, 173

Singular value decomposition (SVD), see
Singular value decomposition (SVD),
173

Link analysis, 222
Authorities, 223
Bi-partite core law, 232
Clustering coefficient, 232
Collaborative filtering, see Collaborative

filtering, 229
Diameter, 232
Distribution of shortest path lengths, 232
HITS, 142, 223, 226
Hubs, 223, 231
Page-to-page associations, 226

Seed pages, 226
PageRank, 138, 142, 225

Random surfer, 225
Power law, 231
Social networking, see Social networks, 230
Spreading activation, see Spreading activation,

226
Topic distillation, 224
Topic drift, 224
Triangle law, 231

Local feature models, 52
Invariance

Deformations, 53
Lighting, 53
Projection, 53
Rotation, 53
Scaling, 53
Translation, 53

Keypoint, 54
Descriptor, 54

Local descriptor, 53
Others, 54
Salient point, 53
Scale-invariant feature transform (SIFT), 53

Keypoint filtering, 54
Orientation assignment, 54
Scale-space extrema detection, 53

Set-based, 52
Locality sensitive hashing (LSH), 200, 201, 335
Logical models, 21

Expressive power, 25
Object-oriented model

Abstract data types, 26
Class, 26
Complex data types, 26
Entity, 25
Inheritance, 26
Methods (behaviors), 25
Object identifier, 25
ODMG, 25
Relationships, 25

Object-relational model, 27
SQL3, 28

Relational model, see Relational model, 21
Semi-structured models

Extensible Markup Language (XML), see
Extensible Markup Language (XML), 28

Object exchange model (OEM), 28
Schemaless, 28
Self-describing, 28
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Markovian models, 277, 316
Markov chain, 123, 136–138, 140, 277

Proximity, 141
Stationary distribution, 141
Timed, 66

Probabilistic process, 140
Random walk, 139, 225, 226, 277
Transition graph, 140
Transition matrix, 139, 140, 225, 226

Aperiodic, 141
Irreducible, 141

Matrix, 178
Convolution, 53
Decomposition

CUR Decomposition, see CUR
Decomposition, 177

Eigen decomposition, 157
Probabilistic latent semantic analysis

(PLSA), see Probabilistic latent semantic
analysis (PLSA), 176

Singular value decomposition (SVD), see
Singular value decomposition (SVD), 172

Dense, 177
Diagonal, 107, 172, 177
Identity, 106
Orthonormal, 172
Real-valued, 172
Sparse, 177
Square, 156, 172
Symmetric, 157, 172

Maximum likelihood estimation (MLE), 314
Small-sample correction, 314
Smoothing, 314

Metric distance measures, 33, 103, 108, 239
Non-negative, 33
Symmetric, 33
Triangular inequality, 33

Minimum description length (MDL), 204, 295,
323, 324

Compression, 324
Kolmogorov complexity, 324

Miss, 148, 163, 243, 296, 380
Model selection, 322

Akaike’s information criterion (AIC), 323
Bayesian information criterion (BIC), 285,

323
Degree of complexity, 322
Degree of fit, 322
Minimum description length (MDL), see

Minimum description length (MDL), 323
Multidimensional scaling (MDS), 168, 170, 210,

271, 275, 292
Data-driven pivots, 169
Scree test, 168
Space-driven pivots, 169
Stress, 168
Stress minimization, 168

Multidimensional index structures, 102, 235, 244
Adaptive

Data dependent, 253
Fair-split, 254
Space dependent, 253
VAMSplit, 254, 262

BSP-tree, 254

Deletion, 248–251, 253, 255, 256, 258, 260, 263,
267

Restructuring, 249
Grid files, 245
Insertion, 246, 248, 251–253, 255, 256, 258,

260–263, 266, 267
KD-trees, 252, 329

Adaptive, 253
Hybrid-tree, 256
k-d-B-tree, 255
LSD-tree, 255
Matrix (MX), 253
Point, 253
Point-region (PR), 253

Live space, 257
Metric space

Burkhard-Keller tree, 330
Generalized-hyperplane tree (GH-Tree),

330, 332
Geometric near-neighbor access tree

(GNAT), 330, 332
M-tree, 261, 262, 264, 330
MVP-tree, 330
Post-office tree, 330
Vantage-point tree (VP-tree), 330

Minimum bounding region (MBR), 258–264,
266, 267, 329, 330, 334, 369

Overlap, 257, 259, 260, 262, 267
Pyramid-trees, 267
Quadtrees, 246, 329

Matrix (MX), 250
Point, 246
Point-region (PR), 251

R-trees, 257, 264, 329, 349, 368, 375
aR-tree, 372
Hilbert, 259
Hilbert packed, 263
Linear-split, 263
Packed, 263
Quadratic-split, 263
R*-tree, 260, 263, 269
R+-tree, 260
Sort-Tile-Recursive (STR) packed,

263
SR-tree, 261
SS-tree, 261, 264
TV-tree, 263
VAMSplit, 262
X-tree, 262, 269

Self-clustering, 271
Space sub-division, 244

Closed, 244
Open, 244
Rectilinear, 244

Split, 244, 250–253, 256–258, 261, 262,
267

TV-trees
Extension, 267
Vector telescoping, 264

VA-files, 269
VA+-file, 269

Multimedia authoring, 56
Synchronization, 59
User interaction, 59
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Multimedia standards
MHEG-5, 56
QuickTime, 56

Multiple approximate sequence matching, 206
Fingerprint based, 206
NFA based, 206

Multiple sequence matching, 204
Approximate, see Multiple approximate

sequence matching, 206
Filter sequence, 204
Hash based

Bloom filter, 205
Karp-Rabin (KR) algorithm, 205

Trie based, see Trie, 205
Mutual information, 153, 293, 315

Nearest neighbor search, 143, 145, 235, 301, 328
AESA, 333
Approximate, 335
Batch, 336
Branch and bound, 328, 335

Best bin first, 328
Best-first, 328

Delaunay graphs, 332
Euclidean space, 329
Hierarchical partitioning, 328
Incremental, 334
LAESA, 333
Locality sensitive hashing (LSH), see Locality

sensitive hashing (LSH), 335
Metric space, 330
Nonhierarchical, 332
Orchard’s algorithm, 332
Vector model, 11, 235, 248, 263, 267
Voronoi decomposition, 332

Neural networks, 290
Hebbian learning rule, 290
Neurons, 290
Synaptic connection, 290

Object complexity, 2, 5, 6, 12, 14, 15, 26, 28, 32, 33,
45, 50, 58, 72, 112

Object vector, 106
Outlier, 107

Pearson’s chi-square test, 108
Physical models, 21

Column-oriented models, 25
Storage, see Index structures, see Storage, 25

Point-based spatial relationships
Directional

Spatial orientation graph, 79
Precision, 381
Prefix search, see Trie, 181
Principal component analysis (PCA), 161, 172,

222, 292
Principal component analysis (PCA)

Dimensionality reduction
Error optimal Euclidean subspace, 159
Kaiser-Guttman rule, 159
Mean eigenvalue, 159
Parallel analysis, 159
Scree test, 159
Variance explained, 159

Variance maximizing subspace, 158
Gaussian assumption

Statistical independence, 160
Karhunen-Loeve (KL) transform, 156
Principal components, 284
Principal components

Eigenvectors, 157
Transformation

Correlation eliminating, 158
Linear, 158

Priority queue (heap), 229, 283, 328, 334, 335, 357,
358, 369

Probabilistic databases, 129
“Unknown” value, 128
Disjoint-independence, 130
Domain-independence, 132
Possible worlds, 128, 130
Probabilistic relations, 128, 130

Incomplete, 128
Key-value pair, 128
Probabilistic or-set-tables (p-or-set-tables),

128
Query, 129
Query processing, 130, 136
Representation

Closed, 129
Results, 129

Consensus-based, 130
Lineage, 134
Mean-answer, 130
Median-answer, 130
Possible tuples, 130

Tuple-Independence, 132
Ordered binary decision diagrams

(OBDDs),132
Probabilistic latent semantic analysis (PLSA),

176
Aspect model, see Aspect model, 176
Latent semantic indexing (LSI), see Latent

semantic indexing (LSI), 176
Probabilistic model

Independence, 130
Probabilistic models, 10, 34, 99, 123

Log-likelihood function
Expectation maximization (EM), see

Expectation maximization (EM), 176
Bayesian models, see Bayesian models, 123
Conditional (a posteriori) probability, 126, 135,

136, 140
Correlation, 127
Covariance, 127

Matrix, 107, 156, 172
Cumulative distribution function, 124
Databases, see Probabilistic databases, 127
Density function, 124
Distributions, 108

Binomial, 125
Exponential, 125
Gamma, 125
Gaussian (normal) distribution, see Gaussian

(normal) distribution, 125
Geometric, 125
Multinomial, 125
Negative binomial, 125
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Uniform, 125
Vernoulli, 125
Zipfian, 125, 146, 231

Divergence, see Kullback-Leibler (KL)
divergence, 293

Fit, see Pearson’s Chi-square test, 108
Generative models

Aspect model, see Aspect model, 176
Imprecision, see Imprecision, 123
Independence, 107, 126, 160
Marginal (prior) probability, 126, 135
Markovian, see Markovian models, 140
Mass function, 124
Mean, 124
Mixture models, 140
Probability distribution

Continuous, 124
Discrete, 124

Random variable, 124
Stochastic (random,probabilistic) process, 137,

140, 317
Stochastic (random,probabilistic) process

Dirichlet process, see Dirichlet process, 139
Markovian, see Markovian models, 140

Stochastic Petri nets, 65
Uncertainty, see Probabilistic databases, 127
Variance, 126, 151, 156

Procrustes algorithm, 211
Orthogonal, 211

Proximity search, 232
Algorithms

BANKS-I,BANKS-II, 233
DPBF, 233
RIU, 233

Group Steiner tree, 233
Information unit, 233
Minimal answer, 232

Query
Processing

Probabilistic databases, see Probabilistic
databases, 130

Query
Fuzzy query, see Fuzzy models, 339
Keyword query

Conjunctive, 185
Disjunctive, 187
Single, 185

Language
Multimedia, 92
Relational, see Relational model, 23

Nearest neighbor query, see Nearest neighbor
search, 235

Partial match query, 117
Popularity query, 110
Prefix search, see Trie, 181
Probabilistic query, see Probabilistic models,

129
Processing, 13, 16, 148, 401

Optimization, see Query Optimization,
373

Ranking algebra, see Top-K query
processing, 23

Relational algebra, see Relational algebra, 23

Sequential scan, 144, 169, 235, 263, 269, 272,
341, 364

Top-K query processing, see Top-K query
processing, 354

Proximity query, see Proximity search, 232
Range query, see Range search, 235
Relational query, see Relational model, 22
Skyline query, see Skylines, 360
Specification

Declarative, 373
Query by description, 9
Query by example (QBE), 9, 15
Visual, 10

Vector, 106
Query optimization

Cost estimation, 374
Cost model, 16, 374, 377
Expensive predicates, 374

Fanout, 377
Filter predicates, 375
Join predicates, 377
Predicate migration, 375
Restriction predicates, 375

Fanout model, 377
Quality model, 16, 377
Query plan, 25, 374
Rank aware, 378

Ranking predicates, 378
Selectivity estimation, 374

Power law, 374
Spatial histograms, 374

Statistics, 16, 374
Top-K, 374

Range search, 11, 143, 144, 161, 169, 189, 235, 355,
375, 383, 401

Space-filling curves, 243
Vector model, 148, 152, 190, 235, 243, 248, 251,

257, 258, 263, 267, 328, 334, 335
Ranked join, 338

Anytime, 344
Combined Algorithm (CA), 344
Convex hull, 347
Fagin’s Algorithm (FA), 339, 355
Layer ordering, 346
Merge function, 339

Average, 339
Minimum, 339
Monotonic, 339
Product, 339

No random access algorithm (NRA), 343, 357
Probabilistic, 344
Variants, 344

Onion technique, 347
Partial sorted access (PSA), 345
RANK-JOIN, 343, 358
Relaxed monotonicity, 348

Cosine, 352
Horizon based ranked join (HR-Join), 351
Skip-and-prune (SnP), 353
Sum-Max Monotonicity, 349

Robust indexing, 347
Threshold Algorithm (TA), 341, 357

Variants, 342
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Ranked join (cont.)
Top-K query processing in the DBMS, see

Top-K query processing, 354
Ranked retrieval, 183, 327
Recall, 381
Recommendation systems, 9, 15, 110, 131, 229,

230, 400, 413
Recommendation systems, see Collaborative

filtering, 13
Regular expressions, 202

Alphabet, 202
Concatenation, 202
Finite automaton, 203
Finite automaton

Deterministic (DFA), 193, 203
Minimal bounding, 203
Nondeterministic (NFA), 193, 203

Index structures
RE-tree, 203

Kleene star, 202
Regular languages, 203

Size of, 204
Union, 202

Relational algebra
Aggregation operator (�), 23, 24
Cartesian product operator (×), 23, 24
Join operator (�), 23, 24
Projection operator (π), 23, 24
Rename operator (ρ), 23, 24
Selection operator (σ), 23, 24
Set operators (∪,∩,\), 23, 24

Relational model
Closed-world assumption, 21
Query languages

Declarative, 22
Domain relational calculus, 22
SQL, 10, 23
Tuple relational calculus, 23

Query processing
Query optimization, see Query optimization,

24
Relational algebra, see Relational algebra, 23

Relation
Extension, 21
Tuple, 21

Schema, 22
Attribute, 22
Candidate key, 22
Foreign key, 22
Integrity constraints, 22
Referential integrity, 22

Relationship
Nonsymmetric, 111
Symmetric, 111

Relevance feedback, 8, 12, 17, 32, 102, 120, 148,
288, 400

Bias in feedback, 401
Decay, 411
Divergence minimization, 410
Feedback drift, 401
Generative models, 409
Ide dec-hi algorithm, 404
Language modeling, 408
Negative feedback, 399, 410

Ostensive relevance, 411
Positive feedback, 399
Probabilistic, 123, 136, 404
Pseudo-feedback, 411
Query rewriting, 404
Rocchio’s algorithm, 404
Vector space, 404

Relevance filtering, 10
Retrieval

Associative, see Spreading activation, 226
Content-based, 1, 226

Scree test, 159, 168
Semantic gap, 1, 6, 8, 380, 398, 399
Sensors, 67, 116, 178
Sequence/string model, 33, 67, 99, 181

Alphabet, 192
Distance measure

Compression distance, 201, 218, 219
Edit distance, see String edit distance, 218
Ziv-Merhav cross-parsing, 202, 218, 219

Index structures
Inverted files, see Inverted files, 181
RE-tree, 203
Signature files, see Signature files, 181
Suffix indexes, see Suffix indexes, 181
Trie, see Trie, 181

Pattern matching, see Regular expressions, 202
Prefix matching, see Trie, 192
Regular expressions, see Regular expressions,

202
Sequence matching, 191

Approximate, see Approximate sequence
matching, 195

Boyer-Moore (BM) algorithm, 191, 205
Knuth-Morris-Pratt (KMP) algorithm, 191,

205
Multiple, see Multiple sequence matching,

204
Suffix indexes, see Suffix indexes, 192

Wildcards
“*” wildcard, 110, 202
“//” wildcard, 110, 202

Shape models, 45, 99
Area, 49
Boundary, 47

B-splines, 48
Chain code, 48
Piece-wise linear, 48
Time series, 48

Circularity, 49
Connected components, 49
Diameter, 49
Eccentricity, 50
Height, 49
Histogram, 49, 52
Histogram, see Histogram, 49
Holes, 49
Hough transform, see Hough transform, 50
Major axis, 50
Moment, 50

Central, 50
Perimeter, 49
Segmentation, 76
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Clustering, 46
Edge linking, 46
Partitioning, 46
Region growing, 46
Watershed transformation, 47

Spread, 50
Width, 49

Signal, Power, 91
1D, 164
2D, 164
Amplitude, 91
Continuous, 164
Cosine decomposition

Cosine waves, 164
Discrete, see Discrete cosine transform

(DCT), 164
Discrete, 164
Domain

Frequency, 164
Time, 164

Fourier decomposition
Discrete, see Discrete Fourier Transform

(DFT), 164
Sinusoidal waves, 91
Sinusoids, 164

Frequency, 164
Noise, 165
Noise

Signal-to-noise ratio (SNR), 108
Nonrandom

Temporally correlated, 91, 165
Random, 165
Wavelet decomposition

Discrete, see Discrete Wavelet Transform
(DWT), 165

Wavelet functions, see Wavelet functions, 165
Signature files, 181, 184, 205

Bitslice, 187, 190
Bitwise-or, 184
Blocked, 187, 190
Document signature, 184
False positives, 184, 188
Inverted file hybrid, 190
Query

Conjunctive, 185
Disjunctive, 187
Document query, 189
Single keyword, 185

Word signature, 184
Hash function, 184

Similarity measures, see Distance/Similarity
measures, 293

Singular value decomposition (SVD), 172, 173,
292

High order, 179
Incremental, 174

Folding, 174
SVD-Update, 174

Latent semantic indexing (LSI), see Latent
semantic indexing (LSI), 173

Skylines, 360
B-tree based, 365, 366
Bitmap skylines, 367
Block-nested-loops skylines algorithm, 361

Branch-and-bound based, 368
Divide-and-conquer based, 365
Linear elimination sort skylines algorithm, 365
Maximal vector, 361
Nearest neighbor based, 368
Nearest neighbor search, see Nearest neighbor

search, 368
Nest-loop based, 361
Pareto curve, 361
Pareto frontier, 361
Partially ordered data, 369

l-cuts, 371
Hasse-diagram, 369
Interval mapping, 370
Lattice, 369
Poset, 369
Weak Pareto dominance, 371

Presorting based, 364
Preference function, 361
R-tree based, 368
Sort-filter-skyline algorithm, 364
Top-K dominating queries, 361, 372
Window, 362

Social networks, 67, 99, 141, 230, 231
Social networks

Betweenness, 230
Centrality, 230
Clustering, see Clustering, 230
Cohesion, 230
Friends, 230
Key individuals, 230

Authorities, 230
Hubs, 230

Preferential attachment, 230
Prestige, 230
Prominence, 230
User similarity, 230, 231

Space-filling curves, 238, 267
Cantor-diagonal-order, 239
Column-order, 238
Fractals, see Fractals, 240
Hilbert, 240, 241, 259
Peano-Hilbert, 241
Row-order, 238
Row-prime-order, 239
Z-order, 242

Bit-shuffling, 243
Space-filling curves, 238
Spatial distance/similarity, 82

Constraint-based, 82
Fuzzy evaluation, see Fuzzy models, 82
Graph-based, see Graph matching, 83

2D-PIR, 88
SIMDTC, 90
SIML, 90
Spatial orientation graph, 83

Probabilistic evaluation, see Probabilistic
models, 82

String-based, see String edit distance, 84
2D �R-string, 85
2D B-string, 87
2D Bε-string, 87
2D C+-string, 86
2D C-string, 86
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Spatial distance/similarity (cont.)
2D E-string, 86
2D G-string, 86, 90
2D Z-string, 87
2D-string, 84

Topological similarity, 83
Spatial models

Distance/similarity measures, see Spatial
distance/similarity, 74

Distribution, 99
Fields, 75

Field functions, 75
Field operations, 75
Relationships, see Field-based Spatial

relationships, 75
Spatial framework, 75

Line, 75
Points, 79

Relationships, see Point-based relationships,
see Point-based spatial relationships, 79

Reference direction, 81, 90
Region, 75
Regions-to-points

Centroid scheme, 80
Line sweep method, 80
Minimum bounding rectangle scheme, 80
Plane sweep, 80

Retrieval
Exact, 81
Similarity-based, see Spatial

distance/similarity, 82
Spatial relationships

Directional, 75
Quantitative, 75
Set-based, 75
Topological, 75

Spreading activation, 226
Activation control matrix, 227–229
Activation level, 227, 229
Activation vector, 227–229
Branch-and-bound model, 227, 228
Constrained leaky capacitor model, 227, 228

Linear transformation, 228
Hopfield net model, 227, 228

Sigmoid transformations, 228
Iterative activation, 227
Propagation, 227
Semantic memory, 227

Standards
Authoring

HyTime, 2
MHEG, 2
SGML, 2
SMIL, 2, 6
VRML, 3
X3D, 3, 6, 13, 27, 99, 112, 208
XML, 2

Content description
MPEG21, 3
MPEG7, 3, 6

Stimulus
Perception

Weber-Fechner law, 38
Stop words, 147

Storage, 13
Disk, 182

Page, 235, 245, 255, 256, 262–264, 267, 276
String edit distance, 67, 110, 167, 214, 218

Computation
Bit-parallelism, 197, 206
Column-oriented NFA simulation, 196
Diagonal-oriented NFA simulation, 196
Dynamic programming, 196

Edit operation
Deletion, 110, 197
Edit cost, 111
Insertion, 110, 197
Matching, 197
Substitution, 110, 197
Swap, 110
Transposition, 111

Types
Bubble sort distance, 110
Damerau-Levenshtein distance, 111
Episode distance, 110
Hamming distance, 110
Kendall tau distance, 110
Levenstein distance, 111

String encoding of trees
Others, 219
Prüfer encoding, 219

String fingerprinting, 198
ρ-grams, 167, 181, 198

KR algorithm, 198
Local fingerprinting, 199
Minsampling, 199, 200
Modsampling, 199
Rolling hash functions, 198
Sampling, 199
Winnowing, 199

Counting filter, 198, 206
Locality sensitive hashing (LSH), see Locality

sensitive hashing (LSH), 200
Maximum error rate, 198
String kernels, 200

ρ-spectrum kernel similarity, 200
Positive definite, 200

String model, see Sequence/string model, 181
Structure

Hierarchical, 167, 208
Object composition, 33

Interaction, 14
Spatial, 14, 33, 167, 168, 208
Temporal, 14, 33

Subjectivity, 8, 9, 17, 271, 402
Suffix indexes

Suffix array, 193
Suffix automaton, 182, 193

BDM algorithm, 194
Bit parallelism, 194
BNDM algorithm, 194
Deterministic, 193
Directed acyclic word graph, 193
Nondeterministic, 193

Suffix tree, 181, 192, 199, 202
Supervised learning, 297
Support vector machines, 301, 303

Complexity, 307



Index 487

Convex hull, 305
Feature selection, 305
Hyperplane search, 304
Kernel parameters, 303
L1-, 305
L2-, 305
Lagrangian formulation, 305
Linearly seperable, 304
N-ary, 307
Nonlinear kernels, 306

Gaussian radial basis, 306
Polynomial, 306
Sigmoid, 306

Nonlinearly separable, 306
Kernel methods, 306
Soft-margin, 306

Quadratic optimization, 305
Support vectors, 305

Symbolic aggregate approximation (SAX),
68

Taxonomy, 99, 113, 221
Concept, 113, 221
Concept similarity

CP/CV, 221
Temporal distance/similarity

Constraint relaxation, 72
Edit distance, see String edit distance, 69

Dynamic time warping (DTW), 69
Extended timeline, 71

Probabilistic, 72
Fuzzy evaluation, see Fuzzy models, 68
Mapped objects, 69
Object priorities, 69
Timeline, 69

Temporal models, 55
Actions, 55
Clock, 65
Concurrency, 63
Constraint-based, 55

Causal models, 59
Difference constraints, 58
Event calculus, 59
Logical constraints, 58
Situation Calculus, 59

Distance/similarity measures, see Temporal
distance/similarity, 68

Events, 55, 99, 109
Graph based

Time flow graph (TFG), 65
Timed automaton, see Timed automaton, 65
Timed Petri nets, see Timed Petri nets, 63

History, 67
Hybrid, 62
Instant-based, 58

Relationships, see Instant-based temporal
relationships, 58

Interval-based, 58
Relationships, see Interval-based temporal

relationships, 60
Object composition Petri nets (OCPN), 111
Processes, 61
Temporal pattern, 65
Time dimension, 178

Time Series, 67
Timeline models, 55
Trace, 65

Tensor, 67, 178
Decomposition, see Tensor decomposition,

178
Mode, 178
Order, 178
Slice, 178

Tensor decomposition, 178
Diagonal

CANDECOMP, 179
PARAFAC, 179

Incremental
Dynamic tensor analysis (DTA), 180
Streaming tensor analysis (STA), 180
Window-based tensor analysis (WTA), 180

Optimal, 179
Orthonormal

High-order SVD, 179
Tucker, 179

Texture models, 99
Texture models

Directionality, 40, 43
Edges

see Edges, 43
Edginess, 44
Fractals, 42
Fractals, see Fractals, 42
Frequency, 43
Granularity, 40, 44
Histogram, 43
Histogram, see Histogram, 43
Pattern, 40
Periodicity, 40
Random fields, 42

Generative models, see Generative models,
42

Stochastic process, see Probabilistic models,
42

Rate of change, 40
Smoothness, 40, 44
Wavelets, 43
Wavelets, see Wavelet functions, 43

TF-IDF, 147, 284, 327
Inverse Document Frequency (IDF), 147
Term Frequency (TF), 147

Timed automaton, 65
Construction

logO, 65
Finite automaton, see Regular expressions, 65

Timed Petri nets
Boundedness, 63
Dynamic timed Petri nets (DTPN), 65
Fuzzy-timing Petri-net for multimedia

synchronization (FTNMS), 65
Liveliness, 63
Object composition Petri nets (OCPN), 64
Places, 63
Reachability, 63
Safety, 63
Stochastic Petri nets, 65
Tokens, 63
Transitions, 63
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Top-k query processing, 354
J ∗ join operator, 357
Breaking, 356
Filter-based, 354
HRJN operator, 358
Nearest neighbor queries, see Nearest neighbor

search, 360
NRA-RJ join operator, 358
Optimization, see Query Optimization, 374
RANK-JOIN, 358
Ranked join, see Ranked join, 354
Ranking algabra, 358

Merge operator, 359
Rank operator, 360
Ranked relation, 360
Ranking predicate, 360

Ranking expressions, 354
Skyline queries, see Skylines, 360
SQL extensions, 354
Stop and restart, 355
Top-k dominating queries, 361, 372

Top-k retrieval, 327, 337
Tree edit distance, 213, 214

Bottom-up, 217
Edit distance, 212
Edit operations, 212, 215

Node deletion, 215
Node insertion, 215
Node relabeling, 215

Isolated-subtree, 216
Top-down, 216

Tree matching
Alignment, 217
Alignment distance, 212, 216
Edit distance, see Tree edit distance, 212
Filtering, 217

Cousin set similarity, 218
Path set similarity, 218
Propagation-vectors for trees (PVT), 220
String encoding, see String encoding of trees,

218
Time series encoding, 218

Inclusion distance, 212, 216
Tree model, 33, 99, 112, 212

Applications
Discussion boards, 113
Extensible Markup Language (XML), see

Extensible Markup Language (XML), 113
Hierarchically structured multimedia objects,

112
Navigation hierarchy, 113
Semi-structured data, 113
Taxonomy, see Taxonomy, 113

Edge
Labeled, 213

Matching, see Tree matching, 212
Node

Ancestor, 112
Child, 112
Descendant, 112
Labeled, 115, 213
Parent, 112
Root, 112
Sibling, 112

Vertex, 112
Ordered, 112, 115, 213
Rooted, 112, 115
Traversal

Inorder, 218
Postorder, 213, 218
Preorder, 218

Unordered, 112, 115, 212, 215
Trees in graphs

Group Steiner tree, 233
Maximim spanning tree, 279
Maximum spanning tree, 316
Min-cut tree, 279
Minimum spanning tree, 113, 233, 279
Spanning tree, 114, 332
Steiner tree, 113

Trie, 181, 182, 192, 243
Multiple sequence

Aho-Corasick trie, 205
Commentz-Walter trie, 205

Unsupervised learning, 297
User experience, 109

Event sequence, 109
Navigation, 109

Vector model, 33, 99, 221, 227
Data distribution, 105, 106

Local, 107
Power law, 144, 374
Uniform, 144

Index structures, see Multidimensional index
structures, 235

Nearest neighbor search, 11, 235, 248, 263, 267
Nearest neighbor search, see Nearest neighbor

search, 11
Range search, 148, 152, 190, 235, 243, 248, 251,

257, 258, 263, 267, 328, 334, 335
Range search, see Range search, 148
Space, see Vector space, 158

Vector space, 100, 167
Addition, 100
Alignment

Procrustes algorithm, 211
Basis vectors (Bases,Dimension vectors), 100,

101, 117, 158, 161, 165–167, 173
Weighting, 106
Weighting, see Feature Significance, 106

Collection of elements, 100
Dimensionality, 153, 159, 168, 170

Curse, see Dimensionality curse, 143
Reduction, see Dimensionality reduction, 145

Distance, see Distance/Similarity measures, 102
Inner product, 101
Multiplication, 100
Norm

p-norms, see p-norms, 101
L1 (Manhattan), 265, 303, 305, 329, 369
L2 (Euclidean), 144, 158, 163, 190, 265, 272,

303, 305, 329
Transformation, see Vector space

transformation, 158
Vectors

Energy, 163
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Length, 101
Linearly independent, 100, 101, 158, 165, 173
Nonorthogonal, 178
Orthogonal, 101, 158, 166, 173
Orthonormal, 101, 158, 172
Unit length, 165

Vector space transformations
Angle preserving, 158, 163, 165
Components, 164
Distance preserving, 158, 163, 165
Energy preserving, 163
Fixed basis

Discrete cosine transform (DCT), see
Discrete cosine transform (DCT), 163

Discrete Fourier transform (DFT), see
Discrete Fourier transform (DFT), 164

Discrete wavelet transform (DWT), 163
Invertible transforms, 164
Linear transforms, 164
Lossy compression, 165, 167
Orthonormal, 158, 163
Variable basis

Common factor analysis (CFA), see Common
factor analysis (CFA), 160

CUR decomposition, see CUR
decomposition, 177

Independent component analysis (ICA),160
Karhunen-Loeve (KL) transform, see

Principal component analysis (PCA), 156

Probabilistic latent semantic analysis
(PLSA), see Probabilistic latent semantic
analysis (PLSA), 176

Singular value decomposition (SVD), see
Singular value decomposition (SVD), 174

Tensor decomposition, see Tensor
decomposition, 178

Video representation
Action, 63
Frame, 63
Frame, see Image representation, 63

Sequence, 63
Key frame, 63
Motion, 63
Object, 62
Temporal, see Temporal models, 63

Wavelet functions, 165
Family of wavelets, 165
Haar wavelets, 166
Mother wavelet, 43, 165
Scaling/dilation parameter, 165
Shift/translation parameter, 165

Web search, 67
Web search, see Link analysis, 222

Hyperlinks, 222
IR techniques, 222
Keyword search, 222
Page-to-page associations, 222, 226
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