K. ':'.-th;uh Candan

Maria Luisa Saping

DATA
MANAG EM%
Y

RETRIEVAL

http://www.cambridge.org/9780521887397
http://www.ebook777.com

Free ebooks ==> www.Ebook777.com

This page intentionally left blank

Www.Ebook777.com

http://www.ebook777.com

Data Management for Multimedia Retrieval

Multimedia data require specialized management techniques because the
representations of color, time, semantic concepts, and other underlying
information can be drastically different from one another. The user’s sub-
jective judgment can also have significant impact on what data or features
are relevant in a given context. These factors affect both the performance
of the retrieval algorithms and their effectiveness. This textbook on mul-
timedia data management techniques offers a unified perspective on re-
trieval efficiency and effectiveness. It provides a comprehensive treat-
ment, from basic to advanced concepts, that will be useful to readers of
different levels, from advanced undergraduate and graduate students to
researchers and professionals.

After introducing models for multimedia data (images, video, audio,
text, and web) and for their features, such as color, texture, shape, and
time, the book presents data structures and algorithms that help store,
index, cluster, classify, and access common data representations. The au-
thors also introduce techniques, such as relevance feedback and collabo-
rative filtering, for bridging the “semantic gap” and present the applica-
tions of these to emerging topics, including web and social networking.

K. Selguk Candan is a Professor of Computer Science and Engineering
at Arizona State University. He received his Ph.D. in 1997 from the Uni-
versity of Maryland at College Park. Candan has authored more than 140
conference and journal articles, 9 patents, and many book chapters and,
among his other scientific positions, has served as program chair for ACM
Multimedia Conference’08, the International Conference on Image and
Video Retrieval (CIVR’10), and as an organizing committee member for
ACM SIG Management of Data Conference (SIGMOD’06). In 2011, he
will serve as a general chair for the ACM Multimedia Conference. Since
2005, he has also been serving as an associate editor for the International
Journal on Very Large Data Bases (VLDB).

Maria Luisa Sapino is a Professor in the Department of Computer Science
at the University of Torino, where she also earned her Ph.D. There she
leads the multimedia and heterogeneous data management group. Her
scientific contributions include more than 60 conference and journal pa-
pers; her services as chair, organizer, and program committee member in
major conferences and workshops on multimedia; and her collaborations
with industrial research labs, including the RAI-Crit (Center for Research
and Technological Innovation) and Telecom Italia Lab, on multimedia
technologies.

Free ebooks ==> www.Ebook777.com

DATA MANAGEMENT FOR
MULTIMEDIA RETRIEVAL

K. Selcuk Candan

Arizona State University

Maria Luisa Sapino
University of Torino

I CAMBRIDGE
%'fJ) UNIVERSITY PRESS

Wwww.Ebook777.conl

http://www.ebook777.com

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

Sdo Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521887397

© K. Selcuk Candan and Maria Luisa Sapino 2010

This publication is in copyright. Subject to statutory exception and to the
provision of relevant collective licensing agreements, no reproduction of any part
may take place without the written permission of Cambridge University Press.

First published in print format 2010

ISBN-13 978-0-511-90188-1 eBook (NetLibrary)
ISBN-13 978-0-521-88739-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy
of urls for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

http://www.cambridge.org/9780521887397
http://www.cambridge.org

Contents

Preface

1

Introduction: Multimedia Applications and Data Management
Requirements

1.1 Heterogeneity

1.2 Imprecision and Subjectivity

1.3 Components of a Multimedia Database Management System
1.4 Summary

Models for Multimedia Data

2.1 Overview of Traditional Data Models
2.2 Multimedia Data Modeling

2.3 Models of Media Features

2.4 Multimedia Query Languages

2.5 Summary

Common Representations of Multimedia Features

3.1 Vector Space Models
3.2 Strings and Sequences
3.3 Graphs and Trees

3.4 Fuzzy Models

3.5 Probabilistic Models
3.6 Summary

Feature Quality and Independence: Why and How?

4.1 Dimensionality Curse

4.2 Feature Selection

4.3 Mapping from Distances to a Multidimensional Space
4.4 Embedding Data from One Space into Another

4.5 Summary

page ix

99

99
109
111
115
123
142

143

144
145
167
172
180

vi

Contents

5 Indexing, Search, and Retrieval of Sequences

6 Indexing, Search, and Retrieval of Graphs and Trees

5.1 Inverted Files

5.2 Signature Files

5.3 Signature- and Inverted-File Hybrids

5.4 Sequence Matching

5.5 Approximate Sequence Matching

5.6 Wildcard Symbols and Regular Expressions
5.7 Multiple Sequence Matching and Filtering
5.8 Summary

6.1 Graph Matching

6.2 Tree Matching

6.3 Link/Structure Analysis
6.4 Summary

7 Indexing, Search, and Retrieval of Vectors

7.1 Space-Filling Curves
7.2 Multidimensional Index Structures
7.3 Summary

8 Clustering Techniques

8.1 Quality of a Clustering Scheme

8.2 Graph-Based Clustering

8.3 Iterative Methods

8.4 Multiconstraint Partitioning

8.5 Mixture Model Based Clustering

8.6 Online Clustering with Dynamic Evidence
8.7 Self-Organizing Maps

8.8 Co-clustering

8.9 Summary

9 Classification

9.1 Decision Tree Classification

9.2 k-Nearest Neighbor Classifiers

9.3 Support Vector Machines

9.4 Rule-Based Classification

9.5 Fuzzy Rule-Based Classification

9.6 Bayesian Classifiers

9.7 Hidden Markov Models

9.8 Model Selection: Overfitting Revisited
9.9 Boosting

9.10 Summary

10 Ranked Retrieval

10.1 k-Nearest Objects Search
10.2 Top-k Queries

181

181
184
190
191
195
202
204
206

208

208
212
222
233

235

238
244
270

Contents

10.3 Skylines
10.4 Optimization of Ranking Queries
10.5 Summary

11 Evaluation of Retrieval

11.1 Precision and Recall

11.2 Single-Valued Summaries of Precision and Recall

11.3 Systems with Ranked Results

11.4 Single-Valued Summaries of Precision-Recall Curve

11.5 Evaluating Systems Using Ranked and Graded Ground Truths
11.6 Novelty and Coverage

11.7 Statistical Significance of Assessments

11.8 Summary

12 User Relevance Feedback and Collaborative Filtering

12.1 Challenges in Interpreting the User Feedback

12.2 Alternative Ways of Using the Collected Feedback in Query
Processing

12.3 Query Rewriting in Vector Space Models

12.4 Relevance Feedback in Probabilistic Models

12.5 Relevance Feedback in Probabilistic Language Modeling

12.6 Pseudorelevance Feedback

12.7 Feedback Decay

12.8 Collaborative Filtering

12.9 Summary

Bibliography

Index

Color plates follow page 38

360
373
379

380

381
381
383
384
386
390
390
397

398
400

401
404
404
408
411
411
413
425

427
473

vii

Free ebooks ==> www.Ebook777.com

Www.Ebook777.com

http://www.ebook777.com

Preface

Database and multimedia systems emerged to address the needs of very different
application domains. New applications (such as digital libraries, increasingly dy-
namic and complex web content, and scientific data management), on the other
hand, necessitate a common understanding of both of these disciplines. Conse-
quently, as these domains matured over the years, their respective scientific disci-
plines moved closer. On the media management side, researchers have been con-
centrating on media-content description and indexing issues as part of the MPEG7
and other standards. On the data management side, commercial database manage-
ment systems, which once primarily targeted traditional business applications, to-
day focus on media and heterogeneous-data intensive applications, such as digital
libraries, integrated database/information-retrieval systems, sensor networks, bio-
informatics, e-business applications, and of course the web.

There are three reasons for the heterogeneity inherent in multimedia applica-
tions and information management systems. First, the semantics of the information
captured in different forms can be drastically different from each other. Second,
resource and processing requirements of various media differ substantially. Third,
the user and context have significant impacts on what information is relevant and
how it should be processed and presented. A key observation, on the other hand,
is that rather than being independent, the challenges associated with the semantic,
resource, and context-related heterogeneities are highly related and require a com-
mon understanding and unified treatment within a multimedia data management
system (MDMS). Consequently, internally a multimedia database management sys-
tem looks and functions differently than a traditional (relational, object-oriented, or
even XML) DBMS.

Also acknowledging the fact that web-based systems and rich Internet appli-
cations suffer from significant media- and heterogeneity-related hurdles, we see a
need for undergraduate and graduate curricula that not only will educate students
separately in each individual domain, but also will provide them a common per-
spective in the underlying disciplines. During the past decade, at our respective in-
stitutions, we worked toward realizing curricula that bring media/web and database
educations closer. At Arizona State University, in addition to teaching a senior-level

Preface

“Multimedia Information Systems” course, one of us (Prof. Candan) introduced a
graduate course under the title “Multimedia and Web Databases.” This course of-
fers an introduction to features, models (including fuzzy and semistructured) for
multimedia and web data, similarity-based retrieval, query processing and optimiza-
tion for inexact retrieval, advanced indexing, clustering, and search techniques. In
short, the course provides a “database” view of media management, storage, and
retrieval. It not only educates students in media information management, but also
highlights how to design a multimedia-oriented database system, why and how these
systems evolve, and how they may change in the near future to accommodate the
needs of new applications, such as search engines, web applications, and dynamic
information-mashup systems. At the University of Torino, the other author of this
book (Prof. Sapino) taught a similar course, but geared toward senior-level under-
graduate students, with a deeper focus on media and features.

A major challenge both of us faced with these courses was the lack of an ap-
propriate textbook. Although there are many titles that address different aspects
of multimedia information management, content-based information retrieval, and
query processing, there is currently no textbook that provides an integrated look
at the challenges and technologies underlying a multimedia-oriented DBMS. Con-
sequently, both our courses had to rely heavily on the material we ourselves have
been developing over the years. We believe it is time for a textbook that takes an
integrated look at these increasingly converging fields of multimedia information
retrieval and databases, exhaustively covers existing multimedia database technolo-
gies, and provides insights into future research directions that stem from media-rich
systems and applications. We wrote this book with the aim of preparing students for
research and development in data management technologies that address the needs
of rich media-based applications. This book’s focus is on algorithms, architectures,
and standards that aim at tackling the heterogeneity and dynamicity inherent in real
data sources, rich applications, and systems. Thus, instead of focusing on a single or
even a handful of media, the book covers fundamental concepts and techniques for
modeling, storing, and retrieving heterogeneous multimedia data. It includes mate-
rial covering semantic, context-based, and performance-related aspects of modeling,
storage, querying, and retrieval of heterogeneous, fuzzy, and subjective (multimedia
and web) data.

We hope you enjoy this book and find it useful in your studies and your future
endeavors involving multimedia.

K. Selcuk Candan and Maria Luisa Sapino

1

Introduction

Multimedia Applications and
Data Management Requirements

Among countless others, applications of multimedia databases include personal and
public photo/media collections, personal information management systems, digital
libraries, online and print advertising, digital entertainment, communications, long-
distance collaborative systems, surveillance, security and alert detection, military,
environmental monitoring, ambient and ubiquitous systems that provide real-time
personalized services to humans, accessibility services to blind and elderly people,
rehabilitation of patients through visual and haptic feedback, and interactive per-
forming arts. This diverse spectrum of media-rich applications imposes stringent
requirements on the underlying media data management layer. Although most of
the existing work in multimedia data management focuses on content-based and
object-based query processing, future directions in multimedia querying will also
involve understanding how media objects affect users and how they fit into users’
experiences in the real world. These require better understanding of underlying
perceptive and cognitive processes in human media processing. Ambient media-rich
systems that collect diverse media from environmentally embedded sensors neces-
sitate novel methods for continuous and distributed media processing and fusion
schemes. Intelligent schemes for choosing the right objects to process at the right
time are needed to allow media processing workflows to be scaled to the immense
influx of real-time media data. In a similar manner, collaborative-filtering—based
query processing schemes that can help overcome the semantic gap between me-
dia and users’ experiences will help the multimedia databases scale to Internet-scale
media indexing and querying.

1.1 HETEROGENEITY

Most media-intensive applications, such as digital libraries, sensor networks, bioin-
formatics, and e-business applications, require effective and efficient data manage-
ment systems. Owing to their complex and heterogeneous nature, management,
storage, and retrieval of multimedia objects are more challenging than the man-
agement of traditional data, which can easily be stored in commercial (mostly rela-
tional) database management systems.

Introduction

Querying and retrieval in multimedia databases require the capability of com-
paring two media objects and determining how similar or how different these two
objects are. Naturally, the way in which the two objects are compared depends
on the underlying data model. In this section, we see that any single media object
(whether it is a complex media document or a simple object, such as an image) can
be modeled and compared in multiple ways, based on its different properties.

1.1.1 Complex Media Objects

A complex multimedia object or a document typically consists of a number of media
objects that must be presented in a coherent, synchronized manner. Various stan-
dards are available to facilitate authoring of complex multimedia objects:

m SGML/XML. Standard Generalized Markup Language (SGML) was accepted
in 1986 as an international standard (ISO 8879) for describing the structure of
documents [SGML]. The key feature of this standard is the separation of doc-
ument content and structure from the presentation of the document. The doc-
ument structure is defined using document type definitions (DTDs) based on a
formal grammar. One of the most notable applications of the SGML standard is
the HyperText Markup Language (HTML), the current standard for publishing
on the Internet, which dates back to 1992.

Extensible Markup Language (XML) has been developed by the W3C
Generic SGML Editorial Review Board [XML] as a follow-up to SGML. XML
is a subset of SGML, especially suitable for creating interchangeable, structured
Web documents. As with SGML, document structure is defined using DTDs;
however, various extensions (such as elimination of the requirement that each
document has a DTD) make the XML standard more suitable for authoring
hypermedia documents and exchanging heterogenous information.

® HyTime. SGML and XML have various multimedia-oriented applications. The
Hypermedia/Time-based Structuring Language (HyTime) is an international
multimedia standard (ISO 10744) [HyTime], based on SGML. Unlike HTML and
its derivatives, however, HyTime aims to describe not only the hierarchical and
link structures of multimedia documents, but also temporal synchronization be-
tween objects to be presented to the user as part of the document. The underly-
ing event-driven synchronization mechanism relies on timelines (Section 2.3.5).

m SMIL. Synchronized Multimedia Integration Language (SMIL) is a synchroniza-
tion standard developed by the W3C [SMIL]. Like HyTime, SMIL defines a lan-
guage for interactive multimedia presentations: authors can describe spatiotem-
poral properties of objects within a multimedia document and associate hyper-
links with them to enable user interaction. Again, like HyTime, SMIL is based
on the timeline model and provides event-based synchronization for multimedia
objects. Instead of being an application of SGML, however, SMIL is based on
XML.

B MHEG. MHEG, the Multimedia and Hypermedia Experts Group, developed a
hypermedia publishing and coding standard. This standard, also known as the
MHEG standard [MHEG], focuses on platform-independent interchange and
presentation of multimedia presentations. MHEG models presentations as a

1.1 Heterogeneity

collection of objects. The spatiotemporal relationships between objects and the
interaction specifications form the structure of a multimedia presentation.

® VRML and X3D. Virtual Reality Modeling Language (VRML) provides a stan-
dardized way to describe interactive three-dimensional (3D) information for
Web-based applications. It soon evolved into the international standard for de-
scribing 3D content [Vrml]. A VRML object or world contains various media
(including 3D mesh geometry and shape primitives), a hierarchical structure that
describes the composition of the objects in the 3D environment, a spatial struc-
ture that describes their spatial positions, and an event/interaction structure that
describes how the environment evolves with time and user interactions. The
Web3D consortium led the development of the VRML standard and its XML
representation, X3D standard [X3D].

® MPEG7 and MPEG21. Unlike the standards just mentioned, which aim to de-
scribe the content of authored documents, the main focus of the MPEG7 (Multi-
media Content Description Interface) [MPEG7] is to describe the content of
captured media objects, such as video. It is a follow-up to the previous MPEG
standards, MPEG1, MPEG2, and MPEG4, which were mainly concerned with
video compression. Although primarily designed to support content-based re-
trieval for captured media, the standard is also rich enough to be applicable
to synthetic and authored multimedia data. The standard includes content-
based description mechanisms for images, graphics, 3D objects, audio, and
video streams. Low-level visual descriptors for media include color (e.g., color
space, dominant colors, and color layout), texture (e.g., edge histogram), shape
(e.g., contours), and motion (e.g., object and camera trajectories) descriptors.
The standard also enables description of how to combine heterogeneous me-
dia content into one unified multimedia object. A follow-up standard, MPEG21
[MPEG21], aims to provide additional content management and usage services,
such as caching, archiving, distributing, and intellectual property management,
for multimedia objects.

Example 1.1.1: As a more detailed example for nonatomic multimedia objects, let
us reconsider the VRML/X3D standard, for describing virtual worlds. In X3D, the
world is described in the form of a hierarchical structure, commonly referred to
as the scene graph. The nodes of the hierarchical structure are expressed as XML
elements, and the visual properties (such as size, color, and shine) of each node are
described by these elements’ attributes. Figure 1.1 provides a simple example of a
virtual world consisting of two objects. The elements in this scene graph describe the
spatial positions, sizes, shapes, and visual properties of the objects in this 3D world.
Note that the scene graph has a tree structure: there is one special node, referred to
as the root, that does not have any ancestors (and thus it represents the entire virtual
world), whereas each node except this root node has one and only one parent.

The internal nodes in the X3D hierarchy are called grouping (or transform)
nodes, and they bring together multiple subcomponents of an object and describe
their spatial relationships. The leaf nodes can contain different types of media (e.g.,
images and video), shape primitives (e.g., sphere and box), and their properties (e.g.,
transparency and color), as well as 3D geometry in the form of polyhedra (also
called meshes). In addition, two special types of nodes, sensor and script nodes,

4

Introduction

‘ scene

I T

‘ Transform ‘ | Transform

(translation)

[I

Shape |

| (translation)

Transform |

Viewpoint

(box) (rotation)
= .
' Shape
(cone)
(a) (b)

<Scene>

<Transform translation=-1 0 -6">

<Shape>

<Appearance>
<Material

ambientIntensity="0.800"
shininess="0.800
diffuseColor="3 0 0'/>
</Appearance>
<Box size="111'/>
</Shape>
</Transform>
<Transform translation="-3 0 -6">
<Transform rotation='3 1 3 3'>
<Shape>
<Appearance>
<Material
ambientIntensity='0.800"
shininess="0.600
diffuseColor="0 0 1'/>
</Appearance>
<Cone height="2.000" bottomRadius="1.000"/>
</Shape>
</Transform>
</Transform>
<Viewpoint
fieldOfView="1"
position="-5 -1 1’
orientation="-0.2 -0.2 -0.7 -.4'/>
</Scene>

(c)

Figure 1.1. An X3D world with two shape objects and the XML-based code for its hierarchical
scene graph: (a) X3D world, (b) scene graph, (c) X3D code. See color plates section.

can be used to describe the interactivity options available in the X3D world: sensor
nodes capture events (such as user input); script nodes use behavior descriptions
(written in a high-level programming language, for example, JavaScript) to modify
the parameters of the world in response to the captured events. Thus, X3D worlds

can be rich and heterogeneous in content and structure (Figure 1.2):

B Atomic media types: This category covers more traditional media types, such as
text, images, texture maps, audio, and video. The features used for media-based

retrieval are specific to each media type.

1.1 Heterogeneity

Object 1

P Object 2
A~

Transform Viewpoint / \
Node @')Node (i)"I\'lroa;:form

/

n

&,
@

Transform
Node

’ /7 \ /
L7 N,/ Geometry
(= Node
Script
Route Node

_________________ AWM [
Route N)\

Image Sensor Audio Video

Node Node Node Node

Figure 1.2. The scene graph of a more complex X3D world.

3D mesh geometry: This category covers all types of polyhedra that can be repre-
sented using the X3D/VRML standard. Geometry-based retrieval is a relatively
new topic, and the features to be used for retrieval are not yet well understood.
Shape primitives: This category covers all types of primitive shapes that are part
of the standard, as well as their attributes and properties.

Node structure: The node structure describes how complex X3D/VRML objects
are put together in terms of the simpler components. Because objects and sub-
objects are the main units of reuse, most of the queries need to have the node
structure as one of the retrieval criteria.

Spatial structure: The spatial structure of an object is related to its node structure;
however, it describes the spatial transformations (scaling and translation) that
are applied to the subcomponents of the world. Thus queries are based on spatial
properties of the objects.

Event/interaction structure: The event structure of a world, which consists of sen-
sor nodes and event routes between sensor nodes and script nodes, describes
causal relationships among objects within the world.

Behaviors: The scripting nodes, which are part of the event structure, may be
used for understanding the behavioral semantics of the objects. Because these
behaviors can be reused, they are likely to be an important unit of retrieval.
The standard does not provide a descriptive language for behaviors. Thus,
retrieval of behaviors is likely through their interfaces and the associated
metadata.

Temporal structure: The temporal structure is specified through time sensors and
the associated actions. Consequently, the temporal structure is a specific type of
event structure. Because time is also inherent in the temporal media (such as
video and audio) that can be contained within an X3D/VRML object, it needs
to be treated distinctly from the general event structure.

6

Introduction

B Metadata: This covers everything associated with the objects and worlds (such
as the textual content of the corresponding files or filenames) that cannot be
experienced by the viewers. In many cases, the metadata (such as developer’s
comments and/or node and variable names) can be used for extracting informa-
tion that describes the actual content.

The two-object scene graph in Figure 1.2 contains an image file, which might be
used as a surface texture for one of the objects in the world; an audio file, which
might contain the soundtrack associated with an object; a video file, which might be
projected on the surface of one of the objects; shape primitives, such as boxes, that
can be used to describe simple objects; and 3D mesh geometry, which might be used
to describe an object (such as a human avatar) with complex surface description.
The scene graph further describes different types of relationships between the two
nodes forming the world. These include a composition structure, which is described
by the underlying XML hierarchy of the nodes constituting the X3D objects, and
events that are captured by the sensor nodes and the causal structure, described by
script nodes that can be activated by these events and can affect any node in the
scene graph. In addition, temporal scripts might be associated to the scene graph,
enabling the scene to evolve over time. Note that when considering the interaction
pathways between the nodes in the X3D (defined through sensors and scripts), the
structure of the scene graph ceases to be a tree and, instead, becomes a directed
graph.

Whereas an X3D world is often created and stored as a single file, in many other
cases the multimedia content may actually not be available in the form of a single
file created by a unique individual (or a group with a common goal), but might in
fact consist of multiple independent components, possibly stored in a distributed
manner. In this sense, the Web itself can be viewed as a single (but extremely large)
multimedia object. Although, in many cases, we access this object only a page (or an
image, or a video) at a time, search engines treat the Web as a complex whole, with
a dynamic structure, where communities are born and evolve repeatedly. In fact,
with Web 2.0 technologies, such as blogs and social networking sites, which strongly
tie the users to the content that they generate or annotate (i.e., tag), this vast object
(i.e., the entire Web) now also includes the end users themselves (or at least their
online representations).

1.1.2 Semantic Gap

It is not only the complex objects (described using hypermedia standards, such as
X3D, SMIL, MPEG7, or HTML) that may necessitate structured, nonatomic mod-
els for representation. Even objects of relatively simple media types, such as images
and video, may embed sub-objects with diverse local properties and complex spa-
tiotemporal interrelationships. For example, an experimental study conducted by
H. Nishiyama et al. [1994] shows that users are viewing paintings or images using
two primary patterns. The first pattern consists of viewing the whole image roughly,
focusing only on the layout of the images of particular interest. The second pat-
tern consists of concentrating on specific objects within the image. In a sense, we
can view a single image as a compound object containing many sub-objects, each

1.1 Heterogeneity

_—)

arm statue

"
U

) shape
= . ! color

Figure 1.3. Any media object can be seen as a collection of channels of information; some
of these information channels (such as color and shape) are low-level (can be derived from
the media object), whereas others (such as semantic labels attached to the objects by the
viewer) are higher level (cannot be derived from the media object without external knowledge).
See color plates section.

corresponding to regions of the image that are visually coherent and/or semantically
meaningful (e.g., car, man), and their spatial relationships.

In general, a feature of a media object is simply any property of the object that
can be used for describing it to others. This can include properties at all levels, from
low-level properties (such as color, texture, and shape) to semantic features (such as
linguistic labels attached to the parts of the media object) that require interpretation
of the underlying low-level features at much higher semantic levels (Figure 1.3).
This necessity to have an interpretive process that can take low-level features that
are immediately available from the media and map to the high-level features that
require external knowledge is commonly referred to as the semantic gap.

The semantic gap can be bridged, and a multimedia query can be processed, at
different levels. In content-based retrieval, the low-level features of the query are
matched against the low-level features of the media objects in the database to iden-
tify the appropriate matches (Figure 1.4(a)). In semantic-based retrieval, either the
high-level query can be restated in terms of the corresponding low-level features for
matching (Figure 1.4(b)) or the low-level features of the media in the database can

High High
Low [Quary}—\/—f Data] Low I Qu‘ery'

(2) (b)

Data]

M

4 i
Low Low [Query Data J

(©) (d)

Figure 1.4. Different query processing strategies for media retrieval: (a) Low-level feature
matching. (b) A high-level query is translated into low-level features for matching. (c) Low-
level features are interpreted for high-level matching. (d) Through relevance feedback, the
query is brought higher up in semantic levels; that is, it is increasingly better at representing
the user’s intentions.

7

8

Free ebooks ==> www.Ebook777.com

Introduction

Index Structures
and
Statistical
Analysis
Query Processing
- <<
v p
Ranked /
Result
Samples \
. Y | | Update of the

Query or the
A |Retrieval Scheme

Query-driven
Us?;;s:f::; ce A4—» Relevance
Analysis

Figure 1.5. Multimedia query processing usually requires the semantic gap between what is
stored in the database and how the user interprets the query and the data to be bridged
through a relevance feedback cycle. This process itself is usually statistical in nature and,
consequently, introduces probabilistic imprecision in the results.

be interpreted (for example through classification, Chapter 9) to support retrieval
(Figure 1.4(c)). Alternatively, user relevance feedback (Figure 1.5 and Chapter 12)
and collaborative filtering (Sections 6.3.3 and 12.8) techniques can be used to rewrite
the user query in a way that better represents the user’s intentions (Figure 1.4(d)).

1.2 IMPRECISION AND SUBIJECTIVITY

One common characteristic of most multimedia applications is the underlying un-
certainty or imprecision.

1.2.1 Reasons for Imprecision and Subjectivity

Because of the possibly redundant ways to sense the environment, the alternative
ways to process, filter, and fuse multimedia data, the diverse alternatives in bridging
the semantic gap, and the subjectivity involved in the interpretation of data and
query results, multimedia data and queries are inherently imprecise:

m Feature extraction algorithms that form the basis of content-based multimedia
data querying are generally imprecise. For example, a high error rate is encoun-
tered in motion-capture data and is generally due to the multitude of envi-
ronmental factors involved, including camera and object speed. Especially for
video/audio/motion streams, data extracted through feature extraction modules
are only statistically accurate and may be based on the frame rate or the position
of the video camera related to the observed object.

B [t is rare that a multimedia querying system relies on exact matching. Instead,
in many cases, multimedia databases need to consider nonidentical but similar

Www.Ebook777.com

http://www.ebook777.com

1.2 Imprecision and Subjectivity

Table 1.1. Different types of queries that an image database may support

Find all images created by “John Smith”

Find all images that look like “query.gif”

Find top-5 images that look like “im_ex.gif”

Find all images that look like “mysketch.bomp”

Find all images that contain a part that looks like “query.gif”

Find all images of “sunny days”

Find all images that contain a “car”

Find all images that contain a “car” and a man who looks like “mugshot.bomp”
Find all image pairs that contain similar objects

Find all objects contained in images of “sunny days”

Find all images that contain two objects, where the first object looks like “im_ex.gif,”
the second object is something like a “car,” and the first object is “to the right of” the
second object; also return the semantic annotation available for these two objects

Find all new images in the database that | may like based on my list of preferences
Find all new images in the database that | may like based on my profile and history

Find all new images in the database that | may like based on access history of people
who are similar to me in their preferences and profiles

features to find data objects that are reasonable matches to the query. In many

cases, it is also necessary to account for semantic similarities between associated

annotations and partial matches, where objects in the result satisfy some of the
requirements in the query but fail to satisfy all query conditions.

B Imprecision can be due to the available index structures, which are often imper-
fect. Because of the sheer size of the data, many systems rely on clustering and
classification algorithms for sometimes imperfectly pruning search alternatives
during query processing.

B Query formulation methods are not able to capture the user’s subjective intention
perfectly. Naturally the query model used for accessing the multimedia database
depends on the underlying data model and the type of queries that the users will
pose (Table 1.1). In general, we can categorize query models into three classes:
— Query by example (OBE): The user provides an example and asks the system

to return media objects that are similar to this object.

— Query by description: The user provides a declarative description of the ob-
jects of interest. This can be performed using an SQL-like ad hoc query lan-
guage or using pictorial aids that help users declare their interests through
sketches or storyboards.

— Query by profile/recommendation: In this case, the user is not actively query-
ing the database; instead the database predicts the user’s needs based on his or
her profile (or based on the profiles of other users who have similar profiles)
and recommends an object to the user in a proactive manner.

For example, in Query-by-Example (QBE) [Cardenas et al., 1993; Schmitt et al.,

2005], which features, feature value ranges, feature combinations, or similarity

notions are to be used for processing is left to the system to figure out through

feature significance analysis, user preferences, relevance feedback [Robertson

9

10

Introduction

select image P, imageobject object1, object2 where
contains(P, object1) and contains(P, object2) and
(semantically_similar(P.semanticannotation, "Fuji Mountain") and
visually_similar(object1.imageproperties, "Fujimountain.jpg")) and
(semantically_similar(P.semanticannotation, "Lake") and
visually_similar(object2.imageproperties, "Lake.jpg")) and
above(object1, object?).

Figure 1.6. A sample multimedia query with imprecise (e.g., semantically_similar(), visu-
ally_similar(), and above()) and exact predicates (e.g., contains()).

and Spark-Jones, 1976; Rui and Huang, 2001] (see Figure 1.5), and/or collabora-
tive filtering [Zunjarwad et al., 2007] techniques, which are largely statistical and
probabilistic in nature.

1.2.2 Impact on Query Formulation and Processing

In many multimedia systems, more than one of the foregoing reasons for impreci-
sion coexist and, consequently, the system must take them into consideration col-
lectively. Degrees of match have to be quantified and combined, and results have to
be filtered and ordered based on these combined matching scores. Figure 1.6 pro-
vides an example query (in an SQL-like syntax used by the SEMCOG system [Li
and Candan, 1999a]) that brings together imprecise and exact predicates. Processing
this query requires assessment of different sources of imprecision and merging them
into a single value for ranking the results:

Example 1.2.1: Figure 1.7(a) shows a visual representation of the query in Fig-
ure 1.6. Figures 1.7(b), (c), (d), and (e) are examples of candidate images that may
match this query. The values next to the objects in these candidate images denote
the similarity values for the object-level matching. In this hypothetical example, the
evaluation of spatial relationships is also fuzzy (or imprecise) in nature.

The candidate image in Figure 1.7(b) satisfies object matching conditions, but its
layout does not match the user specification. Figures 1.7(c) and (e) satisfy the image
layout condition, but the features of the objects do not perfectly match the query
specification. Figure 1.7(d) has low structural and object matching. In Figure 1.7(b),
the spatial predicate and in Figure 1.7(d), the image similarity predicate for the lake,
completely fail (i.e., the degree of match is 0.0). A multimedia database engine must
consider all four images as candidates and must rank them according to a certain
unified criterion.

The models that can capture the imprecise and statistical nature of multimedia
data are many times fuzzy and probabilistic in nature. Probabilistic models (Sec-
tion 3.5) rely on the premise that the sources of imprecision in data and query
processing are inherently statistical and thus they commit onto probabilistic eval-
uation. Fuzzy models (Section 3.4) are more flexible and allow different seman-
tics, each applicable under different system requirements, to be selected for query
evaluation.

1.2 Imprecision and Subjectivity

Fuiji
Mountain

Lake Mountain
00 + 10 *

Fuiji
0.98 ﬁounlain

(b)

(©)

Fuji

Fuji

Mountain

Mountain A
A 05 00
08 \ @

Lake
Forest ‘
(d) (e)

Figure 1.7. Four partial matches to a given query: (a) Query, (b) Match #1, (c) Match #2,
(d) Match #3, (e) Match #4.

Therefore multimedia data query evaluation commonly requires fuzzy and prob-
abilistic data and query models as well as appropriate query processing mechanisms.
In general, we can classify multimedia queries into two classes based on the filtering
criterion imposed on the results by the user based on the matching scores:

B Range queries: Given a distance or a similarity measure, the goal of a range query
is to find matches in the database that are within the threshold associated with
the query. Thus, these are also known as similarity/distance threshold queries.
The query processing techniques for range queries vary based on the underlying
data model and available index structures, and on whether the queries are by
example or by description. The goal of any query processing technique, however,
is to prune the set of candidates in such a way that not all media data in the
database have to be considered to identify those that are within the given range
from the query point.

In the case of query by profile/feedback, the query, query range, and appro-
priate distance measure, as well as the relevant features (or the dimensions of
the space), can all be set and revised transparently by the system based on user
feedback as well as based on feedback that is provided by the users who are
identified as being similar to the user.

B Nearest neighbor queries: Unlike range queries, where there is a threshold on
the acceptable degree of matching, in nearest neighbor queries there is a thresh-
old on the number of results to be returned by the system. Thus, these are also
known as top-k queries (wWhere k is the number of objects the user is interested

11

12

Introduction

in). Because the distance between the query and the matching media data is
not known in advance, pruning the database content so that not all data objects
are considered as candidates requires techniques different from range queries
(Chapter 10).

As in the case of range queries, in query by profile/feedback, the query, the
distance measure, and the set of relevant features can be set by the system based
on user feedback. In addition, the number of matches that the user is interested
in can be varied based on the available profile.

These query paradigms require appropriate data structures and algorithms to sup-
port them effectively and efficiently. Conventional database management systems
are not able to deal with imprecision and similarity because they are based on
Boolean logic: predicates used for formulating query conditions are treated as
propositional functions, which return either true or false. A naive way to process
multimedia queries is to transform imprecision into true or false by mapping val-
ues less than a cutoff to false and the remainder to true. With this naive approach,
partial results can be quickly refuted or validated based on their relationships to
the cutoff. Chaudhuri er al. [2004], for example, leverage user-provided cutoffs for
filtering, while maintaining the imprecision value for further processing. In general,
however, cutoff-based early pruning leads to misses of relevant results. This leads to
data models and query evaluation mechanisms that can take into account impreci-
sion in the evaluation of the query criteria. In particular, the data and query models
cannot be propositional in nature, and the query processing algorithms cannot rely
on the assumption that the data and queries are Boolean.

1.3 COMPONENTS OF A MULTIMEDIA DATABASE
MANAGEMENT SYSTEM

As described previously, multimedia systems generally employ content-based re-
trieval techniques to retrieve images, video, and other more complex media objects.
A complex media object might itself be a collection of smaller media objects, inter-
linked with each other through temporal, spatial, hierarchical, and user interaction
structures. To manage such complex multimedia data, the system needs specialized
index structures and query processing techniques that can scale to structural com-
plexities. Consequently, indexing and query processing techniques developed for
traditional applications, such as business applications, are not suitable for efficient
and effective execution of queries on multimedia data.

A multimedia data management system, supporting the needs of such diverse
applications, must provide support for specification, processing, and refinement of
object queries and retrieval of media objects and documents. The system must allow
users to specify the criteria for objects and documents to be retrieved. Both media
object and multimedia document retrieval tasks must be similarity-based. Further-
more, while searching for a multimedia object, the structure as well as various visual,
semantic, and cognitive features (all represented in different forms) have to be con-
sidered together.

Example 1.3.1: Let us reconsider the Extensible 3D (or X3D) language for describ-
ing virtual worlds [X3D]. Figure 1.8 offers an overview of some of the functionalities

1.3 Components of a Multimedia Database Management System 13

Content Creator 3
' — VRML Data Upload VRML
— | o V8 A imes Faremm Media Feature and
q“..-‘l.-\ A : 1= i Data Reglstratl.on Structure Extractor . -'u‘.:\:.
- -— s, = | Change De.tectlon - and et 1
[Fr R — 1) Watermarking @ Index Manager
S - VRML Querying
User Registration
D gser Mlt_)dellng
uery Language VRML
uery Interface Lo
Qlery Similarity-based Data and Link
Query Processor T
Query and Manager
Feedback Manager
V
(093) VRML Result Manager
' Result Visualization = T T
= e 1" 1
Data Summarization !
Feedback Visualiz.
(9) Result and feedback 085) @ (056)
feedback feedback feedback
Content User

Figure 1.8. Components of a VRML/X3D database.

a VRML/X3D data management system would need to provide to its users
[Yamuna ez al., 1999]. The first of these functionalities is data registration (1). Dur-
ing registration, if the input object is a newer version of an object already in the
repository, then the system identifies possible changes in the object content, elim-
inates duplicates, and reflects the changes in the repository. Next (2), the system
extracts features (salient visual properties of the object) and structure information
from the object and (3) updates the corresponding index and data structures to sup-
port content-based retrieval. Users access the system through a visual query inter-
face (4). Preferences of the users are gathered and stored for more accurate and
personalized answers. Queries provided using the visual interface are interpreted
(subcomponents are weighed depending on the user preferences and/or database
statistics) and evaluated (5) by a similarity-based query processor using (6) vari-
ous index and data structures stored in the system. The matches found are ranked
based on their degrees of similarity to the query and passed to the results manager
along with any system feedback that can help the user refine her original query (7).
The results are then presented to the user in the most appropriate form (8). The
visualization system, then, collects the user’s relevance feedback to improve results
through a second, more informed, iteration of the retrieval process (9).

We next provide an overview of the components of a multimedia data man-
agement system. Although this overview is not exhaustive, it highlights the major
differences between the components of a conventional DBMS and the components
of a multimedia data management system:

m Storage, analysis, and indexing: The storage manager of a multimedia data man-
agement system needs to account for the special storage requirements of dif-
ferent types of media objects. This component uses the characteristics of the
media objects and media documents to identify the most effective storage and in-
dexing plan for different types of media. A media characteristics manager keeps

14

Introduction

(a) (b)

Figure 1.9. (a) A set of media objects and references between them, (b) logical links between
them are established, and (c) a navigation network has been created based on information
flow analysis.

metadata related with the known media types, including significant features, spa-
tial and temporal characteristics, synchronization/resource/QoS requirements,
and compression characteristics.

Given a media object, a feature/structure extractor identifies which features
are most significant and extracts them. The relative importance of these fea-
tures will be used during query processing. If the media object being processed
is complex, then its temporal, spatial, and interaction structures also have to
be extracted for indexing purposes. Not only does this enable users to pose
structure-related queries, but many essential data management functionalities,
such as object prefetching for interactive document visualization, result summa-
rization/visualization, and query processing for document retrieval, depend on
the (1) efficiency in representing structural information, (2) speed in comparing
two documents using their structures, and (3) capability of providing a meaning-
ful similarity value as a result of the comparison.

For large media objects, such as large text documents, videos, or a set of
hyperlinked pages, a summarization manager may help create compact repre-
sentations that are easier to compare, visualize, and navigate through. A mul-
timedia database management system may also employ mechanisms that can
segment large media content into smaller units to facilitate indexing, retrieval,
ranking, and presentation. To ensure that each information unit properly re-
flects the context from which it was extracted, these segmented information
units can be further enriched by propagating features between related informa-
tion units and by annotations that tag the units based on a semantic analysis of
their content [Candan et al., 2009]. Conversely, to support navigation within a
large collection of media objects, a relationship extractor may use association
mining techniques to find linkages between individual media objects, based on
their logical relationships, to create a navigable media information space (Fig-
ure 1.9).

Multimedia objects and their extracted information units need to be in-
dexed for quick reference based on their features and structures. An in-
dex/cluster/classification manager chooses the most appropriate indexing mech-
anism for the given media object. Because searching the entire database for a
given query is not always acceptable, indexing and clustering schemes reduce
the search space by quickly eliminating from consideration irrelevant parts of

1.3 Components of a Multimedia Database Management System

Y .
(2] ’ N o ~
°0 bl \ ® A ; 4
2] e © AW-) ._/’ le ©]
o0 - Lo o
Pt] i
) L
22 (]
L] el B
f’ ‘\
.. S8, \
®poe |0 e !
A ’
(=Y @ o,
(a) (b)

Figure 1.10. (a) A set of media objects in a database (each point represents an object (closer
points correspond to media objects that are similar to each other). (b) Similar objects are
clustered together, and for each cluster a representative (lightly shaded point) is selected:
given a query, for each cluster of points, first its representative is considered to identify and
eliminate unpromising clusters of points.

the database based on the order and structure implicit in the data (Figure 1.10).
Each media object is clustered with similar objects to support pruning dur-
ing query processing as well as effective visualization and summarization. This
module may also classify the media objects under known semantic classes for
better organization, annotation, and browsing support for the data.

A semantic network of media, wherein media objects and their information
units are semantically tagged and relationships between them are extracted and
annotated, would benefit significantly from additional domain knowledge that
can help interpret these semantic annotations. Thus, a semantics manager might
help manage the ontologies and taxonomies associated with the media collec-
tions, integrate such metadata when media objects from different collections are
brought together, and use such metadata to help semantically driven query pro-
cessing and navigation support.

B Query and visualization specifications: A multimedia database management sys-
tem needs to allow users to pose queries for multimedia objects and documents.
A query specification module helps the user pose queries using query-by-
example or query-by-description mechanisms. Because of the visual characteris-
tics of the results, query specifications may also be accompanied with visualiza-
tion specifications that describe how the results will be presented to the user.

B Navigation support and personalized and contextualized recommendations: A
navigation manager helps the user browse through and navigate within the rich
information space formed by the multimedia objects and documents in the mul-
timedia database. The main goal of any mechanism that helps users navigate
in a complex information space is to reduce the amount of interaction needed
for locating a relevant piece of information. In order to provide proper naviga-
tional support to users, a guidance system must identify, as precisely as possible,
what alternatives to provide to the user based on the user’s current navigational
context (Figure 1.11). Furthermore, when this context changes, the system

15

16

Introduction

No guidance Content-only guidance Context-enriched guidance
Number of Alternatives: 1 Number of Alternatives: 3 Number of Alternatives: 1
Number of Steps to Target: N/A Number of Steps to Target: 777 Number of Steps to Target: 2

Notesl Notes2 Notes3

S

Slide T slide | slide
slide | Slide | Slide
siid siid Slid
(a) (b) (©)

Figure 1.11. Context- and task-assisted guidance from the content user is currently accessing
(S) to the content user wishes to access (T): (a) No guidance, (b) Content-only guidance,
(c) Context-enriched guidance.

should adapt to this change by identifying the most suitable content that has
to be brought closer to the user in the new navigational context. Therefore,
the logical distance between where the user is in the information space and
where the user wishes to navigate to needs to be dynamically adjusted in real
time as the navigation alternatives are rediscovered based on user’s context (see
Figure 1.11). Such dynamic adaptation of the information space requires an
indexing system that can leverage context (sometimes provided by the user
through explicit interventions, such as typing in a new query), as well as the
logical and structural relationships between various media objects. An effec-
tive recommendation mechanism determines what the user needs precisely so
that the guidance that the system provides does not lead to unnecessary user
interaction.

B Query evaluator: Multimedia queries have different characteristics than the
queries in traditional databases. One major difference is the similarity- (or
quality-) based query processing requirement: finding exact matches is either un-
desirable or impossible because of imperfections in the media processing func-
tions. Another difference is that some of the user-defined predicates, such as the
media processing functions, may be very costly to execute in terms of the time
and system resources they require.

A multimedia data management system uses a cost- and quality-based query
optimizer and provides query evaluation facilities to achieve the best results at
the lowest cost. The traditional approach to query optimization is to use database
statistics to estimate the query execution cost for different execution plans and
to choose the cheapest plan found. In the case of a database for media objects
and documents, the expected quality of the results is also important. Since differ-
ent query execution plans may cause results with different qualities, the quality
statistics must also be taken into consideration. For instance, consider a multi-
media predicate of the form image_contains_object_at(Image, Object, Coord),
which verifies the containment relationship between an image, an object, and
image coordinates. This predicate may have different execution patterns, each

1" Arguments marked with

1.3 Components of a Multimedia Database Management System

corresponding to a different external function, with drastically different result

qualities':

— image_contains_object_at(Image I, Object *0, Coord C) is likely to have high
quality as it needs only to search for an object at the given coordinates of a
given image.

— image_contains_object_at(Image I, Object 0, Coord *C), on the other hand, is
likely to have a lower quality as it may need to perform non-exact matches
between the given object and the objects contained within the given image to
find the coordinates of the best match.

In addition, query optimizers must take into account expensive user-defined

predicates. Different execution patterns of a given predicate may also have dif-

ferent execution costs.

— image_contains_object_at(Image *I, Object O, Coord *C) may be very expensive,
as it may require a pass over all images in the database to check whether any
of them contains the given object.

— image_contains_object_at(Image I, Object *0, Coord C) may be significantly
cheaper, as it only needs to extract an object at the given coordinates of the
given image.

The query evaluator of a multimedia data management system needs to create a

cost- and quality-optimized query plan and the index and access structures main-

tained by the index/cluster manager to process the query and retrieve results.

Because media queries are often subjective, the order of the results needs to re-

flect user preferences and user profiles. A result rank manager ensures that the

results of multimedia queries are ordered accordingly. Because a combination of
search criteria can be specified simultaneously, the matching scores results with
respect to each criterion must be merged to create the final ranking.

Relevance feedback and user profile: As discussed earlier, in multimedia

databases, we face an objective-subjective interpretation gap (Li et al., 2001; Yu

etal., 1976):

- Given a query (say an image example provided for a “similarity” search in a
large image database), which features of the image objects are relevant (and
how much so) to the user’s query may not be known in advance.

— Furthermore, most of the (large number of) candidate matches may be only
marginally relevant to the user’s query and must be eliminated from consid-
eration for efficiency and effectiveness of the retrieval.

These challenges are usually dealt with through a user relevance feedback pro-

cess that enables the user to explore the alternatives and that learns what is rel-

evant to the user through the user feedback provided during this exploration
process (see Figure 1.5): (1) Given a query, using the available index structures,
the system (2) identifies an initial set of candidate results; since the number of
candidates can be large, the system presents a small number of samples to the
user. (3) This initial set of samples and (4) the user’s relevance/irrelevance in-
puts are used for (5) learning the user’s interests (in terms of relevant features),
and this information is provided as an input to the next cycle for (6) having the
retrieval algorithm suitably update the query or the retrieval/ranking scheme.

@

are output arguments; those that are not marked are input arguments.

17

18

Introduction

Cooccurring oby with man

Nusrmativa] Bunletty) Dajjrae st Ratuation] Voma] R
= (boy) .00 iu.zn 4
e (e) 071]
= (grt) 62 030 17
5 - a{hunon) 51 iu‘u
- s v) i 04z 124
Accapt | Dismiss |

Shaw Concapt

Expand Conerl
[T
i
Swatch

r~

Hhasmter of Capdets g M

(Pesmtaie Otyl) st
(OB b i) it

(OB 1-Bhe car gl) amdl
{081 is-a lrmmeportabon) and

§ O R i v) b B sl

Conelitaon|
lcontans Objl and contamns Oyl
b {man)

b - R rtation)

|t~ the - Ieft{rght)- of

Salactvity

H

[——— —
« vann o
A ©
Ao {11
P—y “
pye— 2
» 1 e ~

Csvis

Figure 1.12. The system feedback feature of the SEMCOG multimedia retrieval system [Li
and Candan, 1999a]: given a user query, SEMCOG can tell the user how the data in the
database are distributed with respect to various query conditions. See color plates section.

Steps 2-6 are then repeated until the user is satisfied with the results returned by

the system.

Note that although the relevance feedback process can be leveraged on a per-
query basis, it can also be used for creating and updating a long-term interest

profile of the user.

m System support for query refinement: To eliminate unnecessary database accesses
and to guide the user in the search for a particular piece of information, a multi-
media database may provide support for query verification, system feedback, and
query refinement services.

Based on the available data and query statistics, a query verification and refine-
ment manager would provide users with system feedback, including an estimated
number of matching images, strictness of each query condition, and alternative

1.4 Summary

query conditions (Figure 1.12). Given such information, users can relax or refor-
mulate their queries in a more informed manner. For a keyword-based query, for
instance, its hypernyms, synonyms, and homonyms can be candidates for replace-
ment, each with different penalties depending on the user’s preference. The sys-
tem must maintain aggregate values for terms to calculate expected result sizes and
qualities without actually executing queries. For the reformulation of predicates
(for instance, replacing color_histogram match(Imagel, Image?2) with the predicate
shape_histogram_match(Imagel, Image?2)), on the other hand, the system needs to
consider correlations between candidate predicates as well as the expected query
execution costs and result qualities.

1.4 SUMMARY

In this chapter, we have seen that the requirements of a multimedia database man-
agement system are fundamentally different from those of a traditional database
management system. The major challenges in the design of a multimedia database
management system stem from the heterogeneity of the data and the semantic gap
between the raw data and the user. Consequently, the data and querying models as
well as the components of a multimedia database management system need to re-
flect the diversity of the media data and the applications and help fill the semantic
gap. In the next chapter, we consider the data and query models for multimedia data,
before discussing the multimedia database components in greater detail throughout
the remaining chapters of the book.

19

20

2

Models for Multimedia Data

A database is a collection of data objects that are organized in a way that supports
effective search and manipulation. Under this definition, your personal collection of
digital photos can be considered a database (more specifically an image database)
if you feel that the software you are using to organize your images provides you
with mechanisms that help you locate the images you are looking for easily and
effectively.

Effective access, of course, depends on the data and the application. For exam-
ple, in general, you may be satisfied if the images in your collection are organized in
terms of a timeline or put into folders according to where they were taken, but for
an advertising agency which is looking for an image that conveys a certain feeling or
for a medical research center which is trying to locate images that contain a partic-
ular pattern, such a metadata-based organization (i.e., an organization not based on
the content of the image, but on aspects of the media object external to the visual
content) may not be acceptable. Thus, when creating a database, it is important to
choose the right organization model.

A data model is a formalism that helps specify the aspects of the data relevant
for their organization. For example, a content-based model would describe what type
of content (e.g., colors or shape) is relevant for the organization of the data in the
database, whereas a metadata-based model may help specify the metadata (e.g., date
or place) relevant for the organization. A model can also help specify which objects
can be placed into the database and which ones cannot. For example, an image data
model can specify that video objects cannot be placed in the database, or another
data model can specify that all the images in the collection need to be grayscale.
The constraints specified using the model and its idea for organizing the data are
commonly referred to as the schema of the database. Intuitively, the data model
is a formalism or a language in which the schema constraints can be specified. In
other words, a database is a collection of data objects satisfying the schema constraints
specified using the formalism provided by the underlying data model and organized
based on these constraints.

2.1 Overview of Traditional Data Models

2.1 OVERVIEW OF TRADITIONAL DATA MODELS

A media object can be treated at multiple levels of abstraction. For example, an
image you took last summer with your digital camera can be treated at a high level
for what it represents for you (e.g., “a picture at the beach with your family”), at a
slightly lower level for what it contains visually (e.g., “a lot of blues and some skin-
toned circles”), at a lower level as a matrix of pixels, or at an even lower level as a
sequence of bits (which can be interpreted as an image if one knows the correspond-
ing image format and the rules that image format relies on). Note that some of the
foregoing image models are closer to the higher, semantic (or conceptual) represen-
tation of the media, whereas others are closer to the physical representation. In fact,
for any media, one can consider a spectrum of models, from a purely conceptual to
a purely physical representation.

2.1.1 Conceptual, Logical, and Physical Data Models

In general, a conceptual model represents the application-level semantics of the ob-
jects in the database. This model can be specified using natural language or using
less ambiguous formalisms, such as the unified modeling language (UML [UML]),
or the resource description framework (RDF [Lassila and Swick, 1999]). A phys-
ical model, on the other hand, describes how the data are laid down on the disk.
A logical model, or the model used by the database management server (DBMS)
to organize the data to help search, can be close to the conceptual model or to the
physical model depending on how the organization will be used: whether the orga-
nization is to help end users locate data effectively or whether the organization is
to help optimize the resource usage. In fact, a DBMS can rely on multiple logical
models at different granularities for different purposes.

2.1.2 Relational Model

The relational data model [Codd, 1970] describes the constraints underlying the
database in terms of a set of first-order predicates, defined over a finite set of pred-
icate variables. Each relation corresponds to an n-ary predicate over n attributes,
where each attribute is a pair of name and domain type (such as integer or string).
The content of the relation is a subset of the Cartesian product of the corresponding
n value domains, such that the predicate returns frue for each and every n-tuple in
the set. The closed-world assumption implies that there are no other n-tuples for
which the predicate is true. Each n-tuple can be thought of as an unordered set of
attribute name/value pairs. Because the content of each relation is finite, as shown
in Figure 2.1, an alternative visualization of the relation is as a table where each col-
umn corresponds to an attribute and each row is an n-tuple (or simply “fuple” for
short).

Schema and Constraints
The predicate name and the set of attribute names and types are collectively re-
ferred to as the schema for the relation (see Figure 2.1). In addition, the schema may

21

22

Models for Multimedia Data

Figure 2.1. A simple relational database with two relations: Employee (ssn, name, job) and
Student (ssn, gpa) (the underlined attributes uniquely identify each tuple/row in the corre-
sponding table).

contain additional constraints, such as candidate key and foreign key constraints, as
well as other integrity constraints described in other logic-based languages.

A candidate key is a subset of the set of attributes of the relation such that there
are no two distinct tuples with the same values for this set of attributes and there is
not a proper subset of this set that is also a candidate key. Because they take unique
values in the entire relation, candidate keys (or keys for short) help refer to indi-
vidual tuples in the relation. A foreign key, on the other hand, is a set of attributes
that refers to a candidate key in another (or the same) relation, thus linking the two
relations. Foreign keys help ensure referential integrity of the database relations;
for example, deleting a tuple referred to by a foreign key would violate referential
integrity and thus is not allowed by the DBMS.

The body of the relation (i.e., the set of tuples) is commonly referred to as the
extension of the relation. The extension at any given point in time is called a state of
the database, and this state (i.e., the extension) changes by update operations that
insert or delete tuples or change existing attribute values. Whereas most schema and
integrity constraints specify when a given state can be considered to be consistent
or inconsistent, some constraints specify whether or not a state change (such as the
amount of increase in the value a tuple has for a given value) is acceptable.

Queries, Relational Calculus, and SQL

In the relational model, queries are also specified declaratively, as is the case
with the constraints on the data. The tuple relational and domain relational calculi
are the main declarative languages for the relational model. A domain relational
calculus query is of the form

UX1s ooy Xo) | faomain(X1s - .., Xin)),

where X; are domain variables or constants and fymuin(X1, - . . , Xin) is a logic formula
specified using atoms of the form

m (S € R),where S C {X1, ..., X;,} and R is a relation name, and
B (X;op Xj) or (X;op constant); here, op is a comparison operator, such
as = or <,

and using operators A, Vv, and — as well as the existential (3) and universal (V)
quantifiers. For example, let us consider a relational database with two relations,

Free ebooks ==> www.Ebook777.com

2.1 Overview of Traditional Data Models

Employee(ssn, name, job) and Student(ssn, gpa), as in Figure 2.1. The first of these
relations, Employee, has three attributes, and one of these attributes (ssn, which is
underlined) is identified as the key of the relation. The second relation, Student, has
two attributes, and one of these (ssn, which is underlined) is identified as the key.
The domain calculus formula

{(name) | (salary € Employee) A (name € Employee) A
(ssn € Employee) A (salary < 1000) A
(gpa € Student) A (gpa > 3.7) A (ssn € Student))}

corresponds to the query “find all student employees whose GPAs are greater than
3.7 and salaries are less than 1000 and return their names.”

A tuple relational calculus query, on the other hand, is of the form (¢ | fup. (1)),
where ¢ is a tuple variable and f;,.(f) is a logic formula specified using the same
logic operators as the domain calculus formulas and atoms of the form

® R(v), which returns true if the value of the tuple variable v is in relation R, and
®m (v.a op u.b) or (v.a op constant), where v and u are two tuple variables, a and b
are two attribute names, and op is a comparison operator, such as = or <.

The two relational calculi are equivalent to each other in their expressive power;
that is, one can formulate the same query in both languages. For example,

{t.name | 3,3,, Employee(t) A (t.salary < 1000) A
Student(t;) A (ty.gpa > 3.7) A (t.ssn = ty.55n)}

is a tuple calculus formulation of the preceding query.

The subset of these languages that returns finite number of tuples is referred to
as the safe relational calculus and, because infinite results to a given query are not
desirable, DBMSs use languages that are equivalent to this subset. The most com-
monly used relational ad hoc query language, SOL [SQL-99, SQOL-08], is largely
based on the tuple relational calculus. SQL queries have the following general
structure:

select <attribute_list>
from <relation_list>
where <condition>

For instance, the foregoing query can be formulated in SQL as follows:

select t.name

from employee t, student t2

where (t.salary < 1000) and
(t2.gpa > 3.7) and
(t.ssn = t2.ssn)

Note the similarity between this SOL query and the corresponding tuple calculus
statement.

Wwww.Ebook777.conl

23

http://www.ebook777.com

24

Models for Multimedia Data

Relational Algebra for Query Processing

Whereas the relational calculus gives rise to declarative query languages, an
equivalent algebraic language, called relational algebra, gives procedural (or exe-
cutional) semantics to the queries written declaratively. The relational algebra for-
mulas are specified by combining relations using the following relational operators:

m selection (o): Given a selection condition, ®, the unary operator og(R) selects
and returns all tuples in R that satisfy the condition ©.

m projection (r): Given a set, A, of attributes, the unary operator m4(R) returns
a set of tuples, where each tuple corresponds to a tuple in R constrained to the
attributes in the set A.

m Cartesian product (x): Given two relations R; and R,, the binary operator R; x
R, returns the set of tuples

{t,ult e R1 AN ue Ry}.

In other words, tuples from R; and R, are pairwise combined.
® set union (U): Given two relations R; and R, with the same set of attributes,
R1 U R, returns the set of tuples

{t|lte Ri VvV te Ry}.

m set difference (\): Given two relations R; and R, with the same set of attributes,
R; \ R, returns the set of tuples

{tlte Ry Nt Ry}

This set of primitive relational operations is sometimes expanded with others,
including

m rename (p): Given two attribute names a; and a,, the unary operator gy, /4, (R)
renames the attribute a; of relation R as a,.

m aggregation operation (I'): Given a condition expression, 6, a function f (such
as count, sum, average, and maximum), and a set, A, of attributes, the unary
operator ¢I'; 4(R) returns

f{f[A]lz € R ~O(1)}).
B join (X): Given a condition expression, 6, Ry Xy R; is equivalent to og(R; x Ry).

The output of each relational algebra statement is a new relation.

Query execution in relational databases is performed by taking a user’s ad hoc
query, specified declaratively in a language (such as SQL) based on relational cal-
culus, and translating it into an equivalent relational algebra statement, which es-
sentially provides a query execution plan. Because, in general, a given declarative
query can be translated into an algebraic form in many different (but equivalent)
ways, a relational query optimizer is used to select a query plan with small query
execution cost. For example, the preceding query can be formulated in relational
algebra either as

”name(agpa>3.7 (Usal<1000 (Employee D<]Employee.ssn=Students.ssn Students)))

2.1 Overview of Traditional Data Models

or, equivalently, as

nname((Ggpa>3.7(SIUdentS)) NSludents.ssn:Employee.ssn (Usal<1000(EmP10y€€)))~

It is the responsibility of the query optimizer to pick the appropriate query execution
plan.

Summary

Today, relational databases enjoy significant dominance in the DBMS market
due to their suitability to many application domains (such as banking), clean and
well-understood theory, declarative language support, algebraic formulation that
enables query execution, and simplicity (of the language as well as the data struc-
tures) that enables effective (though not always efficient) query optimization.

The relational model is close to being a physical model: the tabular form of the
relations commonly dictates how the relations are stored on the disk, that is, one
row at a time, though other storage schemes are also possible. For example, column-
oriented storage [Daniel J. Abadi, 2008; Stonebraker et al., 2005] may be more de-
sirable in data analysis applications where people commonly fetch entire columns
of large relations.

2.1.3 Object-Oriented and Object-Relational Models

As we mentioned previously, a major advantage of the relational model is its the-
oretical simplicity. Although this simplicity helps the database management system
optimize the services it delivers and makes the DBMS relatively easy to learn and
use, on the negative side, it may also prevent application developers from captur-
ing the full complexities of the real-world applications they develop. In fact, rela-
tional databases are not computationally complete: although one can store, retrieve,
and perform a very strictly defined set of computations, for anything complex (such
as analyzing an image) there is a need for a host language with higher expressive
power. Object-oriented data models, on the other hand, aim to be rich enough in
their expressive power to capture the needs of complex applications more easily.

Objects, Entities, and Encapsulation

Object-oriented models [Atkinson ef al., 1989; Maier, 1991], such as ER [Chen,
1976], Extended ER [Gogolla and Hohenstein, 1991], ODMG [ODMG], and
UML [UML], model real-world entities, their methods/behaviors, and their rela-
tionships explicitly, not through tables and foreign keys. In other words, OODBs
map real world entities/objects to data structures (and associate unique identifiers
to each one of them'), their behaviors to functions, and relationships to object ref-
erences between separate entities (Figure 2.2). Each object has a state (the value
of the attributes); each object also has a set of (methods/interfaces) pairs to mod-
ify or manipulate the state. Consequently, object-oriented databases provide higher
computational power: the users can implement any function and embed it into the

! Whereas the keys of a relation uniquely identify rows only in the corresponding relation, the unique
object identifiers identify the objects in the entire database.

25

26

Models for Multimedia Data

Person
SSN
Name
Address
changeAddress()
A
is-a
Employer Employee
Salary
companyName S
Address JobD HED
works-for [Promotedy()
ChangeAddress() Demotes()
ChangeSalary()

Figure 2.2. A simple object-oriented data schema created using the UML syntax. Rectangles
denote the entities, and each entity has a set of attributes and functions (or behaviors) that
alter the values of these attributes. The edges between the entities denote relationships
between them (the IS-A relationship is a special one in that it allows inheritance of attribute
and functions: in this example, the employee entity would inherit the attributes and functions
of the person entity).

database as a behavior of an entity. These functions can then be used in queries. For
example,

SELECT y.author
FROM Novel y
WHERE y.isabout(“war").

is a query posed in an object-oriented query language, OQL [Cattell and Barry,
2000]. In this example, isabout() is a user-defined function associated with objects of
type Novel. Given a topical keyword, it checks whether the novel is about that topic
or not, using content analysis techniques.

Object-oriented models also provide ways to describe complex objects and ab-
stract data types. Each object, except for the simplest ones, has a set of attributes and
(unlike relational databases where attributes can only contain values) each attribute
can contain another object, a reference to an object, or a set of other objects. Con-
sequently, object-oriented models enable creation of aggregation hierarchies where
complex objects are built by aggregating simpler objects (Figure 2.3(a)). Objects
that share the same set of attributes and methods are grouped together in classes.
Although each object belongs to some class, objects can migrate from one class to
another. Also, because each object has a unique 1D, references between objects can
be implemented through explicit pointers instead of foreign keys. This means that
the user can navigate from one object to another, without having to write queries
that, when translated into relational algebra, need entire relations to be put together
using costly join operators.

Object-oriented data models also provide inheritance hierarchies, where one
type is a superclass or supertype of the other and where the attributes and meth-
ods (or behaviors) of a superclass can be inherited by a subclass (Figure 2.3(b)).

2.1 Overview of Traditional Data Models

video library

video file

fralme @ %
S N\

Superclass
®
®

Subclass

ixel object

pixe o @ @
/ \ file (@)
pixel annotation @

(a) (b)

Figure 2.3. (a) A multimedia aggregation hierarchy and (b) a sample inheritance hierarchy (As
stand for the attributes and Ms stand for the methods or functions).

This helps application developers define new object types by using existing ones.
Figure 2.4 shows an example extended entity-relationship (EER) schema for a
X3D/VRLM database. The schema describes the relevant objects, attributes, and
relationships, as well as the underlying inheritance hierarchy.

Object-Relational Databases
Object-oriented data models are much higher level than relational models in

their expressive power; thus they can be considered almost as conceptual models.
This means that application developers can properly express the data needs of their

Co_o Clm D Comn

Media Files

Entitv

\
Y
VRML File

Includes_M

Keyword Node/Field

Include_K2 .
Multi-valued

Attribute

Frequency

Figure 2.4. A sample extended entity-relationship (EER) schema for a X3D/VRLM database.
This schema describes the relevant entities (i.e., objects), their attributes, relationships, and
inheritance hierarchies.

27

28

Free ebooks ==> www.Ebook777.com

Models for Multimedia Data

applications. Unfortunately, this also means that (because object-oriented models
are further away from physical models) they are relatively hard to optimize and, for
many users, harder to master.

Object-relational databases [Stonebraker er al, 1990] (also referred to as
extended-relational databases) aim to provide the best of both worlds, by either ex-
tending relational models with object-oriented features or introducing special row
(tuple) and table based data types into object-oriented databases. For example, the
SQL3 standard [SQL3, a,b] extends standard SQL with object-oriented features, in-
cluding user-defined complex, abstract data types, reference types, collection types
(sets, lists, and multisets) for creating complex objects, user-defined methods and
functions, and support for large objects.

2.1.4 Semi-Structured Models

Semi-structured data models, which were popularized by OEM [Papakonstantinou
et al., 1995] and which gained wider audience by the introduction of XML [XML],
aim to provide greater flexibility in the structure of the data. A particular challenge
posed by the relational and object-oriented (as well as object-relational) models is
that, once the schema is fixed, objects that do not satisfy the schema are not allowed
in the database. Although this ensures greater consistency and provides opportu-
nities for more optimal usage of the system resources, imposing the requirement
that all data need to have a schema has certain shortcomings. First of all, we might
not know the schema of the objects in the database in advance. Second, even if the
schemas of the objects are known in advance, the structures of different objects may
be different from each other. For example, some objects may have missing attributes
(a book without any figures, for example), or attributes may repeat an unspecified
number of times (e.g., one book with ten figures versus another with fifty).

Semi-structured data models try to address these challenges by (a) providing a
flexible modeling language (which easily handles missing attributes and attributes
that repeat an arbitrary number of times, as well as disjunction (i.e., alternatives)
in the data schema) and by (b) eliminating the requirement that the objects in the
database will all follow a given schema. That is why semi-structured data models are
sometimes referred to as schemaless or self-describing data models, as well.

Extensible Markup Language (XML) is a data exchange standard [XML] espe-
cially suitable for creating interchangeable, structured Web documents. In XML, the
document structure is defined using BNF-like document type definitions (DTDs)
that can be very flexible in terms of the structures that are allowable. For example,
the following XML DTD

<!ELEMENT article title, (section+)>

<!ATTLIST article venue CDATA #REQUIRED>

<!ELEMENT section (title,(subsection| CDATA)+)>
<!ELEMENT subsection (title,(subsubsection| CDATA)+)>
<!ELEMENT subsubsection (title, CDATA)>

<!ELEMENT title CDATA>

Www.Ebook777.com

http://www.ebook777.com

2.1 Overview of Traditional Data Models

states that

an article consists of a title and one or more sections;

all articles have a corresponding publication venue (or character sequence, i.e.,
CDATA);

each section consists of a title and one or more subsections or character se-
quences;

each subsection consists of a title and one or more subsubsections or character
sequences;

each subsubsection consists of a title and character sequence; and

title is a character sequence.

Furthermore, the XML standard does not require XML documents to have DTDs;
instead each XML document describes itself using tags. For example, the following
is an XML document:

<book>
<authors>
<author>K. Selcuk Candan</author>
<author>Maria Luisa Sapino</author>
</authors>
<title>
Multimedia Data Management Systems
</title>

</book>

Note that even though we did not provide a DTD, the structure of the document
is self-evident because of the use of open and close tags (such as (author) and
(/author), respectively) and the hierarchically nested nature of the elements. This
makes the XML standard a suitable platform for semi-structured data description.

OEM is very similar to XML in that it also organizes self-describing objects in

the form of a hierarchical structure. Note that, although both OEM and XML allow
references between any elements, the nested structure of the objects makes them
especially suitable for describing tree-structured data.

Because in semi-structured data models the structure is not precise and is not

necessarily given in advance,

users may want to ask queries about the structure;

the system may need to evaluate queries without having precise knowledge
of the structure;

the system may need to evaluate queries without having any prior knowledge
of the structure; and

the system may need to answer queries based on approximate structural
matching.

29

30

Models for Multimedia Data

Mammals
¥ %,
Small @;I Med@dammal
7 ®
> >
C}In Food Chain*d)
Cottontail Coyote

Figure 2.5. A basic relationship graph fragment; intuitively, each node in the graph asserts
the existence of a distinct concept, and each edge is a constraint that asserts a relationship
(such as IS-A).

These make management of semi-structured data different from managing rela-
tional or object-oriented data.

2.1.5 Flexible Models and RDF

All of the preceding data models, including semi-structured models, impose cer-
tain structural limitations on what can be specified and what cannot in a particular
model. OEM and XML, for example, are better suited for tree-structured data. A
most general model would represent a database, D, in the form of (a) a graph, G,
capturing the concept/entities and their relationships (Figure 2.5) and (b) associated
integrity constraints, /C, that describe criteria for semantic correctness. Resource
Description Framework (RDF [Lassila and Swick, 1999]) provides such a general
data model where, much as in object-oriented models, entities and their relation-
ships can be described. RDF also has a class system much like many object-oriented
programming and modeling systems. A collection of classes is called a schema. Un-
like traditional object-oriented data models, however, the relationships in RDF are
first class objects, which means that relationships between objects may be arbitrarily
created and can be stored separately from the objects. This nature of RDF is very
suitable for the dynamically changing, distributed, shared nature of multimedia doc-
uments and the Web.

Although RDF was originally designed to describe Web resources, today it is
used for describing all types of data resources. In fact, RDF makes no assumption
about a particular application domain, nor does it define the semantics of any par-
ticular application domain. The definition of the mechanism is domain neutral, yet
the mechanism is suitable for describing information about any domain. An RDF
model consists of three major components:

B Resources: All things being described by RDF expressions are called resources.

B Properties: A property is a specific aspect, characteristic, attribute, or relation
used to describe a resource. Each property has a specific meaning and defines its
permitted values, the types of resources it can describe, and its relationship with
other properties.

B Statements: A specific resource together with a property plus the value of that
property for that resource is an RDF statement (also called an RDF triple). The
three individual parts of a statement are called the subject, predicate, and object
of the statement, respectively.

2.1 Overview of Traditional Data Models

name .
location

Arizona State Tempe, AZ,USA
University

Figure 2.6. A complex RDF statement consisting of three RDF triples.

Let us consider the page http://www.asu.edu (home page of the Arizona State Uni-
versity — ASU) as an example. We can see that this resource can be described using
various page-related content-based metadata, such as title of the page and keywords
in the page, as well as ASU-related semantic metadata, such as the president of ASU
and its campuses. The statement “the owner of the Web site http://www.asu.edu is
Arizona State University” can be expressed using an RDF, this statement consisting
of (1) a resource or subject (http://www.asu.edu), (2) a property name or predicate
(owner), and (3) a resource (university_1) corresponding to ASU (which can be fur-
ther described using appropriate property names and values as shown in Figure 2.6).
The RDF model intrinsically supports binary relations (a statement specifies a re-
lation between two Web resources). Higher arity relations have to be represented
using multiple binary relations.

Some metadata (such as property names) used to describe resources are gener-
ally application dependent, and this can cause difficulties when RDF descriptions
need to be shared across application domains. For example, the property location
can be called in some other application domain an address. Although the seman-
tics of both property names are the same, syntactically they are different. On the
other extreme, a property name may denote different things in different application
domains. In order to prevent such conflicts and ambiguities, the terminology used
by each application domain can be identified using namespaces. A namespace can
be thought of as a context or a setting that gives a specific meaning to what might
otherwise be a general term.

It is frequently necessary to refer to a collection of resources: for example, to
the list of courses taught in the Computer Science Department, or to state that a
paper is written by several authors. To represent such groups, RDF provides con-
tainers to hold lists of resources or literals. RDF defines three types of container
objects to facilitate different groupings: a bag is an unordered list of resources or
literals, a sequence is an ordered list of resources or literals, and an alternative is
a list of resources or literals that represent alternatives for the (single) value of a
property.

In addition to making statements about a Web resource, RDF can also be used
for making statements about other RDF statements. To achieve this, one has to
model the original statement as a resource. In other words, the higher order state-
ments treat RDF statements as uniquely identifiable resources. This process is called
reification, and the statement is called a reified statement.

31

32

Models for Multimedia Data

2.2 MULTIMEDIA DATA MODELING

Note that any one or combination of the foregoing models can be used for develop-
ing a multimedia database. Naturally, the relational data model is suitable to de-
scribe the metadata associated with the media objects. The object-oriented data
model is suitable for describing the application semantics of the objects properly.
The content of a complex-media object (such as a multimedia presentation) can
be considered semi-structured or self-describing as different presentations may be
structured differently and, essentially, the relevant structure is prescribed by the au-
thor of the presentation in the presentation itself. Lastly, each media object can be
interpreted at a semantic level, and this interpretation can be encoded using RDF.

On the other hand, as we will see, despite their diversity and expressive pow-
ers, the foregoing models, even when used together, may not be sufficient for de-
scribing media objects. Thus, new models, such as fuzzy, probabilistic, vector-based,
sequence-based, graph-based, or spatiotemporal models, may be needed to handle
them properly.

2.2.1 Features

The set of properties (or features) used for describing the media objects in a given
database is naturally a function of the media type. Colors, textures, and shapes are
commonly used to describe images. Time and motion are used in video databases.
Terms (also referred to as keywords) are often used in text retrieval. The features
used for representing the objects in a given database are commonly selected based
on the following three criteria:

m Application requirements: Some image database applications rely on color
matching, whereas in some other applications, texture is a better feature to rep-
resent the image content.

B Power of discrimination: Because the features will be used during query process-
ing to distinguish those objects that are similar to the user’s query from those that
are different from it, the features that are selected must be able to discriminate
the objects in the database.

B Human perception: Not all features are perceived equivalently by the user. For
example, some colors are perceived more strongly than the others by the human
eye [Kaiser and Boynton, 1996]. The human eye is also more sensitive to contrast
then colors in the image [Kaiser and Boynton, 1996].

In addition, the query workload (i.e., which features seem to be dominant in user
queries) and relevance feedback (i.e., which features seem to be relevant to a partic-
ular user or user groups) need also be considered. We will consider feature selection
in Section 4.2 and relevance feedback in Chapter 12.

2.2.2 Distance Measures and Metrics

It is important to note that measures used for comparing media objects are critical
for the efficiency and effectiveness of a multimedia retrieval system. In the following
chapters, we discuss the similarity/distance measures more extensively and discuss

Free ebooks ==> www.Ebook777.com

2.2 Multimedia Data Modeling

efficient implementation and indexing strategies based on these measures. Although
these measures are in many cases application and data model specific, there are cer-
tain properties of these measures that transcend the data model and media type. For
instance, given two objects, o; and o, a distance measure, A (used for determining
how different these two objects are from each other), is called metric if it has the
following properties:

m Distances are non-negative: A(o1, 02) > 0

m Distance is zero if and only if the two objects are identical: (A(o1, 02) = 0) <>
01 =02

m Distance function is symmetric: A(o1, 02) = A(02, 01)

m Distance function satisfies triangular inequality: A(o1,03) < A(o1,02) +
A(02, 03)

Although not all measures are metric, metric measures are highly desirable. The
first three properties of the metric distances ensure consistency in retrieval. The last
property, on the other hand, is commonly exploited to prune the search space to
reduce the number of objects to be considered for matching during retrieval (Sec-
tion 7.2). Therefore, we encourage you to pay close attention to whether the mea-
sures we discuss are metrics or not.

2.2.3 Common Representations: Vectors, Strings, Graphs, Fuzzy
and Probabilistic Representations

As we discussed in Section 1.1, features of interest of multimedia data can be diverse
in nature (from low-level content-based features, such as color, to higher-level se-
mantic features that require external knowledge) and complex in structure. It is,
however, important to note that the diversity of features and feature models does
not necessarily imply a diversity, equivalent in magnitude, in terms of feature repre-
sentations. In fact, in general, we can classify the representations common to many
features into four general classes:

m Vectors: Given n independent properties of interest to describe multimedia ob-
jects, the vector model associates an n-dimensional vector space, where the ith
dimension corresponds to the ith property. Intuitively, the vector describes the
composition of a given multimedia data object in terms of its quantifiable prop-
erties. Histograms, for example, are good candidates for being represented in
the form of vectors. We discuss the vector model in detail in Section 3.1.

m Strings/Sequences: Many multimedia data objects, such as text documents, audio
files, or DNA sequences, are essentially sequences of symbols from a base al-
phabet. In fact, as we see in Section 2.3.6.4, strings and sequences can even be
used to represent more complex data, such as spatial distribution of features, in
a more compact manner. We discuss string/sequence models in Section 3.2.

B Graphs/Trees: As we have seen in the introduction section, most complex media
objects, especially those that involve spatiotemporal structures, object composi-
tion hierarchies, or object references and interaction pathways (such as hyper-
links), can be modeled as trees or graphs. We revisit graph and tree models in
Section 3.3.

Wwww.Ebook777.conl

33

http://www.ebook777.com

34

Models for Multimedia Data

®m Fuzzy and probabilistic representations: Vectors, strings/sequences, and graphs/
trees all assume that the media data have an underlying precise structure that
can be used as the common basis of representation. Many times, however, the
underlying regularity may be imprecise. In such a case, fuzzy or probabilistic
models may be more suitable. We discuss fuzzy models for multimedia in Sec-
tion 3.4 and probabilistic models in Section 3.5, respectively.

In the rest of this section, we introduce and discuss many commonly used content
features, including colors, textures, and shapes, and structural features, such as spa-
tial and temporal models. We revisit the common representations and discuss them
in more detail in Chapter 3.

2.3 MODELS OF MEDIA FEATURES

The low-level features of the media are those that can be extracted from the media
object itself, without external domain knowledge. In fact, this is not entirely correct.
However low level a feature is, it still needs a model within which it can be repre-
sented, interpreted, and described. This model is critical: because of the finite nature
of computational devices, each feature instance is usually allocated a fixed, and usu-
ally small, number of bits. This means that there is an upper bound on the number
of different feature instances one can represent. Thus, it is important to choose a
feature model that can help represent the space of possible (and relevant) feature
instances as precisely as possible. Furthermore, a feature model needs to be intuitive
(especially if it is used for query specification) and needs to support computation of
similarity and/or distance values between different feature instances for similarity-
based query processing. Because basic knowledge about commonly used low-level
media features can help in understanding the data structures and algorithms that
multimedia databases use to leverage them, in this section we provide an overview
of the most common low-level features, such as color, texture, and shape. Higher
level features, such as spatial and temporal models, are also discussed.

2.3.1 Color Models

A color model is a quantitative representation of the colors that are relevant in an
application domain. For the applications that involve human vision, the color model
needs to represent the colors that the human eye can perceive.

The human eye, more specifically the retina, relies on so-called rods and cones to
perceive light signals. Rods help with night vision, where the light intensity is very
low. They are able to differentiate between fine variations in the intensity of the
light (i.e., the gray levels), but cannot help with the perception of color. The cones,
on the other hand, come into play when the light intensity is high. The three types of
cones, R, G, B, each perceive a different color, red, green, and blue, respectively.”
Therefore, color perception is achieved by combining the intensities recorded by
these three different base colors.

2 The human eye is least sensitive to blue light.

2.3 Models of Media Features

B
Blue Cyan
Magenta hite
Green
ack G
Red Yellow

R

Figure 2.7. The RGB model of color.

RGB Model

Most recording systems (cameras) and display systems (monitors) use a similar
additive mechanism for representing color information. In this model, commonly
referred to as the RGB model, each color instance is represented as a point in a
three-dimensional space, where the dimensions correspond to the possible intensi-
ties of the red, blue, and green light channels. As shown in Figure 2.7, the origin
corresponds to the lack of any color signal (i.e., black), whereas the diagonal corner
of the resulting cube corresponds to the maximum signal levels for all three channels
(i.e., white). The diagonal line segment connecting the origin of the RGB color cube
to the white corner has different intensities of light with equal contributions from
red, green, and blue channels and, thus, corresponds to different shades of gray.

The RGB model is commonly implemented using data structures that allocate
the same number of bits to each color channel. For example, a 3-byte representa-
tion of color, which can represent 2?* different color instances, would allocate 1 byte
each to each color channel and thus distinguish 256 (including 0) intensities of pure
red, green, and blue. An image would then be represented as a two-dimensional
matrix, where each cell in the dimension contains a 24-bit color instance. These
cells are commonly referred to as pixels. Given this representation, a 1,000 x 1,000
image would require 24 x 1,000 x 1,000 bits or 3 million bytes. When the space
available for representing (storing or communicating) images of this size is not as
large, the number of bits allocated for each pixel needs to be brought down.

This can be achieved in different ways. One solution is to reduce the precision of
the color channels. For example, if we allocate 4 bits per color channel as opposed
to 8 bits, this would mean that we can now represent only 23*4 = 212 = 4,096 differ-
ent color instances. Although this might be a sufficient number of distinct colors to
paint an image, because the color cube is partitioned regularly under the foregoing
scheme, this might actually be wasteful. For example, consider an image of the sea
taken on a bright day. This picture would be rich in shades of blue, whereas many
colors such as red, brown, and orange would not necessarily appear in the image.
Thus, a good portion of the 4,096 different colors we have might not be of use, while
all the different shades of blue that we would need might be clustered under a single
color instance, thus resulting in an overall unpleasant and dull picture.

An alternative scheme to reduce the number of bits needed to represent color
instances is to use a color table. A color table is essentially a lookup table that maps
from a less precise color index to a more precise color instance. Let us assume that

35

36

Models for Multimedia Data

we can process all the pixels in an image to identify the best 4,096 distinct 24-bit
colors (mostly shades of the blue in the preceding example) needed to paint the pic-
ture. We can put these colors into an array (i.e., a lookup table) and, for each pixel in
the image, we can record the index of the corresponding color instance in the array
(as opposed to the 24-bit representation of the color instance itself). Whenever this
picture is to be displayed, the display software (or hardware) can use the lookup ta-
ble to convert the color indexes to the actual 24-bit RGB color instances. This way,
at the expense of an extra 4,096 x 3 >~ 12,000 bytes, we can obtain a detailed and
pleasant-looking picture. A commonly used algorithm for color table generation is
the median-cut algorithm, where the R, G, and B channels of the image are consid-
ered in a round-robin fashion and the color table is created in a hierarchical manner:

(i) First, all the R values in the entire image are sorted, the median value
is found, and all color instances’ with R values smaller than this median
are brought together under index “0” and all color instances with R values
larger than the median are collected under index “1”.

(i1) Then, the resulting two clusters (indexed “0” and “1”) of color instances are
considered one at a time and the following is performed for both X = 0 and
X=1.

m Let the current cluster index be “X”. In this step, the median value for
the color instances in the given cluster is found, and all color instances
with G values smaller than this median are brought together under index
“X0” and all color instances with G values larger than the median are
collected under index “X1”.

(iii) Next, the four resulting clusters (indexed “00”, “01”, “10”, and “11”) are
considered (and each partitioned into two with respect to B values) one-by-
one.

(iv) The above steps are repeated until the required number of clusters are
obtained.

Through the foregoing process, the color indexes are built one bit at a time by
splitting the color instances into increasingly finer color clusters. The process is
continued until the length of the color index matches the application requirements.
For instance, in the previous example, the min-cut partitioning will be repeated to
the depth of 12 (i.e., each one of the R, G, B channels contributes to the partitioning
decision on four different occasions).

A third possible scheme one can use for reducing the number of bits needed to
encode the color instances is to rely on the properties of human perception. As we
mentioned earlier, the eye is not as sensitive to all color channels equally. Some col-
ors are more critical in helping differentiate objects than others.* Therefore, these
colors need to be maintained more precisely (i.e., using a higher number of bits)
than the others which may not contribute much to perception. We discuss this next.

3 Nondistinct: that is, if the same color instance occurs twice in the image, then the color instance is
counted twice.

4 In fact, in Section 4.2, we discuss the use of this “ease-of-perception” property of the features in
indexing.

2.3 Models of Media Features

YRB, YUV, and YIQ Models

It is known that the human eye is more sensitive to contrast than to color. There-
fore, a color model that represents grayscale (or luminance) as an explicit compo-
nent, rather than a combination of RGB, could be more effective in creating reduced
representations without negatively affecting perception. The luminance or the
amount of light (Y) in a given RGB-based color instance is computed as follows:

Y =0.299R 4 0.587G + 0.114B.

This reflects the human eye’s color and light perception characteristics: the blue
color contributes less to the perception of light than red, which itself contributes
less than green.

Given the luminance component, Y, and two of the existing RGB channels, say
R and B, we can create a new color space YRB that can represent the same colors as
the RGB, except that when we need to reduce the size of the bit representation, we
can favor cuts in the number of bits of the R and B color components and preserve
the Y (luminance) component intact to make sure that the user is able to perceive
contrast well.

An alternative representation, YUV, subtracts the luminance component from
the color components (and scales the result appropriately):

U=0492(B-Y)
V=0877(R-Y)

This ensures that a completely black-and-white picture has no R and B components
that need to be stored or communicated through networks. In contrast, the U and V
components reflect the chrominance of the corresponding color instance precisely.

Further studies showed that the human eye does not prefer either U (blue
minus luminance) or V (red minus luminance) strongly against the other. On the
other hand, the eye is shown to be less sensitive to the differences in the purple-
green color range as opposed to the differences in the orange-blue color range. Thus,
if these purple-green and orange-blue components can be used instead of the UV
components, this can give a further opportunity for reducing the bit representation,
without much affecting the human perception of the overall color instance. This is
achieved simply by rotating the U and V components by 33°:

I = —0.492(B — Y)sin33° + 0.877(R — Y)cos33°
0 = 0.492(B — Y)cos33° + 0.877(R — Y)sin33°

In the resulting YIQ model of color, the eye is least sensitive to theQ component
and most sensitive to the Y component (Figure 2.8).

CIE, CIELAB, and HSV

The YUV and YIQ models try to leverage the human eye’s properties to sepa-
rate dimensions that contribute most to the color perception from those that con-
tribute less.

The CIELAB model, on the other hand, relies on the characteristics of the hu-
man perception to shape the color space. In particular, the CIELAB model relies on
Weber’s law (also known as the Weber—Fechner law) of perception of stimuli. This

37

38

Free ebooks ==> www.Ebook777.com

Models for Multimedia Data

G/'se/)

Figure 2.8. The relationship between UV and 1Q chrominance components. See color plates
section.

law, dating to the middle of the nineteenth century, observes that humans perceive
many types of stimuli, such as light and sound, in logarithmic scale. More specifi-
cally, the same amount of change in a given stimulus is perceived more strongly if
the original value is lower.

The CIELAB model builds upon a color space called CIE, consisting of three
components, X, Y, and Z. One advantage of the CIE over RGB is that, as in the
YUV and YIQ color models, the Y parameter corresponds to the brightness of a
given color instance. Furthermore, the CIE space covers all the chromaticities vis-
ible to the human eye, whereas the RGB color space cannot do so. In fact, it has
been shown that no three-light source can cover the entire spectrum of chromatici-
ties described by CIE (and perceived by the human eye).

The CIELAB model transforms the X, Y, and Z components of the CIE model
into three other components, L, a, and b, in such a way that in the resulting Lab
color space, any two changes of equal amplitude result in an equal visual impact.’
In other words, the distance in the space quantifies differences in the perception of
chromaticity and luminosity (or brightness); i.e., the Euclidean distance,

\/(Ll — L2)2 + (@ — az)z + (bl — bz)z,
between color instances (L1, ai, by) and (L, az, by) gives the perceived different be-
tween them. Given X, Y, Z components of the CIE model and given the color in-
stance (X, Y,,, Z,,) corresponding to the human perception of the white color, the
L, a, and b, components of the CIELAB color space are computed as follows:

L=116 f(%)—m

w

a=s0lr ()7 (5)]
p=200[r ()1 (5]

5 There is a variant of this model, where two other components, ax and bx, are used instead of a and b.
We ignore the distinction and the relevant details.

Www.Ebook777.com

http://www.ebook777.com

Viewpoint

Transform
(rotation)

I
Shape
(cone)

(b)

(a)

<Scene>
<Transform translation="-1 0 -6'>
<Shape>
<Appearance>
<Material
ambientIntensity="0.800"
shininess="0.800
diffuseColor="3 0 0'/>
</Appearance>
<Box size='111/>
< / Shape>
</Transform>
<Transform translation="-3 0 -6'>
<Transform rotation='3 1 3 3>
<Shape>
<Appearance>
<Material
ambientIntensity="0.800"
shininess="0.600"
diffuseColor="0 0 1'/>
</Appearance>
<Cone height="2.000" bottomRadius="1.000"/>
</Shape>
</Transform>
</Transform>
<Viewpoint
fieldOfView="1"
position="-5 -1 1’
orientation="-0.2 -0.2 -0.7 -.4'/>
</Scene>

(©)

Figure 1.1. An X3D world with two shape objects and the XML-based code for its hierarchical
scene graph: (a) X3D world, (b) scene graph, (c) X3D code.

1 ua r!.nu t.rstatuen

Figure 1.3. Any media object can be seen as a collection of channels of information; some
of these information channels (such as color and shape) are low-level (can be derived from
the media object), whereas others (such as semantic labels attached to the objects by the
viewer) are higher level (cannot be derived from the media object without external knowledge).

Cooccurring abj with man

sebect P
froe
wetre.

(P esatains oD) i oot | Sascrviy FIfS
(Peantaing Otyl) s FomtaNs Ol s coviams Obgl (e
L bl i ;M; il
0% 1~ car il) el - A - B F (P - 0F 12

A 081 iw-n trmapurtabon) s

4 R b (o b L e

iniss |

Figure 1.12. The system feedback feature of the SEMCOG multimedia retrieval system [Li
and Candan, 1999a]: given a user query, SEMCOG can tell the user how the data in the
database are distributed with respect to various query conditions.

8
e

Figure 2.8. The relationship between UV and 1Q chrominance components.

L=100 5
= g Y
A By Green Yellow
4 green b>0 N
yellow 1
]
!
/
\\ ;/
_\ ,’I
‘Vu\‘ A A
blue - ___ BN ____- --~"a>0
red

(b)

Figure 2.9. (a) The CIELAB model of color and (b) the hexconic HSV color model.

(a)

Blue

[204,255]

[153,203]

[102,152]

[51,101]

10,50]

46,274

[0,50]

[51,101] [102,152] [153,203] [204,255]
Red

(a)

Red [51,101]
Blue [153,203]

(b)

Figure 2.10. A color histogram example (only the dimensions corresponding to the “red” and
“blue” color dimensions are shown). (a) According to this histogram there are 46,274 pixels
in the image that fall in the ranges of [51, 101] in terms of “red” and [153, 203] in terms
of “blue” color. (b) In the array or vector representation of this histogram, each position

corresponds to a pair of red and blue color ranges.

()

Figure 2.11. (a) A relatively smooth and directional texture; (b) a coarse and granular texture;
(c) an irregular but fractal-like (with elements self-repeating at different scales) texture; (d) a
regular, nonsmooth, periodic texture; (e) a regular, repeating texture with directional elements;

and (f) a relatively smooth and uniform texture.
(a) (b)

Figure 2.13. (a) Mountain ridges commonly have self-repeating triangular shapes. (b) This is
a fragment of the texture in Figure 2.11(c).

(0)

Figure 2.16. Sample images with dominant shapes.

alafa]s]=
= =
:000: z 222][=2]z
H i
;°g°°: N EEBE
-]
iggf’o: 3 |2 1‘_._; 2 |3 [4
[L- 1L - S QS — = 4
: o:Eoo) EN B3 B BN SN ES ER
! 0:;0&.‘!000: ENERERE
“““““ ¥ 00
o 00 %3
oo doEduss 0.
(a) (b) (c)

Figure 2.17. (a) An image with a single region. (b) Clustering-based segmentation uses
a clustering algorithm that identifies which pixels of the image are similar to each other
first, and then finds the boundary on the image between different clusters of pixels.
(c) Region growing techniques start from a seed and grow the region until a region boundary
with pixels with different characteristics is found (the numbers in the figure correspond to
the distance from the seed).

1 1 2 |2 112|212 |2 |2 |14

1 |las]ls e |7 |7 |78]l5 |3 5|6 [7 |77 |8 |5

1 3 |s |8 |7 |8 |7 |8 |6 |2 S B—8 |7 |8 |7—h8 |68
2 |3 17 |7 2|3 2|7 |8 |5 an 7 % _3 3L |7 |6 |5
5 |6 |8 |8 |3 |1 2|5 |7 |¢& 5 |e |8 |e |3 5|7 |8
6 [B |8 |5 1 3 (3 |3 |6 (7 & |8 |8 |5 I 13 |3 |6 (7
A 0 - B B S el) B 7|7 |8 6|6 |7 |7 |8 |86
o [ERIEEEETE T (T |8 |6 |5 g s |7 |7 |8 |7 |7 |68 |5
6 |a |7 |o |& |5 |3 |3 |3 |2 5 |8 |7 |e |8 |5 FaSlan]a

() (b)

Figure 2.18. (a) Gradient values for the example in Figure 2.17 and (b) the topographical
surface view (darker pixels correspond to the highest points of the surface and the lightest
pixels correspond to the watershed) — the figure also shows the quickest descent (or water
drainage) paths for two flood starting points.

9
8
4 3 | 7
Com mmli
o ,. 4

; 7 3 (03 oth=3, fope=pa A

%_’] [‘4‘4 5 2 e _—,E:,i_e_,.L_—M@.‘21
D arimnmn 4 1 21| rerpmsyl slope=
%4 0
01T 234 567889

(b) (©

Figure 2.19. (a) The eight direction codes. (b) (If we start from the leftmost pixel) the
8-connected chain code for the given boundary is “02120202226267754464445243.”
(c) Piecewise linear approximation of the shape boundary.

F
o
o
o
-
-
o
-
-
o
o

= e
i
]

=N N O
—
o
ol e
=]
f=1
i=1
ofl o e
o
o

01 234 56789
(a) (b)

Figure 2.20. (a) Time series representation of the shape boundary. The parameter t repre-
sents the angle of the line segment from the center of gravity of the shape to a point on the
boundary; essentially, t divides 360° to a fixed number of equi-angle segments. The resulting
x(t) and y(t) curves can be stored and analyzed as two separate time-dependent functions
or, alternatively, may be captured using a single-complex valued function z(t) = x(t) + iy(t).
(b) Bitmap representation of the same boundary.

{ P contaims. Otgl) 2t
{ P containg Ob1) e
{ Oty i car) and
{ O B ot Ly sl
{ O 15 man } amd
Vi { Oty) tn-thee - right-of Otyllin P).
J< [

Figure 2.44. The IFQ visual interface of the SEMCOG image and video retrieval system [Li and
Candan, 1999a]: the user is able to specify visual, semantic, and spatiotemporal predicates,
which are automatically converted into an SQL-like language for fuzzy query processing.

(d)

Figure 4.18. (a) Find two objects that are far apart to define the first dimension. (b) Project
all the objects onto the line between these two extremes to find out the values along this
dimension. (c) Project the objects onto a hyperplane perpendicular to this line. (d) Repeat
the process on this reduced hyperspace.

Figure 5.9. The NFA that recognizes the sequence “SAPINO” with a total of up to two insertion,
deletion, and substitution errors.

1

0

2 34 587

1

0

2 34 B8 T

o SRR AR
= al Y E TR ETRUEAR!
O
: ™ — ?-:“ 1“7 1 |
SE=cE=ma et
I
ot—6 14 [g 6 7 | of[L[L]EfL]L[L[L
0 1T 2 34 6 87 0 1 2 34 656867
a b
Figure 7.2.)(a) Row- and (b) column-order traversals of‘ 2)D space.
0 1 2 34 § 867 0 1 2 34 5867
AN Nl o Ml Sl 4 s A AN N
SRS N
TN
ll PN N
+ TIMINNNN
= 1 “ERRRRRRR
EmEAmEEL Ry AN NN
ols 2 la[alslela] @] N \5] AN N
(a) (b)

Figure 7.5. (a) Row-prime- and (b) Cantor-diagonal-order traversals of 2D space.

P~ __I !_ [|

o [P [CH T H

S o (1T [T T
<« = [=F [I

N en A e

e e enud ks

i o s 000 O UMD s
= = Faldiit BE. I

1 0 1 2 3 o T 23 4 BB T

(a) () (c)

Figure 7.6. Hilbert curve: (a) First order, (b) Second order, (c) Third order.

000 001 010 011 100 101 110 111
g1 2 &8 587

AN AN
N \\f\ \Yf\

]

[1Z

2 34 88617
/

1
7

1

AA L) A7

000 001 010 011 100 101 110 111

DY
u

N |V

0

—] c,(010,011) = 001101

Figure 7.7. Z-order traversal of 2D space.

Free ebooks ==> www.Ebook777.com

000 001 010 011 100 101 110 111
g 1.2.34 587 gl n St ok
i eIl NN N |
© Zwo ‘\ N
o 8 o H 11100x
B RNERIY : (56,57)
s il =
- SN q r\\lr\\ 0
p: "V N | 1100xx
- g=[N NN IS AT
o 2ol NNV 48,51]

(a) (b)

Figure 7.8. (a) A range query in the original space is partitioned into (b) two regions for
Z-order curve based processing on a 1D index structure.

° Lo ° e® ° Lo ° o® e ° ° oA
° :.O:.... .. ¢ o ¢ :..:.... .. ¢ o ¢ :..:.... .0 ¢ o
) o o ® e o ® e o
°® °® °®
(a) (b) ()
® e *
. e 0s o :A . °’e 0s o :A MR 0o A :A
%, ® 0%, ° %, A
® (5]) ® @) ° []]
® e o [e o @ (S|
° =] [
() (e) ()

Figure 8.5. Max-a-min approach: (a) given a number of clusters, first (b,c,d,e) leaders that are
sufficiently far apart from each other are selected, and then (f) the clustering is performed
using the single-pass scheme.

Www.Ebook777.com

http://www.ebook777.com

results

Query using combinations of
textual and visual specifications -l -
=] - [=1-1 | '

Visual Query Interface | == ‘ =
Tasks: [S— *-.E
- Visualize queries _-'_-__J:
- Generate queries -
- Prepare result display R

queries results and ranking

Figure 12.1. User relevance feedback process.

f1 -
= ® Query
/ .-
< L
@ ®)

Figure 12.2. (a) A query and results and (b) the user’s relevance feedback.

Free ebooks ==> www.Ebook777.com

Figure 12.3. Alternative mechanisms for relevance feedback based adaptation: (a) Query
rewriting, (b) query range modification, (c) modification of the distance function, (d) feature
reweighting, (e) feature insertion/removal, and (f) reclassification (the numbers next to the
matching data objects indicate their ranks in the result).

Www.Ebook777.com

http://www.ebook777.com

2.3 Models of Media Features

L=100 (3 Vv

L=0

@) ®)

Figure 2.9. (a) The CIELAB model of color and (b) the hexconic HSV color model. See color
plates section.

where
f(s) =3 for s > 0.008856

16 .
f(s) =7.787s + 16 otherwise.

The first thing to note in the preceding transformation is that the L, a, and b com-
ponents are defined with respect to the “white” color. In other words, the CIELAB
model normalizes the luminosities and chromaticities of the color space with respect
to the color instance that humans perceive as white.

The second thing to note is that L is a normalized version of luminosity. It takes
values between 0 and 100: 0 corresponds to black, and 100 corresponds to the color
that is perceived as white by humans. As in the YUV model, the a and b components
are computed by taking the difference between luminosity and two other color com-
ponents (normalized X and Z components in this case). Thus, a and b describe the
chromaticity of the color instance, where ~/a? + b? gives the total energy of chroma
(or the amount of color) and tan‘lf (i.e., the angle that the chroma components
form) is the hue of the color instance: when b = 0, positive values of a correspond
to red hue and negative values correspond to green hue; when a = 0, positive values
of b correspond to yellow and negative values correspond to blue (Figure 2.9(a)).

A similar color space, where the spectrum (value) of gray from black to white is
represented as a vertical axis, the amount of color (i.e., saturation) is represented as
the distance from this vertical, and the hue is represented as the angle, is the HSV
(hue, saturation, and value) color model. This color model is commonly visualized
as a cylinder, cone or hexagonal cone (hexcone, Figure 2.9(b)). Like CIELAB, the
HSYV color space aims to be more intuitive and a better representative of the human
perception of color and color differences. Unlike CIELAB, which captures colors
in the XYZ color space, however, the HSV color model captures the colors in the
RGB color space.

Color-Based Image Representation Using Histograms
As we have seen, in almost all models, color instances are represented as com-
binations of three components. This, in a sense, reflects the structure of the human

39

40

Models for Multimedia Data

retina, where color is perceived through three types of cones sensitive to different
color components.

An image, then, can be seen as a two-dimensional matrix of color instances (also
called pixels), where each pixel is represented as a triple. In other words, if X, Y, Z
denote the sets of possible discrete values for each color component, then a digital
image, I, of w width and 4 height is a two-dimensional array, where for all 0 <
x<w-land 0<y<h-1,I[x,y] € X x Yx Z Matching two images based on
their color content for similarity-based retrieval, then, corresponds to comparing
the triples contained in the corresponding arrays.

One way to achieve this is to compare the two arrays (without loss of generality,
assuming that they are of the same size) by comparing the pixel pairs at the same
array location for both images and aggregating their similarities or dissimilarities
(based on the underlying color model) into a single score. This approach, however,
has two disadvantages. First of all, this may be very costly, especially if the images
are very large: for example, given a pair of 1,000 x 1,000 images, this would require
1,000,000 similarity/distance computations in the color space. A second disadvan-
tage of this is that pixel-by-pixel matching of the images would be good for looking
for almost-exact matches, but any image that has a slightly different composition
(including images that are slightly shifted or rotated) would be identified as mis-
matches.

An alternative representation that both provides significant savings in matching
cost and also reduces the sensitivity of the retrieval algorithms to rotations, shift,
and many other deformations is the color histogram. Given a bag (or multiset), B, of
values from a domain, D, and a natural number, n, a histogram partitions the values
in domain D into n partitions and, then, for each partition, records the number of
values in B that fall into the corresponding range. A color histogram does the same
thing with the color instances in a given image: given n partitions (or bins) of the
color space, the color histogram counts for each partition the number of pixels of
the image that have color instances falling in that partition. Figure 2.10 shows an
example color histogram and refers to its vector representation.

In Section 3.1, and later in Chapter 7, we discuss the vector model of media
data, how histograms represented as vectors can be compared against each other,
and how they can be efficiently stored and retrieved. Here, we note that a color
histogram is a compact and nonspatial representation of the color information. In
other words, the pixels are associated with the color partitions without any regard
to their localities; thus all the location information is lost in the process. In a sense,
the color histogram is especially useful in cases where the overall color distribution
of the given image is more important for retrieval than the spatial localities of the
colors.

2.3.2 Texture Models

Texture refers to certain locally dominant visual characteristics, such as direction-
ality (are the lines in the image pointing toward the same direction? which way
do the lines in the image point?), smoothness (is the image free from irregularities
and interruptions by lines?), periodicity (are the lines or other features occurring in
the image recurring with a predetermined frequency?), and granularity (sandiness,

2.3 Models of Media Features

Blue
[204,255] | «eveee | eeeenn | eveeen [eeeen | eeeenn
[153,203] | ------ 46,274 | coeeer | eeeens
[102,52] |0 | | s | e | s
[51,401] | wovene | evvene | e | e | e
10,50] | weever | weveer | eevee | e [e g 46,274 o | o, é
[0,50] [51,101] [102,152] [153,203] [204,255] Red [51,101]
Red Blue [153,203]
(a) (b)

Figure 2.10. A color histogram example (only the dimensions corresponding to the “red” and
“blue” color dimensions are shown). (a) According to this histogram there are 46,274 pixels
in the image that fall in the ranges of [51, 101] in terms of “red” and [153, 203] in terms
of “blue” color. (b) In the array or vector representation of this histogram, each position
corresponds to a pair of red and blue color ranges. See color plates section.

opposite of smoothness), of parts of an image (Figure 2.11). As a low-level feature,
texture is fundamentally different from color, which is simply the description of the
luminosity and chromaticity of the light corresponding to a single point, or pixel, in
an image.

The first major difference between color and texture is that, whereas it is pos-
sible to talk about the color of a single pixel, it is not possible to refer to the

(©)

Figure 2.11. (a) A relatively smooth and directional texture; (b) a coarse and granular texture;
(c) an irregular but fractal-like (with elements self-repeating at different scales) texture; (d) a
regular, nonsmooth, periodic texture; (e) a regular, repeating texture with directional elements;
and (f) a relatively smooth and uniform texture. See color plates section.

41

42

Models for Multimedia Data

22
22
22

(a) (b)

Figure 2.12. (a) Can you guess the luminosities of the missing pixels? (b) A random field
probabilistically relates the properties of pixels to spatially close pixels in the image: in
this figure, each node corresponds to a pixel, and each edge corresponds to a conditional
probability distribution that relates the visual property of a given pixel node to the visual
property of another one.

texture of a single pixel. Texture is a collective feature of a set of neighboring pixels
in the image. Second, whereas there are standard ways to describe color, there is
no widely accepted standard way to describe texture. Indeed, any locally dominant
visual characteristic (even color) can be qualified as a texture feature. Moreover,
being dominant does not imply being constant. In fact, a determining characteris-
tic for most textures is the fact that they are nothing but patterns of change in the
visual characteristics (such as colors) of neighboring pixels, and as thus, describing
a given texture (or the pattern) requires describing how these even lower-level fea-
tures change and evolve in the two-dimensional space of pixels that is the image.
As such textures can be described best by models that capture the rate and type of
change.

Random Fields

A random field is a stochastic (random) process, where the values generated
by the process are mapped onto positions on an underlying space (see Sections 3.5.4
and 9.7 for more on random processes and their use in classification). In other words,
we are given a space, and each point in the space takes a value based on an underly-
ing probability distribution. Moreover, the values of adjacent or even nearby points
also affect each other (Figure 2.12(a)). We can see that this provides a natural way
for defining texture. We can model the image as the stochastic space, pixels as the
points in this space, and the pixel color values as the values the points in the space
take (Figure 2.12(b)). Thus, given an image, its texture can be modeled as a ran-
dom field [Chellappa, 1986; Cross and Jain, 1983; Elfadel and Picard, 1994; Hassner
and Sklansky, 1980; Kashyap and Chellappa, 1983; Kashyap et al., 1982; Mao and
Jain, 1992]. Essentially, random field-based models treat the image texture as an in-
stance or realization of a random field. Conversely, modeling a given texture (or a
set of texture samples) involves finding the parameters of the random process that
is most likely to output the given samples (see Section 9.7 for more on learning the
parameters of random processes).

Fractals
As we further discuss in Section 7.1.1, a fractal is a structure that shows self-
similarity (more specifically, a fractal presents similar characteristics independent

2.3 Models of Media Features

—

4
(a) (b)

Figure 2.13. (a) Mountain ridges commonly have self-repeating triangular shapes. (b) This is
a fragment of the texture in Figure 2.11(c). See color plates section.

of the scale; i.e., details at smaller scales are similar to patterns at the larger scales).
As such, fractals are commonly used in modeling (analysis and synthesis) of natural
structures, such as snowflakes, branches of trees, leaves, skin, and coastlines, which
usually show such self similarity (Figure 2.13). A number of works describe image
textures (especially natural ones, such as the surface of polished marble) using frac-
tals. Under this texture model, analyzing an image texture involves determining the
parameters of a fractal (or iterated function system) that will generate the image
texture by iterating a basic pattern at different scales [Chaudhuri and Sarkar, 1995;
Dubuisson and Dubes, 1994; Kaplan, 1999; Keller et al., 1989].

Wavelets

A wavelet is a special type of fractal, consisting of a mother wavelet function and
its scaled and translated copies, called daughter wavelets. In Section 4.2.9.2, we dis-
cuss wavelets in further detail. Unlike a general-purpose fractal, wavelets (or more
accurately, two-dimensional discrete wavelets) can be used to break any image into
multiple subimages, each corresponding to a different frequency (i.e., scale). Con-
sequently, wavelet-based techniques are suitable for studying frequency behavior
(e.g., change, periodicity, and granularity) of a given texture at multiple granu-
larities [Balmelli and Mojsilovic, 1999; Feng et al., 1998; Kaplan and Kuo, 1995;
Lumbreras and Serrat, 1996; Wu et al., 1999] (Figure 2.14).

Texture Histograms

Whereas texture has diverse models, each focusing on different aspects and char-
acteristics of the pixel structure forming the image, if we know the specific textures
we are interested in, we can construct a texture histogram by creating an array of
specific textures of interest and counting and recording the amount, confidence, or
area of these specific textures in the given image.

Because most textures can be viewed as edges in the image, an alternative to this
approach is to use edge histograms [Cao and Cai, 2005; Park et al., 2000]. An edge
histogram represents the frequency and the directionality of the brightness (or lumi-
nosity) changes in the image. Edge extraction operators, such as the Canny [Canny,
1986] or the Sobel [Sobel and Feldman, 1968], look for pixels corresponding to
significant changes in brightness and, for each identified pixel they report the

43

44

Models for Multimedia Data

x=0 to x =125 x=0 to x =125 x=0 to x =125

(a) original data (b) original data (c) original data
low freq. to high freq. low freq. to high freq. low freq. to high freq.
(d) wavelet signature (e) wavelet signature (f) wavelet signature

Figure 2.14. Wavelet-based texture signature for one-dimensional data. (a) Data with a high
frequency pattern have nonnegligible high-frequency values in its wavelet signature. (b) Data
with lower frequency, on the other hand, have highest values at low-frequency entries in the
corresponding wavelet signature. (c) If the data are composed of both low-frequency and
high-frequency components, the resulting signature has nonnegligible values for both low
and high frequencies. (All the plots are created using the online Haar wavelet demo available
at http;//math.hws.edu/eck/math371/applets/Haar.html.)

magnitude and the direction of the brightness change. For example, the Sobel oper-
ator computes the convolution of the matrices

-1 0 +1 +1 +2 +1
Se=| -2 0 42 and 6,=| 0 0 O
-1 0 +1 -1 -2 -1

around each image pixel to compute the corresponding degree of change along the
x and y directions, respectively. Given §, and §, values for a pixel, the corresponding
magnitude of change (or gradient) can be computed as /82 + 62, and the angle of
the gradient (i.e., direction of change) can be estimated as tan~! (Z—i) (Figure 2.15).

Once the rate and direction of change is detected for each pixel, noise is elimi-
nated by removing those pixels that have changes below a threshold or do not have
pixels showing similar changes nearby. Then, the edges are thinned by maintain-
ing only those pixels that have large change rates in their immediate neighborhood
along the corresponding gradient. After these phases are completed, we are left with
those pixels that correspond to significant brightness changes in the image. At this
point, the number of edge pixels can be used to quantify the edginess or smoothness
of the texture. The sizes of clusters of edge points, on the other hand, can be used to
quantify the granularity of the texture.

Once the image pixels and the magnitudes and directions of their gradients are
computed, we can create a two-dimensional edge histogram, where one dimension
corresponds to the degree of change and the other corresponds to the direction of

2.3 Models of Media Features

U S NSRS R S pe——]

(a)
_ (=200)* +(=200)* =282.84§
100 x (-1) 0x0 0x1 100 x 1 0x2 0x1
100x(-2) | 10@x0 | 4,5 100x0 | 1030 0 x0 <5 —
tan™! —200:450_
Ox(-1) | 100x0 | 100x1 0x(-1) | 100 x (-2)[100 x (-1) _|00
(b) 8, = =200 (c) 8, = =200 (d)

Figure 2.15. Convolution-based edge detection on a given image: (a) the center of the edge
detection operator (small matrix) is aligned one by one with each and every suitable pixel in
the image. (b,c) For each position, the x and y Sobel operators are applied to compute 8,
and §,. (d) The direction and length of the gradient to the edge at the given image point are
computed using the corresponding 8, and §,.

change. In particular, we can count and record the number of edge pixels corre-
sponding to each histogram value range. This histogram can then be used to repre-
sent the overall directionality of the texture. Note that we can further extend this
two-dimensional histogram to three dimensions, by finding how far apart the edge
pixels are from each other along the change direction (i.e., gradient) and recording
these distances along the third dimension of the histogram. This would help capture
the periodicity of the texture, that is, how often the basic elements of the texture
repeat themselves.

2.3.3 Shape Models

Like texture, shape is a low-level feature that cannot be directly associated to a sin-
gle pixel. Instead it is a property of a set of neighboring pixels that help differentiate
the set of pixels from the other pixels in the image. Color and texture, for example,
are commonly used to help segment out shapes from their background in the given
image. The three sample images in Figures 2.16(a) through (c) illustrate this: in all
three cases, the dominant shapes have colors and textures that are consistent and
different from the rest of the image. Thus, in all three cases, color and texture can
be used to segment out the dominant shapes from the rest of the image. The sample
image in Figure 2.16(d), on the other hand, is more complex: although the dominant
human shape shows a marked difference in terms of color and texture from the rest

45

46

Free ebooks ==> www.Ebook777.com

Models for Multimedia Data

(d)

Figure 2.16. Sample images with dominant shapes. See color plates section.

of the image, the colors and textures internal to the shape are not self-consistent.
Therefore, a naive color- and texture-based segmentation process would not iden-
tify the human shape, but instead would identify regions that are consistently red,
white, brown, and so forth. Extracting the human shape as a consistent atomic unit
requires external knowledge that can help link the individual components, despite
their apparent differences, into a single human shape. Therefore, the human shape
may be considered as a high-level feature.

There are various approaches to the extraction of shapes from a given image.
We discuss a few of the prominent schemes next.

Segmentation

Segmentation methods identify and cluster together those neighboring image
pixels that are visually similar to each other (Figure 2.17). This can be done using
clustering (such as K-means) and partitioning (such as min-cut) algorithms discussed
later in Chapter 8 [Marroquin and Girosi, 1993; Tolliver and Miller, 2006; Zhang
and Wang, 2000]. A commonly used alternative is to grow homogeneous regions
incrementally, from seed pixels (selected randomly or based on some criteria, such
as having a color well-represented in the corresponding histogram) [Adams and
Bischof, 1994; Ikonomakis et al., 2000; Pavlidis and Liow, 1990].

a 3 3 a 3

jmmmmmmme |
1 oo ' 2 |z [z |2 1=
| oo
(%)
io e N EEEE
1° oo ad| [z 2 |3 |
1 1
H 00 & oo a |z |+ 2 |3 |+
| o .:OO oo !
1 o1 i, 000 ! 3 |2]2 |2
[1100° P

| o i

o o

[P Q!

(a) (b) (©

Figure 2.17. (a) An image with a single region. (b) Clustering-based segmentation uses
a clustering algorithm that identifies which pixels of the image are similar to each other
first, and then finds the boundary on the image between different clusters of pixels.
(c) Region growing techniques start from a seed and grow the region until a region boundary
with pixels with different characteristics is found (the numbers in the figure correspond to
the distance from the seed). See color plates section.

Www.Ebook777.com

http://www.ebook777.com

2.3 Models of Media Features

1 (3 |5 |6 |7 |7 |7 |6 |5 |1 5|8 |7 |7 |7 |86 |5

113 le [e]7 67 86]2 ale—ts |7 |8 [7—he |6

2 |3 |7 |7 |3 |3 [3 [7 |6 |5 @l 7 |7 PANPAEIaN 7 |6 |5
3 2 7 |8 5 |6 B |6 |3 & 7 -3
1 7 6 |8 |6 |8 3 |a|a|s |7

v ol o | o o
N o| o | ®| o
N ~N| N @] o ®
a2l o ~| 2| ol &
| o | @
= o] N o @
s w| N N
| w| o N w| &
2| w| o ®»| @
I Y =)

@

@

-~

-

o=

-

-

@

@

(1]

(a) (b)

Figure 2.18. (a) Gradient values for the example in Figure 2.17 and (b) the topographical
surface view (darker pixels correspond to the highest points of the surface and the lightest
pixels correspond to the watershed) — the figure also shows the quickest descent (or water
drainage) paths for two flood starting points. See color plates section.

Edge Detection and Linking

Edge linking-based methods observe that boundaries of the shapes are gener-
ally delineated from the rest of the image by edges. These edges can be detected
using edge detection techniques introduced earlier in Section 2.3.2. Naturally, edges
can be found at many places in an image, not all corresponding to region bound-
aries. Thus, to differentiate the edges that correspond to region boundaries from
other edges in the image, we need to link the neighboring edge pixels to each other
and check whether they form a closed region [Grinaker, 1980; Montanari, 1971;
Rosenfeld et al., 1969].

Watershed Transformation

Watershed transformation [Beucher and Lantuejoul, 1979] is a cross between
edge detection/linking and region growing. As in edge-detection-based schemes,
the watershed transformation identifies the gradients (i.e., degree and direction of
change) for each image pixel; once again, the image pixels with the largest gradi-
ents correspond to region boundaries. However, instead of identifying edges by sup-
pressing those pixels that have smaller gradients (less change) than their neighbors
and linking them to each other, the watershed algorithm treats the gradient image
(i-e., 2D matrix where cells contain gradient values) as a topographic surface such
that (a) the pixels with the highest gradient values correspond to the lowest points
of the surface and (b) the pixels with the lowest gradients correspond to the high-
est points or plateaus. As shown in Figure 2.18, the algorithm essentially floods the
surface from these highest points or plateaus (also called catchment basins), and the
flood moves along the directions where the descent is steepest (i.e., the change in
the gradient values is highest) until it reaches the minimum surface point (i.e., the
watershed).

Note that, in a sense, this is also a region-growing scheme: instead of starting
from a seed point and growing the region until it reaches the boundary where the
change is maximum, the watershed algorithm starts from the pixels where the gradi-
ent is minimum, that is, the catchment basin, and identifies pixels that shed or drain

47

48

Models for Multimedia Data

9 (lpngth¥2, siqpe=0}+)
78]
(6,8)
8 P
£ | !
% _
U_J v 6 (lendth=6.4. slofe=5/4 +) (Ipnath 1o, SIfe=43)
b [c] /
il >
: . 4 od™
1
7 3 (0,3 length=3, slope=p/3.-1
‘i__“’l : 7 5T 2 | enyid=2l8, sio e:-1,)/16,2,t rd
3 .] ~4lt slope=1/k -
M—A—TZ e ¥ 1 @) (length=41, slope=1/4,-)
. 0
01 234 567829

(b) (©)

Figure 2.19. (a) The eight direction codes. (b) (If we start from the leftmost pixel) the
8-connected chain code for the given boundary is “02120202226267754464445243.
(c) Piecewise linear approximation of the shape boundary. See color plates section.

to the same watershed lines. The watershed lines are then treated as the bound-
ary of the neighboring regions, and all pixels that shed to the same watershed lines
are treated as a region [Beucher, 1982; Beucher and Lantuejoul, 1979; Beucher and
Meyer, 1992; Nguyen et al., 2003; Roerdink and Meijster, 2000; Vincent and Soille,
1991].

Describing the Boundaries of the Shapes

Once the boundaries of the regions are identified, the next step is to describe
their boundary curves in a way that can be stored, indexed, queried, and matched
against others for retrieval [Freeman, 1979, 1996; Saghri and Freeman, 1981]. The
simplest mechanism for storing the shape of a region is to encode it using a string,
commonly referred to as the chain code. In the chain code model for shape bound-
aries, each possible direction between two neighboring edge pixels is given a unique
code (Figure 2.19(a)). Starting from some specific pixel (such as the leftmost pixel of
the boundary), the pixels on the boundary are visited one by one, and the directions
in which one traveled while visiting the edge pixels are noted in the form of a string
(Figure 2.19(b)). Note that the chain code is sensitive to the starting pixel, scaling,
and rotation, but is not sensitive to translation (or spatial shifts) in the image.

In general, the length of a chain code description of the boundary of a shape is
equal to the number of pixels on the boundary. It is, however, possible to reduce the
size of the representation by storing piecewise linear approximations of the bound-
ary segments, rather than storing a code for each pair of neighboring pixels. As
shown in Figure 2.19(c), each linear approximation of the boundary segment can
be represented using its length, its slope, and whether it is in positive x direction
(4) or negative x direction (—). Note that finding the best set of line segments that
represent the boundary of a shape requires application of curve segmentation algo-
rithms, such as the one presented by Katzir ef al. [1994], that are able to identify the
end points of line segments in a way minimizes the overall error [Lowe, 1987].

When the piecewise linear representation is not precise or compact enough,
higher degree polynomial representations or B-splines can be used instead of the

Free ebooks ==> www.Ebook777.com

2.3 Models of Media Features

9 o [o oo [o]o|o]o [o o
8 o o o fo |1 [1[1]o0o]o o
7 wo=lz oo o |1 |1 |0 |1 |1 [0 |0
6 /,ym:e o o [1[1 oo o1]0o]o
5 LN o o [1 o fofofofo[1]o0
4 LT 91

o [1 [ofofo oo]o [o |1
3 1 1 (o o |o [o [1]1]1 |0
% o [1 {1 1 [1[1][1]0o]o]o
0 o o |1 |0 fofofo o |o|o

o o o fo [0 fo oo |o|o

01 234 56789

(a) (®)

Figure 2.20. (a) Time series representation of the shape boundary. The parameter t repre-
sents the angle of the line segment from the center of gravity of the shape to a point on the
boundary; essentially, t divides 360° to a fixed number of equi-angle segments. The resulting
x(t) and y(t) curves can be stored and analyzed as two separate time-dependent functions
or, alternatively, may be captured using a single-complex valued function z(t) = x(t) + iy(t).
(b) Bitmap representation of the same boundary. See color plates section.

linear approximations of boundary segments [Saint-Marc ez al., 1993]. Alternatively,
the shape boundary can be represented in the form of a time series signal (Fig-
ure 2.20(a)), which can then be analyzed using spectral transforms such as Fourier
transform (Section 4.2.9.1) and wavelets (Section 4.2.9.2) [Kartikeyan and Sarkar,
1989; Persoon and Fu, 1986]. As shown in Figure 2.20(b), the boundary of a re-
gion (or sometimes the entire region itself) can also be encoded in the form of a
bitmap image. An advantage of this representation is that, since the bitmap consists
of long sequences of Os and 1s, it can be efficiently encoded using run-length encod-
ing (where a long sequence of repeated symbols is replaced with a single symbol and
the length of the sequence; for example, the string “110000000001111” is replaced
with “2:1;9:0;4:1”) or quadtrees (Section 7.2.2). This compressibility property makes
this representation attractive for low-bandwidth data exchange scenarios, such as
object-based video compression in MPEG-4 [Koenen, 2000; MPEG4].

Shape Histograms

As in color and texture histograms, shape histograms are constructed by count-
ing certain quantifiable properties of the shapes and recording them into a histogram
vector. For example, if the only relevant features are the 8 directional codes shown
in Figure 2.19(a), a shape histogram can be constructed simply by counting the num-
ber of Os, 1s, ..., 7s in the chain code and recording these counts into a histogram
with 8 bins.

Other properties of interest which are commonly used in constructing shape
histogram vectors include perimeter length, area, width, height, maximum diameter,
circularity, where

. . 41 area
circularity =

perimeter_ lengl‘h2 ’

Wwww.Ebook777.conl

49

http://www.ebook777.com

50

Models for Multimedia Data

number of holes, and number of connected components (for complex shapes that
may consist of multiple components).

A number of other important shape properties are defined in terms of the mo-
ments of an object. Let X and y denote the x and y coordinates of the center of grav-
ity of the shape. Then, given two nonnegative integers, p and g, the corresponding
central moment, i, 4, Of this shape is defined as

Hpg=Y_ Y (i =XV (j—y)is(.)).
i

whereas s(i, j) is 1 if the pixel (i, j) is in the shape and is 0, otherwise. Given this
definition, the orientation (i.e., the angle of the major axis of the shape) is defined as

1 2
orientation = ~ tan™" <L> .
2 H2,0 — 10,2

Eccentricity (a measure of how much the shape deviates from being circular) of the
object is defined as

(o2 — H2,0)* + 4111
area ’

eccentricity =

whereas the spread of the object is defined as

spread = s + [o2-

Hough Transform

Hough transform and its variants [Duda and Hart, 1972; Hough, 1962; Kimme
et al., 1975; Shapiro, 2006; Stockman and Agrawala, 1977] are voting-based schemes
for locating known, parametric shapes, such as lines and circles, in a given image.

Like most shape detection and indexing algorithms, Hough transform also starts
with an edge detection step. Consider for example the edge detection process de-
scribed in Section 2.3.2. This process associates a “magnitude of change” and an
“angle of change” to each pixel in the image. Let us assume that this edge detec-
tion process has identified that the pixel (x,, y,) is on an edge. Let us, for now, also
assume that the shapes we are looking for are line segments. Although we do not
know which specific line segment the pixel (x,, y,) is on, we do know that the line
segment should satisfy the line equation

yp =mx, +a,
or the equivalent equation
a=y,—Xx,m,

for some pair of m and a values. This second formulation is interesting, because it
provides an equation that relates the possible values of a to the possible values of m.
Moreover, this equation is also an equation of a line, albeit not on the (x, y) space,
but on the (m, a) space.

Although this equation alone is not sufficient for us to determine the specific m
and a values for the line segment that contains our edge pixel, if we consider that all
the pixels on the same line in the image will have the same m and a values, then we

2.3 Models of Media Features

may be able to recover the m and a values for this line by treating all these pixels
collectively as a set of mutually supporting evidences. Let us assume that (x, 1, y,.1),
(Xp2,Yp2)s -+, {Xp.k, Yp.k) are all on the same line in the image. These pixels give us
the set of equations

a = Yp1—Xp1m,
a = YpA,Z — xp,z m,
a = Ypk—XpkMm,

which can be solved together to identify the m and a values that define the underly-
ing line.

The preceding strategy, however, has a significant problem. Although this would
work in the ideal case where the x and y values on the line are identified precisely,
in the real world of images where the edge pixel detection process is highly noisys, it
is possible that there will be small variations and shifts in the pixel positions. Con-
sequently, the given set of equations may not have a common solution. Moreover,
if the set of edge pixels are not all coming from a single line but are from two or
more distinct line segments in the image, then even if the edge pixels are identi-
fied precisely, the set of equations will not have a solution. Thus, instead of trying
to simultaneously solve the foregoing set of equations for a single pair of m and
a, the Hough transform scheme keeps a two-dimensional accumulator matrix that
accumulates votes for the possible m and a values.

More precisely, one dimension of the accumulator matrix corresponds to the
possible values of m and the other corresponds to possible values of a. In other
words, as in histograms, each array position of the accumulator corresponds to a
range of m and a values. All entries in the accumulator are initially set to 0. We con-
sider each equation one by one. Because each equation of the forma =y, ; —x,; m
defines a line of possible 7 and a values, we can easily identify the accumulator en-
tries that are on this line. Once we identify those accumulator entries, we increment
the corresponding accumulator values by 1. In a sense, each line, a =y, ; — x,; m,
on the (m, a) space (which corresponds to the edge pixel (x, ;, y,.i)) votes for possi-
ble m and a values it implies. The intuition is that, if there is a more or less consistent
line segment in the image, then (maybe not all, but) most of its pixels will be aligned
and they will all vote for the same m and a pair. Consequently, the corresponding ac-
cumulator entry will accumulate a large number of votes. Thus, after we process the
votes implied by all edge pixels in the image, we can look at the accumulator matrix
and identify the m and a pairs where the accumulated votes are the highest. These
will be the m and a values that are most likely to correspond to the line segments
in the image. Note that a disadvantage of this scheme is that, for vertical line seg-
ments, the slope m would be infinity, and it is hard to design a bounded accumulator
for the unbounded (m, a) space. Because of this shortcoming, the following alterna-
tive equation for lines is commonly preferred when building Hough accumulators
to detect lines in images:

[=Xxcos® + ysin O,

where [is the distance between the line and the origin and © is the angle of the
vector from the origin to the closest point. The corresponding (/, ®) space is more

51

52

Models for Multimedia Data

effective because both / and © are bounded (/ is bounded by the size of the image
and © is between 0 and 2x).

If we are looking for shapes other than lines, we need to use equations that define
those shapes as the bases for the transformations. For example, let us assume that
we are looking for circles and that the edge detection process has identified that the
pixel (x,, y,) is on an edge. To look for circles, we can use the circle equation,

(xp—a)2+(yp—b)2=r2.

This equation, however, may be costly to use because it has three unknowns a, b,
and r (the center coordinates and the radius) and is nonlinear. The alternative circle
representation

X, = a-+rcos(0®),
yp = b+ rsin(0),

where © is the angle of the line from the center of the circle to the point (x,, y,) on
the circle, is likely to be more efficient. But this formulation requires the gradient ©
corresponding to point p. Fortunately, because the edge detection algorithm process
described in Section 2.3.2 provides a gradient angle for each edge point (x,, y,), we
can use this value, ®,, in the foregoing equations. Consequently, leveraging this
edge gradient, the equations can be transformed to

a=x,—rcos(®,) and
b=y, —rsin(©,).
or equivalently to
b=atan(®,) — x, tan(©,) + y,.

This final formulation eliminates r and relates the possible b and a values in the form
of a line on the (a, b) space. Thus, a vote accumulator similar to the one for lines of
images can be used to detect the centers of circles in the image. Once the centers are
identified, the radii can be computed by reassessing the pixels that voted for these
centers.

Finally, note that the Hough transform can be used as a shape histogram in two
different ways. One approach is to use the accumulators to identify the positions
of the lines, circles, and other shapes in the image and create histograms that report
the numbers and other properties of these shapes. An alternative approach is to skip
the final step and use the accumulators themselves as histograms or signatures that
can be compared to one another for similarity-based retrieval.

2.3.4 Local Feature Descriptors (Set-Based Models)

Consider the situation in Figure 2.21, where three observation planes are used for
tracking a mobile vehicle. The three cameras are streaming their individual video
frames into a command center where the frame streams will be fused into a single
combined stream that can then be used to map the exact position and trajectory of
the vehicle in the physical space. Because in this example the three cameras them-
selves are independently mobile, however, the images in the individual frames need

2.3 Models of Media Features

mobile vehicle
being observed

~ ®
Cy, -
e o?
/33 I came‘
camerfa 1) a SIFT
(sequence of pictures) keypoint

Figure 2.21. A multicamera observation system.

to be calibrated and aligned with respect to each other by determining the corre-
spondences among salient points identified in the individual frames. In such a sit-
uation, we need to extract local descriptors of the salient points of the images to
support matching. Because images are taken from different angles with potentially
different lighting conditions, these local descriptors must be as invariant to image
deformations as possible.

The scale-invariant feature transform (SIFT) [Lowe, 1999, 2004] algorithm, which
is able to extract local descriptors that are invariant to image scaling, translation,
rotation and also partially invariant to illumination and projections, relies on a four-
stage process:

(i) Scale-space extrema detection: The first stage of the process identifies can-
didate points that are invariant to scale change by searching over multi-
ple scales and locations of the given image. Let L(x, y, o), of a given image
I(x, y), be a version of this image smoothed through convolution with the
Gaussian, G(x, y, o) = (1/2r0%)e~ (472,

L(x,y,0) = G(x,y,0) *I(x,y).

Stable keypoints, (x, y, o), are detected by identifying the extrema of the
difference image D(x, y, o), which is defined as the difference between the
versions of the input image smoothed at different scales, o and ko (for some
constant multiplicative factor k):

D(x,y,0) = L(x,y, ko) — L(x, y, 0).

To detect the local maxima and minima of D(x, y, o), each value is com-
pared with its neighbors at the same scale as well as neighbors at images up
and down one scale.

Intuitively, the Gaussian smoothing can be seen as a multiscale repre-
sentation of the given image, and thus the differences between the Gaus-
sian smoothed images correspond to differences between the same image
at different scales. Thus, this step searches for those points that have largest
or smallest variations with respect to both space and scale.

53

54 Models for Multimedia Data

(ii) Keypoint filtering and localization: At the next step, those candidate points
that are sensitive to noise are eliminated. These include those points that
have low contrast or are poorly localized along edges.

(ili) Orientation assignment: At the third step, one or more orientations are as-
signed to each remaining keypoint, (x, y, o), based on the local image prop-
erties. This is done by computing orientation histograms for the immediate
neighborhood of each keypoint (in the image with the closest smoothing
scale) and picking the dominant directions of the local gradients. In case
there are multiple dominant directions, then multiple keypoints, (x, y, o, 0)
(each with a different orientation, o), are created for the given keypoint,
(x,y, o). This redundancy helps improve the stability of the matching pro-
cess when using the SIFT keypoint descriptors computed in the next step.

(iv) Keypoint descriptor creation: In the final step of SIFT, for each keypoint, a
local image descriptor that is invariant to both illumination and viewpoint
is extracted using the location and orientation information obtained in the
previous steps.

The algorithm samples image gradient magnitudes and orientations
around the keypoint location, (x, y), using the scale, o, of the keypoint to
select the level of the Gaussian blur of the image. The orientation, o, as-
sociated to the keypoint helps achieve rotation invariance by enabling the
keypoint descriptors (coordinates of the descriptor and the gradient orien-
tations) to be represented relative to o. Also, to avoid sudden changes in
the descriptor with small changes in the position of the window and to give
less emphasis to gradients that are far from the center of the descriptor, a
Gaussian weighing function is used to assign a weight to the magnitude of
each sample point.

As shown in Figure 2.22, each keypoint descriptor is a feature vector
of 128 (=4 x 4 x 8) elements, consisting of 16 gradient histograms (one
for each cell of a 4 x 4 grid superimposed on a 16-pixel by 16-pixel region
around the keypoint) recording gradient magnitudes for eight major orien-
tations (north, east, northeast, etc.). Note that, because a brightness change
in which a constant is added to each image pixel will not affect the gradient
values, the descriptor is invariant to affine changes in illumination.

Mikolajczyk and Schmid [2005] have shown that, among the various available lo-
cal descriptor schemes, including shape context [Belongie er al., 2002], steerable
filters [Freeman and Y, 1991], PCA-SIFT [Ke and Sukthankar, 2004], differen-
tial invariants [Koenderink and van Doom, 1987], spin images [Lazebnik ez al.,
2003], complex filters [Schaffalitzky and Zisserman, 2002], and moment invari-
ants [Gool et al., 1996], SIFT-based local descriptors perform the best in the con-
text of matching and recognition of the same scene or object observed under dif-
ferent viewing conditions. According to the results presented by Mikolajczyk and
Schmid [2005], moments and steerable filters perform best among the local descrip-
tors that have lower number of dimensions (and thus are potentially more efficient
to use in matching and retrieval). The success of the SIFT algorithm in extract-
ing stable local descriptors for object matching and recognition led to the devel-
opment of various other local feature descriptors, including the speeded-up robust

2.3 Models of Media Features

2 N N
keypoint
5 z 7 7 1
\ N N
h . N .
N7 - N

4 N N

Figure 2.22. 128 (= 4 x 4 x 8) gradients which collectively make up the feature vector cor-
responding to a single SIFT keypoint.

features (SURF) [Bay et al., 2000] and gradient location and orientation histogram
(GLOH) [Mikolajczyk and Schmid, 2003, 2005] techniques, which more or less fol-
low the same overall approach to feature extraction and representation as SIFT.

2.3.5 Temporal Models

Multimedia documents (or even simple multimedia objects, such as video streams)
can be considered as collections of smaller objects, synchronized through temporal
and spatial constraints. Thus, a high-level understanding of the temporal seman-
tics is essential for both querying and retrieval, as well as for effective delivery of
documents that are composed of separate media files that have to be downloaded,
coordinated, and presented to the clients, according to the specifications given by
the author of the document.

2.3.5.1 Timeline-Based Models

There are various models that one can use to describe the temporal content of a
multimedia object or a synthetic multimedia document. The most basic model that
addresses the temporal needs of multimedia applications is the timeline (or axes-
based) model (Figure 2.23). In this model, the user places events and actions on a
timeline.

Basic Timeline Model

Figure 2.23(a) shows the temporal structure of a multimedia document according
to the timeline model. The example document in this figure consists of five media
objects with various start times and durations. Note that this representation assumes

55

Free ebooks ==> www.Ebook777.com

56 Models for Multimedia Data

A
c
°
£ .03
a
o1
- "a02
[02 3 : =05
p——_] .04
i P @] :
Time - 0 Start Time ->
(a) (b)

Figure 2.23. (a) Specification of a multimedia document using the timeline model and (b) its
representation in 2D space.

that no implicit relationships between objects are provided. Therefore, the temporal
properties of the objects can be represented as points in a 2D space, where one of
the dimensions denotes the start time and the other denotes the duration. In other
words, the temporal properties of each presentation object, 0;, in document, D, is a
pair of the form (s;, d;), where

® s; denotes the presentation start time of the object and
B d; denotes the duration of the object.

The temporal properties of the multimedia document, D, is then the combination
of the temporal properties of the constituent multimedia objects. Figure 2.23(b),
for example, shows the 2D point-based representation of the temporal document in
Figure 2.23(a).

Because of its simplicity, the timeline model formed the basis for many aca-
demic and commercial multimedia authoring systems, such as the Athena Muse
project [Bolduc er al, 1992], Macromedia Director [MacromediaDirector], and
QuickTime [Quicktime]. MHEG-5, prepared by the Multimedia and Hypermedia
information coding Expert Group (MHEG) as a standard for interactive digital tele-
vision, places objects and events on a timeline [MHEG].

Extended Timeline Model

Unfortunately, the timeline model is too inflexible or not sufficiently expres-
sive for many applications. In particular, it is not flexible enough to accommodate
changes when specifications are not compatible with the run-time situations for the
following reasons:

B Multimedia document authors may make mistakes.

B When the objects to be included in the document are not known in advance, but
instantiated in run-time, the properties of the objects may vary and may not be
matching the initial specifications.

m User interactions may be inconsistent with the initial temporal specifications.

m The presentation of the multimedia document may not be realizable as specified
because of resource limitations of the system.

Hamakawa and Rekimoto [1993] provide an extension to the timeline model
that uses temporal glues to allow individual objects to shrink or stretch as

Www.Ebook777.com

http://www.ebook777.com

2.3 Models of Media Features

. . Minimum Start time of 03
Maximum Start time of 02 + Minimum duration of 03

Preferred Start time of 03
+ Preferred duration of 03

Maximum start time of 03
+ Maximum duration of 03

Time ->
Minimum
Start time of o1
Preferred Start time of o1
(a)
{\ D
c
]
=
£ 03
(=]
o1
02
] ks
io4
0 Start Time ->

Represents preferred start time and duration
(b)

Figure 2.24. (a) Representation of objects in extended timeline model. (b) 2D representation
of the corresponding regions.

required. Candan and Yamuna [2005] define a flexible (or extended) timeline
model as follows: As in the basic timeline model, in the extended timeline model
each presentation object has an associated start time and a duration. However,
instead of being scalar values, these parameters are represented using ranges.
This means that the presentation of an object can begin anytime during the valid
range, and the object can be presented for any duration within the correspond-
ing range. Furthermore, each object also has a preferred start time and a pre-
ferred duration (Figure 2.24(a)). Objects in a document, then, correspond to re-
gions, instead of points, in a 2D temporal space (Figure 2.24(b)). More specifically,
Candan and Yamuna [2005] define flexible presentation object, o, as a pair of the
form (S, Dy a _a), where S } is a probability density func-

min ’Spref 7Sma)c} ’ min> “pref *“max min ’spref Smax
tion for the start time of o such that

Vx <Spmin S{Smin ’Sp ref ’Smax} (x) = Vx>smax S{Smin ’Spref *Smax} (x) = 0

VxS[Smin’spref ’Srrmx} (x) S S{Smin Spref ~Smax} (Spref) °

57

58

Free ebooks ==> www.Ebook777.com

Models for Multimedia Data

Minimum start time Maximum start time Preferred start time
Minimum start time Maximum start time

Preferred start time

Figure 2.25. Start times of two flexible objects and the corresponding probability distribu-
tions.

Dia,d s) is a probability density function for the duration of o with similar prop-
erties. Figure 2.25 visualizes the start times of two example flexible objects. Intu-
itively, the probability density functions describe the likelihood of the start time and
the duration of the object for taking specific values. These functions return 0 beyond
the minimum and maximum boundaries, and they assign the maximum likelihood
value for the preferred points. Note that document authors usually specify only the
minimum, maximum, and preferred starting points and durations; the underlying
probability density function is picked by the system based on how strict or flexible
the user is about matching the preferred time.

Note that although the timeline-based models provide some flexibility in the
temporal schedule, the objects are still tied to a timeline. In cases where the tem-
poral properties (such as durations) of the objects are not known in advance, how-
ever, timeline-based models cannot be applied effectively: if the objects are shorter
than expected, this may result in gaps in the presentations, whereas if they are too
long, this may result in temporal overflows. A more flexible approach to specify-
ing the temporal properties of multimedia documents is to tie the media objects to
each other rather than to a fixed timeline using logical and constraint-based models.
There are two major classes of such formalisms for time: instant- and interval-based
models. In instant-based models, focus is on the (instantaneous) events and their
relationships. Interval-based models, on the other hand, recognize that many tem-
poral constructs (such as a video sequence) are not instantaneous, but have temporal
extents. Consequently, these focus on intervals and their relationships in time.

2.3.5.2 Instant-Based Logical Models
In instant-based models, the properties of the world are specified and verified at
points in time. There are three temporal relationships that can be specified between
instants of interest: before, =, and after [Vilain and Kautz, 1986].

The temporal properties of a complex multimedia document, then, can be spec-
ified in terms of logical formulae involving these three predicates and logical con-
nectives (A, Vv, and —).

Difference Constraints

One advantage of the instant-based model is that the three instant based tem-
poral relationships can also be written in terms of simple, difference constraints
[Candan et al., 1996a,b]: let e; and e, be two events, then the constraints of the form
(e1 — €2 < 81) can be used to describe instant-based relationships between these

Www.Ebook777.com

http://www.ebook777.com

2.3 Models of Media Features

two events. For instance, the statement “event, e1, occurs at least 5 seconds before
e;” can be described as (e; — e; < —5) V (e1 — e; = —5). Thus, under certain condi-
tions this model enables efficient, polynomial time solutions. Instant-based models
and their difference constraint representation are leveraged in many works, includ-
ing the CHIMP system [Candan er al., 1996a,b], the Firefly system by Buchanan
and Zellweger (1993a,b) and works by Kim and Song [1995, 1993] and Song et al.
[1996].

Situation and Event Calculi

Other logical formalism that describe the instant-based properties of the world
include situation calculus and the event calculus. Situation calculus [Levesque ef al.,
1998] views the world in terms of actions, fluents, and situations. In particular, val-
ues of the fluents (predicates or functions that return properties of the world at a
given situation) change as a consequence of the actions. A finite sequence of actions
is referred to as a situation; in other words, the current situation of the world is the
history of the actions on the world. The rules governing the world are described
in second-order logics [Vaananen, 2001] using formulae that lay down the precondi-
tions and effects of the actions and certain other facts and properties that are known
about the world.

Event calculus [Kowalski and Sergot, 1986] is a related logical formalism de-
scribing the properties of the world in terms of fluents and actions. Unlike the sit-
uational calculus, however, the properties of the world are functions of the time
points (HoldsAt(fluent, time_point)). Actions also occur at specified time points
(Happens(action,time_point)), and their effects are reflected to the world after a
specified period of time.

Causal Models

Because it allows modeling effects of actions, the event calculus can be consid-
ered as a causal model of time. A more recent causal approach to modeling the syn-
chronization and user interaction requirements of media in distributed hypermedia
documents is presented by Gaggi and Celentano [2005]. The model deals with cases
in which the actual duration of the media is not known at the design time. Synchro-
nization requirements of continuous media (such as video and audio files) as well as
noncontinuous media (such as text pages and images) are expressed through various
causal synchronization primitives:

m a plays with b: The activation of any of the two specified media a and b causes
the activation of the other, and the (natural) termination of the first media (a)
forces the termination of the second (b).

B g activates b: The natural termination of the first media () triggers the playback
or display of the second media (b).

B ¢ terminates b: When the first media (a) is forced to terminate, a forced termina-
tion is triggered on the second media (b).

m aisreplaced by b: if the two media a and b can use the same resources (channel) to
be delivered, this synchronization rule specifies that the activation of the second
object (b) preempts the first one, that is, it triggers its forced termination. The
channel resource used by a is made available to the second media (b).

59

60 Models for Multimedia Data

A before B A after B
A overlaps B A overlapped_by B
P B PPEEBYE B
Astarts B Astarted_by B
Ameets B A 1 B] Amet by B B]
Afinishes B Afinished by B
nishes [B] mshed oY= B
A contains B Aduring B
contains uring -§-
Aequal B — B |

Figure 2.26. The thirteen binary relationships between pairs of intervals.

B ¢ has priority over b with behavior «: the activation of the first object (a) forces
the second media (b) to release the channel it occupies, to make it available for
a, if needed. According to the specified behavior («), the interrupted media b
can be paused and waiting to be resumed, or terminated.

Notice that the underlying hypothesis of this approach is that the actual duration of
the media is known only at run time, given the fact that media are distributed on the
Web, and their download and delivery times also depend on the available network
resources. Therefore, Gaggi and Celentano [2005] rely on event-driven causal rela-
tionships between media. This also facilitates specification of the desired behavior
in the cases of user interaction events.

2.3.5.3 Interval-Based Logical Models

Interval-based temporal data management was introduced by Allen [1983] and
studied by many researchers [Adali e al., 1996; Snoek and Worring, 2005]. Unlike
an instant, which is given by a time point, an interval is defined by a pair of time
points: its start and end times. Since the pair is constrained such that the end time is
always larger than or equal to the start time, specialized index structures (such as in-
terval trees [Edelsbrunner, 1983a,b] and segment trees [Bentley, 1977] can be used
for searching for intervals that intersect with a given instant or interval. Allen [1983,
1984] provides thirteen qualitative temporal relationships (such as before, meets, and
overlaps) that can hold between two intervals (Figure 2.26). A set of axioms (repre-
sented as logical rules) help deduce new relationships from the initial interval-based
specifications provided by the user. For example, given intervals, /1, I, and I3, the
following two rules are axioms available for inferring relationships that were not
initially present in the specifications:

m before(I1, I;) Abefore(I, I;) — before(1, I3),
m meets(I1,) Aduring(I, I35) — overlaps(I1, I;) Vv during(Iy, 1) v meets(11, I).

2.3 Models of Media Features

Further axioms help the system reason about properties, processes, and events. For
example, given predicates p and g (such as media_active() or media_paused()), de-
scribing the properties of multimedia objects, the axioms

m holds(p,I) < V;(in(i, I) — holds(p, i))
B holds(and(p, q), I) <> holds(p, I) A holds(q, I)
m holds(not(p), I) <> V:i(in(i, I) — —holds(p, i))

can be used to reason about when these properties hold and when they do not hold.
Such axioms, along with additional predicates and rules that the user may specify,
enable a logical description of multimedia semantics.

Note that while the binary temporal relationships (along with logical connec-
tives, A, Vv, and —) are sufficient to describe complex situations, they fall short when
more than two objects have to be synchronized by a single, atomic temporal rela-
tion. Consider, for example, a set {01, 02, 03} of three multimedia objects that are to
be presented simultaneously. Although this requirement can be specified using the
conjunction of pairwise relationships that has to hold,

equal(o1, 02) A equal(o,, 03) A equal(oy, 03),

this approach is both expensive (requires larger constraints than needed) and also
semantically awkward: the user’s intention is not to state that there are three pairs
of objects, each with an independent synchronization requirement, but to state that
these three objects form a group that has a single synchronization requirement asso-
ciated with it. This distinction becomes especially important when user requirements
have to be prioritized and some constraints can be relaxed to address cases where
user specifications are unsatisfiable in run-time conditions because of resource limi-
tations. In such a case, an n-ary specification language (for example equal(o1, 02, 03))
can capture user’s intentions more effectively. Little and Ghafoor [1993]
propose an interval-based conceptual model that can handle n-ary relationships
among intervals. This model extends the definitions of before, meets, overlaps, starts,
equals, contains, and finished_by to capture situations with n objects to be atomically
synchronized.

Schwalb and Dechter [1997] showed that, when there are no disjunctions, inter-
val based formalisms are, in fact, equivalent to the instant-based formalisms. On the
other hand, in the presence of disjunctions in the specifications, the interval-based
formalisms are more expressive than the instant-based models. van Beek [1989] pro-
vides a sound and complete algorithm for instant-based point algebra. Aspvall and
Shiloach [1980] and Dechter et al. [1991] present graph theoretical solutions for the
various instances of the temporal constraint satisfaction problem. Vilain and Kautz
[1986] show that determining the satisfiability of interval-based assertions is NP-
Hard. Interval scripts [Pinhanez er al., 1997], a methodology proposed to describe
user interactions and sensor activities in an interactive system, benefits from a re-
striction on the allowed disjunction combinations in rendering the problem more
manageable [Pinhanez and Bobick, 1998].

61

62

Free ebooks ==> www.Ebook777.com

Models for Multimedia Data

man v
9 ‘ tree
— cat

-t

Micheal Jordan
o s 1 s I e s I e e e e s] e e e s e e e s] e s

(@
o [s [o [o s e e e e s e o e e e e e s e e o
n:gm cloud " " man
\ \Q ca cal \
V v_
cat”™ v tree N e <cat
s s o o s e e s e s e] e e e e s

o e Y e e Y e e O e e Y e e s S e O s e Y s e[s S e
action action
77777777777777777 I [|
I
toward ! I !
I
i Man Car ! ! move_up \
I
| I

,,,,,,,,,,,,,,,,, | e |
s s [[s s [y s B s s O s [o

o I I e o

man cat ‘ p—
1\ \ <=5 frames \L <=5 frames \ \
“ cat

T — tree
<=8 fra
cat tree rames tree

o s o o o e e e e s s o o e
(©)

o s O e s

cloud

<=8 frames
cloud before — cloud

= eloud — e
Cloudl <= 8 frames — W
<=8 frames

(o s e
(d)

Figure 2.27. Four-level description of the temporal content of videos [Li and Candan, 1999a]:
(a) Object level, (b) Frame level, (c) Simple action level, (d) Composite action level.

2.3.5.4 Hybrid Models

Instant-based and interval-based formalisms are not necessarily exclusive and can
be used together. For example, Li and Candan [1999a] describe the content of videos
using a four-level data model (Figure 2.27):

B Object level: At the lowest level of the hierarchy, the information modeled is the
semantics and image contents of the objects in the video. Example queries that
can be answered by the information at this level include “Retrieve all video clips
that contain an object similar to the example image” and “Retrieve all video clips
that contain a submarine.”

m Frame level: At the second level of the hierarchy, the concept of a video frame
is introduced. The additional information maintained at this level are spatial re-
lationships among objects within a frame and other meta-information related to

Www.Ebook777.com

http://www.ebook777.com

2.3 Models of Media Features

frames, such as “being a representative frame for a shot or a preextracted ac-
tion” and frame numbers (a representative or key frame of a shot is the frame
that describes the content of a shot the best). An example query that can be an-
swered by the information at this level is “Retrieve all video clips that contain a
frame in which there are a man and a car and the man is to the right of the car.”

m Simple action level: The next level of the hierarchy introduces the concept of
time, that is, the temporal relationships between individual frames. The tem-
poral relationships are added to the model through implication of frame num-
bers. Because each frame corresponds to distinct time points within the video,
the temporal relationships introduced at this level are instant based. Multiple
frames with temporal relationships construct actions. For example, an action of
“a torpedo launch from a submarine” can be defined as a three-frame sequence:
a frame with a submarine, followed by a frame with a submarine and a torpedo,
followed by a frame with only a torpedo. Another example of an action, “a man
moving to the right,” can be defined as a frame in which there is a man on the left
followed by a frame with a man on the right side. Actions are defined as video
frame sequences that have associated action semantics. The sequence of frames
associated with an action definition is called an extent.

An example query that can be answered by the information at this level is
“Retrieve all video clips that contain two frames where the first frame contains a
submarine and a torpedo and the second frame contains an explosion, and these
two frames are at most 10 seconds apart.” Two more complicated queries that
can be answered by the information modeled at this level are “Retrieve all video
clips that contain an action of torpedo launch from a submarine” and “Retrieve
all video clips that contain an extent in which a man is moving to the right.”

m Composite action level: This level introduces the concept of composite actions. A
composite action is a combination of multiple actions with instant- or interval-
based time constraints. For example, a composite action of “a submarine com-
bat” can be represented with combinations of actions “submarine moving to the
right,” “submarine moving to the left,” “a torpedo launch from a submarine,”
“explosion,” and interval-based time constraints associated with these actions.

<«

Other logic- and constraint-based approaches for document authoring and presen-
tation include Ozsoyoglu et al. [Hakkoymaz and Ozsoyoglu, 1997; Hakkoymaz et al.,
1999; Ozsoyoglu et al., 1996], and Vazirgiannis and Boll [1997]. Adali et al. [1996],
Del Bimbo et al. [1995], and others used temporal logic in retrieval of video data.
More recently, Adali er al. [1999], Baral et al. [1998], de Lima et al. [1999], Escobar-
Molano et al. [2001], Mirbel et al. [1999], Song et al. [1999], and Wirag [1999]
introduced alternative models, interfaces, and algebras for multimedia document
authoring and synchronization.

2.3.5.5 Graph-Based Temporal Models

Although logic- and constraint-based specifications are rich in expressive power,
there are other more specialized models that can be especially applicable when
the goal is to describe synchronization requirements of multimedia documents.
These include the Petri nets model and its variations, time-flow graphs, and timed
automata.

63

64

Models for Multimedia Data

transition

start ° @ end

Figure 2.28. An interval-based OCPN graph for a multimedia document with three objects.
Each place contains information about the duration of the object.

Timed Petri Nets

A Petri net is a concise graph-based representation and modeling language to
describe the concurrent behavior of a distributed system. In its simplest form, a
Petri net is a bipartite, directed graph that consists of places, transitions, and arcs
between places and transitions. Each transition has a number of input places and a
number of output places. The places hold tokens, and the distribution of the tokens
is referred to as the marking of the Petri net. A transition is enabled when each of
its input places contains at least one token. When a transition fires, it eliminates a
number of tokens from its input places and puts a number of tokens to its output
places. This way, the markings of the Petri net evolve over time. More formally,
a Petri net can be represented as a 5-tuple (S, T, F, My, W), where S denotes the
set of places, T denotes the transitions, and F is the set of arcs between the places
and transitions. M, is the initial marking (i.e., the initial state) of the system. W
is the arc weights, which describes how many tokens are consumed and created
when the transitions fire. Petri nets allow analysis of the various properties of the
system, including reachability (i.e., whether a particular marking can be reached
or not), safety/boundedness (i.e., whether the places may contain too many tokens),
and liveliness (i.e., whether the system can ever reach a situation where no transition
is enabled).

Timed Petri nets (TPN) extend the basic Petri net construct with timing in-
formation [Coolahan and Roussopoulos, 1983]. In particular, Little and Ghafoor
[1990] propose an interval-based multimedia model, called Object Composition
Petri Nets (OCPN, Figure 2.28), based on the timed Petri net model. In OCPN,
each place has a duration (and possibly resources) associated with it. In effect, the
places denote the multimedia objects (and other intervals of interest) and the tran-
sitions denote the synchronization specifications. Unlike the basic Petri net formal-
ism, where the transitions can fire asynchronously and nondeterministically, when-
ever they are enabled, the transition firing in OCPNs is deterministic: a transition
fires immediately when each of its input places contains an available token. Be-
cause the places have durations, however, a token put into a place is not imme-
diately available, but locked, for the duration associated with the place. A further
restriction imposed on OCPNs is that each place has one incoming arc, and one
outgoing arc.” This means that only one transition governs the start of each object.
Little and Ghafoor [1990] showed that each of the thirteen pair-wise relationships

6 This type of Petri nets are also referred to as marked graphs [Commoner ez al., 1971].

2.3 Models of Media Features

between intervals depicted in Figure 2.26 can be composed using the OCPN formal-
ism. Note that although OCPN can be used to describe interval-based specifications
based on Allen’s formalism, its expressive power is limited; for example, it is not
able to describe disjunctions.

Other relevant extensions of timed Petri nets, especially for imprecise multime-
dia data, include fuzzy-timing Petri nets (such as Fuzzy-Timing Petri-Net for Mul-
timedia Synchronization, FTNMS [Zhou and Murata, 1998], and stochastic Petri
nets [Balbo, 2002], which add imprecision to the durations associated to the places
or to the firing of the transitions. Also, whereas most Petri net-based models assume
that the system proceeds without any user intervention, the Dynamic Timed Petri
Net (DTPN) model, by Prabharakan and Raghavan, enables user inputs to alter the
execution of the Petri net by, for example, preempting an object or by changing its
duration temporarily or permanently [Prabhakaran and Raghavan, 1994].

Time Flow Graph

Timed Petri Nets are not the only graph-based representations for interval-based
reasoning. Li ef al. [1994a,b] propose a Time-Flow Graph (TFG) model that also
is based on intervals. Unlike timed Petri nets, however, TFG is able to represent
(n-ary) temporal relationships between intervals, without needing advance knowl-
edge about their durations. In the TFG model, temporal relationships are split
into two main groups: parallel and sequential relationships. A time-flow graph is
a triple {An, N;, E4}, where Ay is the set of nodes corresponding to the intervals
and nodes that describe parallel relations, NV,, are the transit nodes that describe
sequential relationships, and E, is a set of directed edges, which connect nodes
in Ay and N,.

Timed Automata

Timed automata [Alur and Dill, 1994] extend finite automata with timing con-
straints. In particular, they accept the so-called timed words. A timed word (o, 7)
is an input to a timed automaton, where o is a sequence of symbols (representing
events) and t is a monotonically increasing sequence of time values. Intuitively, if
o; 1s an event occurrence, then 7; is the time of occurrence of this event. When the
automaton makes a state transition, the next state depends on the event as well as
the time of the input relative to the times of the previously read symbols. This is
implemented by associating a set of clocks to the automaton. A clock can be reset
to 0 by any state transition, and the reading of a clock provides the time elapsed
since the last time it was reset. Each transition has an associated clock constraint, 6,
inductively defined as

§:=x < c|c < x|—8|81 A 67,

which determines whether the transition can be fired or not. Here x is a clock and ¢
is a constant. Note that, effectively, clock constraints evaluate differences between
the current time and the times of one or more of the past state transitions and allow
the new transition occur only if the current time satisfies the associated difference
constraints.

logO [Sapino et al.,2006] is an example system that relies on timed automata for
representing temporal knowledge. Unlike many of the earlier formalisms that aim to

65

66

Free ebooks ==> www.Ebook777.com

Models for Multimedia Data

help content creators to declaratively synthesize multimedia documents, logO tries
to analyze and represent (i.e., learn) temporal patterns underlying a system from
its event logs. For this purpose, logO represents the trace of a system using a timed
finite state automaton, described by a 5-tuple AUT = (S, so, Sf, TR, next):

m S is the set of observed states of the system. Each state is a pair of the form
(id, AM), where id is a globally unique identifier of the state, and AM is the set
media that are active in the state.

B s is the initial state, sg = (idp, ¥).

B The set of final states is the singleton Sy = {sy = (idy, 9)}.

m TR is the set of symbols that label possible state transitions. A transition label
is a pair (ev, inst), where ev is an event and inst is the time instant in which the
event occurs. Examples of events include the activation of a new media, or the
end of a previously active one.

B next:S x TR — § is the transition function. Intuitively, if a transition from the
state s to the state s’ occurs, the new state s” is obtained from s by taking into
account the events occurring at time instant iznst and updating the set of active
media by reflecting the changes on the media affected by such events. In par-
ticular, those media that have terminated or have been stopped at time instant
inst will not appear in the set of active media in s’, whereas the media that are
starting at the same time are inserted in the set of active media in s'.

The trace automaton created using a single sequence of events is a chain of
states. It recognizes a single word, which is exactly the sequence of records appear-
ing in the log. Thus, to construct an automaton representing the underlying structure
of the system, logO merges related trace automata created by parsing the system
logs. In general, logO relies on two alternative schemes for merging:

B History-independent merging: In this scheme, each state in the original au-
tomata is considered independently of its history. Thus, to implement history-
independent merging, an equivalence relation (=), which compares the active
media content of two given states, s; and s}, is necessary for deciding which states
are compatible for being merged. The merge algorithm produces a new automa-
ton in which the media items in the states are (representatives of) the equiva-
lence classes defined by the =, relation. The label of the edge connecting any
two states s; and s; includes (i) the event that induced the state change from a
state equivalent to s; to a state equivalent to s; in any of the merged automata, (ii)
the duration associated to the source state, and (iii) the number of transitions, in
the automata being merged, to which (i) and (ii) apply.

The resulting automaton may contain cycles. Note that the transition label
includes the counting of the number of logged instances where a particular tran-
sition occurred in the traces. The count labels on the transitions provide infor-
mation regarding the likelihood of each transition. In a sense, the resulting trace
automaton is a timed Markov chain, where the transitions from states have not
only expected trigger times, but also associated probabilities. Therefore, given
the current state, the next state transition is identified probabilistically (as in
Markov chains, see Section 3.5.4 for more details) and the corresponding state
transition is performed at the time associated with the chosen state transition.

Www.Ebook777.com

http://www.ebook777.com

2.3 Models of Media Features

m History-dependent merging: In this scheme, two states are considered identical
only if their active media content as well as their histories (i.e., past states in the
chains) are matching. Thus, the equivalence relation, =,;, compares not only the
active media content of the given states s; and s; but also requires their histories,
hist; and hist;, to be considered identical for merging purposes. In particular, to
compare two histories, logO uses an edit distance function (see Section 3.2.2 for
more detail on edit distance). Unlike history-independent merging, the resulting
merged automaton does not contain any cycles; the same set of active media can
be represented as different states, if the set is reached through differing event
histories.

2.3.5.6 Time Series

Most the of the foregoing temporal data models are designed for describing au-
thored documents or temporal media, analyzed for events [Scher ez al., 2009; West-
ermann and Jain, 2007] using media processing systems, such as MedSMan [Liu
et al., 2005, 2008], ARIA [Peng et al., 2006, 2007, 2010], and others [Nahrstedt and
Balke, 2004; Gu and Nahrstedt, 2006; Gu and Yu, 2007; Saini et al., 2008], which im-
plement complex analysis tasks by coupling sensing, feature extraction, fusion, and
classification operations and other stream processing services. In most sensing and
data capture applications, however, before the temporal analysis phase the data is
available simply as a raw stream (or sequence) of sensory values. For example, as
we discuss later in this chapter, audio data can often be viewed as a 1D sequence of
audio signal samples. Similarly, a sequence of tuples describing the surface pressure
values captured by a set of floor-based pressure sensors or a sequence of motion
descriptors [Divakaran, 2001; Pawar et al., 2008] encoded by a motion detector are
other examples of data streams. Such fime series data can often be represented as
arrays of values, tuples, or even matrices (for example when representing the tempo-
ral evolution of the Web or a social network, each matrix can capture a snapshot of
the node-to-node hyperlinks or user-to-user friendship relationships, respectively).
Time series of matrices are often represented in the form of fensors, which are es-
sentially arrays of arbitrary dimensions. We will discuss tensors in more detail in
Section 4.4.4. Alternatively, when each data element can be discretized into a sym-
bol from a finite alphabet, a time series can be represented, stored, and analyzed in
the form of a sequence or string (see Chapter 5).

The alphabet used for discretizing a given time series data is often application
specific: for example, a motion application can discretize the capture data into a
finite set of motion descriptors. Alternatively, one can rely on general purpose dis-
cretization algorithms, such symbolic aggregate approximation (SAX) [Lin et al.,
2003], to convert time series data into a discrete sequence of symbols. Consider a
time series, T = f1, tp, ..., t; of length /, where each ¢ is a value. In SAX, this time
series data is first normalized so that the mean of the amplitude of values is zero and
the standard deviation is one and then the sequence is approximated using a piece-
wise aggregate approximation (PAA) scheme, where T'is reduced into an alternative
series, T =1y, a, . . ., [y, Of length w < [as follows:

j:%(i—l)-kl

67

68

Free ebooks ==> www.Ebook777.com

Models for Multimedia Data

Table 2.1. SAX symbols and the corresponding value ranges

Symbol A B C D
Range -inf~-1.64 -1.64~-128 -1.28~-1.04 -1.04~-0.84
Symbol E F G H
Range -0.84 ~-0.67 -0.67~-0.52 -0.52~-0.39 -0.39~-0.25
Symbol I J K L
Range -0.25~-0.13 -0.13~0 0~0.13 0.13 ~ 0.25
Symbol M N 0 P
Range 0.25~0.39 0.39~0.52 0.52~0.67 0.67 ~0.84
Symbol Q R S T
Range 0.84~1.04 1.04~128 1.28~1.64 1.64 ~ inf

Lin et al. [2003] showed that, once normalized as above, the amplitudes in most time
series data have Gaussian distributions. Thus a set of pre-determined breakpoints,
shown in Table 2.1, can be used for mapping the normalized data into symbols of
an alphabet such that each symbol is equi-probable. Moreover, for ease of indexing
and search, the PAA representation maps the longer time series into a shorter one
in such a way that the loss of information is minimal.

2.3.5.7 Temporal Similarity and Distance Measures

Because multimedia object retrieval may require similarity comparison of tem-
poral structures, a multimedia retrieval system must employ suitable temporal
comparison measures [Candan and Yamuna, 2005]. Consider, for example, the five
OCPN documents shown in Figure 2.29. In order to identify which of the temporal
documents in Figures 2.29(b) to (e) best matches the temporal document specified
in Figure 2.29(a), we need to better understand the underlying model and the user’s
intention.

10s 15s 20s 30s 10s 258

(o) (=) (o) (=) (o) ()
S SO
(b) (c)

(a) c

10s 15s

()
(@]
(e)

(d)

Figure 2.29. Five OCPN documents. Can we rank documents (b) to (e) according to their
similarity to (a)? Hints: (b) has all object durations multiplied by 2, (c) has two objects with
different and one object with the same duration as (a), (d) has all object durations intact,
but one of the object IDs is different, and (e) has a missing object.

Www.Ebook777.com

http://www.ebook777.com

2.3 Models of Media Features

One way to perform similarity-based retrieval based on temporal features is to
represent the temporal requirements (such as a temporal query) in the form of a
fuzzy logic statement (Section 3.4) that can be evaluated against the data to obtain a
temporal similarity score. A number of multimedia database systems, such as SEM-
COG [Li and Candan, 1999a], rely on this approach. An alternative approach is to
rely on the specific properties of the underlying temporal model to develop more
specialized similarity/distance measures. In the rest of this section, we consider dif-
ferent models and discuss measures appropriate to each.

Temporal Distance - Timeline Model

As introduced earlier in Section 2.3.5, the timeline model allows users to place
objects on a timeline with respect to the starting time of the presentation. It is one
of the simplest models and is also the less expressive and less flexible.

One advantage of the timeline model is that a set of events placed on a timeline
can be seen as a sequence, and thus temporal distance between two sets of events
can be computed using edit-distance-based measures (such as dynamic time warp-
ing, DTW [Sakoe, 1978]), where the distance between two sequences is defined as
the minimum amount of edit operations needed to convert one sequence to the
other. We discuss edit-distance computation in greater detail in Section 3.2.2. Here,
we provide an edit-distance-like distance measure for comparing temporal similar-
ity/distance under the timeline model.

SCALE. The first issue that needs to be considered when comparing two multi-
media documents specified using a timeline is the durations of the documents. Tem-
poral scaling is useful when users are interested in comparing temporal properties
in relative, instead of absolute, terms. Let o be the temporal scaling value applied
when comparing two documents, D and D,. If the users would like the document
similarity/distance to be sensitive to the degree of scaling, then we need to define a
scaling penalty, Y (o), as a function of the scaling value.

TEMPORAL DIFFERENCE BETWEEN A PAIR OF MEDIA OBJECTS. Recall from
Figure 2.23(b) that the temporal properties of presentation objects mapped onto a
timeline can be represented as points in a 2D space. Consequently, after the doc-
uments are scaled with scaling degree, o, the temporal distance, A(o;, 0j, o), be-
tween two objects 0; € Dy and o; € D5, can be computed based on their start times
(s; and s; after scaling) and durations (d; and d, after scaling) using various dis-
tance measures, including the Minkowski distance ([|s; —s; [V + | di —d; |"]7),
the Euclidean distance ([|s;—s; > + | dj — d; |?]%), or the city block distance
([Isi=sjl+1di—d;l]).

UNMAPPED OBJECTS. An object mapping between the two documents may fail
to map some objects that are in D; to any objects in D, and vice versa. These
unmapped objects must be taken into consideration when calculating the similar-
ity/distance between two multimedia documents. In order to deal with such un-
mapped objects, we can map each unmapped object, o; = {s;, d;), to a null object,
of = (s;,0). The temporal distance values, A(0;, 0f) and A(of, 0;), depend on the
position of s; and d;. Figure 2.30 shows an example where some objects in the docu-
ments are mapped to virtual objects in the others.

69

70

Models for Multimedia Data

611 012 of3

Rl

D1

" D3 D‘// ’

031 032

Figure 2.30. Three multimedia documents and the corresponding mappings. The dashed
circles and lines show missing objects and the corresponding missing matchings.

OBJECT PRIORITIES AND USER PREFERENCES. In some cases, different media
objects in the documents may have different priorities; that is, some media objects
are more important than the others and their temporal mismatches affect the overall
result more significantly. Let us denote the priority of the object o as pr(o). Given
two objects 0; € D and o; € D,, we can calculate the priority, pr(o;, 0;), of the pair
based on the priorities of both objects using various fuzzy merge functions, such as
the arithmetic average (w, Section 3.4.2).

COMBINING ALL INTO A DISTANCE MEASURE. Given two objects o; € Dy and
oj € D,, we can define the prioritized temporal distance between the pair of objects,
0; and o;, as follows:

pr(oi, o)) x A(o;, 0}, 0).

In other words, if the objects are important, then any mismatch in their temporal
properties counts more.

Let o be a scaling factor and Y(o) be the corresponding scaling penalty, and
let u be an object-to-object mapping from document D; to document D,. Then,
the overall temporal distance between multimedia documents D; and D, can be
computed as

Atimeline,a,u(Dlv DZ) = T(U) + Z P”(Oi, 0]) X A(Oi’ Oja 0)~
(0i,07)epn
Let o/ and ' be the scaling value and the mapping such that the value of

Aimeline.o.n (D1, D7) is smallest; that is,

<0/7 ,lL,) = argmin Alimeline,a,;L(Dl , DZ)
(CAT

Then, we can define the timeline-based distance between the temporal documents
Dy and D, as

Atimeline(Dl s DZ) = Atimeline.(r’,;L’(Dl s DZ)

Note that this definition is similar to the definition of edit distance, where the edit
cost is defined in terms of the minimum-cost edit operations to convert one string

Free ebooks ==> www.Ebook777.com

2.3 Models of Media Features

|
Minimum start time \a Maximum start time
Preferred start time

Figure 2.31. Start times of two identical flexible objects (note that the minimum, preferred,
and maximum start times of both objects are identical). The two small rectangles, on the
other hand, depict a possible scenario where the two objects start at different times.

to the other; in this case the edit operations involve temporal scaling and temporal
alignment of the media objects in two documents.

Temporal Distance - Extended (Flexible) Timeline Model

As mentioned in Section 2.3.5, the basic timeline model is too rigid for many
applications. This means that the presentation of the object cannot accommodate
unexpected changes in the presentation specifications or in the available system re-
sources. Consequently, various extensions to the timeline model have been pro-
posed [Hamakawa and Rekimoto, 1993] to increase document flexibility. In this
section, we use the extended timeline model introduced in Section 2.3.5.1, where a
flexible presentation object, o, is described using a pair of probability density func-
'[iOIlS, (S {Syin>Spref »Smax}? D {dmimdpmfadmax}>‘

Similar to the simple timeline model, the main component of the distance mea-
sure is the temporal distance between a pair of mapped media objects. However,
in this case, when calculating the distance, |S; — S;|, between the start times and the
distance, |D; — D;|, between durations, we need to consider that they are based on
probability distributions. One way to do this is to compare the corresponding prob-
ability distribution functions using the KL-distance or chi-square test, introduced in
Section 3.1.3 to assess how different the two distributions are from each other. This
would provide an intentional measure: if two distributions are identical, this means
that the intentions of the authors are also identical; thus the distance is 0.

On the other hand, when defining the distance extensionally (based on what
might be observed when these documents are played), since the start time of a flex-
ible object can take any value between the corresponding s,,;, and s,,,., this has to
be taken into consideration when comparing the start times and durations of two
objects. The reason for this is that even though the descriptions of the start times
of two objects might be identical in terms of the underlying probability distribu-
tions, when presented to the user, these two objects do not need to start at the same
time. For example, although their descriptions are identical, the actual start times
of two objects, 0; and 0,, shown in Figure 2.31 have a distance value larger than 0.
Hence, although intentionally speaking the distance between the start times should
be 0, the observed difference might be nonzero. Consequently, even when a flexible

Wwww.Ebook777.conl

71

http://www.ebook777.com

72

Models for Multimedia Data

document is compared with itself, the document distance may be nonzero. There-
fore, we can define the distance between start times of two objects o; and o; as

Si,max Sj,max
| s;i — Sj | = Si[»"i‘miuaSiAprewai.rrwx}(x) X
Si,min Sj,min

Sj{sj,mims/',pmfssj,max}(y) X |x - yl dXdy'

The distance between the durations of the objects 0; and o; can be defined similarly
using the duration probability functions instead of the start probability functions.
The rest of the formulation is similar to that of the simple timeline model described
in Section 2.3.5.7.

Temporal Distance/Similarity — Constraint-Based Models

In general, the temporal characteristics of a complex multimedia object can be
abstracted in terms of a temporal constraint, described using logical formulae over
a4-tuple (C,Z, £, P), where

m C ={Cy,...}is an infinite set of temporal constants,

m 7 ={I,...,1I;}is aset of interval variables,
m & ={FEy,..., E,}isasetof event variables,
m P ={Py,...,P,}isasetof predicates, where each P; takes a set of intervals from

7, a set of events from &, and a set of constants from C, and evaluates to true or
false.

Example 2.3.1: Let C ={Z*}, T = {int(01),int(0;)}, & = {presy, pres,,q, st(o1),
st(02), end(o1), end(02)}. The following constraint might specify temporal properties
of a presentation schedule’:

T = (before(int(oy), int(02))) A
((0 < st(o1) — presg, < 3) v (0 < st(0y) — presg, < 20)) A
(presend = End(Oz))

Given this constraint-based view of temporal properties of multimedia documents,
we can define temporal similarity and dissimilarity as follows:

m Temporal similarity: A temporal specification is satisfiable only if there is a vari-
able assignment such that the corresponding formula evaluates to true. If there
are multiple assignments that satisfy the temporal specification, then the prob-
lem has, not one, but a set of solutions. In a sense, the semantics of the doc-
ument is described by the set of presentation solutions that the corresponding
constraints allow. In the case of the timeline model, each solution set contains
only one solution, whereas more flexible models may have multiple solutions
among which the most suitable is chosen based on user preferences or resource
requirements. For example, Figure 2.32(a) shows the solution sets of two doc-
uments, D1 and D;. Here, C is the set of solutions that satisfy both documents,

7 In this example, the events in £ and intervals in Z are not independent; for instance, the beginning of
the interval int(o;) corresponds to the event sz(o;). These require additional constraints, but we ignore
these for the simplicity of the example.

2.3 Models of Media Features

const2 " “const?

(a) (b)

Figure 2.32. Constraint-based (a) similarity and (b) dissimilarity.

const1

whereas A and B are the sets of solutions that belong to only one of the docu-
ments. We can define the temporal similarity of the documents D; and D; as

IC]

similarity(D1, D;) = m

m Temporal dissimilarity: The similarity semantics given above, however, has some
shortcomings: if an inflexible model (such as the very popular timeline model)
is used, then (because there is only one solution for a given set of constraints),
A Jr'gtrq will evaluate only to 1 or 0; that is, two documents either will match per-
fectly or will not match at all. It is clear that such a definition is not useful for
similarity-based retrieval. Furthermore, it is possible to have similar documents
that do not have any common solutions, yet they may differ only in very sub-
tle ways. A complementary notion of dissimilarity (depicted in Figure 2.32(b))
captures these cases more effectively:

— Let us assume that two documents D; and D, are consistent. Because there
exists at least one common solution, these documents are similar to each other
(similarity = 1.0).

— If the solution spaces of these two documents are disjoint, then we can modify
(edit) the constraints of these two documents until their solution sets overlap.

Based on this, we can define the dissimilarity between these two documents as

the minimum extension required in the sizes of the solution sets for the docu-

ments to have a common solution:

dissimilarity(Dy, D;) = (|A'| + |B'|) — (|A| + |B)).
where A’ and B’ are the new solution sets.

The two measures just given are complementary: one captures the degree of simi-
larity between mutually consistent documents and the other captures the degree of
dissimilarity between mutually inconsistent documents.

Let us consider two temporal documents, D; and D, and their constraint-based
temporal specifications, C(D;) and C(D,). As described previously, if these docu-
ments represent nonconflicting intentions of their authors, then when the two con-
straints, C(D;) and C(D;), are combined, the resulting set of constraints should not
contain any conflicts; that is, the combined set of constraints should be satisfiable.
Figure 2.33 shows two temporal documents, an object-to-object mapping between
these two documents, and the corresponding merged document. In this example, the
combined temporal specification is not satisfiable: there is a conflict caused by the
existence of the unmapped object. Given an object mapping, i, the temporal conflict

73

74 Models for Multimedia Data

st(od) a et(od)

st(02) et(02)

C—=0 -
N"a) <15

D2
D1 o1 is mapped to 04

et(o5)

03 is mapped to 05

()

<7

et(02*)

D(1,2)
(b)

Figure 2.33. (a) Two temporal specifications (st denotes the start time and et denotes the

end time of an object) and (b) the corresponding combined specification. Note that the

object 0, in document D, does not exist in document D, (i.e., its duration is 0); therefore

the resulting combined specification has a conflict.

distance between two documents, D; and D,, can be defined as

Aconfiic(D1, D7), = total_ number,of,conﬂicts,in(C(D’(‘LZ))), (2.1)

where C(D’(‘LZ)) denotes the constraints corresponding to the combined document.
A disadvantage of this measure, however, is that it is in general very expensive
to compute. It is shown that in the worst case, the number of conflicts in a docu-
ment is exponential to the size of the document (in terms of objects and constraints)
[Candan et al., 1998]. Therefore, this definition may not be practical.

Candan et al. [1998] showed that, under certain conditions, it is easier to find an
optimal set of constraints to be relaxed (i.e., removed) to eliminate all conflicts than
to identify the total number of conflicts in the constraints. Therefore, it is possible
to use this minimum number of constraints that need to be removed to achieve
consistency as an indication of the reasons of conflicts. Based on this, the relaxation
distance between two documents, D and D, is defined as

Avetaraion(D1, D2),. = cost_of constraints_removed(C(Dy ,,))- (2.2)

The cost (or the impact) of the constraints removed may be computed based on
their number or user-specified priorities.

2.3.6 Spatial Models

Many multimedia databases, such as those indexing faces or fingerprints, need
to consider predefined features and their spatial relationships for retrieval

2.3 Models of Media Features

Figure 2.34. Whereas some features of interest in a fingerprint image can be pinpointed to
specific points, others span regions of the fingerprint.

(Figure 2.34). Spatial predicates and operations can be broadly categorized into two
based on whether the information of interest is a single point in space or has a spa-
tial extent (e.g., a line or a region). The predicates and operators that are needed to
be supported by the database management system depend on the underlying spatial
data model and on the applications’ needs (Table 2.2). Some of the spatial operators
listed in Table 2.2, such as union and intersection, are set oriented; in other words,
their outcome is decided based on the memberships of the points that they cover
in space. Some others, such as distance and perimeter, are quantitative and may de-
pend on the characteristics (e.g., Euclidean) of the underlying space. Table 2.2 also
includes topological relationships between contiguous regions in space. Spatial data
can be organized in different ways to evaluate the above predicates. In this section,
we cover commonly used approaches for representing spatial information in multi-
media databases.

2.3.6.1 Fields and Their Directional and Topological Relationships
In field-based approaches to spatial information management, space is described in
terms of three complementary aspects [Worboys et al., 1990]:

B A spatial framework, which is a finite grid representing the space of interest;

B Field functions, which map the given spatial framework to relevant attribute do-
mains (or features); and

B Field operations, which map subsets of fields onto other fields (e.g., union, inter-
section). For local field operations, the value of the new field depends only on
the values of the input fields (e.g., color of a given pixel in an image). For focal
field operations, the value of the new field depends on the neighborhood of the
input fields (e.g., image texture around a given pixel). Zonal operations perform
aggregation operations on the attributes of a given field (e.g., average intensity
of an image segment).

Field-based representations can be used to describe feature locales and image seg-
ments.

Example 2.3.2 (Feature Locales): Let us be given an image, /. The two-dimensional
grid defined by the pixels of this image is a spatial framework.

75

Free ebooks ==> www.Ebook777.com

76 Models for Multimedia Data

Table 2.2. Common spatial predicates and operations
Name Input1 Input 2 Output
Topological contains, covers, covered by, disjoint, region region {true,
predicates equal, inside, meet, and overlap false}
inside, outside, on-boundary, corner region point {true,
false}
touches, crosses line region {true,
false}
endpoint, on point line {true,
false}
Directional north, east, south, west, northeast, region, region, {true,
predicates northwest, southeast, southwest point, point, false}
line line
Quantitative/ distance region, region, numerical
measurement point, point, value
operations line line
length line numerical
value
perimeter region numerical
value
area region numerical
value
center region point
Data nearest region, region,
set/search point, point, line
operations line
Set operations intersection region, region, region,
line line line, point
union region region region
difference region region region

Let F be the set of features of interest; for example, “red” € F. This feature set
is an attribute domain and “red” is an attribute of the field.

Let the tile [Li and Drew, 2003] associated with a feature, f € F, be a contiguous
block of pixels having the feature f. For example, the set of pixels belonging to a
red balloon in the scene may be identified as a “red” tile by the system. Let a locale
be the set of tiles in the image all representing the same feature f. Each locale is a
field on the spatial framework, defined by image, /.

Image processing functions, such as returnLocale(“red”, I), are the so-called field
functions.

Feature extraction functions, such as centroid(), eccentricity(), size(), texture(),
and shape(), can all be represented as zonal field operations.

Example 2.3.3 (Image Segments): Note that a locale is not necessarily connected,
locales are not necessarily disjoint, and not all pixels in the image belong to a locale.

Unlike feature locales, image segments (obtained through an image segmenta-
tion process — see Section 2.3.3) are usually connected, segments are disjoint, and

Www.Ebook777.com

http://www.ebook777.com

2.3 Models of Media Features

1 R1 R2 R3
8 R1| - - -
R1 R2[1| - | -
R3 8 3 -
(b) (©)

Figure 2.35. (a) The nine directions between two regions (0 means “at the same
place”) [Chang, 1991]. (b) An image with three regions and their relationships (for con-
venience, the relationships are shown only in one direction). (c) The corresponding 9DLT
matrix.

the set of segments extracted from the image usually cover the entire image. De-
spite these differences, segments can also be represented in the form of fields.

Because field-based representations are very powerful in describing many com-
monly used spatial features, such as feature locales and image segments, in the rest
of this section we present representations of directional and topological relation-
ships between fields identified in an image.

Nine-Directional Lower-Triangular (9DLT) Matrix

Chang [1991] classifies the directional relationship between a given pair of image
regions into nine classes as shown in Figure 2.35. Given these nine directional rela-
tionships, all directional relationships between n regions on a plane can be described
using an n x n matrix, commonly referred to as the nine-directional lower-triangular
(9D LT) matrix (Figures 2.35(a) and (b)).

UID-Matrix

Chang et al. [2000a] encode the topological relationships between each and ev-
ery pair of objects in a given image explicitly using a UID-matrix. More specifically,
Chang et al. [2000a] consider the 169 (= 13 x 13) unique relationships between pairs
of objects (13 interval relationships along each axis of the image) and assigns a
unique ID (or UID) to each one of these 169 unique relationships. Given an image
containing n objects, an n x n UID-matrix, enumerating the spatial relationships
between all pairs of objects in the image, is created using these UIDs.®

In general, however, the use of the UIDs for representing spatial reasoning suf-
fers from the need to make UID-based table lookups to verify which relationships
are compatible with each other. The need for table lookups can, on the other hand,
be eliminated if UIDs are encoded in a way that enables verification of compatibili-
ties and similarities between different spatial relationships. Chang and Yang [1997]
and Chang et al. [2001], for instance, encoded the unique IDs corresponding to the

8 This is similar to the 9DLT-matrix. The 9DLT representation captures the nine directional relation-
ships between a pair of regions, and given an image with n objects, an n x n 9DLT-matrix is used to
encode the directional information in the image.

77

78

Models for Multimedia Data

169 possible relationships as products of prime numbers. As an example consider
the “<” relationship shown later in Table 2.3. Chang and Yang [1997] compute the
UID corresponding to this relationship as 2 x 47; in fact, each and every spatial re-
lationship that would imply some form of “disjointness” is required to have 2 as a
factor in its unique ID and no relationship that implies “intersection” is allowed to
have 2 as a factor of its UID. Consequently, the mod 2 operation can be used to
quickly verify whether two regions are disjoint or not. The other prime numbers
used for computing UIDs are also assigned to represent fundamental topological
relationships between regions.

The so-called PN strategy for picking the prime numbers, described by Chang
and Yang [1997], requires 20 bits per relationship in the matrix. The GPN strategy
presented by Chang er al. [2001] reduces the number of required bits to only 11 per
relationship. Chang er al. [2003] propose an alternative encoding scheme that uses
a different bit pattern scheme. Although this scheme requires 12 bits (instead of
the 11 required by GPN) for each relationships, spatial reasoning can be performed
using bitwise-and/bitwise-or operations instead of the significantly more expensive
modulo operations required by PN and GPN. Thus, despite its higher bit length, this
strategy has been shown to require much shorter time for query processing than the
prime number-based strategies, PN and GPN.

Note that reducing the number of bits required to represent each relationship
is not the only way to reduce the storage cost and the cost of comparisons that
need to be performed for spatial reasoning. An alternative approach is to reduce
the number of relationships to be considered: given an image with n objects, all
the matrix-based representations discussed earlier need to maintain O(n?) relation-
ships; Petraglia ef al. [2001], on the other hand, use certain equivalence and transi-
tivity rules to identify relationships that are redundant (i.e., can be inferred by the
remaining relationships) to reduce the number of pairwise relationships that need
to be explicitly maintained.

Nine-Intersection Matrix

Egenhofer [1994] describes topological relationships between two regions on a
plane in terms of their interiors (°), boundaries (8), and exteriors (7). In particular,
it proposes to use the so-called nine-intersection matrix representation

01°N0’ 01°Néoy 01°Noy~
do1 N0’ doiNSoy SorNor~
0" N’ o, Néoy o Noy~

for capturing the 2° = 512 different possible binary topological relationships’ be-
tween a given pair, 0; and 0,, of objects. These 512 binary relationships include
eight common ones: contains, covers, covered by, disjoint, equals, inside, meets, and
overlaps. For example, if the nine-intersection matrix has the form

9 Each binary topological relationship corresponds to one of the 2° subsets of the elements in the nine-
intersection matrix.

2.3 Models of Media Features

e

N<e,> f

Figure 2.36. A sample spatial orientation graph.

we say that o1 covers o,. Similarly, the statement, 0; overlaps 0,, can be represented
as

>1 =1 =1
>1 >1 >1
>1 >1 =>1

using the nine-intersection matrix.

The nine-intersection matrix can be extended to represent more complex topo-
logical relationships between other types of spatial entities, such as between regions,
curves, polygons, and points. In particular, the definitions of interior and exterior
need to be expanded (or replaced by “not applicable”) when dealing with curves and
points. For example, the definition of inside will vary depending on whether one
considers the region encircled by a closed polygon to be its interior or its exterior.

2.3.6.2 Points, the Spatial Orientation Graph, and the Plane-Sweep Technique
Whereas field-based approaches to organization are common because of their sim-
plicity, more advanced image and video models apply object-based representa-
tions [Li and Candan, 1999a; MPEG?7], which describe objects (based on their spa-
tial as well as nonspatial properties) and their spatial positions and relationships.
Also, field-based approaches are not directly applicable when the spatial data are
described (for example using X3D [X3D]) over a real-valued space that is not always
efficient to represent in the form of a grid. In this section, we present an alternative,
point-based, model to represent spatial knowledge.

Spatial Orientation Graph

Without loss of generality,'’ let us consider a 2D space [0, 1] x [0, 1] and a set,
F={(f,x,y) | f € features A 0 <x,y <1} of feature points, where features is a fi-
nite set of features of interest. The spatial orientation graph [Gudivada and Ragha-
van, 1995] one can use for representing this set of points is an edge-labeled clique
(i.e., a complete undirected graph), G(V, E, 1), where each v; € V corresponds to
a f; € F and for each edge (v;, v;) € E, A((v;, v;)) is equal to the slope of the line
segment between v; and v; (Figure 2.36):

Xi — Xj Xj— Xj

A((vi, vj)) = = .
Yi—Yj Yi—JYi

10 The algorithms discussed in this section can be extended to spaces with a higher number of dimensions
or to spaces where the spaces have different, even discrete spans.

79

80

Models for Multimedia Data

./'A'\.
g —*yy

(a) (b) (©) (d)

Figure 2.37. Converting a region into a set of points: (a) minimum bounding rectangle,
(b) centroid, (c) line sweep, and (d) corners.

Given two spatial orientation graphs, G; and G,, whether G; directionally matches
G, can be decided by comparing the extent to which the edges of the two graphs
conform to each other.

Plane Sweep

If the features are not points but regions (as in Figure 2.39) in 2D space, how-
ever, point-based representations cannot be directly applied. One way to address
this problem is to convert each regional feature into a set of points collectively de-
scribing the region and then apply the algorithms described earlier to the union
of all the points obtained through this process. Figure 2.37 illustrates four possible
schemes for this purpose. (a) In the minimum bounding rectangle scheme, the cor-
ners of the tightest rectangle containing the region are used as the feature points.
This scheme may overestimate the sizes of the regions. (b) In the centroid scheme,
only a single data point corresponding to the center mass of the region is used as the
feature point. Although this approach is especially useful for similarity and distance
measures that assume that there is only one point per feature, it cannot be used
to express topological relationships between regions. (c) The line sweep method
moves a line'! along one of the dimensions and records the intersection between
the line and the boundary of the region at predetermined intervals. This scheme
helps identify points that tightly cover the region, but it may lead to a large number
of representative points for large regions.

A fourth alternative (d) is to identify the corners of the region and use these
corners to represent the region. Corners and other intersections can be computed
either by traversing the periphery of the regions or by modifying the sweep algo-
rithm to move continuously and look for intersections among line segments in the
2D space. Whenever the sweep line passes over a corner (i.e, the mutual end point
of two line segments) or an intersection, the algorithm records this point. To find all
the intersections on a given sweep line efficiently, the algorithm keeps track of the
ordering of the line segments intersecting this sweep line (and updates this ordering
incrementally whenever needed) and checks only neighbors at each iteration (Fig-
ure 2.38). This scheme, commonly referred as the plane sweep technique [Shamos
and Hoey, 1976], runs in O((n + k)logn) time, where n is the number of line seg-
ments and k is the number of intersections, whereas a naive algorithm that compares
all line segments against each other to locate intersections would require O(n?) time.

11 Although this example shows a vertical sweep, in many cases horizontal and vertical sweeps are used
together to prevent omission of data points along purely vertical or purely horizontal edges.

2.3 Models of Media Features

\LS1 LS/ \LS3
A) 7 \
\ J B

Figure 2.38. Plane sweep: Line segment LS; need to be compared only against LS, for
intersection, but not for LSs.

2.3.6.3 Exact Retrieval Based on Spatial Information

Exact query answering using spatial predicates involves describing the data as a set
of facts and the query as a logical statement or a constraint and checking whether
the data satisfy the query or not [Chang and Lee, 1991; Sistla e al., 1994, 1995].
Specific cases of the exact retrieval problem can be efficient to solve. For exam-
ple, if we are using the 9DLT matrix representation to capture spatial information,
then an exact match between two images can be verified by performing a matrix
difference operation and checking whether the result is the 0 matrix or not [Chang,
1991]. In general, however, given a query and a large database, the search for exact
matches by comparing query and image representation pairs one by one can be very
costly.

Punitha and Guru [2006] present an exact search technique, which requires only
O(log|M|) search time, where M is the set of all spatial media (e.g., images) in the
database. In this scheme, each object in a given image is represented by its cen-
troid. Let F = {{f,x,y) | f € features A 0 <x,y <1} be a set of object centroids,
where features is a finite set of features of interest. The algorithm first selects two dis-
tinct objects, (f,, x,, yp) and (fy, x4, y4), that are farthest away from each other and
f» < fq-" The line joining (x,, y,) to (x,, y,) is treated as the line of reference and its
direction from (x,, y,) is selected as the reference direction."” In particular, given

o =tan”! <u) , and

Xq —Xp

‘BZ 'n71 yq_xq >’
i <J(yq—yp>2+<xq—xp>2

the reference direction, 6,, is computed as

a+m ifa<0OAB>0
=3 a—m ifa>0AB<0
o otherwise.

The reference direction, 6,, is used for eliminating sensitivity to rotations: After any
rotation, the furthest objects in the image will stay the same and, furthermore, the

12 This is only to have a consistent method of selecting the direction of the line joining these two
centroids.

13 1f there are multiple object pairs that have the same (largest) distance and the same (lowest) feature-
labeled centroid, then the candidate directions of reference are combined using vector addition into a
single direction of reference.

81

82

Models for Multimedia Data

relative positions of the other objects with respect to this pair will be constant. Thus,
given two identical images, except that one of them is rotated, the spatial orientation
graphs resulting after the respective directions of reference are taken into account
will be the same. To achieve this effect, given two distinct objects, (f;, x;, y;) and
(fj, xj, yj), the corresponding spatial orientation, ¢;;, is chosen as the direction of the
line joining (x;, y;) to (x;, y;) relative to the direction of reference, 6,.

Let N be the number of distinct spatial orientation edges in the graph (in the
worst case N = O(|F|?)). Instead of storing N direction triples (i.e., edges) in the
spatial orientation graph explicitly, one can compute a unique key for each edge and
combine these into a single key for quick image lookup. Given a spatial orientation
edge, labeled 6;;, from f; to f;, Punitha and Guru [2006] compute the corresponding
unique key, k;; as follows:

kij =D ((fi = DIFI + (f; = 1)) + (C;j = 1).

Here, D is the number of distinct angles the system can detect (i.e., D = 2?”, where
€ is the angular precision of the system) and C;; is the discrete angle corresponding
to 6;;. Given all N key values belonging to the spatial orientation graph of the given
image, Punitha and Guru [2006] compute the mean, i, and the standard deviation, o,
of the set of key values and stores the triple, (N, i, o) as the representative signature
of the image. Punitha and Guru [2006] showed that given two distinct images (i.e.,
two distinct spatial orientation graphs), the corresponding (N, u, o) triples are also
different. Thus these triples can be used for indexing the images, and exact searches
on this index can be performed using a basic binary search mechanism [Cormen
et al., 2001] in O(log|M|) time, where M is the set of all spatial media (e.g., images)
in the database.

For more complex scenarios that also include topological relationships in addi-
tion to the directional ones, the problem of finding exact matches to a given user
query is known to be NP-complete [Tucci et al., 1991; Zhang, 1994; Zhang and Yau,
2005]. Thus, although in some specific cases, the complexity of the problem can be
reduced using logical reduction techniques [Sistla ef al., 1994], in general, given spa-
tial models rich enough to capture both directional and topological relationships
(also considering that end users are most often interested in partial matches as
well), most multimedia database systems choose to rely on approximate matching
techniques.

2.3.6.4 Spatial Similarity
Retrieving data based on similarity of the spatial distributions (e.g., Figure 2.39) of
the features requires data structures and algorithms that can support spatial simi-
larity (or difference) computations. One method of performing similarity-based re-
trieval based on spatial features is to describe spatial knowledge in the form of rules
and constraints that can be evaluated for consistency or inconsistency [Chang and
Lee, 1991; Sistla et al., 1994, 1995].

Another alternative is to represent spatial requirements in the form of proba-
bilistic or fuzzy constraints that can be evaluated against the data to obtain a spa-
tial matching score. Although the definitions of the spatial operators and predicates

2.3 Models of Media Features 83

(a) (b)

Figure 2.39. (a,b) Two images, both with two objects: B is to the right of A in both images;
on the other hand, while B overlaps with A in the vertical direction in the first image, it is
simply below A in the other. How similar are the object distributions of these two images?

SRS, b = S|

discussed in the previous section are all exact, they can be extended with probabilis-
tic, fuzzy, or similarity-based interpretations:

® Many shape, curve, or object extraction schemes (such as Hough transforms;
[Duda and Hart, 1972]) provide only probabilistic guarantees.

m Some topological relationships are more similar to each other than the others
(e.g., similarity between two topological relationships may, for example, be com-
puted based on comparisons between nine-intersection matrices).

B Some distances or angles may be relatively insignificant for the given application,
and objects may be returned as matches even if they do not satisfy the user-
specified distance and/or direction criteria perfectly.

A third alternative is to rely on the properties of the underlying spatial model
to develop more specific spatial similarity/distance measures. In this section, we first
focus on the case where features of the objects in the space can be represented as
points. We then extend the discussion to the cases where the objects are of arbitrary
shape.

Without loss of generality,'* let us consider a 2D space [0, 1] x [0, 1] and a set,
F={{,x,y) | f € features A 0 < x,y < 1} of feature points, where features is a fi-
nite set of features of interest.

Spatial Orientation Graph and Similarity Computation

As we have seen in Section 2.3.6.2, the spatial information in a media object,
such as an image, can be represented using spatial orientation graphs. Gudivada and
Raghavan [1995] provide an algorithm that computes the similarity of two spatial
orientation graphs, G; and G. This algorithm assumes that each feature occurs only
once in a given image; that is;

(vi,v;eV)A(fi=f)) = (vi=v)).
For each e, € Ej, the algorithm finds the corresponding edge ¢; € E, (because each

feature occurs only once per image, there is at most one such pairing edge). For

14 The algorithms discussed in this section can be extended to spaces with a higher number of dimensions
or to spaces that have different, even discrete, spans.

84

Models for Multimedia Data

each such pair of edges in the two spatial orientation graphs, the overall spatial
orientation graph similarity value is increased by

(1 + cos(ex, e;)) 100
2 |E1|”

where cos(ex, e;) is the cosine of the smaller angle between e, and ¢;. The first term
ensures that if the angle between the two edges is 0, then this pair contributes
the maximum value ((1+1)/2 =1) to the overall similarity score; on the other
hand, if the edges are perpendicular to each other, then their contribution is lower
((1 4+ 0)/2 = 0.5). The second term of the foregoing equation ensures that the max-
imum overall matching score is 100. The total similarity score is then

. 1+ cos(ex, e;)\ 100
S1m Gl, G2 = <—> —_.
() exeEq Ae;eg/;malch(ek,el) 2 |E1|
Note that, because of the division by |E;| in the second term, the overall similarity
score is not symmetric. If needed, this measure can be rendered symmetric simply
by computing sim(G,, G1) by considering the edges in E; first, searching each edge
in E; for pairing, and, finally, averaging the two similarity scores sim(G1, G,) and
Sim(Gz, Gl)

Assuming that given an edge in one graph, the corresponding edge in the other
graph can be found in constant time, the complexity of the algorithm is quadratic in

the number of features and linear in the number of edges; i.e. O(|E| + | E>|).

2D-String

The preceding scheme has a major shortcoming that makes it less useful in most
applications: it assumes that each feature occurs only once. Relaxing the assumption
that the features occurs only once, however, significantly increases the complexity
of the algorithm. The 2D-string approach [Chang et al., 1987; Chang and Jungert,
1986] to spatial similarity search reduces the complexity of the matching by first
mapping the given spatial distribution, F = {{f, x, y) | f € features A 0 <x,y <1},
of features in the 2D space into a string. This is achieved by ordering the feature
points first in the horizontal direction (i.e., increasing x) and then in the vertical di-
rection (i.e., increasing y). Each ordering is converted into a corresponding string
by combining the feature names with symbols “<” and “=" that highlight the pair-
wise relationships of feature points that are neighboring along the given direction.
For example, in Figure 2.40(a), the six features a through f are ordered along the
horizontal direction as follows:

e<a=c<f<b<d,

therefore the horizontal spatial information in this image is represented using the
string “e<a=c<f<b<d” (the tie between a and ¢, which are equal, is broken arbitrarily).
In the same example, the six features are ordered vertically as

a=b<c<d<e<f;

thus the corresponding string “a=b<c<d<e<f” represents this vertical ordering. Once
the horizontal and vertical strings are generated, the two strings are combined into

2.3 Models of Media Features

- - b % L] b
L] c L]
. d . d
L]
(S] (=3 f
* f
(e<a=c<f<b<d; a=b<c<d<e=<f) (e<c<a<b=f<d; a<b<c<d<f<e)

(a) (b)

Figure 2.40. (a,b) Two images, each with six features and the corresponding 2D strings.

a single string of the form “(e<a=c<f<b<d;a=b<c<d<e<f)” that represents the spatial
relationships of the feature points along both horizontal and vertical directions.

Now let us consider the two images in Figures 2.40(a) and (b), which
have the same features, but with slightly different spatial distributions. Chang
and Jungert [1986] quantify the degree of matching between these two im-
ages by comparing the corresponding 2D strings, “(e<a=c<f<b<d;a=b<c<d<e<f)” and
“(e<c<a<b=f<d;a<b<c<d<f<e)”. More specifically, Chang and Jungert [1986] propose
a similarity matching algorithm that ranks the feature symbols in the two sub-strings
based on the number of < symbols that precede each feature symbol and compares
these rankings. The algorithm first creates a feature compatibility graph, where fea-
ture f; is connected to feature f; if there are two corresponding feature instances
similarly ranked in both strings. Finally, the number of objects in the largest subset
of mutually compatible features is returned as the similarity between the two strings.

Identification of a maximal compatible set of objects, however, requires costly
maximal clique search in the compatibility graph (this task is known to be NP-
complete). A much cheaper alternative to the use of maximal cliques is to compare
the given pair of 2D strings directly using the so-called edit-distance measures that
are commonly used for approximate string matching (see Section 3.2.2).

2D OR-String

Note that the 2D strings generated using the approach just discussed are highly
sensitive to rotations, and this can be a significant shortcoming for many applica-
tions. An alternative scheme, suitable to use when the matching needs to be less
sensitive to rotations, is the 2D ®R-String [Gudivada, 1998]. Given an image, the
corresponding 2D ©R-String [Gudivada, 1998] is created by imposing a total order
of feature points by sweeping a line segment originating from the center of the space
and noting the feature points met along the way (and if two points occur along the
same angle, breaking the ties based on their distances from the center). For exam-
ple, for the feature point distribution in Figure 2.41(a), the corresponding 2D ©R-
String obtained by starting the sweep at ® = 0 would be “dbacef”. For the slightly
rotated feature distribution in Figure 2.41(b), on the other hand, the corresponding
2D ©R-String obtained by starting the sweep at ® = 0 is “bacefd”.

Note that the two strings created in the preceding example are quite similar, but
they are not exactly equal. This highlights the fact that 2D ®R-strings obtained by
always starting the sweep at ® = 0 are not completely robust against rotations. This
is corrected by first identifying a feature point shared by both images and starting

85

86

Models for Multimedia Data

(a) (b)
Figure 2.41. (a) 2D ®R-String obtained by starting the sweep at ® = 0 is “dbacef”; (b) 2D
OR-String obtained by starting the sweep at ® = 0 is “bacefd”.

the sweep from that point. In the foregoing example, if we pick the feature point a
as the starting point of the sweep in both of the example images, then we will obtain
the same string, “acefdb”, for both images.

The basic 2D ®R-string scheme is also sensitive to translation: if the features in
an image are shifted along some direction, because the center of the image moves
relative to the data points, the string would be affected from this shift. Once again,
this is corrected by picking the pivot, around which the sweep rotates, relative to the
data points (e.g., the center of mass,

<Z(fiaxia)’i>€F Xi Z(fisxiaYi)EF Yi>

|F] ’ £

of all data points), instead of picking a pivot centrally located relative to the bound-
aries of the space.

2D E-String

So far, we have only considered point-based features; if the features are not
points but regions in the 2D space (as in Figure 2.39), the preceding techniques
cannot be directly applied for computing spatial similarities. The 2D E-string
scheme [Jungert, 1988] tries to address this shortcoming.

To create a 2D E-string, we first project each feature region onto the two axes
of the 2D space to obtain the corresponding intervals (Figure 2.42(a)). Then, a to-
tal order is imposed on each set of intervals projected onto a given dimension of
the space (e.g., by using the starting points of the intervals) and a string represent-
ing these intervals is created as in the basic 2D-string scheme. Note that unlike
a pair of points on a line, which can be compared against each other using only
“="and “<”, a pair of intervals requires a larger number of comparison operators
(Table 2.3). Thus, the number of symbols used to construct 2D E-strings is larger
than the number of symbols used for constructing point-based 2D-strings.

2D G-String, 2D C-String, and 2D C*-String

One major disadvantage of the 2D E-string mechanism is that the resulting
strings are more complex because of the existence of new interval-based opera-
tors. The 2D G-string approach [Chang et al., 1989] tries to resolve this problem
by cutting regions into non-overlapping sub-objects in such a way that each sub-
object is either before, after, or equal to the sub-objects of the other regions (Fig-
ure 2.42(b)). This eliminates the need for complex interval comparison operators
and enables the construction of strings in a way analogous to the basic 2D-string

2.3 Models of Media Features

RYNX
-4 J______I_ <
[(2 e}
... A
SIS I M S N N I LB/
A overlaps B A<A=B<B
(@) (b)

Figure 2.42. (a) The 2D E-String projects objects onto the axes of the space to obtain
the corresponding intervals; these intervals are then compared using interval comparison
operators, (b) the 2D G-string scheme cuts the objects into non-overlapping sub-objects so

that the “<” and “=" operators are sufficient (the figure shows only the vertical strings).
mechanism, with “<” and “=" symbols (though “=" in this case means interval
equality).

Despite the resulting simplicity, the 2D G-string approach can be increasingly
costly for images with lots of objects: During the construction of the 2D G-string,
in the worst case, each object may be partitioned at the begin and end points of the
other objects in the image. Thus, if an image contains n objects, each object may
be partitioned into as many as 2n sub-objects, resulting in O(n?) sub-objects to be
included in the string. This significant increase in the length of the strings can render
string comparisons very expensive for practical use. The 2D C-string [Lee and Hsu,
1992] and 2D C*-string [Huang and Jean, 1994] schemes reduce the length of the
strings by performing the cuts only at the end points of the overlapping objects, not
both start and end points. This reduces the number of cuts needed (each object may
be partitioned up to n pieces instead of up to 2n). However, because certain non-
equality overlaps are allowed by the cutting strategy, interval comparison operators
other than “<” and “=" may also be needed during the string construction.

2D B-String, 2D Be-String, and 2D Z-String

The 2D B-String scheme [Lee er al., 1992] avoids cuts entirely and, instead, rep-
resents the intervals along the horizontal and vertical axes of the space using only
their start and end points. Thus, each interval is represented using only two points

Table 2.3. Thirteen possible relationships between two intervals A and B?

Symbol Relationship Description

A<B A before B; B after A end(A) < begin(B)

A=B A equals B (begin(A) = begin(B)) A (end(A) = end(B))
A|lB A meets B; B met_by A end(A) = begin(B)

A&B A contains B; B contained_by A (begin(A) < begin(B)) A (end(A) > end(B))
A[B A started_by B; B starts A (begin(A) = begin(B)) A (end(A) > end(B))

A]lB A finished_by B; B finishes A (begin(A) < begin(B)) A (end(A) = end(B))
A/B A overlaps B; B overlapped_by A begin(A) < begin(B) < end(A) < end(B)

@ See Section 2.3.5.3 for the use of these operators in interval-based temporal data management.

87

88

Models for Multimedia Data

and, once again, “<” and “=" operators are sufficient for constructing 2D strings.
The 2D Be-string scheme [Wang, 2001] also uses an encoding based on the end
points of the intervals. However, unlike the 2D B-string scheme, which uses “<”
and “=” operators, the 2D Be-string introduces dummy objects into the space to
obtain a total order that eliminates the need for using any explicit operator symbols
in the string (“<” is implied). Also, unlike the 2D B-string scheme that relies on
the original 2D-String scheme for similarity search, Wang [2001] proposes a longest
common subsequence (LCS)-based similarity function, which has O(pg) time and
space cost for matching two strings of length p and q.

The 2D Z-string [Lee and Chiu, 2003] scheme also avoids cuts completely and
thus results in strings of length O(n) for spaces containing » regions. Instead of cre-
ating cuts, the 2D Z-string combines regions into groups demarcated by “(” and “)”
symbols. Along each dimension, the 2D Z-string first finds those regions that are
dominating: given a set of regions that have the same end point along the given di-
rection, the one that has the smallest beginning point is the dominating region for
the given set. In other words, the dominating region is finished_by all the regions it
dominates (along the given dimension).

The dominating regions are found by scanning the begin and end points along
the chosen dimension starting from the lowest value. If a dominating region is found
and there is no other region partially overlapping this region along the chosen di-
mension, then this dominating region and all the regions dominated by it are com-
bined into a template region. If there are any partially overlapping regions, these
regions (as well as regions covered by them) are merged with the dominating region
(and the regions covered by it) into a single template region. The template region
combination algorithm presented in Lee and Chiu [2003] operates on the regions
being combined into a template in a consistent manner, thus ensuring that there
are no ambiguities in the string construction process. Because no region is cut, the
length of the resulting string is O(n).

2D-PIR and Topology Neighborhood Graph

2D-PIR [Nabil er al, 1996] combines Allen’s interval operators (see Sec-
tion 2.3.5.3), the 2D-strings discussed previously, and topological relationships (see
Section 2.3.6) into a unified representation. As in the case of the 2D E-string,
the regions are projected onto the axes of the 2D space and the correspond-
ing x- and y-intervals are noted. A 2D-PIR relationship between two regions is
defined as a triple (8, x, ¥), where § is a topological relationship from the set
{disjoint, meets, contains, inside, overlaps, covers, equals, covered-by}, whereas y and
¢ are each one of the thirteen interval relationships (see Figure 2.26), along x and
y axes, respectively. A 2D-PIR graph is a directed graph, G(V, E, ») where V is the
set of regions in the given 2D space and E is the set of edges, labeled by 2D-PIR
relationships between the end points of the edges. A() is a function that associates
relationship labels to edges.

The degree of similarity between two 2D-PIR graphs is computed based on
the degrees of similarity between the corresponding 2D-PIR relationships in both
graphs. To support computation of the similarity of a given pair of 2D-PIR re-
lationships, (8;, xi, ¥i) and (8}, x;, ¥;), Nabil et al. [1996] propose similarity met-
rics suitable for comparing the topological and interval relationships. In particular,

2.3 Models of Media Features

disjoint

met_by after

Figure 2.43. Topology and interval neighborhood graphs [Nabil et al., 1996]: (a) Topology
neighborhood graph, (b) Interval neighborhood graph.

Nabil et al. [1996] introduce a topological neighborhood graph, where two topolog-
ical relationships are neighbors if they can be directly transformed into one another
by continuously deforming (scaling, moving, rotating) the corresponding objects.
Figure 2.43(a) shows this topological neighborhood graph. For example, the rela-
tionships disjoint and touch are neighbors in this graph, because they can be trans-
formed to each other by moving disjoint objects until they fouch (or by moving apart
objects that are fouching to each other to make them disjoint). Nabil e al. [1996] also
define a similar graph for interval relationships (Figure 2.43(b)).

Given a topological or interval neighborhood graph, the distance, A, between
two relationships is defined as the shortest distance between the corresponding
nodes in the graph. The distance between two 2D-PIR relationships, (§;, x;, ¥;) and
(8j, xj» ¥;), is computed using the Euclidean distance metric:

ASi, xis Wi, (8, xjs W) = \/A(Si, 82 + AGx, xj)* + AW,)%

Finally, the distance between two 2D-PIR graphs, G;(V1, E1) and G,(V3, E»), is de-
fined as the sum of the distances between the corresponding 2D-PIR relationships in
both graphs. Note that this definition does not associate any penalty to regions that
are missing in one or the other space, but penalizes the relationship mismatches for
region pairs that occur in both spaces.

The 2D-PIR scheme deals with rotations and reflections by essentially re-
rotating one of the spaces until the spatial properties (i.e., x and y intervals) of a
selected reference object in both spaces are aligned. The 2D-PIR graphs are revised

89

90

Models for Multimedia Data

based on this rotation, and the degree of matching is computed only after the trans-
formation is completed.

SIMptc and SIM,

Like 2D-PIR, in order to support similarity assessments under transformations,
such as scaling, translation, and rotation, the SIMpypc technique [El-Kwae and
Kabuka, 1999] aligns regions (objects) in one space with the matching objects in the
other space. To correct for rotations, SIMpyc, introduces a rotation correction angle
(RCA) and computes similarity between two spaces as a weighted sum of the num-
ber of common regions and the closeness of directional and topological relationships
between region pairs in both spaces. In SIMprc, directional spatial relationships be-
tween objects in an image are represented as edges in a spatial orientation graph
as in [Gudivada and Raghavan, 1995] (Figure 2.36); directional similarity is com-
puted based on the angular alignments of the corresponding objects in both spaces.
Let G; and G, be two spatial orientation graphs (see Section 2.3.6.4 for the formal
definition of a spatial orientation graph). El-Kwae and Kabuka [1999] show that, if
G1 and G, are two spatial orientation graphs corresponding to two spaces with the
same spatial distribution of objects, but where the objects on G, are rotated by some
fixed angle, then this rotation angle can be computed as Ogca:

1 Z(e,-eEl)A(ejeEz)/\(e,-Ne,') sin(e;, e})

Orca = —tan ,
Z(e,-eEl)A(ejeEz)A(e;fvej) cos(e;, ej)

where e; ~ e; means that the edges correspond to the same object pair in their re-
spective spaces, and sin(e;, e;) and cos(e;, e;) are the sine and cosine of the (smallest)
angle between these two edges."”

Like the 2D G-string technique, SIMpyc is applicable to only those images which
have only one instance of a given object. SIM;, [Sciascio et al., 2004], on the other
hand, removes this assumption. For each image, SIM;, extracts all the angles be-
tween the centroids of the objects, and for a given object it computes the maximum
error between the corresponding angles. The distance is then defined as the maxi-
mum error for all groups of objects.

2.3.7 Audio Models

Audio data are often viewed as 1D continuous or discrete signals. In that sense,
many of the feature models, such as histograms or DCT (Section 4.2.9.1), appli-
cable to 2D images have their counterparts for audio data as well. Unlike images,
however, audio can also have domain-specific features that one can leverage for
indexing, classification, and retrieval. For example, a music audio object can be
modeled based on its pitch, chroma, loudness, rhythm, beat/tempo, and timbre fea-
tures [Jensen, 2007].

Pitch represents the perceived fundamental (or lowest) frequency of the audio
data. Whereas frequency can be analyzed and modeled using frequency analysis

15 Note that this is similar to the concept of reference direction introduced in Section 2.3.6.3.

2.3 Models of Media Features

(such as DCT) of the audio data, perceived frequency requires psychophysical ad-
justments. For frequencies lower than about 1 kHZ, the human ear hears tones with
a linear scale, whereas for frequencies higher than this, it hears in a logarithmic
scale. Mel (or melody) scale [Stevens ef al., 1937] is a perceptual scale of pitches
that adjusts for this. More specifically, given an audio signal with frequency, f, the
corresponding mel scale is computed as [Fant, 1968]

1000 f
= 00 e+ L.
M= o2 %600+ 1055)

Bark scale [Sekey and Hanson, 1987] is a similar perceptual scale which transforms
the audible frequency range from 20 Hz to 15500 Hz into 24 scales (or bands). Most
audio (especially music and speech) feature analysis is performed in mel or bark
scale rather than the original frequency scale.

Chroma represents how a pitch is perceived (analogous to color for light): pitch
perception is periodic; two pitches, p; and p,, where p1/p, = 2¢ for some integer ¢
are perceived as having a similar quality or chroma [Bartsch and Wakefield, 2001;
Shepard, 1964].

Loudness measures the sound level as a ratio of the power of the audio signal
with respect to the power of the lowest sound that the human ear can recognize.
In particular, if we denote this lowest audible power as P, , then the loudness of
the audio signal with P power is measured (in decibels, dB) as 1Olog10(£). Phon
and sone are two related psychophysical measures, the first taking into account the
frequency response of the human ear in adjusting the loudness level based on the
frequency of the signal and the second quantifying the perceived loudness instead
of the audio signal power. Experiments with volunteers showed that each 10-dB
increase in the sound level is perceived as doubling the loudness; approximately,
each 0.25 sone corresponds to one such doubling (i.e., 1 sone >~ 40 dB).

Beat (or tempo) is the perceived periodicity of the audio signal [Ellis, 2007]. Beat
analysis can be complicated, because the same audio signal can be periodic at mul-
tiple levels and different listeners may identify different levels as the main beat.
The analysis is often performed on the onset strength signal, which represents the
loudness and time of onsets, that is, the points where the amplitude of the signal
rises from zero [Klapuri, 1999]. The tempo (in beats per minute or BPM) can be
computed by splitting the signal to its Fourier frequency spectra (Section 4.2.9.1)
and picking the frequency(s) with the highest amplitudes [Holzapfel and Stylianou,
2008]. An alternative approach, in lieu of Fourier-based spectral analysis, is to com-
pute the overlapping autocorrelations for blocks of the onset strength signal. Auto-
correlation of a signal gives the similarity/correlation'® of the signal with itself for
different amount of temporal shifts (or lags); thus, the size of shift that provides the
highest self-similarity corresponds to the period with which the sound repeats it-
self. Ellis [2007] measures tempo by taking the autocorrelation of the onset strength
signal for various lags and finding the lag that leads to the largest autocorrelation
value.

16 See Section 3.5.1.2 for a more precise definition of correlation.

91

92

Models for Multimedia Data

Rhythm is the repeated patterns in audio. Thus, while also being related to the
periodicity of the audio, it is a more complex measure than pitch and tempo and
captures the periodicity of the audio signal as well as its texture [Desain, 1992]. As
in beat analysis, the note onsets determine the main characteristics of the rhythm.
Jensen [2007] presents a rhythmogram feature, which detects the onsets based on
the spectral flux of the audio signal which measures how quickly the power spec-
trum of the signal changes. As in beat detection, the rhythmogram is extracted by
leveraging autocorrelation. Instead of simply picking the lags that provide largest
autocorrelation in the spectral flux, the rhythmogram associates an autocorrelation
vector to each time instance describing how correlated the signal is with its vicinity
for different lags or rhythm intervals. In general, autocorrelation is thought to be
a better indicator of rhythm than the frequency spectra one can obtain by Fourier
analysis [Desain, 1992].

Timbre is harder to define as it is essentially a catch-all feature that represents
all characteristics of an audio signal, except for pitch and loudness [McAdams and
Bregman, 1979]. Jensen [2007] creates a timbregram by performing frequency spec-
trum analysis around each time point and creating an amplitude vector for each
frequency band (normalized to bark scale to be aligned with the human auditory
system).

2.4 MULTIMEDIA QUERY LANGUAGES

Unlike traditional data models, such as relational and object-oriented, multimedia
data models are highly heterogeneous and address the needs of very different ap-
plications. Here, we provide a sample of major multimedia query languages and
compare and contrast their key functionalities (see Table 2.4 for a more extensive
list):

VideoSQL/OVID

Oomoto and Tanaka [1993] propose VideoSQL, one of the earliest query lan-
guages for accessing video data, as part of their OVID video-object database system.
Being one of the earliest multimedia query languages, it has certain limitations; for
example, it does not support spatiotemporal predicates over the video data. The
SQL-like language provides a SELECT clause, which helps the user specify the cat-
egory of the resulting video object as being continuous (consisting of a single contin-
uous video frame sequence), incontinuous, or AnyObject. The FROM clause is used
to specify the name of the video database. The WHERE clause allows the user to
specify conditions over attribute value pairs of the form [attribute] is [value | video
object], [attribute] contains [value | video object], and definedOver [video sequence |
video frame]. The last predicate returns video objects that are included in the given
video frame sequence.

QBIC

QBIC [Flickner et al., 1995; Niblack et al., 1993] allows for querying of images
and videos. Images can be queried based on their scene content or based on objects,
that is, parts of a given image identified to be coherent units. Videos are stored in

2.4 Multimedia Query Languages

93

Table 2.4. Multimedia query language examples

System/Language/Team

Properties

QPE [Chang and Fu, 1980]

PICQUERY [Joseph and
Cardenas, 1988] and
PICQUERY+ [Cardenas
et al., 1993]

OVID/VideoSQL [Oomoto
and Tanaka, 1993]

QBIC [Flickner et al., 1995;
Niblack et al., 1993]

AV [Gibbs et al., 1993]

MQL [Kau and Tseng, 1994]

NRK-GM [Hjelsvold and
Midtstraum, 1994]

AVS [Weiss et al., 1994]

OCPN [Day et al., 1995a,b;
lino et al., 1994]

MMSQL [Guo et al., 1994]

SCORE [Aslandogan et al.,
1995; Sistla et al., 1995]
Chabot [Ogle and
Stonebraker, 1995]

WS-QBE [Schmitt et al.,
2005]

A relational query language for formulating queries on pictorial
as well as conventional relations. An early application of the
query-by-example idea to image retrieval

An early image querying system. PICQUERY is a high-level query
language that also supports a QBE-like interface. PICQUERY+
extends this with abstract data types, imprecise or fuzzy
descriptors, temporal and object evolutionary events, image
processing operators, and visualization constructs.

An SQL-like language for describing object containment queries
in video sequences.

An image database, where queries can be posed on image
objects, scenes, shots, or their combinations and can include
conditions on color, texture, shape, location, camera and object
motion, and textual annotations. Queries are formulated in the
form of visual examples or sketches.

An object-oriented model for describing temporal and flow
composition of audio and video data.

A multimedia query language that supports complex object
queries, version queries, and nested queries. The language
supports a contain predicate that enables pattern matching on
images, voice, or text.

A data model for capturing video content and structure. Video is
viewed as a hierarchy of structural elements (shots, scenes).
An algebraic approach to video content description. The video
algebra allows nested temporal and spatial combination of
video segments.

Object Composition Petri-Net (OCPN) is a spatiotemporal
synchronization model that allows authoring of multimedia
documents and creation of media object hierarchies.

An SQL-based query language for multimedia data, including
images, videos, and sounds. While most querying is based on
metadata, the language also provides mechanisms for
combining media for presentation purposes.

A similarity based image retrieval system with an
entity-relationship (ER) based representation of image content
An image retrieval system which allows basic semantic
annotations: for example, queries can include pre-defined
keywords, such as Rose Red, associated to various ranges of
the color spectrum.

A query language for formulating similarity-based, fuzzy
multimedia queries. Visual, declarative queries are interpreted
through a similarity domain calculus.

(Continued)

94 Models for Multimedia Data

Table 2.4 (Continued)

System/Language/Team

Properties

TVQL [Hibino and
Rundensteiner, 1995,
1996]

Virage [Bach et al., 1996]
VisualSeek [Smith and
Chang, 1996]

SMDS [Marcus and
Subrahmanian, 1996]

MMQL [Arisawa et al., 1996]

CVQL [Kuo and Chen, 1996]

AVIS [Adali et al., 1996]

VIQS [Hwang and
Subrahmanian, 1996]

VISUAL [Balkir et al., 1996,
2002]

SEMCOG/VCSQL [Li and
Candan, 1999a; Li et al.,
1997b,c]

A query language specifically focusing on querying trends in
video data (e.g., events of type B frequently follow events of
type A).

A commercial image retrieval system. Virage provides an
SQL-like query language that can be extended by user-defined
data types and functions.

An image retrieval system that provides region-based image
retrieval: users can specify how color regions will be placed with
respect to each other.

A formal multimedia data model where each media instance
consists of a set of states (e.g., video clips, audio tracks), a set
of features, their properties, and relationships. The model
supports query relaxation, and the language allows for
specification of constraints that allow for synchronized
presentation of query results

MMQL models video data in terms of physical and logical cuts,
which can contain entities. In the underlying AIS data model,
entities correspond to real-world objects and relationships are
modeled as bidirectional functions.

A content-based video query language for video databases. A
set of functions help the description of the spatial and temporal
relationships (such as location and motion) between content
objects or between a content object and a frame. Macros help
capture complex semantic operations for reuse.

One of the first video query languages that includes a model,
not only based on the visual content but also on semantic
structures of the video data. These structures are expressed
using a Boolean framework based on semantically meaningful
constructs, including real objects, objects’ roles, activities, and
events.

An SQL-like query language that supports searches for
segments satisfying a query criterion in a video collection. Query
results are composed and visualized in the form of
presentations.

An object-oriented, icon-based query language focusing on
scientific data. Graphical objects represent the relationships of
the application domain. The language supports relational,
nested, and object-oriented models.

An image and video data model supporting retrieval using both
content and semantics. It supports video retrieval at object,
frame, action, and composite action levels. While the user
specifies the query visually using IFQ, a corresponding
declarative VCSQL query is automatically generated and
processed using a fuzzy engine. The system also provides
system feedback to the user to help query reformulation and
exploration

System/Language/Team

2.4 Multimedia Query Languages

Properties

MOQL [Li et al., 1997a]
VisualMOQL [Oria et al.,
1999]

KEQL [Chu et al., 1998]

GVISUAL [Lee et al., 2001]

CHIMP/VIEW [Candan et al.,
2000a]

SQL/MM [Melton and
Eisenberg, 2001];
[SQLO3Images;
SQLO3Multimedia]

MMDOC-QL [Liu et al., 2001]

MP7QF [Gruhne et al.,
2007]

An object-oriented multimedia query language based on ODMG’s
Object Query Language (OQL). The language introduces three
predicate expressions: spatial_expression, temporal_expression,
and contains_predicate. Spatial and temporal expressions
introduce spatiotemporal objects, functions, and predicates.
The contains_predicate checks whether a media object contains
a salient object defined as an interesting physical object. The
language also provides presentation primitives, such as spatial,
temporal, and scenario layouts.

A query language focusing on biological media. It is based on a
data model with three distinct layers: a representational layer
(for low-level features), a semantic layer (for hierarchical,
spatial, temporal, and evolutionary semantics), and a
knowledge layer (representing metadata about shape, temporal,
and evolutionary characteristics of real-world objects). In
addition to standard predicates, KEQL supports conditions over
approximate and conceptual terms.

A query language specifically focusing on querying multimedia
presentations modeled as graphs. Each presentation stream is
a node in the presentation graph and edges describe sequential
or concurrent playout of media streams. GVISUAL extends
VISUAL [Balkir et al., 1996, 2002] with temporal constructs.

A system/language focused on visualization of multimedia
query results in the form of interactive multimedia
presentations. Since, given a multimedia query, the number of
relevant results is not known in advance and temporal, spatial,
and streaming characteristics of the objects in the results are
not known, the presentation language is based on virtual
objects that can be instantiated with any number of physical
objects and can scale in space and time.

SQL/MM, standardized as ISO/IEC 13249, defines packages of
generic data types to enable multimedia data to be stored and
manipulated in an SQL database. For example, ISO/IEC
13249-5 introduces user-defined types to describe image
characteristics, such as height, width, and format, as well as
image features, such as average color, color histogram,
positional color, and texture.

An XML-based query language for querying MPEG-7 documents.
In addition to including support for media and spatiotemporal
predicates based on the MPEG-7 descriptors, MMDOC-QL also
supports path predicates to support structural queries on the
XML document structure itself.

An effort for providing standardized input and output query
interfaces to MPEG-7 databases. The query interface supports
conditions based on MPEG-7 descriptors, query by example, and
query by relevance feedback.

95

96

Models for Multimedia Data

terms of their visually coherent contiguous frame sequences (referred to as shots),
and for each shot a representative frame is extracted and indexed. Motion objects
are extracted from shots and indexed for motion-based queries. Queries can be
posed on image objects, scenes, shots, or their combinations and can include con-
ditions on color, texture, shape, location, camera and object motion, and textual
annotations. QBIC queries are formulated through a user interface that lets users
provide visual examples or sketches.

SCORE

The SCORE [Aslandogan ef al., 1995; Sistla et al., 1995] similarity-based im-
age retrieval system uses a refined entity-relationship (ER) model to represent the
contents of images. It calculates similarity between the query and an image in the
database based on the query specifications and the ER representation of the im-
ages. SCORE does not support direct image matching, but provides an iconic user
interface that enables visual query construction.

Virage

Virage [Bach er al., 1996] is one of the earliest commercial image retrieval sys-
tems. The query model of Virage is mainly based on visual (such as color, shape,
and texture) features. It also allows users to formulate keyword-based queries, but
mainly at the whole-image level. Virage provides an SQL-like query language that
can be extended by user-defined data types and functions.

VisualSeek

VisualSeek [Smith and Chang, 1996] mainly relies on color information to re-
trieve images. Although VisualSeek is not directly object-based, it provides region-
based image retrieval: users can specify how color regions will be placed with respect
to each other. VisualSeek provides mechanisms for image and sketch comparisons.
VisualSeek does not support retrieval based on semantics (or other visual features)
at the image level or the object level.

VCSQL/SEMCOG

SEMCOG [Li and Candan, 1999a] models images and videos as compound ob-
jects each containing a hierarchy of sub-objects. Each sub-object corresponds to
image regions that are visually or semantically meaningful (e.g., a car). SEMCOG
supports image retrieval at both whole-image and object levels and using seman-
tics as well as visual content. Using a construct called extent objects, which can span
multiple frames and which can have time-varying visual representations, it extends
object-based media modeling to video data. It supports video retrieval at object,
frame, action, and composite action levels. It provides a visual query interface,
IFQ, for object-based image and video retrieval (Figure 2.44). Query specification
for image retrieval consists of three steps: (1) introducing objects in the target im-
age, (2) describing objects, and (3) specifying objects’ spatial relationships. Tempo-
ral queries are visually formulated through instant- and interval-based predicates.
While the user specifies the query visually using IFQ, a corresponding declarative
VCSQL query is automatically generated. IFQ and VCSQL support user-defined
concepts through combinations of visual examples, terms, predicates, and other

2.4 Multimedia Query Languages

H
*@1

[
e

E

Cuar 0

Icerie.

g

| wwect P

Irems wriages

e
{ P conbams: Ol)
€ contdns OBt)
{ Otg0 = car) and
{ O W e D) el
{ Oyl e rman)
{ Oty - e gt ol Oty P).

Figure 2.44. The IFQ visual interface of the SEMCOG image and video retrieval system [Li and
Candan, 1999a]: the user is able to specify visual, semantic, and spatiotemporal predicates,
which are automatically converted into an SQL-like language for fuzzy query processing. See
color plates section.

concept definitions [Li e al., 1997c]. The resulting VCSQL query is executed by
the underlying fuzzy query processing engine. The degree of relevance of a candi-
date solution to the user query is calculated based on both object (semantics, color,
and shape) matching and image/video structure matching. SEMCOG also provides
system feedback to the user to help query reformulation and exploration.

SQL/MM

SQL/MM [Melton and Eisenberg, 2001; SQL03Images; SOL03Multimedia] is
an ISO standard that defines data types to enable multimedia data to be manip-
ulated in an SQL database. It standardizes class libraries for full-text and docu-
ment processing, geographic information systems, data mining, and still images. The
ISO/IEC 13249-5:2001 SOL MM Part5:Stilllmage standard is commonly referred
to as the SQL/MM Still Image standard. The SI_Stilllmage type stores collections
of pixels representing two-dimensional images and captures metadata, such as im-
age format, dimensions (height and width), and color space. The image processing
methods the standard provides include scaling, cropping, rotating, and creating a
thumbnail image for quick display. A set of data types describe various features of
images. The SI_AverageColor type represents the “average” color of a given image.
The SI_ColorHistogram type provides color histograms. The SI_PositionalColor type
represents the location of specific colors in an image, and the SI_Texture type repre-
sents information, such as coarseness, contrast, and direction of granularity. These
data types enable one to formulate SQL queries inspecting image features. Most
major commercial DBMS vendors, including Oracle, IBM, and Microsoft, and In-
formix support the SQL/MM standard in their products.

97

98

Models for Multimedia Data

MP7QF

The work in Gruhne ef al. [2007] is an effort by the MPEG committee to provide
standardized input and output query interfaces to MPEG-7 databases. In addition
to supporting queries based on the MPEG-7 feature descriptors and description
schemes as well as the XML-based structure of the MPEG-7 documents, the query
interface also supports query conditions based on query by example, and query by
relevance feedback, which takes into account the results of the previous retrieval.
Query by relevance feedback allows user to identify good and bad examples in a
previous set of results and include this information in the query.

2.5 SUMMARY

The data and query models introduced in this section highlighted the diversity of
information available in multimedia collections. As the list of languages presented
in the previous section shows, although there have been many attempts, especially
during the 1990s, to develop multimedia query languages, there are currently no
universally accepted standards for multimedia querying. This is partly due to the
extremely diverse nature of the multimedia data and partly due to the heterogene-
ity in the way multimedia data can be queried and visualized. For example, while
the query by relevance feedback mechanism proposed as part of MP7QF [Gruhne
et al., 2007] extends the querying paradigm from one-shot ad hoc queries to itera-
tive browsing-style querying, it also leaves aside many of the functionalities of the
earlier languages for the sake of simplicity and usability.

The multitude of facets available for interpreting multimedia data is a challenge
not only in the design of query languages, but also for the algorithms and data struc-
tures to be used for processing, indexing, and retrieving multimedia data. In the next
chapter, however, we see that, although a single multimedia object may have many
features that need to be managed, most of these features may be represented using
a handful of common representations.

3

Common Representations
of Multimedia Features

Most features can be represented in the form of one (or more) of the four com-
mon base models: vectors, strings, graphs/trees, and fuzzy/probabilistic logic-based
representations.

Many features, such as colors, textures, and shapes, are commonly represented
in the form of histograms that quantify the contribution of each individual property
(or feature instance) to the media object. Given n different properties of interest, the
vector model associates an n-dimensional feature vector space, where the ith dimen-
sion corresponds to the ith property. Thus, each vector describes the composition of
a given multimedia data object in terms of its quantifiable properties.

Strings, on the other hand, are commonly used for representing media of se-
quential (or temporal) nature, when the ordinal relationships between events are
more important than the quantitative differences between their occurrences. As we
have seen in Section 2.3.6.4, because of their simplicity, string-based models are also
used as less complex representations for more complex features, such as the spatial
distributions of points of interest.

Graphs and trees are used for representing complex media, composed of other
smaller objects/events that cannot be ordered to form sequences. Such media in-
clude hierarchical data, such as taxonomies and X3D worlds (which are easily rep-
resented as trees), and directed/undirected networks, such as hypermedia and social
networks (where the edges of the graph represent explicit or implicit relationships
between media objects or individuals).

When vectors, strings, trees, or graphs are not sufficient to represent the under-
lying imprecision of the data, fuzzy or probabilistic models can be used to deal with
this complexity.

In the rest of this chapter, we introduce and discuss these common representa-
tions in greater detail.

3.1 VECTOR SPACE MODELS

The vector space model, proposed by Salton er al. [1975], for information re-
trieval is arguably the simplest model for representing multimedia data. In

29

100 Common Representations of Multimedia Features

fz_
7

f1

f3

Figure 3.1. Vector space representation of an object, with three features, with values f; = 5,
f2 = 7, and f3 = 3.

this model, a vector space is defined by a set of linearly independent basis vectors
(i.e., dimensions), and each data object is represented by a vector in this space
(Figure 3.1). Intuitively, the vector describes the composition of the multimedia
data in terms of its (independent) features. Histograms, for example, are good can-
didates for being represented in the form of vectors. Given n independent (nu-
meric) features of interest that describe multimedia objects, the vector model as-
sociates an n-dimensional vector space, R”, where the ith dimension corresponds
to the ith feature. In this space, each multimedia object, o, is represented as a
vector, U, = (W10, Wao, - - -, Wno), Where w;, is the value of the ith feature for the
object.

3.1.1 Vector Space

Formally a vector space, S, is a collection of mathematical objects (called vectors),
with addition and scalar multiplication:

Definition 3.1.1 (Vector space): The set S is a vector space iff for all v;, vj,
U € S and for all ¢, d € R, the following axioms hold:

?1,' + ?1]' = T)j + ?1,'

(V1 + Uj) + Ok = v + (Vi + V)
i+ 0 =7 (fgrsomea €s)

;i + (=v;) = 0 (for some v; € S)
(c+ d)v; = (cv;) + (dvy)

c(V; + vj) = cv; + cv;

(Cd)ﬁi = c(dBl)

1.9 =7;

The elements of S are called vectors.

Although a vector space can be defined by enumerating all its members, especially
when the set is infinite, an alternative way to describe the vector space is needed. A
vector space is commonly described through its basis:

3.1 Vector Space Models

Definition 3.1.2 (Linear independence and basis): Let V = {v1, 03, ..., v,} be
a set of vectors in a vector space S. The vectors in V are said to be linearly
independent if

n
(Zc,ﬂ}:O) “— c=¢=---=¢, =0.
i=1

The linearly independent set V is said to be a basis for S if for every vector,
it € S, there exist constants ¢ through c, such that

n
Ijt= E Cil7,'.
i=1

Intuitively, the basis, V, spans the space S and is minimal (i.e., you cannot remove
any vector from V and still span the space S).

Definition 3.1.3 (Inner product and orthogonality): The inner product,’ “.”,
on a vector space S is a function S x S — R such that

BU-V=0-0,
B (cii+) -w=ci(it-w)+ (V- w), and
| VB;éﬁ v-0>0
The vectors it and v are said to be orthogonal if
i-v=0.
An important observation is that a collection, V = {v1, 12, ..., v,}, of mutually or-

thogonal vectors are linearly independent; thus can be used to define an (orthogo-
nal) basis if they also span the vector space S.

Definition 3.1.4 (Norms and orthonormal basis): A norm (commonly de-
noted as || - ||) is a function that measures the length of vectors. A vector, v,
is said to be normalized if |0|| = 1. A basis, V = {11, 03, ..., U}, of the vector
space S is said to be orthonormal if

Vg[’,;j 17,' . 17]' = 8,‘,]',
such that if i = j, §; ; = 1 and 0 otherwise.”

The most commonly used family of norms are the p-norms. Given a vector v =
(wi, ..., w,), the p-norm is defined as

n ’
151, = <Z |wi|!’> :
i=1
At the limit, as p goes to infinity, this gives the max-norm

[0]lec = max {|w;l}.
i=1..n

I The dot product on R" is an inner product function.
2 This is commonly referred to as the Kronecker delta.

101

102

Common Representations of Multimedia Features

(@]
o f2 f2
(@]
(@] (@] ©q @ q
(@]
@ (@]
o
° (@] D o
° ® f1 f1
(@]
3 3
(a) (b)

Figure 3.2. (a) Query processing in vector spaces involves mapping all the objects in the
database and the query, g, onto the same space and (b) evaluating the similarity/difference
between the vector corresponding to g and the individual objects in the database.

3.1.2 Linear and Statistical Independence of Features

Within the context of multimedia data, feature independence may mean different
things. First of all, two features can be said to be independent if the occurrence of
one of the features in the database is not correlated with the occurrence of the other
feature. Also, two features may be dependent or independent, based on whether
the users are perceiving the two features to be semantically related or not. In a
multimedia database, independence of features from each other is important for
two major reasons:

m First, the interpretation (or computation) of the similarity or difference between
the objects (i.e., vectors in the space) usually relies on the orthogonality of the
features mapped onto the basis vectors of the vector space. In fact, many of
the multidimensional/spatial index structures (Chapter 7) that are adopted for
efficient retrieval of multimedia data assume orthogonality of the basis of the
vector space. Also correct interpretation of the user’s relevance feedback often
requires the feature independence assumption.

m Second, as we discuss in Section 4.2, it is easier to pick the most useful dimen-
sions of the data for indexing if these dimensions are not statistically correlated.
In other words, statistical independence (or statistical orthogonality) of the di-
mensions of the feature space helps with feature selection.

In Section 3.5.1.2, we discuss the effects of the independence assumption and
ways to extract independent bases in the presence of features that are not truly
independent in the linear, statistical, or semantic sense.

3.1.3 Comparison of Objects in the Vector Space

Given a n-dimensional feature space, S, query processing involves mapping all the
objects in the database and the query onto this space and then evaluating the similar-
ity/difference between the vector corresponding to the query and the vectors rep-
resenting the data objects (Figure 3.2). Thus, given a vector, v, = (g1, @2, - - -, Gn),

3.1 Vector Space Models

f2

q

AEuc(q,0)
(0]

1

3

Figure 3.3. Euclidean distance between two points.

representing the user query and a vector v, = (01, 02, ..., 0,), representing an ob-
ject in this space, retrieval involves computing a similarity value, sim(vg, v,), or a
distance value, A(vg, vp), using these two vectors.

As with the features themselves, the similarity/distance function that needs to be
used when comparing two vectors, v, and v,, also depends on the characteristics of
the application. Next, we list commonly used similarity and distance functions for
comparing vectors.

B Minkowski distance: The Minkowski distance of order p (also referred to as p-
norm distance or Lp metric distance) is defined as

n 1/p
AMink,p(an 170) = (Z lgi — 0i|p> .
i=1

The Euclidean distance (Figures 3.3 and 3.4(b)),

n 1/2
AEMC(qu 170) = AMink,2(17q9 170) = (Z |CI1 - 0i|2> s
i=1

commonly used for measuring distances between points in the 3D space we are
living in, is in fact the Minkowski distance of order 2. Another special case

v ¥
A=dX+dY A= (dX2+dY?2) 112
L dy
& ——————- -
dXx '
X X
(a) (b)

Figure 3.4. (a) Manhattan (1-norm or L1) and (b) Euclidean (2-norm or L2) distances in
2D space.

103

104

Common Representations of Multimedia Features

2 02=<6,6,6>
>

q=<3,3,3>

2

L J
01=<3,2,3>

f1

3

Figure 3.5. Under cosine similarity, g is more similar to o, than to o4, although the Euclidean
distance between v, and vg, is smaller than the Euclidean distance between v, and v, .

(preferred in multimedia databases because of its computational efficiency) is
the Manhattan (or city block) distance (Figure 3.4(a)):

n
AMam(lyqa 170) == AMink.l(an Jo) = Z |CI1 - Oil .
i=1

The Manhattan distance is commonly used for certain kinds of similarity evalua-
tion, such as color-based comparisons. Results from computer vision and pattern
recognition communities suggest that it may capture human judgment of image
similarity better than Euclidean distance [Russell and Sinha, 2001].

At the other extreme, the co-norm distance (also known as the Chebyshev
distance) is also efficient to compute:

n 1/p
AMink,00 (Vg Vo) = pli”go (21: lgi — o |p> = ig%ﬂ% —ol}.
The Minkowski distance has the advantage of being a metric. Thus, functions
in this family make it relatively easy to index data relying on multi-dimensional
indexing techniques designed for spatial data (Chapter 7).

Cosine similarity: Cosine similarity is simply defined as the cosine of the angle
between the two vectors:

Simcosine(lyq7 170) = COS(ITq, 170).

If the angle between two vectors is 0 degrees (in other words, if the two vectors
are overlapping in space), then their composition is similar and, thus, the cosine
similarity measure returns 1, independent of how far apart the corresponding
points are in space (Figure 3.5). Because of this property, the cosine similarity
function is commonly used, for example, in text databases, when compositions
of the features are more important than the individual contributions of features
in the media objects.
Dot product similarity: The dot product (also known as the scalar product) is
defined as

n

Simdotﬁprod(ﬁqa 170) = Jq U, = Z qi0;.
i=1

3.1 Vector Space Models 105

F2 ’ F2 4
Ao A(’;
A A
Pt P e e T
/ L] L]
fergss o e —
NG A - T el B
F1 F1
(a) (b)

Figure 3.6. Two data sets in a two-dimensional space. In (a) the data are similarly distributed
in F, and F,, whereas in (b) the data are distributed differently in F; and F». In particular,
the variance of the data is higher along F, than F».

The dot product measure is closely related to the cosine similarity:
Simdot,prod(ﬁq: 170) = Jq ' 170 = |17q||170|COS(17q, 170) = |17q||170|5imcosine(17q’ 170)~

In other words, the dot product considers both the angle and the lengths of the
vectors. It is also commonly used for cheaply computing cosine similarity in ap-
plications where the vectors are already prenormalized to unit length.

B [ntersection similarity: Intersection similarity is defined as

> i1 min(q;, 0;)
Yo max(qi, 0;).

simn (g, U,) =

Intersection similarity has its largest value, 1, when all the terms of v are iden-
tical to the corresponding terms of v,. Otherwise, the similarity is less than 1. In
the extreme case, when g;s are very different from o;s (either o; very large and
g; very small or g; very large and o; very small), then the similarity will be close
to 0.

The reason why this measure is referred to as the intersection similarity is
because it considers to what degree v, and v, overlap along each dimension. It is
commonly used when the dimensions represent counts of a particular feature in
the object (as in color and texture histograms).

When applied to comparing sets, the intersection similarity is also known as
the Jaccard similarity coefficient: given two sets, A and B, the Jaccard similarity
coefficient is defined as

|AN B|
|[AUB|

Simjaccard (Av B) =

A related set comparison measure commonly used for comparing sets is the Dice
similarity coefficient, computed as

_ 2]ANB

Simgice(A, B) = A+ Bl

B Mahalanobis distance: The Mahalanobis distance extends the Euclidean dis-
tance, by taking into account data distribution in the space. Consider the data
sets shown in Figure 3.6(a) and (b). Let us assume that we are given two new
data objects, A and B, and we are asked to determine whether A or B is a

106

Common Representations of Multimedia Features

F2
A Sp DI conaB "
e e ® e A
.""-' ° o ® o:.' B
(] .l..'. ..'.-" ’
L e 20T
F1

Figure 3.7. A data set in which features F; and F, are highly correlated and the direction
along which the variance is high is not aligned with the feature dimensions.

better candidate to be included in the cluster’ of objects that make the data set.
In the case of Figure 3.6(a), both points are equidistant from the boundary and
the data are similarly distributed along F; and F3; thus there is no reason to pick
one versus the other. In Figure 3.6(b), on the other hand, the data are distributed
differently in F; and F,. In particular, the variance of the data is higher along F;
than F,. This implies that the distortion of the cluster boundary along F; will
have a smaller impact on the shape of the cluster than the same distortion of
the cluster boundary along F,. This can be taken into account by modifying the
distance definition in such a way that differences along the direction with higher
variance of data receive a smaller weight than differences along the direction
with smaller variance.
Given a query and an object vector, the Euclidean distance

n 1/2
AE14C(77qa Jo) = (Z |q: - 0i|2>
i=1

between them can be rewritten in vector algebraic form as

Apue(lg, 1) =\ (T = 0010y = 5) = (5 = 5)T 1 (5, — o).
where [is the identity matrix. One way to assign weights to the dimensions of the
space to accommodate the differences in their variances is to replace the identity
matrix, /, with a matrix that captures the inverse of these variances.

This can be done, to some degree, by replacing the “1”s in the identity ma-
trix by 1/07, where o? is the variance along the ith dimension. However, this
would not be able to account for large variations in data distribution that are
not aligned with the dimensions of the space. Consider, for example, the data
set shown in Figure 3.7. Here, features F; and F, are highly correlated, and the
direction along which the variance is high is not aligned with the feature dimen-
sions. Thus, the Mahalanobis distance takes into account correlations in the
dimensions of the space by using (the inverse of) the covariance matrix, S, of the
space in place of the identity matrix*:

AMah(Jqs Jo) = \/(Jq - JO)TS_I(IZI — 170).

3 As introduced in Section 1.3, a cluster is a collection of data objects, which are similar to each other.
We discuss different clustering techniques in Chapter 8.
4 See Section 3.5.1.2 for a detailed discussion of covariance matrices.

3.1 Vector Space Models 107

F1=red

Figure 3.8. A feature space defined by three color features: F1 = red, F» = pink, and F3 =
blue; features F1 and F, are perceptually more similar to each other than they are to Fs.

The values at the diagonal of S are the variances along the corresponding dimen-
sions, whereas the values at off-diagonal positions describe how strongly related
the corresponding dimensions are (in terms of how objects are distributed in the
feature space).

Note that when the covariance matrix is diagonal (i.e., when the dimensions
are mutually independent as in Figure 3.6(b)), as expected, the Mahalanobis dis-
tance becomes similar to the Euclidean distance:

n

g —al?\"”
.o qgi — 0i
AMah(qu UO) = (Z l—21> .

i=1 9

Here o7 is the variance along the ith dimensions over the data set. Consequently,
the Mahalanobis distance is less dependent on the scale of feature values. Be-
cause the Mahalanobis distance reflects the distribution of the data, it is com-
monly used when the data are not uniformly distributed. It is particularly useful
for data collections where the data distribution varies from cluster to cluster;
we can use a different covariance matrix when computing distances to different
clusters of objects. It is also commonly used for outlier detection as it takes into
account and corrects for the distortion that a given point would cause on the
local data distribution.

B Quadratic distance: The definition of quadratic distance [Hafner er al., 1995] is
similar to that of the Mahalanobis distance,

Asta (T T5) = [(g — T)TAGT, — 7).

except that the matrix, A, in this case denotes the similarity between the features
represented by the dimensions of the vector space as opposed to their statistical
correlation. For example, as shown in Figure 3.8, if the dimensions of the feature
space correspond to the bins of a color histogram, [a; ;] would correspond to
the (perceptual) similarity of the colors represented by the corresponding bins.
These similarity values would be computed based on the underlying color model
or based on the user feedback.

Essentially, the quadratic distance measure distorts the space in such a
way that distances across dimensions that correspond to features that are

108

Common Representations of Multimedia Features

perceptually similar to each other are shorter than the distances across dimen-
sions that are perceptually different from each other.

Kullback-Leibler divergence: The Kullback-Leibler divergence measure (also
known as the KL distance) takes a probabilistic view and measures the so-called
relative entropy between vectors interpreted as two probability distributions:

n
.. qi
Akr.(vg, Vo) = E qi logj.
i=1 ¢

Note that, because the KL distance is defined over probability distributions,
>, giand > i, o; must both be equal to 1.0.

The KL distance is not symmetric and, thus, is not a metric measure, though a
modified version of the KL distance can be used when symmetricity is required:

I 1< qi 1< 0
Ak (Vg Vo) = 3 (21: gi lOé’;j) +3 (Zl o; lOga -

Alternatively, a related distance measure, known as the Jensen-Shannon diver-
gence,

.- . Vgt - v+
AJS(qu Uo):AKL <Uq, 112 0>+AKL <Uo, 112 0>’

which is known to be the square of a metric [Endres and Schindelin, 2003], can
be used when a metric measure is needed.

Pearson’s chi-square test: Like the Kullback-Leibler divergence, the chi-square
test also interprets the vector probabilistically and measures the degree of fit be-
tween one vector, treated as an observed probability distribution, and the other
(treated as the expected distribution). For example, if we treat the query as the
expected distribution and the vector of the object we are comparing against the
query as the observed frequency distribution, then we can perform the Pearson’s
chi-square fitness test by computing the following score:

X2=Xn:0i_qi.

- 4

The resulting x? value is then interpreted by comparing against a chi-square dis-
tribution table for n — 1 degrees of freedom (n being the number of dimensions
of the space). If the corresponding value listed in the table is less than 0.05, the
corresponding probability distributions are not statistically related and o; is not
a match for g;.

Signal-to-noise ratio: The signal-to-noise ratio (SNR) is the ratio of the power
of a signal to the power of the noise in the environment. Intuitively, the SNR
value measures how noise-free (i.e., close to its intended form) a signal at the
receiving end of a communication channel is. Treating the query vector, vy, as
the intended signal and the difference, v, — v, as the noise signal, the signal-to-
noise ratio between them is defined as

V i 4

simsng (Vg Vo) = 20l0g10——mr—.

Z?:l(‘b’ —0;)?

3.2 Strings and Sequences

The SNR is especially useful if the difference between the query and the objects
in the database is very small, that is, when we are trying to differentiate between
objects using slight differences between them.

In summary, the various similarity and distance measures defined over vector spaces
compute the degree of matching between a given query and a given object (or be-
tween two given objects) based on different assumptions made about the nature of
the data and the interpretation of the feature values that correspond to the dimen-
sions of the space.

3.2 STRINGS AND SEQUENCES

To llustrate the use of sequences in multimedia, let us consider an application where
we are interested in capturing and indexing users’ navigation experiences® [Adali
et al., 2006; Blustein et al., 2005; D. Dasgupta and F. A. Gonzalez, 2001; Debar et al.,
1999; Fischer, 2001; Gemmell et al., 2006; Jain, 2003b; Mayer et al., 2004; Sapino
et al.,2006; Sridharan et al., 2003] within a hypermedia document.

3.2.1 Example Application: User Experience Sequences

User experiences can often be represented in the form of sequences of events [Can-
dan et al., 2006]:

Definition 3.2.1 (User experience): Let D be a domain of events and A be a
set of events from this domain. A user experience, e;, is modeled as a finite
sequencee;o-e1- ... € wheree; ;€ A

For example, user experience “navigating in a website” can be modeled as a se-
quence of Web pages seen by a user:

<www.asu.edu> <www.asu.edu/colleges> <www.fulton.asu.edu/fulton> . ..
. <sci.asu.edu>.

The user experience itself does not always have a predefined structure known
to the system, although it might implicitly be governed by certain domain-specific
rules (such as the hyperlinks forming the website). Capturing the appropriate events
that form a particular domain and discovering the relationships between these state-
ments is essential for any human-centric reasoning and recommendation system.
In particular, an experience-driven recommendation system needs to capture the
past states of the individual and the future states that the individual wishes to
reach. Given the history and future goals, the system needs to identify appropriate

5 Modeling user experiences is crucial for enabling the design of effective interaction tools [Fischer,
2001]. Models of expected user or population behavior are also used for enabling prefetching and
replication strategies for improved content delivery [Mayer et al., 2004; Sapino et al., 2006]. Record-
ing and indexing individuals’ various experiences also carry importance in personal information man-
agement [Gemmell er al., 2006], experiential computing [Jain, 2003a,b], desktop information manage-
ment [Adali and Sapino, 2005], and various arts applications [Sridharan e al., 2003].

109

110

Common Representations of Multimedia Features

propositional statements to provide to the end user as a recommendation. Candan
et al. [2006] define a popularity query as follows:

Definition 3.2.2 (Popularity query): Let D be a domain and A be a set of
propositional statements from this domain. Let £ be an experience collection
(possibly representing experiences of a group of individuals). A popularity
query is a sequence, q, of propositional statements and wildcard characters
from AU{“x”, “//”} executed over the database, £. Here, *“ x” is a wildcard
symbol that matches any label in A, and the wildcard “//” corresponds to an

arbitrary number of “x”s. The query processor (recommendation engine) re-
turns matches in the order of frequency or popularity.

For example, in the context of navigation within a website, the wildcard query
q:= ((www.asu.edu) // (sci.asu.edu))

is asking about how users of the ASU website are commonly navigating from the
ASU main page to the School of Computing and Informatics’s home page. The
answer to this query will be a list of past user navigations from www.asu.edu to
sci.asu.edu, ranked in terms of their popularities.

Note that, when comparing sequences, exact alignment of elements is often not
required. For example, when counting navigation sequences for deriving popularity-
based recommendations, there may be minor deviations between different users’
navigational experiences (maybe because the Web content is dynamically created
and personalized for each individual). Whether two experiences are going to be
treated as matching or not depends on the amount of difference between them; thus,
this difference needs to be quantified. This is commonly done through edit distance
functions, which quantify the minimum number of symbol insertions, deletions, and
substitutions needed to convert one sequence to the other.

3.2.2 Edit Distance Measures

Given two sequences, the distance between them can be defined in different ways
depending on the applications requirements. Because they measure the cost of
transformations (or edits) required to convert one sequence into the other, the dis-
tance measures for sequences are commonly known as the edit distance measures.

B The Hamming distance [Hamming, 1950], Apam, between two equi-length se-
quences is defined as the number of positions with different symbols, that is, the
number of symbol substitutions needed to convert one sequence to the other.
The Hamming distance is metric.

B The episode distance, Apisode, Only allows insertions, each with cost 1. This dis-
tance measure is not symmetric and thus it is not a metric.

B The longest common subsequence distance, A, allows both insertions and dele-
tions, both costing 1. This is symmetric, but is not guaranteed to satisfy triangular
equality; thus it is also not metric.

B The Kendall tau distance, Ay, (also known as the bubble-sort distance) between
two sequences is the number of pairwise disagreements (i.e., the number of
swaps) between two sequences. The Kendall tau distance, a metric, is applied
mostly when the two sequences are equi-length lists and each symbol occurs at

3.3 Graphs and Trees

most once in a sequence. For example, two list objects, each ranked with respect
to a different criterion, can be compared using the Kendall tau distance.

B The Levenshtein distance, A, [Levenshtein, 1966], another metric, is more gen-
eral: it is defined as the minimum number of symbol insertions, deletions, and
substitutions needed to convert one sequence to the other. An even more gen-
eral definition of Levenshtein distance associates heterogeneous costs to inser-
tions, deletions, and substitutions and defines the distance as the minimum cost
transition from one sequence to the other. The cost associated with a given edit
operation may be a function of (a) the type of operation, (b) the symbols in-
volved in the editing, or (c) the positions of the symbols involved in the edit
operation. Other definitions also allow for more complex operations, such as
transpositions of adjacent or nearby symbols or entire subsequences [Cormode
and Muthukrishnan, 2002; Kurtz, 1996]. The Damerau-Levenshtein distance
[Damerau, 1964], Apy, is an extension where swaps of pairs of symbols are also
allowed as atomic operations. Note that if the only operation allowed is substi-
tution, if the cost of substitution is independent of the characters involved, and
if the strings are of equal length, then the Levenshtein distance is equivalent to
the Hamming distance.

In Section 5.5, we discuss algorithms and index structures for efficient approxi-
mate string and sequence search in greater detail.

3.3 GRAPHS AND TREES

Let D be a set of entities of interest; a graph, G(V, E), defined over V = D describes
relationships between pairs of objects in D. The elements in the set V are referred
to as the nodes or vertices of the graph. The elements of the set E are referred to
as the edges, and they represent the pairwise relationships between the nodes of the
graph. Edges can be directed or undirected, meaning that the relationship can be
nonsymmetric or symmetric, respectively. Nodes and edges of the graph can also be
labeled or nonlabeled. The label of an edge, for example, may denote the name of
the relationship between the corresponding pair of nodes or may represent other
metadata, such as the certainty of the relationship or the cost of leveraging that
relationship within an application.

As we discussed in Section 2.1.5, knowledge models (such as RDF) that produce
the greatest representation flexibility reduce the knowledge representation into a set
of simple subject-predicate-object statements that can easily be captured in the form
of relationship graphs (see Figures 2.5 and 2.6). Thus, thanks to this flexibility, the
use of graphs in multimedia data modeling and analysis is extensive; for example,
graph-based models are often used to represent many diverse aspects of multimedia
data and systems, including the following:

m Spatio-temporal distribution of features in a media object (Figure 2.36)

B Media composition (e.g., order) of a multimedia document (Figure 2.28)

B References/citations/links between media objects in a hypermedia system or
pages on the Web (Figure 1.9)

m Semantic relationships among information units extracted from documents in a
digital library (Figure 3.9)

111

112

Common Representations of Multimedia Features

Assignment 1 Assignment 2 Assignment 3 Assignment 4 Discussion Board Messages
Message | Message 3

__depends_on depends_on

replies_to

refers_to

comes_after

comes_after

refers_to
depends_on Message 2

refers_to refers_to

depends_on depends_on

comes_after comes_after comes_after comes_after
Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5

Figure 3.9. An example graph: semantic relationships between information units extracted
from a digital library.

m Explicit (e.g., “friend”) or implicit (e.g., common interest) relationships among
individuals within a social network (Section 6.3.4)

A tree, T(V, E), is a graph with a special, highly restricted structure: first of all, if
the edges are undirected, each pair of vertices of the tree are reachable from each
other through one and only one path (i.e., a sequence of edges); if the edges are
directed, on the other hand, the tree does not contain any cycles (i.e., no vertex
is reachable from itself through a non-empty sequence of edges), there is one and
only one vertex (called root) that is not reachable from any other vertex but that
can reach each other vertex (through a corresponding unique edge path). In a rooted
tree, on any given path, the vertices closer to the root are referred to as the ancestors
of the nodes that are further away (i.e., descendants). A vertex that does not have
a descendant is referred to as a leaf, whereas others are referred to as the internal
vertices. A pair of ancestor-descendant nodes that are connected by a single edge
is referred to as a parent-child pair, and the children of the same parent vertex are
called siblings of each other. A tree is called an ordered tree if it is rooted and
the order among siblings (nodes under the same parent node) is also given. An
unordered tree is simply a rooted tree.

Examples of data types that can be represented using trees include the following:

®m Hierarchical multimedia objects, such as virtual worlds created using the X3D
standard (Figure 1.1), where complex objects are constructed by clustering sim-

pler ones
Computer Science D
Artificial Intelligence D """""""""" Human-Computer D
/\ Interaction (HCI)
Fuzzy Machine ---- Conferences Conferences Course ... Organization Journal
Logic Learning D /\ D /N D
Institutes Software Course Intelligent Human Human and ACM ASIS BayCHI

Software Agents E Computer SIGCHI SIG/HCI
actor

U U U g 50 000

Figure 3.10. A fragment from the Yahoo CS hierarchy [Yahoo].

3.3 Graphs and Trees 113

Information
theory
Data Entropy Quantum
compression 7 information
_— \ theory
./’
Entropy Kullback- Topological
encoding Leibler entropy

/\ divergence
~

Huffman Arithmetic
coding coding.

Figure 3.11. A fragment of a concept taxonomy for the domain “information theory.”

m Semistructured and hierarchical XML data (without explicit object references;
Section 2.1.4)

m Taxonomies that organize concepts into a hierarchy in such a way that more
general concepts are found closer to the root (Figures 3.10 and 3.11)

m Navigation hierarchies for content, such as threads in a discussion board (Fig-
ure 3.12), that are inherently hierarchical in nature

3.3.1 Operations on Graphs and Trees

Common operations on graph structured data include the following [Cormen et al.,
2001]:

B Checking whether a node is reachable from another one

m Checking whether the graph contains a cycle or not

m Searching for the shortest possible paths between a given pair of vertices in the
graph

m Extracting the smallest tree-structured subgraphs connecting all vertices (mini-
mum spanning trees) or a given subset of the vertices (Steiner trees)

B Identification of subgraphs where any pair of nodes are reachable from each
other (connected components)

buzz proj. Vander, Ryan Tue May 25, 2008 9:21 am
Re: buzz proj. True, Thomas Thu May 27, 2008 7:53 pm
Re: buzz proj. Vander, Ryan Sat May 29, 2008 2:08 pm
Re: buzz proj. Grain, Robert Sun May 30, 2008 6:10 pm
Re: buzz proj. Vander, Ryan Sun May 30, 2008 10:23 pm
Assignment 4 Rodriguez, Luisa Thu May 27, 2008 3:04 pm
Report for Assig. 4 True, Thomas Thu May 27, 2008 7:57 pm
Re: Report for Assig. 4 Candan, Kasim Mon May 31, 2008 12:07 am
Assignment #4 Atilla, John Fri May 28, 2008 10:41 pm
Re: Assignment #4 Candan, Kasim Mon May 31, 2008 12:19 am
Questions on #5 Roosewelt, Daniel Sat May 29, 2008 11:00 pm
Re: Questions on #5 Candan, Kasim Mon May 31, 2008 12:23 am
Re: Questions on #5 Ray, Luisa Mon May 31, 2008 10:34 pm
Re: Questions on #5 Home, Chris Tue Jun 1, 2008 12:23 am
Report Length True, Thomas Tue Jun 1, 2008 11:39 am
Re: Report Length Candan, Kasim Wed Jun 2, 2008 1:39 am
Assignment # 6 Bird, Sarah Tue Jun 1, 2008 9:14 pm

Figure 3.12. A thread hierarchy of messages posted to a discussion board.

114

Common Representations of Multimedia Features

m Identification of the largest possible subgraphs such that each vertex in the
subgraph is reachable from each other vertex through a single edge (maximal
cliques)

m Partitioning of the graph into smaller subgraphs based on various conditions
(graph coloring, edge cuts, vertex cuts, and maximal-flow/minimum-cut)

Some of these tasks, such as finding the shortest paths between pairs of vertices,
have relatively fast solutions, whereas some others, such as finding maximal cliques
or Steiner trees, have no known polynomial time solutions (in fact they are known
to be NP-complete problems [Cormen et al., 2001]). Although some of these tasks
(such as finding the paths between two nodes or partitioning the tree based on
certain criteria) are also applicable in the case of trees, because of their special
structures, many of these problems are much easier to compute for trees than for
arbitrary graphs. Therefore, tree-based approximations (such as spanning trees) are
often used instead of their graph counterparts to develop efficient, but approximate,
solutions to costly graph operations.

3.3.2 Graph Similarity and Edit Distance
Let G1(V1, E1) and G,(Va, E,) be two node-labeled graphs.

B Graph isomorphism: A graph isomorphism from G; to G, is a bijective (i.e.,
one-to-one and onto) mapping from the nodes of Gy to the nodes of G, that
preserves the structure of the edges. A subgraph isomorphism from Gj to G, is
similarly defined as an isomorphism of G; to a subgraph of G,. Both approximate
graph isomorphism and subgraph isomorphism are known to be NP-complete
problems [Yannakakis, 1990].

m Common subgraphs: A subgraph common to G; and G; is said to be maximal
if it cannot be extended to another common subgraph. The maximum common
subgraph of G1(V1, E1) and G,(V3, E») is the largest possible common subgraph
of G; and G;. The maximum common subgraph problem is also NP-complete
[Ullmann, 1976].

As in the case of symbol sequences, we can define an edit distance between two
graphs as the least-cost sequence of edit operations that transforms G, into Gy.
Commonly used graph edit operations include substitution, deletion, and insertion
of graph nodes and edges. However, unlike in the case of strings and sequences,
the graph edit distance problem is known to be NP-complete. In fact, even ap-
proximating the graph edit distance is very costly; the edit-distance problem is
known to be APX-hard (i.e., there is no known polynomial time approximation
algorithm) [Bunke, 1999]. Bunke [1999] shows that the graph isomorphism, sub-
graph isomorphism, and maximum common subgraph problems are special in-
stances of the graph edit distance computation problem. For instance, the maxi-
mum common subgraph, G,,, of G; and G, has the property that Agr,edir(Gl, Gy) =
|G1l + G2l = 2| Gl

We discuss graph edit distances and algorithms to compute them in greater detail
in Chapter 6.

3.4 Fuzzy Models

3.3.3 Tree Similarity and Edit Distance

Let T(V, E) be a tree, that is, a connected, acyclic, undirected graph. T is called a
rooted tree if one of the vertices/nodes is distinguished and called the root. T is
called a node-labeled tree if each node in V'is assigned a symbol from an alphabet X.
T is called an ordered tree if it is rooted and the order among siblings (nodes under
the same parent node) is also given. An unordered tree is simply a rooted tree.

Given two ordered labeled trees, 77 and 73, T; is said to match T; if there is a
one-to-one mapping from the nodes of 7; to the nodes of 7, such that (a) the roots
map to each other; (b) if v; maps to v;, then the children of v; and v; map to each
other in left-to-right order; and (c) the label of v; is equal to the label of v;. Note that
exact matching can be checked in linear time for ordered trees. T; is said to match T
at node v if there is a one-to-one mapping from the nodes of 7j to the nodes of the
subtree of 7T, rooted at v. The naive algorithm (which checks for all possible nodes
v of T;) takes O(nm) time where n is the size of 77 and m is the size of T>, whereas
there are O(n./m) algorithms that leverage suffix trees (see Section 5.4.2 for suffix
trees) for quick access to subpaths of 7.

As in the case of strings, given appropriate definitions of insertion, deletion,
and swap operations, one can define corresponding edit-distance measures between
trees. Unlike the case for strings, however, computing edit distances for trees may be
expensive. Although the matching problem is relatively efficient for ordered trees,
the problem quickly becomes untractable for unordered trees. In fact, for unordered
trees, the matching problem is known to be NP-hard [Kilpelainen and Mannila,
1995]. We discuss tree edit distances and algorithms to compute them in Chapter 6
in greater detail.

3.4 FUZZY MODELS

Vectors, strings, and graphs can be used for multimedia query processing only when
the data and query can both be represented as vectors, strings, or graphs. This, how-
ever, is not always the case. Especially when the query is not provided as an example
object, but formulated using declarative means, such as the logic-based query lan-
guages described in Section 2.1, we need an alternative mechanisms to measure the
degree of matching between the query and the media objects in the database. Fuzzy
and probabilistic models, described in this section, serve this purpose.

3.4.1 Fuzzy Sets and Predicates

Fuzzy data and query models for multimedia querying are based on the fuzzy set
theory and fuzzy logic introduced by Zadeh in the mid-1960s [Zadeh, 1965]. A fuzzy
set, F, with domain of values D is defined using a membership function, ur : D —
[0, 1]. A crisp (or conventional) set, C, on the other hand, has a membership function
of the form uc¢: D — {0, 1} (i.e., for any value in the domain, the value is either in
the set or out of it). When for an element d € D, uc(d) = 1, we say that d is in C
(d € C); otherwise we say that d is not in C (d ¢ C). Note that a crisp set is a special
case of fuzzy sets.

A fuzzy predicate corresponds to a fuzzy set: instead of returning Boolean
(true = 1 or false = 0) values as in propositional functions, fuzzy predicates return

115

116

Common Representations of Multimedia Features

Table 3.1. Min and products semantics for fuzzy logical operators

Min semantics Product semantics

mpiap (X) = min{ui(x), wi(X)} ppap;(X)

mpvp (X) = max{ui(x), wi(x)} ppve;(X) =

H-p;(X) = 1 — pi(X) H-p;(X) = 1 — pi(X)

o milx) x pgx)

B max{ui(x), ui(x), a}

wilX) + p(X) — pi(x) x pi(x) — min{wi(x), wi(x), 1 —a}
max{l — pui(x), L — pj(x), o}

a €[0,1]

membership values (or scores) corresponding to the members of the fuzzy set. In
multimedia databases fuzzy predicates are used for representing the assessments of
the imprecisions and imperfections in multimedia data. Such assessments can take
different forms [Peng and Candan, 2007]. For example, if the data are generated
through a sensor/operator with a quantifiable quality rate (for instance, a function
of the available sensor power), then a scalar-valued assessment of imprecision may
be applicable. These are referred to as type-1 fuzzy predicates [Zadeh, 1965], which
(unlike propositional functions that return true or false) return a membership value
to a fuzzy set. In this simplest case, the quality assessment of a given object, o, is
modeled as a value 0 < ga(o) < 1.

A more general quality assessment model would take into account the uncertain-
ties in the assessments themselves. These types of predicates, where sets have grades
of membership that are themselves fuzzy, are referred to as type-2 fuzzy predicates
[Zadeh, 1975]. A type-2 primary membership value can be any continuous range in
[0, 1]. Corresponding to each primary membership there is a secondary membership
function that describes the weights for the instances in the primary membership. For
example, the quality assessment of a given object o can be modeled as a normal dis-
tribution of qualities, N(qey,, var), where q.., is the expected quality and var is the
variance of possible qualities (see Section 3.5). Given this distribution, we can assess
the likelihood of possible qualities for the given object based on the given observa-
tion (for instance, the quality value g.., is the most likely value). Although the type-2
models can be more general and use different distributions, the specific model using
the normal distribution is common because it relies on the well-known central limit
theorem. This theorem states that the average of the samples tends to be normally
distributed, even when the distribution from which the average is computed is not
normally distributed.

3.4.2 Fuzzy Logical Operators

Fuzzy statements about multimedia data combine fuzzy predicates using fuzzy logi-
cal operators. Like the predicates, fuzzy statements also have associated scores. Nat-
urally, the meaning of a fuzzy statement (i.e., the score of the whole clause, given the
constituent predicate scores) depends on the semantics chosen for the fuzzy logical
operators, not (—), and(A), and or(V), used for combining the predicates.

3.4.2.1 Min, Product, and Average
Table 3.1 shows popular min and product fuzzy semantics used in multimedia query-
ing. These two semantics (along with some others) have the property that binary

3.4 Fuzzy Models

Table 3.2. Properties of triangular-norm and triangular-conorm functions

T-norm binary function N (for A) T-conorm binary function C (for v)

Boundary N(0,0)=0, N(x,1)=N(1,x)=x C(1,1)=1,C(x,0)=C(0,x) =x
conditions
Commutativity N(x, y) = N(y, x) C(x, y) = C(y, x)

Monotonicity x <X,y <y — N(x,¥) =N(KX,y) x=x,y=<y — Clx,y) <CX,y)
Associativity N(x, N(y, z)) = N(N(x, y), 2) C(x, C(y, z)) = C(C(x, y), 2)

conjunction and disjunction operators are triangular norms (t-norms) and triangu-
lar conorms (t-conorms). Intuitively, t-norm functions reflect or mimic the (bound-
ary, commutativity, monotonicity, and associativity) properties of the corresponding
Boolean operations (Table 3.2). This ensures that fuzzy systems behave like regular
crisp systems (based on Boolean logic) when they are fed with precise information.

Although the property of capturing Boolean semantics is desirable in many ap-
plications of fuzzy logic, for multimedia querying this is not necessarily the case. For
instance, the partial match requirement, whereby an object might be returned as a
match even if one of the criteria is not satisfied (e.g., Figure 1.7(a) and (c)) inval-
idates the boundary conditions: even if a media object does not satisfy one of the
conditions in the query, we may still want to consider it as a candidate if it is the best
match among all the others in the database. In addition, monotonicity is too weak a
condition for multimedia query processing: intuitively, an increase in the score of a
given query criterion should result in an increase in the overall score; yet the mono-
tonicity condition in Table 3.2 requires an overall increase only if the scores of all of
the query criteria increase.

These imply that the min semantics, which gives the highest importance on the
lowest scoring predicate, may not be always suitable for multimedia workloads.
Other fuzzy semantics commonly used in multimedia systems (as well as other re-
lated domains, including information retrieval) include the arithmetic® and geomet-
ric average semantics shown in Table 3.3. Note that the merge functions in this table
are n-ary: that is, instead of being considered a pair at a time, more than two criteria
can be combined using a single operator.

Average-based semantics do not satisfy the requirements of being a t-norm: in
particular, both arithmetic and geometric average fail to satisfy the boundary con-
ditions. Furthermore, neither is associative (a desirable property for query process-
ing and optimization). Yet, both are strictly increasing (i.e., the overall score in-
creases even if only a single component increases). In fact, the min semantics is
known [Dubois and Prade, 1996; Fagin, 1998; Yager, 1982] to be the only semantics
for conjunction and disjunction that preserves logical equivalence (in the absence
of negation) and is monotone at the same time. These, and the query processing
efficiency it enables because of its simplicity [Fagin, 1996, 1998], make the min se-
mantics a popular choice despite its significant semantic shortcomings.

6 Arithmetic average semantics is similar to the dot product-based similarity calculation in vector spaces
(discussed in Section 3.1.3): intuitively, each predicate is treated as an independent dimension in an n-
dimensional vector space (where n is the number of predicates) and the merged score is defined as the
dot-product distance between the complete truth, (1,1, ..., 1), and the given values of the predicates,

(1 (x), - - oy (X))

117

118

Common Representations of Multimedia Features

Table 3.3. N-ary arithmetic average and geometric average semantics

Pyn-npy(X) -p(X) Hpyy..vp, (X)

na(x) + n + wn(x) 1= 1y (%) 1_ (1 — pa(x)) + n + (L — pun(x)

(a(X) X -+ X 2n(X))7 1—pa(x) 1—((1 = pa(X)) x - x (1 = pa(x))

1
n

Next, we compare various statistical properties of these semantics and evaluate
their applicability to multimedia databases. The statistical properties are especially
important to judge the effectiveness of thresholds set for media retrieval.

3.4.2.2 Properties of the Common Fuzzy Operators

An understanding of the score distribution of fuzzy algebraic operators is essen-
tial in optimization and processing of multimedia queries. Figure 3.13, for exam-
ple, visualizes the behavior of three commonly used fuzzy conjunction operators
under different binary semantics. Figure 3.13 depicts the geometric averaging
method, the arithmetic averaging mechanism [Aslandogan et al., 1995], and the min-
imum function as described by Zadeh [1965] and Fagin [1996, 1998]. As can be seen
here, both the arithmetic average and minimum have linear behaviors, whereas the
geometric average shows nonlinearity. Moreover, the arithmetic average is the only
one among the three that returns zero only when all components are zero. Con-
sequently, the arithmetic average is the only measure among the three that can
differentiate among partial matches that have at least one failing subcomponent
(Figure 3.14).

The average score, or the relative cardinality, of a fuzzy set with respect to its
domain is defined as the cardinality of the fuzzy set divided by the cardinality of its
domain. For a fuzzy set S with a scoring function u(x), where the domain of values
for x ranges between 0 and 1 (Figure 3.15), we can compute this as

Sy 1u(x)dx
Jy Ldx

Intuitively, average score of a fuzzy operator measures the value output by the oper-
ator in the average case. Thus, this value is important in understanding the pruning
effects of different thresholds one can use for retrieval. Table 3.4 lists the average
score values for alternative conjunction semantics. Note that, if analogously defined,

Conjunction - geometric average Conjunction - arithmetic average Conjunction - minimum

T

i i e 2
08 oG5 08) 508
pred2 g 02 ?ﬁ"edl

Figure 3.13. Visual representations of various binary fuzzy conjunction semantics: The hori-
zontal axes correspond to the values between O and 1 for the two input conjuncts, and the
vertical axis represents the resulting scores according to the corresponding function.

3.4 Fuzzy Models

Query Candidate 4 Candidate 1 Candidate 2 Candidate 3

Fuji Fuji Lake Mountain Fuji
EE Mountain Mountain A 08 0.98 - O'A Mountain

* 10 * 00 * 10 * A \"i 00
Lake Lake Fuji Lake 08 @

Semantics Score Rank Score Rank Score Rank Score Rank

min 0.50 1-2 0.00 34 0.50 1-2 0.00 34

product 0.40 1 0.00 34 0.25 2 0.00 34

arithmetic 0.76 1 0.65 3 0.66 2 0.43 4
average

geometric 0.74 1 0.00 34 0.63 2 0.00 34
average

Figure 3.14. Comparison of different conjunction semantics: the table revisits the partial
match example provided earlier in Figure 1.7 and illustrates the ranking behavior for different
fuzzy conjunction semantics.

the relative cardinality of the crisp conjunction would be

K(fuisenfuise) T H(falsentrue) + H(truenfalse) + K(truentrue) N l
[{(false A false), (false A true), (true A false), (true A true)}| 4°

This reconfirms the intuition that the min semantics (Figure 3.13(c)) is closer to the
crisp conjunction semantics. The arithmetic and geometric average semantics, on
the other hand, tend to overestimate scores.

Figure 3.16 visualizes the score distribution of the geometric average and the
minimum functions for a statement with conjunction of three fuzzy predicates. As
visualized in this figure, higher scores are confined to a smaller region in the min
function. This implies that, as intuitively expected, given a threshold, the min func-
tion is most likely to eliminate more candidates than the geometric average.

3.4.3 Relative Importance of Query Criteria

A particular challenge in multimedia querying is that the query processing scheme
needs to reflect the specific needs and preferences of individual users. Thanks to its
flexibility, the fuzzy model enables various mechanisms of adaptation. First of all, if
the user’s relevance feedback focuses on a particular attribute in the query, the way

(a) (b)
Figure 3.15. Example: cardinalities for (a) the continuous domain [0, 1] and (b) the corre-
sponding fuzzy set are computed by measuring the area under the corresponding score
curves [Candan and Li, 2001].

119

120

Common Representations of Multimedia Features

Table 3.4. Average scores of various scoring semantics [Candan and Li, 2001]

Arithmetic average Min Geometric average

1 A XFY
Jo Jo ?dydx _ 1 fol fol min{x, y}dydx _ 1 fol fol VX Xy dydx _ 4

Jo Jo dyax 2 Jo Jo dyax 3 2 dyax 9

the fuzzy score of the corresponding predicate is computed can change based on the
feedback. Second, the semantics of the fuzzy logic operator can be adapted based
on the feedback of the user. A third mechanism through which the user’s feedback
can be taken into account is to enrich the merge function, used for merging the fuzzy
scores, with weights that regulate the importances of the individual predicates.

3.4.3.1 Measuring Relative Importance

One way to measure the relative importance of criteria in a merge function is to eval-
uate the size of the impacts any changes in the scores of the individual predicates
would have on the overall score. Thus, the relative importance of the predicates in
a fuzzy statement can be measured in terms of the corresponding partial derivatives
(Figure 3.17 and Table 3.5). Under this interpretation of relative importance, when
product or geometric average semantics is used, the overall score is most impacted
by the changes of the component that has the smallest score. This implies that, al-
though the components with high scores have larger contributions to the final score
in absolute terms, improving a currently poorly satisfied criterion of the query is the
strategy with the most significant impact on the overall score. This makes intuitive
sense because improving the lowest matched criterion of the query would cause a
significant improvement in the overall degree of matching.

Although the min semantics has a similar behavior in terms of the relative im-
portance of its constituents (i.e., improvements of the smaller scoring components
have larger impacts), in terms of contribution to the overall score the only compo-
nent that matters is the one with the smallest score. This is rather extreme, in the

Conjunction with Three Predicates/Geometric Avg. Conjunction with Three Predicates/Min Func.

(a) (b)

Predicate 3
>

Predicate 3
=3

“20

Predicate 1

Predicate 2

Predicate 1 0o

Predicate 2

Figure 3.16. (a) Geometric averaging versus (b) minimum with three predicates. Each axis
corresponds to an input predicate, and the gray level represents the value of the combined
score (the brighter the gray, the higher the score).

3.4 Fuzzy Models

Conjunction - geometric average
Here, a change I O_>>~‘~

in pred1 has a ’

relatively 1! ~—
) higher impact —]
.6 - S
.4 - < 5 : Here, changes
.2 - £ I : %}{ in both
. [! o0tk predicates
0 \% have the same

mpact

Figure 3.17. The relative impact of the individual criteria in a scoring function can vary based
on the scores of the individual predicates.

sense that, given the two configurations (x; = 0.1, x, = 0.2) and (x; = 0.1, x, = 0.9),
the overall combined score under the min(x;, x,) function is identical, 0.1.

When the arithmetic average semantics is used for combining scores, on the
other hand, the relative importance is constant (and identical) independent of the
scores of the individual components. When using the weighted arithmetic average
(m(x1, x2) = wix1 + wpxy), the relative importance of the individual components is
simply captured by the ratio of their weights.

3.4.3.2 Fagin’s Generic Importance Weighting Function

Fagin proposed three intuitive conditions that any function used for capturing rela-
tive importance of query criteria should satisfy [Fagin and Maarek, 2000; Fagin and
Wimmers, 1997]:

m If all weights are equal, the overall score should be equal to the case where no
weights are assigned to any of the query criteria.

m If one of the weights is zero, the subquery can be dropped without affecting the
rest.

m The weighted scoring function should increase or decrease continuously as the
weights are changed.

Fagin also proposed a generic function that satisfies these three desiderata
[Fagin and Maarek, 2000; Fagin and Wimmers, 1997]. Let Q be a query with m
criteria and let 6; through 6,, denote the weights the user assigns to the individual
query criteria. Without loss of generality, let us also assume that 6; + -+ 0, = 1
and 6; > --- > 6,, > 0. Finally, let f() be a function (such as min, max, product, or

Table 3.5. Relative importance, 9522) / 9u042) | of individual criteria under
different scoring semantics

Arithm. Weighted Arithm. Product Geometric

avg. avg. Min (¢ =1) average

1 Wi 00 ifX1 < Xo X2 %XIMX%/Q _ X
Wo 0 if X1 > Xo X1 %xipx;l/z X

121

122 Common Representations of Multimedia Features

average) representing the underlying fuzzy query semantics. Then, Fagin’s generic
importance weighting function can be written as

f6r.60,.0,) (X1, X2, .o, X)) = (01 — 62)f (x1)
+2(6, — 63)f (x1, x2)
+3(05 — 04)f (x1, X2, X3)
+ .
+ (M —=1)(On-1 = On)f (X1, %2, ..., Xim1)
+ MO f (X1, X2, . .., Xm).

To see why f(s,.6,.....6,) () satisfies the three desiderata, consider the following:

B When all weights are equal, we have 91=92=-~-=6m=%.Then,
f () (1 1)f()
X1,X2, .y Xm) = (—— —)f(x
(i) 10 22 " m m”

2= ()

+(m— 1)(’% - %)f(xl,xz, ey Xm1)

1
+m—f(x1,%2, ..., Xp)
m
=f(x1, X2, ..., Xm).

Thus, the overall score is equal to the case where no weights are assigned to any
of the query criteria.
m If one of the weights is zero, then 6,, = 0. Thus,
f@1.05, 00 1,0) (X1, X25 o Xm) = (01 — 02)f (x1)
+2(62 — 03)f (x1, x2)
+3(63 — 04)f (x1, x2, X3)
4.
+ (m—1)(Om-1 — 0)f (x1, %2, ..., Xpn—1)
+mO0 f(x1,x2, ..\ Xm)
= f(61.62,.0 0 1) (X1, X20 o X1
that is, the mth subquery can be dropped without affecting the rest.

m If f() is continuous, then f(4, 4,...¢,) is a continuous function of the weights, 6;
through 6,,.

Let us, for example, consider the arithmetic average function, that is, avg(x1, xp) =
Al We can write the weighted version of this function as

avg(e,.6,) (X1, x2) = (61 — 62)avg(x1) + 26,avg(x1, x2)
X1+ x2
2

= (61 — 0)x1 + 20,

= 01x1 + 62x2;

3.5 Probabilistic Models

that is, given that 6; + 6, = 1.0, avg, ¢,)() is equal to the weighted average func-
tion. Thus, as one would intuitively expect, the importance of the individual query
criteria, measured in terms of the partial derivatives of the scoring function, is
davgri%) — g, and MB0LR) — ¢, respectivel

8x1 =" 8x = Y2 P y-

However, the importance order implied by Fagin’s generic scheme and that
implied by the partial derivative-based definition of importance are not always
consistent. For instance, let us consider the weighted version of the product scoring

function:
product(elﬁz)(xl,xz) = (61 — 6)product(x1) + 26,product(x1, x;)
= (61 — 02)x1 + 262(x1 X x2).

In this case, the importance of the individual query criteria, measured in terms of
the partial derivatives of the scoring function, is

Sproduct X1, X
P (91»02)(1 %2) = (61 — 62) + 26:x,

8x1
and
Sproduct g, o,(x1, X2)

= 20x1,
5%, hX1

. . Sproduct, (x1,x2)
respectively. Note, however, that even if 6; > 6,, we have ———a2 "% >

dproducty, 4,) (x1,x2)

5)61 -

if and only if

5){2

(61 — 62) + 26,x5 > 205x1.
In other words, unless
61— 6,
260,
the importance order implied by Fagin’s generic scheme and that implied by the
partial derivative-based definition of importance are not consistent. Therefore, this

generic weighting scheme should be used carefully because its semantics are not
always consistent with an intuitive definition of importance.

X1 —Xx2 =

3.5 PROBABILISTIC MODELS

Unlike fuzzy models, which can capture a large spectrum of application require-
ments based on the different semantics one can assign to the fuzzy logical opera-
tors, probabilistic approaches to data and query modeling are applicable mainly in
those cases where the source of imprecision is of a statistical nature. These cases
include probabilistic noise in data collection, sampling (over time, space, or pop-
ulation members) during data capture or processing, randomized and probabilis-
tic algorithms (such as Markov chains and Bayesian networks; see Section 3.5.4
and Section 3.5.3) used in media processing and pattern detection, and probabilis-
tic treatment of the relevance feedback [Robertson and Spark-Jones, 1976] (Chap-
ter 12). Thus, in multimedia databases, probabilities can be used for representing,
among other things, the likelihood of:

m A feature extraction algorithm having identified a target pattern in a given media
object

123

124

Common Representations of Multimedia Features

B An object of interest being contained in a cluster of objects
B A given user finding a given media object relevant to her interests

Whereas the simplest probabilistic models associate a single value between 0 and
1 to each attribute or tuple in the database, more complete models represent the
score in the form of an interval of possible values [Lakshmanan ef al., 1997] or more
generally in terms of a probability distribution describing the possible values for
the attribute or the tuple [Pearl, 1985]. Consequently, these models are able to cap-
ture more realistic scenarios, where the imprecision in data collection and process-
ing prevents the system from computing the exact precision of the individual media
objects, but (based on the domain knowledge) allows it to associate probability dis-
tributions to them.

3.5.1 Basic Probability Theory

Given a set, S, of discrete outcomes of a given observation (also referred to as a
random variable), the probability distribution of the observation describes the prob-
abilities with which different outcomes might be observed (Table 3.6). In particular,
a probability function (also called the probability mass function), f(x) : S — [0, 1]
associates a value of probability to each possible outcome in S. In particular,

D=1

xeS§

that is, the sum of all probabilities of all possible outcomes is 1. The probability
function f() is also commonly referred to as P() (i.e., P(x) = f(x)).

When given a continuous (and thus infinite) space of possible observations, a
cumulative distribution function, F, is used instead: F(x) returns the probability,
P(X < x), that the observed value will be less than or equal to x. Naturally, as x
gets closer to the lower bound of the space, F(x) approaches (in a decreasing fash-
ion) 0, whereas, as x gets closer to the upper bound of the space, F(x) approaches
1 (in an increasing fashion). For cumulative distribution functions that are differen-
tiable, ‘ZF(—ff)) gives the probability density function, which describes how quickly the
cumulative distribution function increases at point x.

In discrete spaces, the probability density function is equal to the probability
mass function. In continuous spaces, on the other hand, the probability mass func-
tion is equal to O for any given domain value. Thus, in general, f() is used to denote
the probability density function in continuous spaces and the probability density/
mass function in discrete spaces.

3.5.1.1 Mean, Variance, and Normal Distribution
Given a space of possible observations and a corresponding probability density func-
tion f(x), the expected value (or the mean) E(X) of the observation is defined as

upperbound(S)

E(X) == / xf (x)d.

lowerbound(S)

3.5 Probabilistic Models 125

Table 3.6. Various common probability distributions and their applications in multimedia

systems

Distribution

Applications

Uniform
(discrete)

Bernoulli
(discrete)

Binomial
(discrete)

Multinomial
(discrete)

Negative
binomial
(discrete)

Geometric
(discrete)

Poisson
(discrete)

Zipfian
(discrete)

Uniform
(continuous)

Exponential
(continuous)

Gamma
(continuous)

Normal, also
known as
Gaussian
(continuous)

fX=kn,p) = (})paL-p"*

..,Xm=km,n,p1,...

if Y74 km = n; and

fX=(kr).p="""") 0 @-pk

fX=ta,A)=—F——"—
()= T terax

1
f(X=t u,o)=
o

-0 <t<oo

Estimating the likelihood of a given
outcome, when all n outcomes are
equally likely.

Estimating the likelihood of
success or failure for an
observation with a known, constant
success rate p.

Estimating the number, k, of
successes in a sequence of n
independent observations, each
with success probability of p.
Generalization of the binomial
distribution to more than two
outcomes.

Estimating the number of
observations, with success
probability p, required to get r
successes and k failures.

Estimating the number, k, of
observations needed for one
success in a sequence of
independent observations, each
with success probability p.

Estimating the number, k, of events
(with a known average occurrence
rate of A) occurring in a given
period.

Estimating the frequency for some
event as a function of its rank, k, (a
is a constant close to 1). Used
commonly to model popularity.

Estimating the likelihood of an
outcome for an observation with a
continuous range, [a, b], of equally
likely outcomes.

Estimating the interarrival times for
processes that are themselves
Poisson.

Continuous counterpart of negative
binomial dist.

(Based on the central limit theorem)
The mean of a sample of a set of
mutually independent random
variables is normally distributed

126

Free ebooks ==> www.Ebook777.com

Common Representations of Multimedia Features

Given this, the variance of the observations, measuring the degree of spread of the
observations from the expected value, is defined as

Var(X) = E[(X — w)?] = E(X?) — (E(X))".

Naturally, the mean and variance can be used to roughly describe a given probability
distribution. A more complete description, on the other hand, can be achieved by
using more moments of the random variable X, that is, the powers of (X — E(X)).
The variance is the second moment of X.

Although there are different probability distributions that describe different
phenomena (Table 3.6), the normal distribution plays a critical role in many mul-
timedia applications because of the central limit theorem, which states that the av-
erage of a large set of samples tends to be normally distributed, even when the
distribution from which the average is computed is not normally distributed. Con-
sequently, the average quality assessment of objects picked from a large set can
be modeled as a normal distribution of qualities, N(u, o), where u is the expected
quality and o? is the variance of the qualities. Thus, the normal distribution is com-
monly applied when modeling phenomena where many small, independent effects
are contributing to a complex observation. The normal distribution is also com-
monly used for modeling sampling-related imprecision (involving capture devices,
feature extraction algorithms, or network devices) because the central limit theo-
rem implies that the sampling distribution (i.e., the probability distribution under
repeated sampling from a given population) of the mean is also approximately nor-
mally distributed.

In general, such complex statistical assessments of data precision might be hard
to obtain. A compromise between lack of detailed statistics and need for a proba-
bilistic model that provides more than the mean is usually found by representing the
range of values (e.g., the possible qualities for objects captured by a sensor device)
with a lower and an upper bound and assuming a uniform distribution within the
range [Cheng et al., 2007].

3.5.1.2 Conditional Probability, Independence, Correlation, and Covariance
Conditional (or a posteriori) probability, P(X = a|Y = b), is the probability of the
observation a, given the occurrence of some other observation, b:

P(X=aAY=D)
P(Y = b)

P(X=alY=Db) =

In contrast, the marginal (or prior) probability of an observation is its probability
regardless of the outcome of another observation.

A simplifying assumption commonly relied upon in many probabilistic models
is that the individual attributes of the data (and the corresponding predicates) are
independent of each other:

P(X=aAY=Db)=P(X=a)P(Y=b).

Wwww.Ebook777.conl

http://www.ebook777.com

3.5 Probabilistic Models

When the independence assumption holds, the probability of a conjunction can be
computed simply as the product of the probabilities of the conjuncts.” However,
in the real world, the independence assumption does not always hold (in fact, it
rarely holds). Relaxing the independence assumption or extending the model to
capture nonsingular probability distributions [Pearl, 1985] both necessitate more
complex query evaluation algorithms. In fact, as we discuss in the next subsection,
when available, knowledge about conditional probability (and other measures of
dependencies, such as correlation and covariance) provides strong tools for pre-
dicting useful properties of a given system. The correlation coefficient p(X, Y),
for example, measures the linearity of the relationship between two observations
represented by the random variables, X and Y, with expected values px and puy,
respectively:

E((X — ux)(Y— py))
OxO0y ’

p(X.Y) =

It thus can be used to help estimate the dependence between two random variables.
Note, however, that correlation is not always a good measure of dependence (be-
cause it focuses on linearity): while the correlation coefficient between two variables
that are independent is always 0, a 0 correlation does not imply independence in a
probabilistic sense.

The nominator of the correlation coefficient, by itself, is referred to as the co-
variance of the two random variables X and Y,

Cov(X,Y) = E((X — ux)(Y— uy)),

and is also used commonly for measuring how X and Y vary together.

3.5.2 Possible-Worlds Interpretation of Uncertainty

As we mentioned earlier, in multimedia databases, a probabilistic “observation”
can stand for different aspects of the data in different contexts: for example, the
likelihood of a feature extraction algorithm having identified a target pattern in
a given media object or a given user finding a given media object relevant to
her interests based on her profile both can be represented using probabilistic
observations.

Often, databases that contain uncertain or probabilistic data represent such
knowledge with existence or truth probabilities associated with the tuples or attribute
values in the database [Green and Tannen, 2006]. Dalvi and Suciu [2004] for exam-
ple, associate a probability value, between 0 and 1, to each tuple in the database: this
value expresses the probability with which the given tuple belongs to the uncertain
relation. Sarma et al. [2006] compare various models of uncertainty in terms of their
expressive power. In the rest of this section, we focus on the probabilistic database
model, based on the so called probabilistic or-set-tables (or p-or-set-tables).

7 Note that, under these conditions, the probabilistic model is similar to the fuzzy product semantics.

127

128

Common Representations of Multimedia Features

3.5.2.1 Probabilistic Relations

In the simplest case, we can model uncertain knowledge in a multimedia database in
the form of a probabilistic relation, R? (K, A), where K is the key attribute, A is the
value attribute, and P is the probability associated with the corresponding key-value
pair. For example,

Might Enjoy?

K A (P)
(Selcuk, “Wax Poetic”) yes (0.86)
(Selcuk, “Wax Poetic”) no (0.14)
(Selcuk, “Jazzanova”) yes (0.72)
(Selcuk, “Jazzanova”) no (0.28)

(Maria Luisa, “Wax Poetic”) yes (0.35)
(Maria Luisa, “Wax Poetic”) no (0.65)
(Maria Luisa, “Jazzanova”) yes (0.62)
(Maria Luisa, “Jazzanova”) no (0.38)

is an uncertain database, keeping track of the likelihood of users of a music library
liking particular musicians.

Because, in the real world, no two tuples in a database can have the same
key value (for example, the “Might Enjoy” database in the foregoing example
cannot contain both ({ Selcuk, “Wax Poetic”), yes) and ((Selcuk, “Wax Poetic”),
no)), each probabilistic relation, R”, can be treated as a probability space (W, P),
where W = {[, ..., I} is a set of deterministic relation instances (each a different
possible world of RP), and for each key-attribute pair, ¢, P(f) gives the ratio of the
worlds containing ¢ against the total number of possible worlds:

_ HI; e W) A (te)}
(W] '

A possible tuple is a tuple that occurs in at least one possible world, that is, P(¢) > 0.
Note that, in the probabilistic relation, if for two tuples ¢ # ¢/, K(¢#) = K(¢'), then the
joint probability P(¢, 1) = 0. Moreover, } g, gk P(t) < 1. Green and Tannen
[2006] refer to probabilistic relations, where g, g« P(f) = 1, as probabilistic
or-set-tables (or p-or-set-tables).

In a probabilistic relation, the value Yz, x()—x P(¢) can never be greater than 1;
if, on the other hand, }°, .z (= P(t) < 1, then such a relation is referred to as an
incomplete probabilistic relation: for the key value, k, the probability distribution
for the corresponding attribute values is not completely known. In such cases, to
ensure that the probabilistic relation, R”, can be treated as a probability space,
often a special “unknown” value is introduced into the domain of A such that
ZzeRﬂK(z):k P(t) =1

Probabilistic relations can be easily generalized to complex multiattribute rela-
tions: a relation RP with the set of attributes Astr(RP) and key attributes Key(RP) C
Attr(RP) is said to be a probabilistic relation if there is a probability distribution
P that leads to different possible worlds. For example, we can also encode the

P(?)

3.5 Probabilistic Models

foregoing “Might Enjoy” relation in the form of a three-attribute p-or-set, with key
attribute pair (User, Band), as follows:

Might Enjoy?
User Band Likes (P)
Selcuk “Wax Poetic” yes (0.86)
no (0.14)
Selcuk “Jazzanova” yes (0.72)
no (0.28)
Maria Luisa “Wax Poetic” yes (0.35)
no (0.65)
Maria Luisa “Jazzanova” yes (0.62)
no (0.38)

3.5.2.2 Probabilistic Databases

We can use this possible worlds interpretation of the probabilistic knowledge to gen-
eralize the probabilistic databases to more complex multiattribute, multirelational
databases [Dalvi and Suciu, 2007]: Let R = {Ry, ..., R} be a database, where each
R; is arelation with a set of attributes A#tr(R;) and a key Key(R;) C Attr(R;). A prob-
abilistic database, R” is a database where the state of the database is not known;
instead the database can be in any of the finite number of possible worlds in
W = {1, ...,1,}, where each Z; is a possible-world instance of R”. Once again,
the probabilistic database R? can be treated as a probability space (W, P), such that

> P@I)=1.

IjEW
Also as before, given two tuples ¢ # ¢ in the same probabilistic relation, if K(z) =
K(?'), then P(t,¢') = 0. Moreover, >, R K()=k P(1) <1, where R} j Is the instance of
relation R; in the world instance Z;.

3.5.2.3 Queries in Probabilistic Databases

A common way to define the semantics of a Boolean statement, s, posed against a
probabilistic database, R? = (W, P), is to define it as the event that the statement s
is true in the possible worlds of the database [Dalvi and Suciu, 2007]. In other words,
if we denote the event that s is true in a database instance 7 as 7 | s, then

Ps)y= Y. P).
ZieW sit. Iiks

A probabilistic representation is said to be closed under a given database query
language if, for any query specified in the language, there is a corresponding prob-
abilistic table Res? [Green and Tannen, 2006; Sarma et al., 2006] that captures the
probability of occurrences of the result tuples in the possible worlds of the given
probabilistic database.

One way to define the results of a query posed against a probabilistic database is
to rely on the probabilistic interpretation specified earlier: Given a query, Q, posed

129

130

Common Representations of Multimedia Features

against a probabilistic database, R? = (W, P), the probability that the tuple ¢ is in
the result, Res, of Q can be computed as

P(t € Res) = > P(Z)).

TieW s.t. IjE=(teRes)

Therefore, under this interpretation, Res” is nothing but the probabilistic table con-
sisting of possible tuples (that are true in the result in at least one instance of the
world) and their probability distributions.

Other, consensus-based, definitions [Li and Deshpande, 2009] of answers to
queries over probabilistic databases take a distance function, A (which quantifies
the difference between a given pair of results, Res; and Res;, to a query Q), and
define the most consensus answer Res* as a feasible answer to the query such that
the expected distance between Res* and the answer to Q in the possible worlds of
the probabilistic database is minimized [Li and Deshpande, 2009]:

n
Res™ = arg min ZPi x A(Res*, Res;) ¢ ,
Res* .
i=1
where Res; is the answer in the possible world Z; with probability P;. When Res*
is constrained to belong to one of the possible worlds of the probabilistic database,
the consensus answer is referred to as the median answer; otherwise, it is referred to

as the mean answer.

3.5.2.4 Query Evaluation in Probabilistic Databases

Consider probabilistic relations, RY, ..., R}, and an n-ary relational operator Op.
Sarma et al. [2006] define the result of Op(R”, ..., R}) as the probabilistic relation
Res? = (W, P) such that

W={T|ZT=0p,....0,). T €Wy, T, € Wy}
and
P:P(I1 €W1,...,I,, EW,,).

Assuming that the probabilistic relations are independent from each other, we can
obtain the probability space of the possible worlds as follows:

P=PZy eW) x---x P(Z, e W,).

Because there are exponentially many possible worlds, in practice, enumeration
of all possible worlds to compute P would be prohibitively expensive. Therefore,
query processing systems often have to rely on algebraic systems that operate di-
rectly on the probabilistically encoded data, without having to enumerate their pos-
sible worlds. It is, however, important that algebraic operations on the probabilistic
databases lead to results that are consistent with the possible-world interpretation
(Figure 3.18). This often requires simplifying assumptions.

Disjoint-Independence
A probabilistic database, R”, is said to be disjoint-independent if any set of pos-
sible tuples with distinct keys is independent [Dalvi and Suciu, 2007]; that is,

Vi teeRr Key(t)#Key() for i P(t1 -+ o t) = P(t1) x - -+ x P(ty).

3.5 Probabilistic Models

(query processing in the probabilistic domain)
RP > Res P
Q A

|
1
|
1
1
1
v Q

(74, ... 7,)}, P)—> ({Resy, ... Resp,}, P)

(query processing in the ordinary domain)

Figure 3.18. Query processing in probabilistic databases.

Disjoint-independence, for example, would imply that, in the probabilistic relation

Might Enjoy?
User Band Likes (P)
Selcuk “Wax Poetic” yes (0.86)
no (0.14)
Selcuk “Jazzanova” yes (0.72)
no (0.28)

the probabilities associated to the tuples (Selcuk, “Wax Poetic”, yes) and (Selcuk,
“Jazannova”, yes) are independent from each other. Although this assumption can
be overly restrictive in many applications,” it can also be a very powerful help in
reducing the cost of query processing in the presence of uncertainty. For example,
this assumption would help simplify the term

P(Il € Wl, ...,In € Wn)
into a simpler form:
PZyeWr,....,T, e W) = P(Z1 e W) x - X P(Z, € Wh).

In fact, relying on the disjoint-independence assumption, we can further simplify
this as

n
P(ZyeWr.....L, e W) =[P x - x [[P@&) =] [[[P®.
tely tel, i=1 tel;
Note that, although this gives an efficient mechanism for computing the probability
of a given possible world, the cost of computing the probability that a tuple is in
the result by enumerating all the possible worlds would still be prohibitive. Dalvi
and Suciu [2007] showed that for queries without self-joins, computing the result
either is #P-hard (i.e., at least as hard as counting the accepting input strings for
any polynomial time Turing machine) or can be done very efficiently in polynomial

8 For example, a music recommendation engine that keeps track of users’ listening preferences would
never make the assumption that likes of a user are independent from each other.

131

132

Common Representations of Multimedia Features

(i) Select: when applying a selection predicate to a tuple with probability p, if the tuple
satisfies the condition, then assign to it probability p, otherwise eliminate the tuple
(i.e., assign the tuple probability 0 in the result)

(ii) Cross-product: when putting together two tuples with probabilities p; and p», set the
probability of the resulting tuple to p; x p».
(iii) Project:
B Disjoint Project: If the projection operation groups together a set of k disjoint
tuples (i.e., tuples that cannot belong to the same world) with probabilities
P1, ..., Dk then set the probability of the resulting distinct tuple to Zf.;l DPk-
B Independent Project: If the projection operation groups together a set of k in-
dependent tuples (i.e., tuples with independent probability distributions) with
probabilities p, ..., p, then set the probability of the resulting distinct tuple to

1- Hf‘;](l - D)

(iv) if the required operation is none of the above, then Fail.

Figure 3.19. Pseudo-code for a query evaluation algorithm for relational queries, without
selfjoins, over probabilistic databases (the algorithm terminates successfully in polynomial
time for some queries and fails for others).

time in the size of the database. Dalvi and Suciu [2007] and Re et al. [2006] give a
query evaluation algorithm for relational queries without self-joins that terminates
successfully in polynomial time for some queries and fails (again in polynomial time)
for some other (harder) queries (Figure 3.19).

Tuple-Independence

An even stronger independence assumption is the tuple-independence assump-
tion, where any pairs of tuples in a probabilistic database are assumed to be indepen-
dent. Obviously, not all domain-independent probabilistic relations can be encoded
as tuple-independent relations. For example, the tuples of the relation

Belongs_to”
Object Band (P)
Audio_file;s “Wax Poetic” (0.35)
“Jazzanova” (0.6)
“Seu George” (0.05)
Audio_fileso, ~ “Nina Simone” (0.82)

cannot be independently selected from each other because of the disjointness re-
quirement imposed by the “Object” key attribute, without further loss of informa-
tion. On the other hand, thanks to the binary (“yes”/”no”) domain of the “Likes”
attribute, the “Might Enjoy” relation in the earlier examples can also be encoded
as a probabilistic relation, where there are no key constraints to prevent a tuple-
independence assumption:

Might Enjoy”?

User Band
Selcuk “Wax Poetic”
Selcuk “Jazzanova”

Maria Luisa “Wax Poetic”
Maria Luisa “Jazzanova”

(P)

(0.86)
(0.72)
(0.35)
(0.62)

3.5 Probabilistic Models

One advantage of the tuple-independence assumption is that Boolean state-
ments can be efficiently evaluated using ordered binary decision diagrams
(OBDDs), which can compactly represent large Boolean expressions [Meinel and
Theobald, 1998]. The OBDD is constructed from a given Boolean statement, s, us-
ing a variable elimination process followed by redundancy elimination: Let x be a
variable in s; we can rewrite the Boolean statement s as follows:

s=(xASs|)V(EAS),

where s|, is the Boolean statement where x is replaced with “true” and s|; is the
statement where x is replaced with “false”. Visually, this can be represented as in
Figure 3.20. The OBDD creation process involves repeated application of this rule
to create a decision tree (see Section 9.1). As an example, consider the query, Q,

SELECT Object

FROM Might_Enjoy m, Belongs_to b

WHERE m.Band = b.Band

over the probabilistic relations

Might Enjoy”

User Band (tuple, P)
Selcuk “Wax Poetic” (t11, 0.86)
Selcuk “Jazzanova” (t1.2, 0.72)
Maria Luisa “Wax Poetic” (t; 3, 0.35)
and
Belongs_to?
Object Band (tuple, P)
Audio_file;s “Wax Poetic” (t2.1, 0.35)

Audio_fileg» “Jazzanova”

(t2,2, 0.6)

133

134

Common Representations of Multimedia Features

S Sl_

X X
Figure 3.20. Variable elimination.

Note that, here, each tuple is given a tuple ID, which also serves as the tuple variable:
if in the result £, ; = “true”, then the answer is computed in a possible world where
the corresponding tuple exists; otherwise the result is computed in a possible world
where the tuple does not exist.

Given the foregoing query and the probabilistic relations, we can represent the
results of the query Q in the form of a logical statement of the form

s=(t1 A1)V (haAt2) V(s Ab).

If s is true, then there is at least one tuple in the result. Note that each conjunct
(t; A tj) corresponds to a possible result in the output. Therefore, statements of this
form are also referred to as the lineage of the query results.

Given the (arbitrarily selected) tuple order = = [t1.1, ©.1, h1.2, ©2.2, 4 3], the vari-
able elimination process for this statement would lead to the decision tree shown in
Figure 3.21. To evaluate the expression s for a given set of tuple truths/falsehoods,
we follow a path from the root to one of the leaves following the solid edge if the
tuple is in the possible world and the dashed edge if it is not. The leaf gives the value
of the expression in the selected possible world. Note that decision trees can be used
to associate confidences to the statements: because paths are pairwise mutually ex-
clusive (or disjoint), this can be done simply by summing up the probabilities of
each path leading to 1. This summation can be performed in a bottom-up manner:
the probability, P(n), of a node, n, for a tuple variable ¢ and with children n; for t =
“false” and n, for t = “true” can be computed as P(n) = P(n,)P(t) + P(n;)P(%).

Note that this decision-tree representation can be redundant and further simpli-
fied by determining the cases where truth or falsehood can be established earlier
or overlaps between substatements can be determined and leveraged. To see this
more clearly, consider for example the case where we are trying to see if the tuple

Figure 3.21. Decision tree fragment (only some of the edges are shown).

3.5 Probabilistic Models

Figure 3.22. OBDD for the statement s’ = (t;1 Ata1) V (t1.3 A ta1).

(“Audio_file1s”) is in the result of the query, O, or not. We can write the condi-
tions in which this tuple is in the result of Q in the form of the following Boolean
statement:

s = ([1’1 A 1‘2,1) Vv ([1’3 A [2,1)

Figure 3.22 shows the corresponding OBDD for the same tuple order m =
[t1.1, ©21, t1.2, 2.2, t1.3]. Note that certain redundancies in the graph have been elim-
inated; for example, for the right branch of the graph, the truth of ¢ 3 is not being
considered at all.

In general, based on the chosen variable order, the size of the OBDD can vary
from constant to exponential, and constructing small OBDDs is an NP-hard prob-
lem [Meinel and Theobald, 1998]. On the other hand, Olteanu and Huang [2009]
showed that for a large class of useful database queries, OBDDs are polynomial
size in the number of query variables. Meinel and Theobald [1998] also showed that
the OBDD does not need to be materialized in its entirety before computing its
probability, helping reduce the cost of confidence calculation process.

3.5.3 Bayesian Models: Bayesian Networks, Language
and Generative Models

So far, we have discussed probabilistic models in which different observations are
mostly independent from each other. In many real-world situations, however, there
are dependencies between observations (such as the color of an image and its like-
lihood of corresponding to a “bright day”). In multimedia databases, knowledge
of such dependencies can be leveraged to make inferences that can be useful in
retrieval.

Bayes’ rule rewrites the definition of the conditional probability, P(X = a|Y =
b), in a way that relates the conditional and marginal probabilities of the observa-
tions X =aand Y= b:

P(Y=bX=a)P(X=a)
P(Y=1D0)

P(X=alY=b)=

The definition for continuous random variables in terms of probability density func-
tions is analogous.

135

136

Free ebooks ==> www.Ebook777.com

Common Representations of Multimedia Features

While being simple, the Bayesian rule provides the fundamental basis for sta-
tistical inference and belief revision in the presence of new observations. Let H be
a random variable denoting available hypotheses and E denote a random variable
denoting evidences. Then, the Bayesian rule can be used to revise the hypothesis to
account for the new evidence as follows:

P(E=e¢|H=h)P(H=h)

P(E =e) '
In other words, the likelihood of a given hypothesis is computed based on the prior
probability of the hypothesis, the likelihood of the event given the hypothesis, and
the marginal probability of the event (under all hypotheses). For example, in mul-
timedia database systems, this form of Bayesian inference is commonly applied to
capture the user’s relevance feedback (Section 12.4).

P(H=h|E =¢) =

3.5.3.1 Bayesian Networks
A Bayesian network is a node-labeled graph, G(V, E), where the nodes in V rep-
resent variables, and edges in E between the nodes represent the relationships be-
tween the probability distributions of the corresponding variables. Each node v; € V
is labeled with a conditional probability function

P(vi = yi | Vinin = Xini1 A -+ A Vinim = Xinim)s
where {vin.i1, - .., Vinim} are nodes from which v; has incoming edges. Consequently,
Bayesian networks can be used for representing probabilistic relationships between
variables (e.g., objects, properties of the objects, or beliefs about the properties
of the objects) [Pearl, 1985]. In fact, once they are fully specified, Bayesian net-
works can be used for answering probabilistic queries given certain observations.
However, in many cases, both the structure and the parameters of the network
have to be learned through iterative and sampling-based heuristics, such as expec-
tation maximization (EM) [Dempster ef al., 1977] and Markov chain Monte Carlo
(MCMC) [Andrieu et al., 2003] algorithms. We discuss the EM algorithm in detail
in Section 9.7.4.3, within the context of learning the structure of a special type of
Bayesian networks, called Hidden Markov Models (HMMs).

3.5.3.2 Language Models

Language modeling is an example of the use of the Bayesian approach to retrieval,
most successfully applied to (text) information retrieval problems [Lafferty and
Zhai, 2001; Ponte and Croft, 1998]. A language model is a probability distribution
that captures the statistical regularities of features (e.g., word distribution) of stan-
dard collections (e.g., natural language use) [Rosenfeld, 2000]. In language model-
ing, given a database, D, for each feature f; and object o; € D, the probability p(fi|o;)
is estimated and indexed. Given a query, g = (q1, - . . , gm), With m features, for each
object o0; € D, the matching likelihood is estimated as

p(qlo) =[] p(ailo).
aicq
Then, given p(o;) and using Bayes’ theorem, we can estimate the a posteriori prob-
ability (i.e., the matching probability) of the object, o}, as
p(4loj)p (o))

p(ojlq) = (@)

Wwww.Ebook777.conl

http://www.ebook777.com

3.5 Probabilistic Models

Because, given a query g, p(q) is constant, the preceding term is proportional to
p(qloj)p(0;). Thus, the term p(glo;)p(0;) can be used to rank objects in the database
with respect to the query g.

Smoothing

In order to take into account the distribution of the features in the overall col-
lection, the object language model, p(f;|o;), is often smoothed using a background
collection model, p (f;|D). This smoothing can be performed using simple linear in-
terpolation,

pi(filoj) = Ap(filoy) + (1 — AMp(filD),
where 0 < A <1 is a parameter estimated empirically or trained using an hidden
Markov model (HMM) [Miller et al., 1999].
An alternative smoothing technique is the Dirichlet smoothing [Zhai and Laf-
ferty, 2004], where p(f;|o;) is computed as

count(f;, oj) + up (filD)

pu(filoj) =
M(!]) |0/|+M

3

where count(fi, 0j) is the number of occurrences of the feature f; in object o; (e.g.,
count of a term in a document), |o;| is the size of o; in terms of the number of features
(e.g., number of words in the given document), and u is the smoothing parameter.

Translation

Berger and Lafferty [1999] extend the model by semantic smoothing, where
relationships between features are taken into account. In particular, Berger and
Lafferty [1999] compute a translation model, #(f;|fx) that relates the feature f; to
the feature f; and, using this model, computes p(qlo;) as

pglo) =] wailfp(flop).

4Gi€q fr

For example, Lafferty and Zhai [2001] use Markov chains on features (words) and
objects (documents) to estimate the amount of translation needed to obtain the
query model. We provide details of this Markov chain—based translation technique
in Section 3.5.3.3.

3.5.3.3 Generative Models
Language model-based retrieval is a special case of the more general set of proba-
bilistic schemes, called generative models.

Generative Query Models

Generative query models, such as the one presented by Lafferty and Zhai [2001],
view the query g as being generated by a probabilistic process corresponding to the
user. The query model encodes the user’s preferences and the context in which the
query is formulated. Similarly, each object in the database is also treated as being
generated through a probabilistic process associated with the corresponding source.
In other words, the object model encodes information about the document and its
source.

More formally, the user, u, generates the query, g, by selecting the parameter
values, 6,, of the query model with probability p (6,|u); the query g is then generated

137

138

Common Representations of Multimedia Features

u >0 - g
;J(Qq |zr) g X p(qlﬁ‘ A)
p(f‘ef 6,.0,) ‘rel
0|s Vg 0,
. MP’(Js) -0 P(0|)___ﬂ

Figure 3.23. Generative model for object relevance assessment.

using this model according to the distribution p(g|6,). The object, o, is also generated
through a similar process, where the source, s, selects an object model 6, according
to the distribution p (6,|s) and the object o is generated using these parameter values
according to p(0|6,).

Given a database, D, and an object, o;, Lafferty and Zhai [2001] model the rele-
vance of o; to the query g through a binary relevance variable, rel;, which takes the
true or false value based on models 6, and 6,, according to p(rel;|6,, 6,) (Figure 3.23).

Given these models, the amount of imprecision Z caused by returning a set R of
results is measured as

Z(R|u, q, s, D)=/L(R, O)p (Olu, q, s, D)db,
e

where 0 is the set of all parameters of the models, ® is the set of all values these
parameters can take, and L(R, 0) is the information loss associated to the objects
in R according to the collective model 6. Given this, the retrieval problem can be
reduced [Lafferty and Zhai, 2001] to finding the set, R, of objects, such that

Ropi = argminI(R|u, q, s, D).
R

Within this framework, estimating the relevance of object o; reduces to the prob-
lem of estimating the query and object models, 6, and 6,. For example, as we men-
tioned earlier, Lafferty and Zhai [2001] estimate the query model using Markov
chains on features and objects; more specifically, Lafferty and Zhai [2001] focus on
the text retrieval problem, where words are the features and documents are the
objects. As in PageRank [Brin and Page, 1998; Page ef al., 1998] (where the im-
portance of Web pages is found using a random-walk—based connectedness analysis
over the Web graph — see Sections 3.5.4 and 6.3.1.2), Lafferty and Zhai [2001] use
a random-walk-based analysis to discover the translation probability, #(g|w), from
the document word w to query term g. The random walk process starts with picking
a word, wy, with probability, p (wo|u). After this first step, the process picks a doc-
ument, dy (using distribution p(dy|wp)) with probability « or stops with probability
1 — «. Here, the transition probability p (dy|wp) is computed as

p(woldo)p(do)
Y aep P (wold)p(d)’

where p(-|d) is the likelihood of the word given document d and p(d) is the prior

probability of document d. Note that p(d;) can simply be ﬁ or can reflect some

other importance measure for the document d; in the database. After this, the

p(dolwo) =

3.5 Probabilistic Models

process picks a word wy with probability distribution p (w1 |dy) and the process con-
tinues as before.

This random walk process can be represented using two stochastic matrices:
word-to-document transition matrix A, and document-to-word transition matrix 5.
The generation probability, p(g;|u), for the query word, g;, is computed by analyz-
ing these two matrices and finding the probability of the process stopping at word g;
starting from the initial probability distribution, p(-|u).

Dirichlet Models

As we see in Chapters 8 and 9, many retrieval algorithms rely on partitioning of
the data into sets or clusters of objects, each with a distinct property. These distinct
properties help the user focus on relevant object sets during search.

Generative Dirichlet processes [Ferguson, 1973; Teh er al., 2003] are often used
to obtain prior probability distributions when seeking these classes [Veeramacha-
neni et al., 2005]. A Dirichlet process (DP) models a given set, O = {x1, ..., x,},
of observations using the set of corresponding parameters, {p1, ..., pn}, that define
each class. Each p; is drawn independently and identically from a random distribu-
tion G, whose marginal distributions are Dirichlet distributed. More specifically, if
G ~ DP(a, H), with a base distribution H and a concentration parameter, «, then
for any finite measurable partition P; through Py,

(G1, ey Gk> ~ Dir(aH1, ey OlHk).
The Dirichlet process has the property that each G; is distributed in such a way that
E[G|] = Hj],

H:(1 - H))
2r~1 . 4 j
o161 = a+1

and

> Gi=1.

Intuitively the base distribution, H; gives the mean of the partition and «; gives the
inverse of its variance. Note that G is discrete, and thus multiple p;s can take the
same value. When this occurs, we say that the corresponding xs with the same p
belong to the same cluster.

Another important property of the Dirichlet process model is that, given a set of
observations, O = {xi, ..., x,}, the parameter, p,1, for the next observation can be
predicted from the {p1, ..., p,} as follows:

1 n
Pn+1|p1, cees Pn ™Y a+n ((XH+ l_zlapl>)

where §, is a point mass (i.e., distribution) centered at p. This is equivalent to stating
that

1 m
pn+1|:017 <o Pn ™Y a+n ((ZH+ZHI 8!’?) ’

=1

139

140

Common Representations of Multimedia Features

where pf, ..., pj, are unique parameters observed so far and n; is the number of
repeats for pj. Note that the larger the observation count, n, is, the higher is the
contribution of §,; to pn41. This is sometimes visualized through a Chinese restau-
rant process analogy: Consider a restaurant with an infinite number of tables.

m The first customer sits at some table.

m Each new customer decides whether to sit at one of the tables with prior cus-
tomers or to sit at a new table. The customer sits at a new table with probability
proportional to «. If the customer decides to sit at a table with prior customers,
on the other hand, she picks a table with probability proportional to the number
of customers already sitting in that table.

In other words, the Dirichlet process model is especially suitable for modeling sce-
narios where the larger clusters attract more new members (this is also referred to
as the rich-gets-richer phenomenon).

Note that the Dirichlet process model is an infinite mixture model; that is, when
we state that G ~ DP(«, H), we do not need to specify the number of partitions.
Consequently, the Dirichlet process model can be used as a generative model for
a countably infinite number of clusters of objects. In practice, however, given a set
of observations, only a small number of clusters are modeled; in fact, the expected
number of components is logarithmic in the number of observations. This is because
the Dirichlet process generates clusters in a way that favors already existing clusters.
The fact that one does not need to specify the number of clusters as an input param-
eter makes the Dirichlet processes a more powerful tool than other schemes, such
as finite mixture models, that assume a fixed number of clusters. Dirichlet process
models are also popular as generative models, because there exists a so called stick-
breaking construction, which recursively breaks a unit-length stick into pieces, each
corresponding to one of the partitions and providing prior probability for the corre-
sponding cluster [[shwaran and James, 2001; Sethuraman, 1994].

3.5.4 Markovian Models

Probabilistic models can also be used for modeling the dynamic aspects of multime-
dia data (such as the temporal aspects of audio) and processes.

A process that carries a degree of indeterminacy in its evolution is called a
stochastic (or probabilistic) process; the evolution of such a process is described
by a probability distribution based on the current and past states of the process (and
possibly on external events).

A stochastic process is said to be Markovian if the conditional probability dis-
tributions of the future states depend only on the present (and not on the past).

A Markov chain is a discrete-time stochastic process that can be modeled using
a transition graph, G(V, E, p), where the vertices, vy, ..., v, € V, are the various
states of the process, the edges are the possible transitions between these states, and
p: E—[0,1] is a function associating transition probabilities to the edges of the
graph (though the edges with 0 probability are often dropped). A random walk on
a graph, G(V, E), is simply a Markov chain whose state at any time is described by a
vertex of G and the transition probability is distributed equally among all outgoing
edges.

3.5 Probabilistic Models

s1| s2 s3
s1| 0 1 0

s2 | 1/3 0 2/3
s3 | 1/2 0 1/2

1 2/3

Figure 3.24. A Markov chain and its transition matrix.

Transition Matrix Representation

The transition probabilities for a Markov model can also be represented in a ma-
trix form (Figure 3.24). The (i, j)th element of this matrix, 7;;, describes the prob-
ability that, given that the current state is v; € V, the process will be in state v; € V
next time unit; that is,

Ti; = p(eij) = P(Snow+1 = VjlSnow = vi).

Because the graph captures all possible transitions, the transition probabilities asso-
ciated to the edges outgoing from any state v; € V add up to 1:

Y L= plej)=1

U/'GV U/'GV

Because the state transitions are independent of the past states, given this matrix of
one-step transition probabilities, the k-step transition probabilities can be computed
by taking the kth power of the transition matrix. Thus, given an initial state modeled
as an n-dimensional probability distribution vector, 7y, the probability distribution
vector, 7k, representing the k-step can be computed as

7 = Tr 7.

If the transition matrix 7T is irreducible (i.e., each state is accessible from all other
states) and aperiodic (i.e., for any state v;, the greatest common divisor of the set
{k > 1|T¥ > 0} is equal to 1), then in the long run, the Markov chain reaches a
unique stationary distribution independent of the initial distribution. In such cases,
it is possible to study this stationary distribution.

Stationary Distribution and Proximity

When the number of states of the Markov chain is small, it is relatively easy to
solve for the stationary distribution. In general, the components of the first eigen-
vector’ of the transition matrix of a random walk graph will give the portion of the
time spent at each node after an infinite run. The eigenvector corresponding to the
second eigenvalue, on the other hand, is known to serve as a proximity measure
for how long it takes for the walk to reach each vertex [McSherry, 2001]. However,
when the state space is large, an iterative method (optimized for quick convergence
through appropriate decompositions) is generally preferred [Stewart and Wu, 1992];
for example, Brin and Page [1998] and Page er al. [1998] rely on a power iteration
method to calculate the dominant eigenvalue (see Section 6.3).

These stationary distributions of Markovian models are used heavily in many
multimedia, web, and social network mining applications. For example, popular

9 See Section 4.2.6 for the definitions of the eigenvalue and eigenvector.

141

142

Common Representations of Multimedia Features

Web analysis algorithms, such as HITS [Gibson ef al., 1998; Kleinberg, 1999] or
PageRank [Brin and Page, 1998; Page et al., 1998], rely on the analysis of the hy-
perlink structure of the Web and use the stationary distributions of the random
walk graphs to measure the importances of the web pages given a user query.
Candan and Li [2000] used random-walk-based connectedness analysis to mine im-
plicit associations between web pages. See Section 6.3 for more details of these link
analysis applications. Also, see Section 8.2.3 for the use of Markovian models in
graph partitioning.

Unfortunately, not all transition matrices can guarantee stationary behavior.
Also, in many cases users are not interested in the stationary state behaviors of
the system, but for example in how quickly a system converges to the stationary
state [Lin and Candan, 2007] or more generally, whether a given condition is true
at any (bounded) future time. These problems generally require matrix algebraic
solutions that are beyond the scope of this book.

Hidden Markov Models

Hidden Markov models (HMMs), where some of the states are hidden (i.e., un-
known), but variables that depend on these states are observable, are commonly
used in multimedia pattern recognition. This involves training (i.e., given a se-
quence of observations, learning the parameters of the underlying HMM) and pat-
tern recognition (i.e., given the parameters of an HMM, finding the most likely se-
quence of states that would produce a given output). We discuss HMMs and their
use in classification in Section 9.7.

3.6 SUMMARY

In this chapter, we have seen that, despite the diversity of features one can use
to capture the information of interest in a given media object, most of these
can be represented using a handful of common feature representations: vectors,
strings/sequences, graphs/trees, and fuzzy or probabilistic based representations.
Thus, in Chapters 5 through 10, we present data structures and algorithms that rely
on the properties of these representations for efficient and effective retrieval of mul-
timedia data. On the other hand, before a multimedia database system can leverage
these data structures and algorithms, it first needs to identify the most relevant and
important features and focus the available system resources on those. In the next
chapter, we first discuss how to select the best feature set, among the alternative
features, for indexing and retrieval of media data.

4

Feature Quality and Independence

Why and How?

For most media types, there are multiple features that one can use for indexing
and retrieval. For example, an image can be retrieved based on its color histogram,
texture content, or edge distribution, or on the shapes of its segments and their
spatial relationships. In fact, even when one considers a single feature type, such as
a color histogram, one may be able to choose from multiple alternative sets of base
colors to represent images in a given database.

Although it might be argued that storing more features might be better in terms
of enabling more ways of accessing the data, in practice indexing more features (or
having more feature dimensions to represent the data) is not always an effective way
of managing a database:

m Naturally, more features extracted mean more storage space, more feature ex-
traction time, and higher cost of index management. In fact, as we see in Chap-
ter 7, some of the index structures require exponential storage space in terms
of the features that are used for indexing. Having a large number of features
also implies that pairwise object similarity/distance computations will be more
expensive.

Although these are valid concerns (for example, storage space and commu-
nication bandwidth concerns motivate media compression algorithms), they are
not the primary reasons why multimedia databases tend to carefully select the
features to be used for indexing and retrieval.

B More importantly, as we have seen in Section 3.5.1.2, not all features are inde-
pendent from each other, and this might negatively affect retrieval and relevance
feedback.

Because all features are not equally important (Section 4.2), to support ef-
fective retrieval we may want to pick features that are important and mutually
independent for indexing, and drop the rest from consideration.

® A fundamental problem with having to deal with a large number of dimensions
is that searches in high-dimensional vector spaces suffer from a dimensionality
curse: range and nearest neighbor searches in high dimensional spaces fail to

143

144

Feature Quality and Independence

B

2o

=
>

e
<
‘.-.‘-?:‘:‘135-

57,

S

Figure 4.1. Equidistance spheres enveloping a query point in a three-dimensional Euclidean
space.

benefit from available index structures, and searches deteriorate to sequential
scans of the entire database.

4.1 DIMENSIONALITY CURSE

To understand the dimensionality curse problem, let us consider what happens if
we start with a small query range and increase the radius of the query step by step
(Figure 4.1).

In two-dimensional Euclidean space, a query with range r forms a circle with
area 72, In three-dimensional Euclidean space, the same query spans a sphere with
volume %m‘g. More generally, in an n-dimensional Euclidean space, the volume cov-
ered by arange query with radius r is ¢r”, for some constant, c. Consequently, the dif-
ference in volume between two queries with the same center, but with radii (i — 1)
and ir (for some r, i > 0), respectively, can be calculated as

vola(i — 1, 1) = c(ir)* — c((i — 1)r)* = O@" ™).

Hence, if we consider the cases where the data points are uniformly distributed
in the vector space, we can see that the ratio of data points that fall into the (i + 1)th
slice (between the spheres of radii (i + 1)r and ir) to the points that fall into the
previous, ith, slice is 0((#)"‘1). In other words, because for all i > 0, # > 0, the
number of data points that lie at a distance from the query increases exponentially
with each step away from the query point (Figure 4.2). This implies that whereas
queries with small ranges are not likely to return any matches, sufficiently large
query ranges will return too many matches. Experiments with real data sets indeed
have shown that the distributions of the distances between data points are rarely
uniform and instead often follow a power law [Belussi and Faloutsos, 1998]: in a
given d-dimensional space, the number of pairs of elements within a given distance,
r, follows the formula

pairs(r) = ¢ x r,

4.2 Feature Selection

Sample Vector Space Score Distribution
(assuming uniform data distribution)

0 02 04 06 058 5core 1

Figure 4.2. Score distribution assuming uniformly distributed data. Here, a score of 1 means
that the Euclidean distance between the data point and the query is equal to O; a score of
0, on the other hand, corresponds to the largest possible distance between any two data
points in the vector space. Note that, when the number of dimensions is larger, the curve
becomes steeper.

where ¢ is a proportionality constant. More generally, Beyer ef al. [1999] showed
that, if a distance measure A, defined over n-dimensional vector space has the prop-
erty that, given the data and query distributions,

variance(A, (g, Vo))
expected(A,(Vg, V)

limn—>oo 05

then the nearest and the furthest points from the query converge as n increases.
Consequently, the nearest neighbor query looses its meaning and, of course, effec-
tiveness.

4.2 FEATURE SELECTION

Because of the dimensionality curse and the other reasons listed previously, multi-
media databases do not use all available features for indexing and retrieval. Instead,
the initial step of multimedia database design involves a feature selection (or di-
mensionality reduction) phase, in which data are transformed and projected in such
a way that the selected features (or dimensions) of the data are the important ones
(Figure 4.3). A feature might be important for indexing and retrieval for various
reasons:

B Application semantics: The feature might be important for the application do-
main. For example, the location of the eyes and their spatial separation is impor-
tant in a mugshot database.

B Perception impact: The feature might be what users perceive more than the oth-
ers. For example, the human eye is more sensitive to some colors than to others.
Similarly, the human eye is more sensitive to contrast (changes in colors) and
motion (changes in composition).

m Discrimination power: The feature might help differentiate objects in the
database from each other. For example, in a mugshot database with a diverse
population of individuals, hair color might be an important discriminator of
faces.

145

146

Feature Quality and Independence

®
@ o
@] @ @
e ® oa oA
® e ©)
® ® e
e o "
° / o ® L.
@ @
o @ &
@ ®
(a) (b)

Figure 4.3. Dimensionality reduction involves transforming the original database in such a
way that the important aspects of the data are emphasized and the less important dimen-
sions are eliminated by projecting the data on the remaining ones: in this example, one of
the features of the original data has been eliminated from further consideration: (a) Original
database, (b) Transformed database.

m Object description power: A feature might be important for a given object, if it
is a good descriptor of it. This would include how dominant the feature is in
this object or how well this particular feature differentiates this particular object
from the others.

m Query description power: A feature might be important for retrieval if it is dom-
inant in the user query. The importance of the query criteria might be user spec-
ified or, in QBE systems, might be learned by analyzing the sample provided by
the user. This knowledge can be revised explicitly by the user or transparently
through relevance feedback, after initial candidates are returned by the system
to the user.

B Query workload: The feature might be popular as a query criterion. This is re-
lated to application semantics; but in some domains, what is interesting to the
user population might not be static, but evolve over time. For example, in search
engines, the set of popular query keywords changes with events in the real world.

Note that some of the criteria (such as application semantics and perception
impact) of feature importance just listed might be quantifiable in advance, before
the database is designed. In some cases, there may also be studies establishing the
discriminatory power of features for the data type from which the data set is drawn.
For example, it is observed that the frequency distribution of words in a document
collection often follows the so-called Zipf’s law' [Li, 1992; Zipf, 1949]; that is, they
have Zipfian distributions (Section 3.5): if the N words in the dictionary are ranked
in nonincreasing order of frequencies, then the probability that the word with rank
r occurs is

fX=ra) = 1/r

Yooy 1w’

! Many other popularity phenomena, such as web requests [Breslau e al., 1999] and query popularity in
peer-to-peer (P2P) sites [Sripanidkulchai, 2001], are known to show Zipfian characteristics.

4.2 Feature Selection

Frequency
Frequency

Rank (of the keyword) stop words Rank (of the keyword)
(a) (b)

Figure 4.4. (a) The distribution of keywords in a given collection often follows the so-called
Zipf's law and, thus, (b) most text retrieval algorithms pre-process the data to eliminate those
keywords that occur too frequently (these are often referred to as the “stop words”).

for some « close to 1. As shown in Figure 4.4(a), this distribution is very skewed, with
a handful of words occurring very often. Because most documents in the database
will contain one or more instances of these hot keywords, they can often be elim-
inated from consideration before the data are indexed; thus, these words are also
referred to as the stop words [Francis and Kucera, 1982; Luhn, 1957] (Figure 4.4(b)).
Different stop word lists are available for different languages; for example the stop
word list for the English language would contain highly common words, such as “a”,
“an”, and “the”.

Other criteria, such as discrimination power specific to a particular data collec-
tion, are available only as the data and query corpus become available.

Example 4.2.1 (TF-IDF weights for text retrieval): In text retrieval, documents are
often represented in the form of bags of keywords, where for each document, the
corresponding bag contains the keywords (i.e., features used for indexing and re-
trieval) that the document includes.

Because a good feature (i.e., keyword) needs to represent the content of the
corresponding object (i.e., text document) well, the weight of a given keyword k in
a given document d is proportional to its frequency in d:

count(k, d)

ke d) = =52

This is referred to as the term frequency (TF) component of the keyword weight.

In addition, a good feature must also help discriminate the object containing it
from others in the database, D. This is captured by a term referred to as the inverse
document frequency (IDF):

number_of-documents(D))

idf (k, D) = I
idf (k. D) = log <number0fdocumentscontaining(k, D)

Thus, the TF-IDF weight of the keyword k for document d in database D combines
these two aspects of feature weights (Figure 4.5):

tf _idf (k, d, D) = tf(k, d) idf(k, D).

An alternative formulation normalizes the TF-IDF weights to a value between 0
and 1, by dividing the inverse document frequency value, idf(k, D), by the maximum

147

148

Feature Quality and Independence

==EECFELT

f2 better than 1
(a) (b)

Figure 4.5. TFIDF weights: (a) term frequency reflects how well the feature represents the
object (feature f, is better than f,) and (b) inverse document frequency represents how well
it discriminates the corresponding object in the database (feature f, discriminates better
than fq).

1 f1 better than f2

inverse document frequency value, max_idf, for all documents and keywords in the
database:
idf (k, D)
max_idf

Although the foregoing formulas are suitable for setting the weights for key-
words in the documents in the database, they may not be suitable for setting the
weight of the keywords in the query. In particular, by the simple action of including
a keyword in the query (or by selecting a document that contains the keyword as
an example), the user is effectively giving more weight to this keyword than other
keywords that do not appear in the query. Salton and Buckley [1988b] suggest that
the TF formula

normalized tf idf (k, d, D) = tf(k, d) x

count(k,q)

tf(k,q) =05 L sieeld)
f(k. q) + max_term_frequency(q)

should be used for query keywords. Note that, here, the TF value is normalized such
that only half of the TF weight is affected by the term frequency value.

Similarly to the corpus-specific discrimination power of the features, the query
description power of a feature is also known only immediately before query pro-
cessing or after the user’s relevance feedback; thus it cannot always be taken into
account at the database design time. Therefore, whereas some of the feature impor-
tance criteria can be considered for selecting features for indexing, others need to
be leveraged only for query processing.

4.2.1 False Hits and Misses

Feature selection and dimensionality reduction usually involve some transforma-
tion of the data to highlight which features are important features. The features that
are not important are then eliminated from consideration (see Figure 4.3). Conse-
quently, the process is inherently lossy.

Let us consider the data space and the range query depicted in Figure 4.6(a).
In this figure, three objects are specially highlighted: A is the query object, B is an

4.2 Feature Selection

(a) (b)

Figure 4.6. Transformations and projections that result in overestimations of distances cause
misses during query processing; underestimations of distances, on the other hand, cause
false hits: (a) Original database; (b) Transformed database, here B is a false hit (A} < Aj)
and C is a miss (A} > Ap).

object that is outside of the query range (and thus is not a result), and C is an ob-
ject that falls in the query range, and thus is an answer to this particular query.
Figure 4.6(b), on the other hand, shows the same query in a space which is ob-
tained through dimensionality reduction. In this new space, object B falls in the
query range, whereas C is now outside of the query range:

B Object B is called a false hit. False hits are generally acceptable from a query
processing perspective, because they can be eliminated through postprocessing.
Thus their major impact is an increase in query processing cost.

m Object C is a miss. Misses are unacceptable in many applications: because an
object missed due to a transformation is not available for consideration after the
query is processed, a miss cannot be corrected by a postprocessing step.

As noted in Figure 4.6(b), false hits are caused by transformations that under-
estimate the distances in the original data space. Misses, on the other hand, are
caused by transformations that overestimate object distances. Thus, in many cases,
transformations that overestimate distances are not acceptable for dimensionality
reduction.

Example 4.2.2 (Distance bounding): Let D be an image database, indexed based on
color histograms: for images o;, 0; € D,

B hist,,(0;) denotes an m-dimensional color histogram vector for object o; and
B Aguchisi, (0, 0j) denotes the Euclidean distance between histograms of images o;
and o;.
j

One way to reduce the number of dimensions used for indexing would be to trans-
form the database by mapping images onto a 3D vector space, where the dimensions
correspond to the amounts of green, red, and blue the images have: if o; € D has M
pixels, then

1 & , 1 & , 1 & ,
rgb(o;) = <M E red(pixel(k, 0;)), i E green(pixel(k, 0;)), ” E blue(pixel(k, 05))> .
k=1 k=1 k=1

149

150

Feature Quality and Independence

We can define Agyc r5(0;, 0j) as the Euclidean distance between the images in
the new RGB space. Faloutsos er al. [1994] showed that the distances in the his-
togram space and the transformed RGB space are related to each other:

AEMng(Oi, 0]’) < C(m)AEuc,histm(Oh Oj)v

where the value of the coefficient ¢(m) can be computed based on the value of m .
This is referred to as the distance bounding theorem.

The transformation described in the preceding example distorts the distances. How-
ever, the amount of distortion has a predictable upper bound, c¢(m). Consequently,
overestimations of distances can be avoided by taking the query range, §,, specified
by the user in the original histogram space and using % as a query range in the
RGB space. Under these conditions, the distance bounding theorem implies that
the RGB space will only underestimate distances, and thus no object will be missed
despite the significant amount of information loss during the transformation.

4.2.2 Feature Significance in the Information-Theoretic Sense

In general, a feature that has higher occurrence in the database is less interesting
for indexing. This is because it is a poor discriminator of the objects (i.e., too many
objects will match the query based on this feature) and thus might not support ef-
fective retrieval. In information theory, this is referred to as the information content
of an event. Given a set of events,

m those that have higher frequencies (i.e., high occurrence rates) carry less infor-
mation, whereas
m those that have low frequencies carry more information.

Intuitively, a solar eclipse is more interesting (and a better discriminator of days)
than a sunset, because solar eclipses occur less often than sunsets. Shannon en-
tropy [Shannon, 1950] measures the information content, in a probabilistic sense,
in terms of the uncertainty associated with an event.

Definition 4.2.1 (Information Content (Entropy)): Let E ={ey,...,e,} bea
set of mutually exclusive possible events, and let p(e;) be the probability of
event e; occurring. Then, the information content (or uncertainty), 1(e;), of
event e; is defined as

I(e;) = —loga p(e:).

The information content (or uncertainty) of the entire system is, then, defined
as the expected information content of the event set:

n
H(E) = =) p(e)log: p(e:).
i=1
Based on this definition, if an event has a high p(e;)log, ﬁ value, then it in-
creases the overall uncertainty in the system. Table 4.1 shows the entropy of a sys-
tem with two possible events, £ = {A, B}, under different probability distributions.

4.2 Feature Selection

Table 4.1. Entropy of a system with two events, E = {A, B}, under different event
probability distributions

p(A) p(B) —log,p(A) —log;p(B) —p(A)log,p(A) —p(B)log,p(B) H(E)

0.05 0.95 4.322 0.074 0.216 0.07 0.29
0.5 0.5 1 1 0.5 0.5 1
0.95 0.05 0.074 4.322 0.07 0.216 0.29

As it can be seen here, the highest entropy for the system is obtained when neither
event is dominating the other in terms of likelihood of occurring; that is, both events
are equally and significantly discriminating. In the cases where either one of the
events is overly likely (0.95 chance of occurrence) relative to the other, the entropy
of the overall system is low: in other words, although the rare event has much higher
relative information content,

—10g>(0.05) 4.322
“10g>(0.95) _ 0.074

=584,

these two events together do no provide sufficient discrimination.
In Section 9.1.1, we discuss other information-theoretic measures, including in-
formation gain by entropy and Gini impurity, commonly used for classification tasks.

4.2.3 Feature Significance in Terms of Data Distribution

Consider the 3D vector space representation of a database, shown in Figure 4.7(a).
Given a query range along the dimension corresponding to feature F, Figure 4.7(b)
highlights the matches that the system would return. Figure 4.7(c), on the other
hand, highlights the objects that will be picked if the same query range is given
somewhere along the dimension corresponding to feature Fj.

As can be seen here, the dimension F; (along which the data are distributed
with a higher variance) has a greater discriminatory power: fewer objects are picked
when the same range is provided along F; than along F,. Thus, variance of the
data along a given dimension is an indicator of its quality as a feature.” Note that
variance-based feature significance is related to the entropy-based definition of fea-
ture importance. Along a dimension which has a higher variance, the values that the
feature takes will likely have a more diverse distribution; consequently, no individ-
ual value (or particular range of values) will be more likely to occur than the others.
In other words, the overall entropy that the feature dimension provides is likely to
be high.

Unfortunately, it is not always the case that the direction along which the spread
of the data is largest coincides with one of the feature dimensions provided as
input to the database. For instance, compare data distributions in Figures 4.8(a)

2 As we see in Section 9.1.1, for classification applications where different classes of objects are given,
the reverse is true: a discriminating feature minimizes the overlaps between different object classes
by minimizing the variances for the individual classes. Fisher’s discriminant ratio, a variance based
measure for feature selection in classification applications, for example, selects features that have small
per-class variances (Figure 9.1).

151

152 Feature Quality and Independence

F2
B L ST .
& e 'ooe“'o:) : -
e o o, oo S

F3 F3

(b) (©

Figure 4.7. (a) 3D vector space representation of a database. (b) Objects that are picked
when the query range is specified along dimension F,. (c) Objects that are picked when the
query range is specified along F;.

and (b). In the case of the data corpus in Figure 4.8(a), the direction along which the
data are spread the best coincides with feature F;. On the other hand, in the data
corpus shown in Figure 4.8(b), the data are spread along a direction that is a compo-
sition of features F; and F,. This direction is commonly referred to as the principal
component of the data.

Intuitively, we can say that it is easier to pick the most discriminating dimensions
of the data, if these dimensions are overlapping with the principal, independent

F2
:"\"—6;) -eo_,:.-.-'—-,-v. : .
F1
F3 F3
(a) (b)

Figure 4.8. (a) The data have largest spread along feature F,. (b) The largest data spread
does not coincide with any of the individual features.

4.2 Feature Selection

components of the database. In other words, transformations that reduce the corre-
lation between the dimensions should help with dimensionality reduction.

4.2.4 Measuring the Degree of Association between Data Features

As we discussed in Section 3.5.1.2, correlation and covariance are two statistical
measures that are commonly used for measuring the relationship between two con-
tinuously valued features of the data. However, not all features are valued con-
tinuously. In many cases, the features are binary (they either exist in an object or
not) and the dependencies between features have to be captured using other mea-
sures. He and Chang [2006] and Tan er al. [2004] list various measures that can be
used to quantify the strength of association between two features based on their
co-occurrence (or lack thereof) of features in a given data set (Tables 4.2 and 4.3).
In Table 4.2, P(X) corresponds to the probability of selecting a document that has
the property X, and P(X, Y) corresponds to the probability of selecting a document
that has both properties X and Y. Thus, different measures listed in these tables
put different weights to co-occurrence (both features occurring in a given object),
co-absence (neither feature occurring in a given object), and cross-presence based
evidences (either one or the other feature is occurring in the given object, but not
both). Piatetsky-Shapiro [1991] lists three properties that are often useful in mea-
suring feature associations. Let A and B be two features; then

m if A and B are statistically independent, then the measurement should be 0,

m the measurement should monotonically increase with co-occurrence (P(A, B))
when P(A) and P(B) remain constant, and

m the measurement of association should monotonically decrease with the over-
all frequency of a feature (P(A) or P(B)) in the data set, when the rest of the
parameters stay constant.

Other properties that may be of interest in various applications include inversion in-
variance (or symmeltry; i.e., the measurement does not change if one flips all feature
absences to presences and vice versa) and null invariance (i.e., the measurement
does not change when one simply adds more objects that do not contain either fea-
tures to the database). Symmetric measures include ¢, «, «, and S. Measures with
null invariance (which is useful for applications, such as those with sparse features,
where co-presence is more important than co-absence) include cosine and Jaccard
similarity [Tan et al., 2004].

4.2.5 Intrinsic Dimensionality of a Data Set

As described earlier, the number of useful dimensions to describe a given data set
depends on the distribution of the data and the way the dimensions of the space are
correlated with each other. If the dimensions of a given vector space are uniform and
independent, then each and every dimension is useful and it is not possible to reduce
the dimensionality of the data without loss of information. On the other hand, when
there are correlations between the dimensions, the inherent (or intrinsic) dimen-
sionality of the space can be lower than the original number of dimensions.

153

154 Feature Quality and Independence

Table 4.2. Measuring the degree of association between features A and B in a data set of
size N [He and Chang, 2006; Tan et al., 2004] (A and B denote the lack of the
corresponding features in a given object)

Measure

Formula

¢-coefficient

Goodman-Kruskal’s (1)
of sets of features

Odds ratio («, lift)

Yule’s Q

Yule's Y

Kappa («)

Mutual information (M)
of sets of features

J-measure (J)

Gini index (G)

Support (s)
Confidence (c)

Laplace (L)

Conviction (V)

Interest (/)

cosine
Piatetsky-Shapiro’s (PS)
Certainty factor (F)
Added value (AV)
Collective strength (S)
Jaccard (¢)

Klosgen (K)

H-measure (H, negative
correlation)

P(A,B)—P(A)P(B)
V/P(A)P(B)(1—P(A))(1—P(B))
>~ max;P(A;,Bj)+)" ; maxiP(A;, Bj)—max;P(A;)—max;P(B;)
2—max;P(A;)—max;P(Bj)

N
e
+

3|

>

ool

(O

NN

==
Il

je)

X

S
)>
CU
ml El
<K
@l|| Tl

el
)>
CU
>

P

P(A,B)+P(A,B)—P(A)
1-P(AP(B)—P(A)
Zl Z] Al BJ g

min(—)_; P(A)log(P(A))),—

S
b

> >l >
2 2|3
Cl

BE

+

AN

T

o
>
3

NG b

(4j.Bj)
A)PE))

P(B))Iog(P(B;))

Mz

max((A, B)Iog(?V; + P(A, Blog()))
((A, B)Iog(P‘A') 1+ P(A B)/og(et)

max(P(A)(P(B|A)? + P(B|A)?) + P(A)(P(B|A)? + P(B| A)?)
—P(B)? — P(B)?,
P(B)(P(A|B)? + P(A|B)?) + P(B)(P(A|B)? + P(A|B)?)
—P(A)? — P(A)?)

P(A, B)

max(P(B|A), P(A|B))

NPAB+1 N P(A.B)+1
max(PIAI+2 * NPBIH2)

P(A).P(B) P(AP(B)
max(P(A,B) ° P(AB))

P(A.B)

P(A)P(B)

P(A.B)

P(A)P(B)
P(A, B) — P(A)P(B)

(BI|A)=P(B) P(A|B)—P(A)
max(1-P(B) ' 1-P(A))
max(P(B|A) — P(B), P(A|B) — P(A))

PABIP(AE) , 1-PIAPB)-P(APE)
P(A)P(B)+P(A)P(B) 1-P(A,B)—P(A,B)
P(A.B)
P(A)+P(B)—P(A,B)

P(A, B)ymax(P(B|A) — P(B), P(A|B) — P(A))

P(A,B)P(A,B)
P(A)P(B)

4.2 Feature Selection 155

Table 4.3. Scores corresponding to evidences of relationships between features A
and B [He and Chang, 2006; Tan et al., 2004] (rows with three values correspond to
measures that can provide evidence for negative association, no association, and
positive association; rows with two values correspond to measures that can provide
evidence for no association and association)
Measure Negative assoc. No assoc. (Positive) assoc.
¢-coefficient -1 0 1
Goodman-Kruskal’s (1) of 0 1
sets of features
Odds ratio («, lift) 0 1 o0
Yule’s Q -1 0 1
Yule’s Y -1 0 1
Kappa («) -1 0 1
Mutual information (M) 0 1
of sets of features
J-measure (J) 0 1
Gini index (G) 0 1
Support (s) 0 1
Confidence (c) 0 1
Laplace (L) 0 1
Conviction (V) 0.5 1 o0
Interest (/) 0 1 00
cosine 0 JP(A, B) 1
Piatetsky-Shapiro’s (PS) -0.25 0 0.25
Certainty factor (F) -1 0 1
Added value (AV) -0.5 0 1
Collective strength (S) 0 1 ()
Jaccard (¢) 0 1
Klosgen (K) /& -12-V3-F) 0 5
H-measure (H, negative 1 P(A)P(B) 0
correlation)

As described in Section 4.1, given a set of data points and a distance function, the
average number of data points within a given distance is proportional to the distance
raised to the number of dimensions of the space; in other words, the number of pairs
of elements within a given distance r follows the formula

pairs(r) = ¢ x r?,

where c is a proportionality constant [Belussi and Faloutsos, 1998]. Note that we can
also state this formula as
log(pairs(r)) = d x log(c"r) = ¢ +d x log(r),

where ¢’ is a constant. This implies that the intrinsic dimensionality, d, of the data can
be estimated by plotting the log(pairs(r)) values against log(r) and computing the
slope of the line that best fits” the resulting plot [Belussi and Faloutsos, 1998; Traina
et al., 2000]. Belussi and Faloutsos [1998], leverage this to develop an estimation

3 The fit is especially strong for data that is self-similar at different scales; i.e. is fractal (Section 7.1.1).

156

Free ebooks ==> www.Ebook777.com

Feature Quality and Independence

method called box-occupancy counting: The space is split into grids of different sizes
and, for each grid size, the numbers of object pairs in the resulting cells are counted.
Given these counts, the correlation fractal dimension is defined as the slope of the
log-log curve

8log (X, count?;)
8log(r)

where r is the length of the sides of the grid cells and count? is the number of point
pairs in the ith cell of the grid.

4.2.6 Principal Component Analysis

Principal component analysis (PCA), also known as the Karhunen-Loeve, KL,
transform is a linear transform, which optimally decorrelates the input data. In other
words, given a data set described in a vector space, PCA identifies a set of alternative
bases for the space along which the spread is maximized.

As we discussed in Section 3.5.1.2, variance and covariance are the two statisti-
cal measures that are commonly used for measuring the spread of data. Variance is
one-dimensional, in that it measures the data spread along a single dimension, inde-
pendently of the others. Covariance, on the other hand, measures how much a pair
of data dimensions vary from their means with respect to each other. Given a data
set, D, in an n-dimensional data space, a covariance matrix, S, can be used to encode
pairwise covariance relationships among the dimensions of this space:

Vizijen S[i. jl = Cov(i. j) = E((0[i] — wi)(0lj] — wy)).

where E stands for expected value and j1; and p; are the average values of the data
vectors along the ith and jth dimensions, respectively. Note that the covariance ma-
trix S can also be written as

S = GGT,

where G is an n x |D| matrix, such that

iser¥aen Glich] = = Gili] -).

If the dimensions of the space are statistically independent from each other,
then for any two distinct dimensions, i and j, Cov(i, j) will be equal to 0; in other
words, the covariance matrix S will be diagonal, with the values at the diagonal
of the matrix encoding Cov(i, i) = o7 (the variance along i) for each dimension i.
Otherwise, the covariance matrix S is only symmetric; i.e., Cov(i, j) = Cov(j, i) =
E((o[i] = i) (0[] = 1y))-

The goal of the PCA transform is to identify a set of alternative dimensions for
the given data space, such that the covariance matrix of the data along this new set
of dimensions is diagonal. This is done through the process of eigen decomposition,
where the square matrix, S, is split into its eigenvalues and eigenvectors:

Www.Ebook777.com

http://www.ebook777.com

4.2 Feature Selection

i Ck | decreasing values
1
12 SRS |
2 ; IR K/
1] 1
2 2
S= x [MlE X
3 k
C | diagonal P-1
n matrix
P columns linearly

independent,unit length
(column orthonermal)

Figure 4.9. Eigen decomposition of a symmetric, square matrix, S.

Definition 4.2.2 (Eigenvector): Let S be a square matrix. A right eigenvector
for S is defined as a column vector, ¥, such that

SF = A, 7,
or equivalently
(S —AD)F =0.

Here I is the identity matrix. The value)\, is known as the eigenvalue cor-
responding to the right eigenvector, ¥. Similarly, the left eigenvector for S is
defined as a row vector, I, such that

IS=1Dy or I(S—nI)=0.

When § is symmetric (as in covariance matrices) the left and right eigenvectors are
each other’s transposes. Furthermore, given an n x n symmetric square matrix, S,
there are k < n unique, unit-length right eigenvectors.

Theorem 4.2.1 (Eigen decomposition of a symmetric matrix): Let S be an
n x n symmetric, square matrix with real values. Then S can always be de-
composed into

S = PCP!,
where
A 0 ... 0
C— 0 x» ... O
0 0 ... X

is real and diagonal and
P=1[rr...r],
where Fi, . .., F are the unique eigenvectors of S.

Furthermore, the eigenvectors of S are orthogonal to (and thus linearly independent
from) each other (see Figure 4.9).

157

158

Feature Quality and Independence

Theorem 4.2.2 (Orthogonality): Let S be an n x n square matrix, and let 7
and r; be two distinct eigenvectors of S. Then ry - ¥, = 0.

Note that because the k eigenvectors are orthogonal, they can be used as the
orthogonal bases (instead of the original dimensions) to describe the database. Thus,
a given database D, of m objects, described in an n-dimensional vector space can be
realigned along the eigenvectors by the following linear transformation:

D\, 1y = DimmyPin 1oy

This transformation projects each data vector in D onto the k (unit-length) eigenvec-
tors and records the result in a new matrix, D’. Note that because the transformation
is orthonormal (i.e., P is such that the columns are orthogonal to each other and are
all unit length), all the (Euclidean) object distances as well as the angles between
the objects are preserved in the new space.

Moreover, the subspace defined by the eigenvectors 71, ..., 7 has the largest
variance. In fact, the variance is highest along the dimension defined by 7; with the
largest eigenvalue, 1; (and so on). To see why, consider the following:

S = GG"
PSP = (P1G) (GTP).

Because S = PCP~! (or equivalently P~'SP = C), we know that the left-hand side
is equal to C:

C=(P'G) (G'P).
Furthermore, because P is an orthonormal matrix, P~' = P7, and thus
C=(PTG) (G"P) = (PTG)(PTG)".

On the other hand, because G is an n x |D| matrix, such that

.. |
Vi<i<aVep Gli, j] = 7D (05[] = mi)s
and since P is an orthonormal transformation, we have

L
V1Dl

where 0;(h) is the length of the projection of the vector o; onto the Ath eigenvector.
In other words, (PTG)(PTG)T is nothing but the covariance matrix of the data on
the new k x k basis defined by the eigenvectors. Because this is equivalent to C, we
can also conclude that C is the covariance matrix of the new space. Because C is
diagonal, the values at the diagonal (i.e., the eigenvalues) encode the variance along
the new basis of the space.

In summary, the eigenvectors of the covariance matrix S define bases such that
the pairwise correlations have been eliminated. Moreover, the eigenvectors with
the largest eigenvalues also have the greatest discriminatory power and thus are
more important for indexing (Figure 4.10). This is performed by keeping only those

VianVsep (PTG)[h, j] = (0j(h) — pn),

4.2 Feature Selection

Figure 4.10. The eigenvectors of the covariance matrix S provide an alternative description of
the space, such that the directions along which the data spread is maximized can be easily
identified.

eigenvectors that have large eigenvalues and discarding those that have small eigen-
values (Figure 4.11).

4.2.6.1 Selecting the Number of Dimensions
In Section 4.2.5, we have seen that one way to select the number of dimensions
needed to represent a given data set is to compute its so-called intrinsic dimen-
sionality. An alternative method for selecting the number of useful dimensions is
to pick only those eigenvectors with eigenvalues greater than 1. This is known as
the Kaiser-Guttman (or simply Kaiser) rule. The scree test, on other hand, plots the
successive eigenvalues and looks for a point where the plot levels off. The variance
explained criterion keeps enough dimensions to account for 95% of the variance.
The mean eigenvalue rule uses only the dimensions whose eigenvalues are greater
than or equal to the mean eigenvalue. The parallel analysis approach analyzes a
random covariance matrix and plots cumulative eigenvalues for both random and
intended matrices; the number of dimensions to be used is picked based on where
the two curves intersect.

A major advantage of PCA is that, when the number of dimensions is reduced, it
keeps most of the original variance intact and optimally minimizes the error under
the Euclidean distance measure.

AR
:

Figure 4.11. The effect of eliminating eigenvectors with small eigenvalues: S’ # S, but the
impact on the overall covariance is relatively small.

(Py

159

160

Feature Quality and Independence

4.2.6.2 Limitations of PCA

One limitation of the PCA method is that 0 correlation does not always mean
statistical independence (although the statistical independence always means 0
correlation). Consequently, while the dimensions of the newly defined space are
decorrelated, they may not be statistically independent. However, because uncor-
related Gaussians are statistically independent [Lee and Verleysen, 2007], under
the Gaussian assumption the dimensions of the bases are also statistically indepen-
dent. The Gaussian assumption can be validated through the Kolmogorov-Smirnov
test [Chakravarti et al., 1967]. Other tests for non-Gaussianity include negative en-
tropy and kurtosis [Hyvirinen, 1999]. When the Gaussian assumption does not hold,
PCA can be extended to find the basis along which the data are statistically inde-
pendent. This variant is referred to as independent component analysis (ICA).

4.2.7 Common Factor Analysis

PCA is an instance of a class of analysis algorithms, referred to as the factor analysis
algorithms, which all try to discover the latent structure underlying a given set of
observed variables (i.e., the features of the media data). These algorithms assume
that the provided dimensions of data can be transformed into linear combinations
of a set of unobserved dimensions (or factors).

Common factor analysis (CFA) seeks the least number of factors (or dimensions)
that can account for the correlation in the given set of dimensions. The input dimen-
sions are treated as linear combinations of the factors, plus certain error terms. In
more precise terms, each variable is treated as the sum of common and unique por-
tions, where the common portions are explained by the common factors. The unique
portions, on the other hand, are uncorrelated with each other. In contrast, PCA does
not consider error terms (i.e., assumes that all variance is common) and finds the set
of factors that account for the total variance in the given set of variables.

Let us consider an n x n covariance matrix, S. Common factor analysis partitions
S into two matrices, common, C, and unique, U:

S=C+ U,
where the matrix C is composed of k < n matrices:
C=C+CG+---+C.

Each C; is the outer product of a column vector, containing the correlations with the
corresponding common variable and the » input dimensions. Intuitively, each diag-
onal entry in C; is the amount of variance in the corresponding dimension explained
by the corresponding factor.

Because U is supposed to represent each dimension’s unique variability, U is
intended to be diagonal. However, in general, if k is too small to account for all the
common factors U will have residual errors, that is, off-diagonal nonzero values. In
general, the higher k, the better the fit and the smaller the number and sizes of the
errors in U.

As in PCA, C; are derived from the eigenvalues associated to individual eigen-
vectors. Unlike PCA, on the other hand, in CFA, the proportion of each input
dimension’s variance, explained by the common factors, is estimated prior to the

4.2 Feature Selection

analysis. This information (also referred to as the communality of the dimension)
is leveraged in performing factor analysis: most CFA algorithms initially estimate
each dimension’s degree of communality as the squared multiple correlation be-
tween that dimension and the other dimensions. They then iterate to improve the
estimate.

Note that although both PCA and CFA can be used for dimensionality reduc-
tion, PCA is commonly preferred over CFA for feature selection because it pre-
serves the total variance better.

4.2.8 Selecting an Independent Subset of the Original Features

Both PCA and CFA aim to find alternative bases for the space that can be used
to represent the data corpus more effectively, with fewer dimensions. However, the
new dimensions are not always intelligible to the users; for example, in the case
of PCA, these dimensions are linear combinations of the input dimensions. In the
case of CFA, a postrotation process is commonly used to better explain the new
dimensions in terms of the input dimensions; but, nevertheless, the new (latent) di-
mensions are not always semantically meaningful in terms of application semantics.

In Section 9.6.2, we introduce a probability-driven approach for selecting a sub-
set of the original features by accounting for the interdependencies between the
probability distributions of the features in the database. In this section, we discuss
an alternative approach, called database compactness-based feature selection [Yu
and Meng, 1998], which applies dimensionality reduction on the original features of
the database based on the underlying object similarity measure.

Definition 4.2.3 (Database compactness): Let D be a database of objects, let
F be the feature set, and let simg() be a function that evaluates the similarity
between two media objects, based on the feature set, F. The compactness of
the database is defined as

compactnessp(D) = Z simg(0;, 0;).
OiséOjED

As shown in Figures 4.12(a) and (b), a given query range is likely to return
a larger number of matches in a compact database. Thus, the compactness of a
database is inversely related to how discriminating queries on it will be. Thus, we
can measure how good a discriminator a given feature f € F is by comparing the
compactness of the database with and without the feature f considered for similar-
ity evaluation:

Definition 4.2.4 (Feature quality based on database compactness): Let D be
a database of objects, let F be the feature set, and let simg() be a function that
evaluates the similarity between two media objects, based on the feature set, F.
The quality of feature fe F based on database compactness is defined as

qualityp p(f) = compactnessp, (D) — compactness (D).

A negative qualityr p(f) indicates that, when f is not considered, the database be-
comes less compact. In other words, f is making the database compact and, thus,

161

162

Feature Quality and Independence

© (@

Figure 4.12. The same query range is likely to return a smaller number of matches in (a)
a database with large variance than in (b) a compact database. (¢) The removal of a good
feature reduces the overall variance (rendering the queries less discriminating), whereas (d)
the removal of a bad feature renders the database less compact (eliminating some aspect
of the data that is too common in the database).

if there is a need to remove a feature, f should be considered for removal (Fig-
ures 4.12(c) and (d)).

Note that database compactness—based dimensionality reduction can be expen-
sive: (a) the number of objects in the database can be very large and (b) removal of
one feature may change the quality ordering of the remaining features. The first of
these challenges is addressed by computing the feature qualities on a set of samples
from the database rather than on the entire database. The second challenge can
be addressed through greedy hill climbing (which evaluates a candidate subset of
features, modifies the subset, evaluates if the modification is an improvement, and
iterates until a stopping condition, such as a threshold, is reached) or branch-and-
bound style search.

4.2.9 Dimensionality Reduction Using Fixed Basis

PCA and CFA, as well as the compactness approach extract the reduced basis for
representing the data based on the distribution of the data in the database. Thus,
the basis can differ from one database instance to another and may in fact evolve
over time for a single data collection that is regularly updated. This, on the other
hand, may be costly.

An alternative approach is to use a fixed basis, which does not represent the data
distribution but can nevertheless minimize the amount of errors that are caused
by dimensionality reduction. As discussed in Section 4.2.1, most transformations

4.2 Feature Selection

\‘\\\\\AEUC(VOL Voj)

AEuc(Vnu, Voi) T

AEUC(VnuII, VOj)

Vnull

Figure 4.13. Distances among two objects and the origin.

involved in feature selection are lossy, and these losses impact distance function
computations. Although transformations that underestimate distances do not cause
any misses (i.e., they might be acceptable for media retrieval), they introduce false
hits and thus they might require costly postprocessing steps. Consequently, it is nat-
urally important that the error introduced by the dimensionality reduction process
be as small as possible.

One approach commonly used for ensuring that the reductions in the dimen-
sionality of the data cause small errors in distance computations is to rely on
transformations that concentrate the energy of the data in as few dimensions as
possible:

Definition 4.2.5 (Energy): Let F = {f1, f2, ..., fn} be a set of features and let
Uy = (W10, W20, - - ., Wno) be the feature vector corresponding to object o. The
energy of v, is defined as

n
E(v,) = Z wzo.
i=1

Intuitively, the energy of the vector representing the object is the square of
the Euclidean distance of this vector from the hypothetical null object, Uy =
(0,0, ...,0). Given this, we can rewrite the formula for the Euclidean distance be-
tween two objects, 0; and o;, as follows (Figure 4.13):

AL (Vo Vo) = AL Wity Vi) + A% (Vi Vo) + 2 guc (Wit Voi) A Eue (Vs Voj)cosO.

We can also write this equation in terms of the energies of the feature vectors:

A2 (Vais Vo)) = E(U) 4 E(vo)) + 2v/ E(voi) E(v,))cos®.

Thus, transformations that preserve the energies of the vectors representing the
media objects as well as the angles between the original vectors also preserve the
Euclidean distances in the transformed space.

These include orthonormal transformations. In fact, the goal of PCA was to
identify an orthonormal transformation which preserves and concentrates variances
in the data. Discrete cosine (DCT) and wavelet (DWT) transforms are two other
transforms that are orthonormal. Both of these help concentrate energies of the data
vectors at a few dimensions of the data, while preserving both energies as well as the

163

164

Feature Quality and Independence

angles between the vectors in the database. The most important difference of these
from PCA and CFA is that DCT and DWT each uses a fixed basis, independent of
the data corpus available, whereas PCA and CFA extract the corresponding basis
to be used considering the nature of the data collection.

4.2.9.1 Discrete Cosine Transform

DCT treats a given vector as a discrete, finite signal in the time domain (the indexes
of the feature dimensions are interpreted as the time instances at which the un-
derlying continuous signal is “sampled”) and transforms this discrete signal into an
alternative domain, referred to as the frequency domain. As such, it is most applica-
ble when there is a strong correlation between the indexes of the feature dimensions
and the feature values. This, for example, is the case when two equi-length digital
audio signals are compared, sample-by-sample, based on their volumes or pitches at
corresponding time instances.*

Intuitively, the frequency of the signal indicates how often the signal changes.
DCT measures and represents the changes in the signal values in terms of the cycles
of a cosine wave. In other words, it decomposes the given discrete signal into cosine
waves with different frequencies, such that when all the decomposed cosine signals
are summed up, the original signal is obtained.’

Definition 4.2.6 (DCT): DCT is an invertible function dct : R" — R", such
that given v = (wi, wy, ..., wy), the individual components of dct(v) =
(wy, w), ..., w,), are computed as follows:

w; = a; Xn;w,-cos <@ ((j—1)+%>>,
=

where

g — J1/n fori=1
" V2/n fori> 1.

In other words,
n

w; = ZC[i,j]wj,
j=1

where Cis an n x n matrix:

Cli, j] = ajcos (@ <(j—1)+%>>.

Based on the foregoing definition, we can see that DCT is nothing but a linear trans-
form of the input vector:

dct (V) = Cv.

4 Similarly, images can be compared pixel-by-pixel. Because the corresponding signal is two-
dimensional, the corresponding DCT transform also operates on 2D signals (and is referred to as
2D-DCT).

3 In this sense, it is related to the discrete Fourier transform (DFT). Whereas DCT uses only cosine
waves, DFT uses more general sinusoids to achieve the same goal.

4.2 Feature Selection

This definition implies two things:

m Each component of ¥ contributes to each component of dct(v).

m The contribution of ¥ to the ith component of dct(?) is computed by multiplying
the corresponding data signal by the cosine of a signal by the frequency ~ @

In fact, it is possible to show that the row vectors of C are orthonormal. In other

words, if ¢ and ¢; denote two distinct vectors representing two rows of C, then ¢x¢; =

0 (i.e., rows are linearly independent) and ¢i¢; = 1 (i.e., rows are all unit length).

Thus, the row vectors of C form the basis of an n-dimensional space.

Consequently, energies of the individual vectors as well as the angles between
pairs of vectors are preserved by the transformation. Thus, Euclidean distances (as
well as cosine similarities) of the original vectors are preserved.

Moreover, if the signal is not random (i.e., high-frequency noise), the signal val-
ues will be temporally correlated, with neighboring values being similar to each
other. This implies that most of the energy of the signal will be confined to the
low-frequency components of the signal, resulting in larger w; components for small
is and small ws for large is. This means that most information contained in the vec-
tor v is captured by the first few components of dct(v), and replacing the remaining
components by 0 (or simply eliminating them for dimensionality reduction) will in-
troduce only small errors (underestimations) in distance computations.’

4.2.9.2 Discrete Wavelet Transform
Discrete wavelet transform (DWT) is similar to DCT in that it treats the given vec-
tor as a signal in time space and decomposes it into multiple signals using a trans-
formation with orthonormal basis. Unlike DCT, which relies on cosine waves, on
the other hand, DWT relies on the so called wavelet functions. Furthermore, unlike
DCT, which transforms the signal fully into the frequency domain, DWT maintains
certain amount of temporal information. Thus, it is most applicable when there is
need to maintain temporal information in the transform space.’

In the more general, continuous time domain, a wavelet is any continuous func-
tion, v, which has zero mean:

+00

Y(Hdt = 0.
—00
The mother wavelet, which is used for generating a family of wavelet functions, is
also generally normalized to 1.0,

1wl =/ WP di=1,

and centered at t = 0. A family of wavelet functions is defined by scaling and trans-
lating the mother wavelet at different amounts. More specifically, given a mother

6 Because DCT is an invertible transform, the distorted signal with high-frequency components set to 0
can be brought back to the original domain. Because most of the energy of the signal is preserved in the
low-frequency components, the error in the signal will be minimal. This property of DCT is commonly
leveraged in lossy compression algorithms, such as JPEG.

7 This is for example the case for image compression, where the wavelet-transformed image can actually
be viewed as a low resolution of the original, without having to decompress it first.

165

166

Feature Quality and Independence

wavelet function, v, a family of wavelet functions is defined using a positive scaling
parameter, s > 0, and a real valued shift parameter, A:

Vo) = — v (=2
s,h = ﬁ s .
Given this family of the wavelet functions, the wavelet transform of a continuous,

integrable function x(f), corresponding to the scaling parameter s > 0, and the real
valued shift parameter £, is as follows:

X (s, h) = % /Z x(O)y <¥) dt.

This transform has three useful properties:

m Itis linear.

m It is covariant under translations; that is, if x(¢) is replaced by x(¢ — u), then
X'(s, h) is replaced with x'(s, h — u).

m It is covariant under dilations; that is, if x(¢) is replaced by x(ct), then x'(s, k) is
replaced with %x/(cs, ch).

This means that the wavelet transform can be used for zooming into a function and
studying it at varying granularities.

In general, discrete wavelets are formed from a continuous mother wavelet, but
using scale and shift parameters that take discrete values. We are on the other hand
often interested in discrete wavelets that apply on vectors of values (such as rows of
pixels). In this case, wavelets are generally defined over n = 2™ dimensional vector
spaces. Let S/ denote the space of vectors with 2/ dimensions, and let ®/ be a basis
for S/. Let dbl : S/ — S/*! be a doubling function, where dbl(?v) = i such that

Vi<i<y Upi—1 = Up; = V.

Let W/ C S/*! be a vector space such that w € W/ iff w is orthogonal to dbl(v) for
all v € S/. The vectors in the basis, W/, for W/ are called the (2/*!-dimensional)
wavelets.

The 2/+!-dimensional basis vectors for W/ along with the (doubled versions of)
the basis vectors in ®/ define a basis for S/*1. Moreover every basis vector for the
vector space W/ is orthogonal to the (doubled versions of) the basis vectors in ®/.

Example 4.2.3 (Haar wavelets): Let S be a space of vectors with 2" dimensions.
Haar basis vectors [Davis, 1995; Haar, 1910] are defined as follows: For 0 < j < n,
D= {g", b, ..., ¢}"}, where

Viciey ¢ =dbl(n—j. ($i(1). $i(2)..... $i(2)).
where
1 i=x
0 otherwise.

09 = |

and where dbl(k, v) is k times doubling of the vector v. Similarly, for 0 < j <n,
Wi = {y ", gl "), where

Vicico ¥ (x) = dbl(n —j— 1, (¥;(1), ¥i2), ..., vi(27Th))),

4.3 Mapping from Distances to a Multidimensional Space 167

Table 4.4. Alternative (not-normalized) Haar wavelet basis for the 4D space of
vectors
Basis 1 92> $2? $37? 32
(1,0,0,0) (0,1,0,0) {(0,0,1,0) (0,0,0,1)
Basis 2 P2 P2 Vo Yy
(1,1,0,0) (0,0,1,1) (1,-1,0,0) (0,0,1,-1)
Basis 3 bo? Y2 va? Y2
(1,1,1,1) (1,1,-1,-1) (1,—-1,0,0) (0,0,1, -1)
where
1 x=2-1

vix) =4 -1 x=2
0 otherwise.

Table 4.4 provides three alternative (not-normalized) Haar basis for 4D vector
space. These can be easily normalized by taking into account vector lengths. For
example, %1,2 would become (0, 0, \/%, ;—%) when normalized to unit length.

Note that vectors in the wavelet basis W extract and represent details. The vec-
tors in the basis ®, on the other hand, are used for averaging. Thus, the (averaging)
basis vectors in @ are likely to maintain more energy then the (detail) basis vectors
in W. As j increases, the basis vectors in W/ represent increasingly finer details (i.e.,
noise) and thus can be removed from consideration for compression or dimension-
ality reduction.

4.3 MAPPING FROM DISTANCES TO A MULTIDIMENSIONAL SPACE

Although feature selection algorithms can help pick the appropriate set of di-
mensions against which the media objects in the database can be indexed, not all
database applications can benefit from these directly. In particular, various media
(such as those with spatial or hierarchical structures) do not have explicit features to
be treated as dimensions of a data space. For example, distance between two strings
can be evaluated algorithmically using the edit-distance measure as discussed in Sec-
tion 3.2.2; however, there is no explicit feature space on which these distances can
be interpreted.”

One way of dealing with these “featureless” data types is to exploit the knowl-
edge about distances between the objects to map the data onto a k-dimensional
space. Here the dimensions of the space do not correspond to any semantically
meaningful feature of the data. Rather, the k dimensions can be interpreted as the
latent features for the given data set.

8 In Section 5.5.4, we discuss p-gram transformation, commonly used to map strings onto a multidimen-
sional space.

168

Feature Quality and Independence

(a) (b)

Figure 4.14. MDS mapping of four data objects into points in a two-dimensional space:
the original distances are approximately preserved: (a) Distances between the objects,
(b) Distances between the objects in the 2D space.

4.3.1 Multidimensional Scaling

Multidimensional scaling (MDS) [Kruskal, 1964a,b] is a family of data analysis
methods, all of which discover the underlying structure of the data by embedding
them into an appropriate space [Kruskal, 1964a; Kruskal and Myron, 1978; Torger-
son, 1952]. More specifically, MDS discovers this embedding of a set of data items
from the distance information among them.

MDS works as follows: Given as inputs (1) a set of N objects, (2) a matrix of size
N x N containing pairwise distance values, and (3) the desired dimensionality £,
MDS tries to map each object into a point in the k-dimensional space (Figure 4.14).
The criterion for the mapping is to minimize a stress value defined as

o (d i —dij)?
S

where dj; is the actual distance between two nodes v; and v; and d;; is the distance be-
tween the corresponding points p; and p; in the k-dimensional space. If, for all such
pairs, d;; is equal to d s then the overall stress is 0, that is, minimum. MDS starts with
some, possibly random, initial configuration of points in the desired space. It then
applies some steepest descent algorithm, which modifies the locations of the points
in the space iteratively in a way that minimizes the stress. At each iteration, the al-
gorithm identifies a point location modification that gives rise to a large reduction
in stress and moves the point in space accordingly.

In general, the more dimensions (i.e., larger k) that are used, the better is the
final fit that can be achieved. On the other hand, because multidimensional index
structures do not work well at a high number of dimensions, it is important to keep
the dimensionality as low as possible. One method to select the appropriate value of
k is known as the scree test, where stress is plotted against the dimensionality, and
the point in the plot where the stress stops substantially reducing is selected (see
Section 4.2.6.1).

Stress =

4.3 Mapping from Distances to a Multidimensional Space 169

(i) Process the given N data objects to construct the N x N distance matrix required
as input to MDS.

(ii) Find the configuration (point representation of each document in a k-dimensional
space).

(iii) Identify ¢ pivot/representative points (data elements), where each pivot p; repre-
sents 7; many points.

(iv) When a query specification ¢ is provided, map the query into the MDS space
using the ¢ pivot points (accounting for r; for each p;). Thus the complexity of
applying MDS is O(c) instead of O(N).

(v) Once the query is mapped into the k-dimensional place, use the spatial index
structure to perform a range search in this space.

Figure 4.15. Extended MDS algorithm.

MDS places objects in the space based on their distances: objects that are
closer in the original distance measure are mapped closer to each other in the .-
dimensional space; those that have large distance values are mapped away from
each other. As a pre-processing step to support indexing, however, MDS suffers
from two drawbacks; expensive (1) data-to-space and (2) query-to-space mappings:

® Because there are O(N?) pairwise distances to consider, it takes at least O(N?)
time to identify the configuration of N objects in k-d space.

m Given a query object g, it would take O(N) time to properly map g to a point in
the same k-d space as the data objects.

To understand why it takes O(N) to find the spatial representation of ¢, note that,
we need the distance between g and all the objects in the database (N in this case),
for MDS to be able to determine the precise spatial representation of g. Although
the first drawback may be acceptable, the real disadvantage is that to introduce
the query object g into the k-dimensional space requires O(N) time with a large
constant. This would imply that relying on MDS for retrieval would be as bad as
sequential scan.

Yamuna and Candan [2001] propose an extended MDS algorithm to support
more efficient indexing (Figure 4.15). The algorithm works by first mapping the data
objects into a multidimensional space through MDS and selecting a set of objects as
the pivots. The query object, then, is compared to the pivots and mapped into the
same space as the other objects. Naturally, the query mapping is less accurate than
the original data mapping, because only the pivots are used for the mapping instead
of the entire data set. Note that the quality of the retrieval will depend heavily on the
¢ data points selected for the query-to-space mapping process. Yamuna and Candan
[2001] present two approaches for selecting the pivot points: (1) data-driven and
(2) space-driven (Figure 4.16). In the data-driven approach, the ¢ pivot points are
chosen based on the distribution of the data elements. The space-driven approach
subdivides the space and chooses one data point to represent each space subdivision.
The intuition is that the space-driven selection of the points will provide a better
coverage of the space itself.

170

Feature Quality and Independence

A oo B e A
ooic® oo og o° R Oo
od O o oo
,,,,, oo O - EID o g? B
O o -
o o o d
O [n]
[m] g O o - - o DD oig o o
oo % oo A % ﬂE‘JEITZIl;ID — g
Lo o SRSU = WS = T L—_| o o E
> >
(a) (b)

Figure 4.16. (a) Data-driven versus (b) space-driven choice of pivot points.

4.3.2 FastMap

Faloutsos and Lin [1995] propose the FastMap algorithm to map objects into points
in a k-dimensional space based on just the distance/similarity values between ob-
jects. They reason that it is far easier for domain experts to assess the similar-
ity/distance of two objects than it is to identify features and design feature extraction
functions.

Their method is conceptually similar to the multidimensional scaling ap-
proach [Kruskal, 1964a,b]; however, they provide a much more efficient way of
mapping the objects into points in space, by assuming that the distance/similarity
measure satisfies triangular inequality. In particular, the complexity of their algo-
rithm to map the database to a low-dimensional space is O(Nk), where k is the di-
mensionality of the target space. Moreover, the algorithm requires ©(k) distance
computations to map the query to the same space as the data.

The main idea behind the FastMap algorithm is to carefully choose pivot objects
that define mutually orthogonal directions, on which the data are projected. The
authors establish the following lemma central to their construction:

Lemma 4.3.1: Let 0,, and oy, be two objects in the database selected as piv-
ots. Let H be the hyperplane perpendicular to the line defined by o,, and o,,.
Then, the Euclidean distance A, (0}, 0}) between o; and o; (which are the pro-
jections of objects o; and o onto this hyperplane) can be computed based on
the original distance, Ag,c(0i, 0j), of 0; and o;:

(A/EHC(OE’ 0}))2 = (AEuc(Oi, 0]'))2 - (Xi - x,-)z,

where x; is the projection of object o; onto the line defined by the pivots, op,
and op,, computed based on the cosine law:

Y = (AEuc(0i, 0]71))2 — (Aguc(0;, 0]72))2 + (AEMC(Opw Opz))2
l 2AEuc(0p, 5 0p,) .

x; is also computed similarly.

Given two pivot objects, this lemma enables FastMap to quickly (i.e., in O(N)
time) map all N objects onto the line defined by these two pivots (Figure 4.17(a))
and then revise distances of the objects on a hyperplane perpendicular to this line

4.3 Mapping from Distances to a Multidimensional Space

Euc(oi, op1) Euc(oi, op2)
A'g(0',0%)
ol
IX—x
o Euc(0 roj)
Op1) .

h IR

Euc(op1, op2) 0 0]

@) (b)

Figure 4.17. (a) The projection of object o; onto the line defined by the two pivots o,, and o,,.
(b) Computing the distance between the projections of o; and o; on a hyperplane perpendicular
to this line between the two pivots.

(Figure 4.17(b)). Thus, the space can be incrementally built, by selecting pivots that
define orthogonal dimensions one at a time.

The pivots are chosen from the objects in the database in such a way that the pro-
jections of the other objects onto this line are as sparse as possible; that is, the pivots
are as far apart from each other as possible. To avoid O(N?) distance computations,
FastMap leverages a linear time heuristic, which

(i) picks an arbitrary object, Ogemp,
(ii) chooses the object that is farthest apart from oy, to be o,,, and
(iii) chooses the object that is farthest apart from o,, to be o,.

Thus, at each iteration, FastMap picks two pivot objects that are (at least heuris-
tically) furthest apart from each other (Figure 4.18(a)). The line between these

e
e o g

(d)

Figure 4.18. (a) Find two objects that are far apart to define the first dimension. (b) Project
all the objects onto the line between these two extremes to find out the values along this
dimension. (c) Project the objects onto a hyperplane perpendicular to this line. (d) Repeat
the process on this reduced hyperspace. See color plates section.

171

172

Feature Quality and Independence

objects becomes the new dimension, and the values of the objects along this di-
mension are computed by projecting the objects onto line (Figure 4.18(b)). All
objects are then (implicitly) projected onto a hyperplane orthogonal to line (Fig-
ure 4.18(c)). FastMap incrementally adds more dimensions by repeating this pro-
cess on the reduced hyperplane, orthogonal to all the dimensions already discovered
(Figure 4.18(d)).

4.4 EMBEDDING DATA FROM ONE SPACE INTO ANOTHER

The MDS and FastMap techniques just described both assume that the system is
provided only the distances between the objects (possibly computed by a user-
defined function) and nothing else. However, in some cases, the system is also pro-
vided with a set of feature dimensions, but these are not necessarily orthogonal
to each other. In other words, although we have the dimensions of interest, these
dimensions are not most appropriate for indexing and retrieval purposes. In such
cases, it may be more effective to embed the available data into an alternative (pos-
sibly smaller) space, spanned and described by a basis of orthogonal vectors.

One way to achieve this is to use MDS or FastMap. However, these are mainly
heuristic approaches that do not necessarily provide a lossless mapping. In this sec-
tion, we introduce other transformations that perform the embedding in a more
principled manner.

4.4.1 Singular Value Decomposition (and Latent Semantic Indexing)

Singular value decomposition (SVD) is a technique for identifying a transformation
that can take data described in terms of n feature dimensions and map them into a
vector space defined by k£ < n orthogonal basis vectors.

In fact, SVD is a more general form of the eigen decomposition method that
underlies the PCA approach to dimensionality reduction: whereas PCA is applied to
square symmetric covariance matrix of the database, with the goal of identifying the
dimensions along which the variances are maximal, SVD is applied on the object-
feature matrix itself. Remember from Section 4.2.6 that given an n x n symmetric,
square matrix, S, with real values, S can be decomposed into

S=PCP!,

where Cis a real and diagonal matrix of eigenvalues, and P is an orthonormal matrix
consisting of the eigenvectors of S. SVD generalizes this to matrices that are not
symmetric or square:

Theorem 4.4.3 (Singular value decomposition): Let A be an m x n matrix
with real values. Then, A, can be decomposed into

A=UzVT,
where

m Uis a real, column-orthonormal m x r matrix, such that UUT = |
B X is an r x r positive valued diagonal matrix, where r < min(m, n) is the
rank of the matrix A

4.4 Embedding Data from One Space into Another

m VT is the transpose of a real, column-orthonormal r x n matrix, such that
wrl =1

The columns of U, also called the left singular vectors of matrix A, are the
eigenvectors of the m x m square matrix, AA”. The columns of V, or the right
singular vectors of A, are the eigenvectors of the n x n square matrix, ATA.
3[i,i] > 0, for 1 <i < r, also known as the singular values of A, are the square
roots of the eigenvalues of AAT and AT A.

Because the columns of U are eigenvectors of an m x m matrix, they are orthog-
onal and form an r-dimensional basis. Similarly, the orthogonal columns of V also
form an r-dimensional basis.

4.4.1.1 Latent Semantic Analysis (LSA)
Let us consider an m x n document-term matrix, A, which describes the contribution
of a given set of n terms to the m documents in a database.

The m x m document-document matrix, AA”, can be considered as a document
similarity matrix, which describes how similar two documents are in terms of their
compositions. Similarly, the n x n term-term matrix, A’ A, can be considered as a
term similarity matrix, which describes how similar two terms are in terms of their
contributions to the documents in the database.

Given the singular value decomposition, A = UXV7, of the document-term ma-
trix, the r column vectors of U form an r-dimensional basis in which the # documents
can be described. Also, the r column vectors of V (or the rows vector of V) form
an r-dimensional basis in which the n terms can be placed. These r dimensions are
referred to as the latent semantics of the database [Deerwester et al., 1990]: the or-
thogonal columns of V (i.e., the eigenvectors of the term-to-term matrix, A7A) can
be thought of as independent concepts, each of which can be described as a combi-
nation of the given terms. In a similar fashion, the columns of U can be thought of
as the eigen documents of the given document collection, each corresponding to one
independent concept.

Furthermore, the r singular values of A can be considered to represent the
strength of the corresponding concepts in the database: the ith row of the document-
term matrix, corresponding to the ith document in the database, can also be written
as

Vicjza Ali.j]=)_ Ui, kIZ[k KV [k, j].
k=1
Thus, replacing any singular value, X[k, k] with 0 would result in a total error of

error(k) = Sk, k] Y " Uli, k]VIk. j.

i=1 j=1

Thus, the amount of error that would be caused by the removal of a concept from
the database is proportional to the corresponding singular value. This property
of the singular values found during SVD enables further dimensionality reduction:
those concepts with small singular values, and the corresponding eigen documents,
can be removed and the documents can be indexed against the remaining c < r

173

174

Feature Quality and Independence

concepts with high contributions to the database using the truncated U matrix.
Keyword queries are also mapped to the same concept space using truncated ¥’
and V' matrices. Because reducing the number of dimensions can save a significant
amount of query processing cost (O(mc + ¢ + cm) instead of O(mn), which would
be required to compare m vectors of length n each), this process is referred to
as latent semantic analysis (LSA) or latent semantic indexing (LSI) [Berry et al.,
1995].

4.4.1.2 Incremental SVD

As illustrated by latent semantic analysis and indexing, SVD can be an effec-
tive tool for dimensionality reduction and indexing. However, because it requires
O(m x n x min(m, n)) time for analysis and decomposition of the entire database,
its cost can be generally prohibitive. Thus, especially in databases where the content
is updated frequently, it is more advantageous to use techniques for incremental
updating SVD [Brand, 2006, 2002; O’Brien, 1994; Zha and Simon, 1999].

Folding

One way to implement incremental updates is to simply fold in new objects and
features to an existing SVD decomposition. New objects (rows) and new features
(columns) of the matrix A are represented in terms of their positions in the SVD
basis. Let us consider a new object row 7! to be inserted into the database. Unless
it also introduces new features and assuming that the update did not alter the latent
semantics, this insertion will not affect ¥ and V7; thus, 77 can be written as

r=ulsvr.

Based on this, the new row, u”, of U can be computed as
- i “1_ " _
ul =7 (vh =z =¢FTve L

A similar process can be used to find the effect of a new feature on the matrix, V7.
Note that, in folding, new objects and features do not change the latent concepts;
consequently it is fast but can in the long run negatively affect the orthogonality of
the basis vectors identified through SVD. A more effective, albeit slower, approach
is to incrementally change the SVD decomposition, including the matrix X, as new
objects and features are added to the database.

SVD-Update

A particular challenge faced during the incremental updating of SVD is that in
many cases, instead of the original A, U, ¥, and VT matrices, their rank-k approxi-
mations (A, U, Zk, and VkT , corresponding to the & highest eigenvalues, for some k)
are maintained in the database. Thus, the incremental update needs to be per-
formed on an imperfect database. Berry e al. [1995] and O’Brien [1994] introduce
the SVD-Update algorithm, which deals with this problem by exploiting the ex-
isting singular values and singular vectors of the object-feature matrix A. Given a
set of p new objects, let us create a new p x n matrix, N, describing these objects
in terms of their feature compositions. Let A" = (%) be the object-feature matrix

4.4 Embedding Data from One Space into Another

extended with the new objects, and let U'X'(V')T be the singular value decomposi-
tion of A’. Then

Ul AV = %k
UZ 0 Ay 2k
2l = ==
(5) (F)=()
ur o0\ (A
(5 8) ()

where Uy EHV}? is the singular value decomposition of (%) Thus,

A ((Uc 0 T,T
(3)-((5 p)w)zetim.
N’ b

T

A U

A similar process can be used for incorporating new features to the singular value
decomposition.

Note, on the other hand, that not all updates to the database involve insertion
of new objects and features. In some cases, an existing object may be modified in
such a way that the contributions of the features to the object may change. The
final correction step of SVD-Update incorporates such updates. Let A denote an
m x n matrix describing the changes in term weights, A” = Ay + A denote the new
object-feature matrix, and U’ X" V?" be the singular value decomposition of A”:

Ul AV = %k
Ul (A + A Vi = 24+ ULAV;,
UL (A + A) Vi = UgZo VY.

where Up ¢V}, is the singular value decomposition of %4 4 U; AV;. Thus,

(Ax+A) = (Uelp) Zo (VHVY)-
[— —_————
A// U// Z// (V”)T

More General Database Updates

Work on incremental updates to SVD focuses on support for a richer set of mod-
ifications, including removal of columns and rows of the database matrix [Gu and
Eisenstat, 1995; Witter and Berry, 1998], as well as on improving the complexity of
the update procedure [Chandrasekaran et al., 1997; Gu et al., 1993; Levy and Lin-
denbaum, 2000]. Recently, [Brand, 2006] showed that a number of database updates
(including removal of columns) that can all be cast as additive modifications to the
original m x n database matrix, A, can be reflected on the SVD in O(mnr) time as
long as the rank, r, of matrix A is such that r < \/min(m, n). In other words, as long
as the latent dimensionality of the database is low, the singular value decomposition
can be updated in linear time. Brand further shows that, in fact, the update to the
SVD can be computed in a single pass over the database, making the process highly
efficient for large databases.

175

176

Free ebooks ==> www.Ebook777.com

Feature Quality and Independence

4.4.2 Probabilistic Latent Semantic Analysis

As in LSA, probabilistic latent semantic analysis (PLSA [Hofmann, 1999]) also re-
lies on a matrix decomposition strategy to identify the latent semantics underlying
a data collection. However, PLSA is based on a more solid statistical foundation,
known as the aspect model [Saul and Pereira, 1997], based on a generative model of
the data (see Section 3.5.3.3 for generative data and query models).

4.4.2.1 Aspect Model

Given a database, D = {01, ..., 0,}, of n objects and a feature set, F = {f1, ..., fm},
the aspect model associates an unobserved class variable, z € Z = {zj, ..., zx}, to
each occurrence of a feature, f € F, in an object, o € D. This can be represented as
a generative model as follows: (a) an object o0 € D is selected with probability p (o),
(b) alatent class z € Z s selected with probability p(z|o), and a feature f € F is gen-
erated with probability p(f|z). Note that o and f can be observed in the database, but
the latent semantic z is not directly observable and therefore needs to be estimated
based on the observable data (i.e., objects and their features). This can be achieved
using the expectation maximization algorithm, EM [Dempster et al., 1977]; see also
Section 9.7.4.3. EM relies on a likelihood function to tie the parameters whose val-
ues are unknown to the available observations and estimates the unknown values
by maximizing this likelihood function. For this purpose, PLSA uses the likelihood
function

l_[l_[p(o’ f)count(o,f)

oeD feF

where count(o, f) denotes the frequency of the feature f in the given object o, and
p(o, f) denotes the joint probability of o and f. Note that the joint probability p (o, f)
can also be expressed in terms of the unobserved class variables as follows:

p(o.f) =p(o)p(flo)
=p(0)Y_p(fl2)p(zlo)

zeZ

_ p(olz2)p(z)
=p(o) ;p(fIZ)—p(O)

= ZP(Z)P (f12)p(olz).

zeZ

Therefore this likelihood function’ ties observable parameters (joint probabilities of
objects and features and frequencies of the features in the objects in the database)
to unobservable parameters, p(z), p(0|z), and p(f|z), that we wish to discover.

9 Note that often the simpler log-likelihood function,

log (]_[[Tpto.pycountos)) =" count(o, f)log(p(o.)),

oeD feF oeD feF

is used instead.

Www.Ebook777.com

http://www.ebook777.com

4.4 Embedding Data from One Space into Another 177

4.4.2.2 Decomposition

Given a database, D = {0y, ..., o4}, of n objects, a feature set, F = {fi, ..., fi}, and
the unobserved class variables, Z = {z1, ..., zx}, the PLSA uses the equality
p(o.f) =Y _p@p(fl2)p(olz)
zeZ

to decompose the n x m matrix, P, of p(o;, f), as follows:
P=UsV’,
Here,

m Uis the n x k matrix of p(o;|z;) entries
m Vis the m x k matrix of p(f;|z;) entries
B X is the k x k matrix of p(z;) entries

Note that despite its structural similarity to SVD, through the use of EM, PLSA is
able to search explicitly for a decomposition that has a high predictive power.

4.4.3 CUR Decomposition

Many data management techniques rely on the fact that rows and columns of the
object-feature matrix, A, are generally sparse: that is, the number of available fea-
tures is much larger than the number of features that objects individually have. This
is true, for example, for text objects, where the dictionary size of potential terms
tends to be significantly large compared to the unique terms in a given document.
Such sparseness of a given database matrix usually enables application of more spe-
cialized algorithms for its manipulation, from indexing to analysis.

When considered in this context a potential disadvantage of the PCA and SVD
techniques is that both take sparse matrices as input, but return two extremely dense
left and right matrices. It is true that they also return one extremely sparse (diag-
onal) central matrix; however, this matrix does not directly relate objects to their
compositions and, furthermore, tends to be much smaller than the left and right
matrices.

CUR decomposition [Mahoney ef al., 2006] tries to avoid destruction of sparsity
by giving up the use of eigenvectors for the construction of the left and right matrices
and, instead, picking the columns of the left matrix and the rows of the right matrix
from the columns and rows of the database matrix, A, itself: given an m x n matrix,
A, and given two integers, ¢ < m and r < n, the CUR decomposition of A is

A~CUR,

where C is an m x ¢ matrix, with columns picked from columns of A, Risanr x n
matrix, with rows picked from the rows of A, and U is a ¢ x r matrix, such that
A — CUR)] is small.

Note that since C and R are picked from the columns and rows of A, they are
likely to preserve the sparsity of A. On the other hand, because the constraint of
representing the singular values of A is removed from U, it is not necessarily diago-
nal and instead tends to be much denser than C and R.

178

Feature Quality and Independence

CUR decomposition of a given matrix, A, requires three complementary sub-
processes: (a) selection of ¢ and r; (b) choice of columns and rows of A for the con-
struction of C and R, respectively; and (c) given these, identification of the matrix U
that minimizes the decomposition error. Selection of the values ¢ and r tends to be
application dependent. Given c and r, on the other hand, choosing the appropriate
examples from the database requires care. Although uniform sampling [Williams
and Seeger, 2001] is a relatively efficient solution, biased subspace sampling tech-
niques [Drineas et al., 2006a,b] might impose absolute or, at least, relative bounds
on the decomposition errors.

One indirect advantage of the CUR decomposition is that the columns of C and
the rows of R are in fact examples from the original database; thus, they are much
easier to interpret than the composite singular vectors that are produced by PCA
and SVD. However, these columns and rows are no longer orthogonal to each other
and, thus, their use of the basis of the vector space is likely to give rise to unintended
and undesirable consequences, especially when similarity distance measures that
call for orthogonality of the basis are used in retrieval or further analysis.

4.4.4 Tensors and Tensor Decomposition

So far, we have been assuming that the media database can be represented in the
form of an object-feature matrix, A. Although in general this representation is suffi-
cient for indexing multimedia databases, there are cases in which the matrix repre-
sentation falls short. This is, for example, the case when the database changes over
time and the patterns of change, themselves, are important: in other words, when the
database has a temporal dimension that cannot be captured by a single snapshot.

4.4.4.1 Tensor Basics
Mathematically, a tensor is a generalization of matrices [Kolda and Bader, 2009;
Sun et al., 2006]: whereas a matrix is essentially a two-dimensional array, a tensor
is an array of arbitrary dimension. Thus, a vector can be thought of as a tensor of
first order, an object-feature matrix is a tensor of second order, and a multisensor
data stream (i.e., sensors, features of sensed data, and time) can be represented
as a tensor of third order. The dimensions of the tensor array are referred to as
its modes. For example, an M x N x K tensor of third order has three modes: M
columns (mode 1), N rows (mode 2), and K tubes (mode 3). These 1D arrays are
collectively referred to as the fibers of the given tensor. Similarly, the M x N x K
tensor can also be considered in terms of its M lateral slices, N horizontal slices, and
K frontal slices: each slice is a 2D array (or equivalently a matrix, or a tensor of
second order).

As matrices can be multiplied with other matrices or vectors, tensors can also be
multiplied with other tensors, including matrices and vectors. For example, given an
M x N x K tensor 7 and a P x N matrix A,

T’ZTXzA

is an M x P x K matrix where each lateral slice 7[][j][] has been matrix multi-
plied by A”. In the foregoing example, the tensor-matrix multiplication symbol

13 2

x,” states that the matrix A7 will be multiplied with 7 over its lateral slices.

4.4 Embedding Data from One Space into Another

Multiplication of a tensor with a vector is defined similarly, but using a different
notation: given an M-dimensional vector v,

T" =Tx10

is a N x K tensor, such that v has been multiplied with each column, 7[][/][%]. In
this example, the tensor-vector multiplication symbol “X;” states that vector v and
columns of 7 will get into the dot product.

4.4.4.2 Tensor Decomposition

Tensors can also be analyzed and mapped into lower dimensional spaces. In fact,
because matrices themselves are tensors of second order, we can write the SVD
decomposition

T
AM><N = UMerrxr‘/rXN
using tensor notation as follows:

AM><N = z:rxr X1 UM><r X2 Ver-

Orthonormal Tensor Decompositions
Tucker decomposition [Tucker, 1966] generalizes thistoa M x N x K tensor, 7,
as follows:

TrsxNsxk ~ Grxsxt X1 Ubixr X2 Vixs X3 Xkt

Like CUR, Tucker decomposition fails to guarantee a unique and perfect decompo-
sition of the input matrix. Instead, most approaches involve searching for orthonor-
mal U, V, X matrices and a G tensor that collectively minimize the decomposition
error. For example the high-order SVD approach [Lathauwer er al., 2000; Tucker,
1966] to Tucker decomposition first identifies the left eigenvectors (with the highest
eigenvalues) of the lateral, horizontal, and frontal slices to construct U, V, and X.

Because there are multiple lateral (or horizontal, or frontal) slices, these equidi-
rectional slices need to be combined into a single matrix before the corresponding
eigenvectors are identified. Once U, V, and X are found, the corresponding optimal
tensor, G, is computed as

T T T
grxsxt = 7'M><N><K X1 Ur><M X2 stN X3Xt><1<'

This process does not lead into an optimal decomposition. Thus, the initial U, V, and
X estimates are iteratively improved using a least-squares approximation scheme
before G is computed [Kroonenberg and Leeuw, 1980; Lathauwer ef al., 2000].

Diagonal Tensor Decompositions

CANDECOMP [Caroll and Chang, 1970] and PARAFAC [Harshman, 1970]
decompositions take a different approach and, as in SVD, enforce that the core
tensor is diagonal:

TMxNxK ~ Ar><r><r X1 UMxr X2 Ver X3 XK><r~

The diagonal values of the A matrix are eigenvalues. The consequence of start-
ing the decomposition process from identifying a central matrix, constrained to be

179

180

Feature Quality and Independence

diagonal, however, is that the U, V, and X matrices are not guaranteed to be or-
thonormal. Thus, this approach may not be applicable when the matrices U, V, and
X are to be used as bases that describe and index the different facets of the data.

Dynamic and Incremental Tensor Decompositions

Because tensors are mostly used in domains where data evolve continuously and
thus have a temporal aspect, tensors tend to be updated by the addition of new slices
(and deletion of the old ones) along the mode that corresponds to time. Conse-
quently, specialized dynamic decomposition algorithms that focus on insertion and
deletion of slices can be developed. The Dynamic Tensor Analysis (DTA) approach,
for example, updates the variance information (used for identifying eigenvalues and
eigenvectors to construct the decomposition) incrementally, but rediagonalizes the
variance matrix for each new slice [Sun er al., 2006]. The Window-based Tensor
Analysis (WTA) algorithm builds on this by iteratively improving the decomposi-
tion as in Tucker’s scheme [Tucker, 1966]. The Streaming Tensor Analysis (STA)
scheme, on the other hand, takes a different approach and incrementally rotates the
columns (representing lines in the space) of the decomposition matrices with each
new observed data point [Papadimitriou et al., 2005].

4.5 SUMMARY

In this chapter, we have first introduced the concept of dimensionality curse, which
essentially means that multimedia database systems cannot manage more than a
handful of facets of the multimedia data simultaneously. In Chapter 7 on multi-
dimensional data indexing, Chapter 9 on classification, and Chapter 10 on ranked
query processing, we see different instantiations of this very curse. Thus, feature
selection algorithms, which operate based on some appropriate definition of signif-
icance of features, are critical for multimedia databases. In many cases, in fact, the
real challenge in multimedia database design and operation is to identify the appro-
priate criterion for feature selection. In Chapters 9 and 12, we see that classification
and user relevance feedback algorithms, which can leverage user provided labels on
the data, are also useful in selecting good features.

In this chapter, we have also seen the importance of managing data using in-
dependent features. Independence of features not only helps ensure that the few
features we select to use do not have wasteful redundancy in them, but also ensures
that the media objects can be compared against each other effectively. Once again,
we see the importance of having independent features in the upcoming chapters on
indexing, classification, and query processing.

5

Indexing, Search, and Retrieval
of Sequences

Sequences, such as text documents or DNA sequences, can be indexed for searching
and analysis in different ways depending on whether patterns that the user may want
to search for (such as words in a document) are known in advance and on whether
exact or approximate matches are needed.

When the sequence data and queries are composed of words (i.e., nonoverlap-
ping subsequences that come from a fixed vocabulary), inverted files built using
B+-trees or tries (Section 5.4.1) or signature files (Section 5.2) are often used for
indexing. When, on the other hand, the sequence data do not have easily identifi-
able word boundaries, other index structures, such as suffix trees (Section 5.4.2), or
filtering schemes, such as p-grams (Section 5.5.4), may be more applicable.

In this section, we first discuss inverted files and signature files that are com-
monly used for text document retrieval. We then discuss data structures and algo-
rithms for more general exact and approximate sequence matching.

5.1 INVERTED FILES

An inverted file index [Harman er al., 1992] is a search structure containing all the
distinct words (subpatterns) that one can use for searching. Figure 5.1(a) shows the
outline of the inverted file index structure:

m A word (or term) directory keeps track of the words that occur in the database.
For each term, a pointer to the corresponding inverted list is maintained. In ad-
dition, the directory records the length of the corresponding inverted list. This
length is the number of documents containing the term.

m The inverted lists are commonly held in a postings file that contains the actual
pointers to the documents. To reduce the disk access costs, inverted lists are
stored contiguously in the postings file. If the word positions within the docu-
ment are important for the query, word positions can also be maintained along
with the document pointers. Also, if the documents have hierarchical structures,
then the inverted lists in the postings file can also reflect a similar structure
[Zobel and Moffat, 2006]. For example, if the documents in the database are

181

182

Indexing, Search, and Retrieval of Sequences

Terms Count/Pointer

ASU 3 1 1 Doc #1
2 2 p—
\ 3 > \ -----
4 4
5 6 Doc #2
search [[candan| 2
\

structure g;g g E
(e.g., B+-tree)
: ' Doc #5
. | ot % E
torino || 2 1012 4
Directory Posting file
(a)
Terms Count/Pointer
Query = “candan”
ASU 3 1 1 Doc #1
Z 2 p—
\ 3 5 [~_ | ==
. 4 4
) 5 6 Doc #2
candan| 2 \
275 | 3 E
276 5
i Doc #5
. | o] % E
torino || 2 1012 4
Directory Posting file

(b)

Figure 5.1. (a) Inverted file structure and (b) a search example.

composed of chapters and sections, then the inverted list can also be organized
hierarchically to help in answering queries of different granularity (e.g., finding
documents based on two words occurring in the same section).

B A search structure enables quick access to the directory of inverted lists. Differ-
ent search structures can be used to locate inverted lists matching query words.
Hash files can be used for supporting exact searches. Another commonly used
search data structure is the B*-tree [Bayer and McCreight, 1972]; because of
their balanced and high-fanout organizations, B*-trees can help locate inverted
lists on disks with only a few disk accesses. Other search structures, such as tries
(Section 5.4.1) or suffix automata (Sections 5.4.3), can also be used if prefix-
based or approximate matches are needed during retrieval.

Figure 5.1(b) shows the overview of the search process. First the search data struc-
ture is consulted to identify whether the word is in the dictionary. If the word is
found in the dictionary, then the corresponding inverted list is located in the postings
file by following the pointer in the corresponding directory entry. Finally, matching
documents are located by following pointers from the inverted list.

5.1 Inverted Files

5.1.1 Processing Multi-Keyword Queries Using Inverted Files

If the query contains multiple keywords and is conjunctive (i.e., the result must con-
tain all the query keywords), the inverted lists matching the query keywords are
retrieved and intersected before the documents are retrieved. If, on the other hand,
the query is disjunctive in nature (i.e., finding any query keywords is sufficient to
declare a match), then the matching inverted lists need to be unioned.

If the given multikeyword query is fuzzy or similarity-based (for example, when
the user would like to find the document that has the highest cosine similarity to the
given query vector), finding all matches and then obtaining their rankings during
a postprocessing step may be too costly. Instead, by using similarity accumulators
associated with each document, the matching and ranking processes can be tightly
coupled to reduce the retrieval cost [Zobel and Moffat, 2006]:

(i) Initially, each accumulator has a similarity score of zero.

(i) Each query word or term is processed, one at a time. For each term, the
accumulator values for each document in the corresponding inverted in-
dex are increased by the contribution of the word to the similarity of the
corresponding document. For example, if the cosine similarity measure is
used, then the contribution of keyword k to document d for query g can be
computed as

w(d, k)w(q, k) .
\/Zk;ed wZ(d7 ki)\/Zkieq wZ(q7 kl)

Here w(d, k) is the weight of the keyword k in document d, and w(q, k) is
the weight of k in the query.

(iii) Once all query words have been processed, the accumulators for docu-
ments with respect to the individual terms are combined into “global”
document scores. For example, if the cosine similarity measure is used as
described previously, the accumulators are simply added up to obtain doc-
ument scores. The set of documents with the largest scores is returned as
the result.

contrib(k, d, q) =

Note that more efficient ranked query processing algorithms, which may avoid
the need for postprocessing and which can prune the unlikely candidates more ef-
fectively, are possible. We discuss these ranked query-processing algorithms in more
detail in Chapter 10.

5.1.2 Sorting and Compressing Inverted Lists for Efficient Retrieval

A major cost of the inverted file-based query processing involves reading the in-
verted lists from the disk and performing intersections to identify candidates for
conjunctive queries. Keeping the inverted lists in sorted order can help eliminate
the need for making multiple passes over the inverted list file, rendering the inter-
section process for conjunctive queries, as well as the duplicate elimination process
for disjunctive queries, more efficient.

One advantage of keeping the documents in the inverted list in sorted order is
that, instead of storing the document identifiers explicitly, one may instead store

183

184

Indexing, Search, and Retrieval of Sequences

Text: "Motorola also has a music phone."

Keyword Signature of word
"Motorola" 0011 0010
"music" 0001 1100
"phone” 0001 0110
Signature of File (bitwiseor) 00111110

User Query Signature of user query

(a) match : "Motorola" 0011 0010
(b) no match : "game" 1000 0011
(c) false match : "television" 0010 1010

Figure 5.2. Document signature creation and use for keyword search.

the differences (or d-gaps) between consecutive identifiers; for example, instead of
storing the sequence of document identifiers

100, 135, 180, 250, 252, 278, 303,
one may store the equivalent d-gap sequence,
100, 35, 45, 70, 2, 26, 25.

The d-gap sequence consists of smaller values, thus potentially requiring fewer
bits for encoding than the original sequence. The d-gap values in a sequence are
commonly encoded using variable-length code representations, such as Elias and
Golomb codes [Zobel and Moffat, 2006], which can adapt the number of bits needed
for representing an integer, depending on its value.

5.2 SIGNATURE FILES

Signature files are probabilistic data structures that can help screen out most unqual-
ified documents in a large database quickly [Faloutsos, 1992; Zobel et al., 1998]. In
a signature file, each word is assigned a fixed-width bit string, generated by a hash
function. As shown in Figure 5.2, the signature of a given document is created by
taking the bitwise-or of all signatures of all the words appearing in the document.
Figure 5.2 also shows the querying process: (a) the document signature is said to
match the query if the bitwise-and of the query signature and the document signa-
ture is identical to the query signature; (b) the document signature is said not to
match the query if the bitwise-and operation results in a loss of bits.

As shown in Figure 5.2(c), signature files may also return false matches: in
this case, signature comparison indicates a match, but in fact there is no key-
word match between the document and the query. Because of the possibility of
false hits/matches, query processing with document signatures requires three steps:
(1) computing the query signature, (2) searching for the query signature in the set
of document signatures, and (3) eliminating any false matches.

5.2.1 False Positives

Let us consider a document composed of # distinct words. Let each m-bit word sig-
nature be constructed by randomly setting some of the signature bits to 1 in / rounds.

5.2 Signature Files

The signature for the entire document is constructed by taking the bitwise-or of the
m-bit signatures of the words appearing in the document. Hence, the probability of
a given bit in the document signature being set to 1 can be computed as follows:

() EEC

Intuitively, this corresponds to the probability of the position corresponding to the
selected bit being occupied by a “1” in at least one of the m signatures. The term

(1- %) is the probability that in any given word signature the selected bit remains
“0”, despite / rounds of random selection of bits to be set to “1”. Note that it is
possible to approximate the preceding equation as follows:

1\" o
1-(1--) ~Al—em=1—e¢",
m

where [= a x m.

5.2.1.1 Single Keyword Queries

This implies that, given the m-bit signature of a single keyword query, (where ap-
proximately / bits are set to “1”), the probability that all the corresponding “1” bits
in the document signature file are also set to “1” is

(1—em) = (1—em)™.

In strict terms, this is nothing but the rate of matches and includes both true and
false positives. It, however, also approximates the false positive rate, that is, the
probability that the bits corresponding to the query in the signature file are all set to
“17, although the query word is not in the document. This is because this would be
the probability of finding matches even if there is no real match to the query in the
database.

Let us refer to the term (1 — e™™)™" as fp(n, o, m). By setting the derivative,
W, of the term to 0 (and considering the shape of the curve as a function of
@), we can find the value of « that minimizes the rate of false positives. This gives
the optimal « value as o = @ In other words, given a signature of length m, the

optimal number, L,y ima, Of bits to be set to “1” is [ml"fT—z)'L Consequently, the false
positive rate under this optimal value of [is

n(2) 1 r In(’ZX)m 1

Do) = . "2y = (1=) " = ()

This means that, as shown in Figure 5.3(a), once the signature is sufficiently long,
the false positive rate will decrease quickly with increasing signature length.

5.2.1.2 Queries with Multiple Keywords

Conjunctive Queries

If the user query is a conjunction of k > 1 keywords, then the query signature is
constructed (similarly to the document signature creation) by OR-ing the signatures
of the individual query keywords. Thus, by replacing n with k in the corresponding
formula for document signatures, we can find that, given a conjunctive query with k

185

186

Free ebooks ==> www.Ebook777.com

Indexing, Search, and Retrieval of Sequences

False Positive Rate (n=1000) False Positive Rate (m=8192)
1 — T —T— 1
2 R R R PR AN © & o S
IR A [R S o %.9\@% 0,3
e 014 ° 0.01 4
£ g 0.001 A
o o
2 . 2 0.0001 4
3 8 1 I3
g g 0.00001
8 & 0.000001 4
& 0001 1 £ 0.0000001 |
0.00000001 A
0.0001 0.000000001
of signature bits (m) # of distinct words (n)
-= False Positive Rate -=False Positive Rate
(a) (b)

Figure 5.3. False positive rate of signature files decreases exponentially with the signature
length.

keywords, the likelihood of a given bit being set to “1” in the query signature is &
kl

1 — e~ m. Because there are m bits in each signature, the expected number of bits set

to “1” in the query signature can be approximated as

m

le—e‘g =m(1—e_%>.
i=1

As shown in Figure 5.4, when m > [, the foregoing equation can be approximated
by k x [

Using this approximation, for a query with k keywords, the false positive rate can
be approximately computed as

“(1-3)"= (1))

Expected number of bits set in the query
signature divided by (k*I) (m=8192)

o A, .,
094 *—
X
0.8 | \X\x
0.7 - T
—
0.6 - T |[=1=10
0.5 | -+ 1=100
0.4 - -<-1=1000
0.3 4
0.2 A
0.1 1
0 T T T T T T T T T
1 2 3 4 5 6 7 8 9 10

number of query terms (k)

number of bits set / (k*I)

Figure 5.4. Expected number of bits set in the query signature divided by k x I. For m > |,
the ratio is almost 1.0; that is, the expected number of bits set in the query signature can
be approximated by k x I.

Www.Ebook777.com

http://www.ebook777.com

5.2 Signature Files

In other words, for a conjunctive query with more than one keyword, the false pos-
itive rate drops exponentially with the number, k, of query words:

Toconi(k.n.etom) = (1 =)™ = fip (n, . m).

Disjunctive Queries

If, on the other hand, the query is disjunctive, then each query keyword is evalu-
ated independently, and if a match is found for any query keyword, then a match is
declared for the overall query. Thus, a false positive for any query word will likely
result in a false positive for the overall query. Thus, the false positive rate for the
query will increase with the number k of words in the disjunctive query:

foaisi(k,n, o, m) ~ 1 — (1 — fp(n, a, m))~.

5.2.2 Indexing Based on Signature Files: Bitslice
and Blocked Signature Files

In general, checking the signature of a document for a match is faster than scanning
the entire document for the query words. Yet, given a database with large number of
documents, identifying potential matches may still take too much time. Therefore,
especially in databases with large numbers of documents, better organizations of the
document signature files may be needed.

Bitslice Signature Files

Given a database with N documents, bitslice signature files organize and store
document signatures in the form of “slices”: the ith bitslice contains bit values of the
ith position in all the N document signatures.

Given a query signature where /4., bits are set to “1”, the corresponding bit-
slices are fetched, and all these slices are AND-ed together. This creates a bitmap
of potential answers, and only these candidate matches need be verified to find the
actual matches.

In practice (if the slices are sufficiently sparse'), the false positive rate is ac-
ceptably low even if only s < Iy slices are used for finding candidate documents.
According to Kent ef al. [1990] and Sacks-Davis ef al. [1987], in practice the number
of slices to be processed for conjunctive queries can be fixed around six to eight. For
a conjunctive query, if the number of query keywords, k, is greater than this, at least
k slices need to be used. If the query is disjunctive, because each query keyword is
matched independently, k x s slices should be fetched.

Blocked Signature Files

In a large database, the bitslices themselves can be very long and costly to fetch.
Given that multiple slices need to be fetched per query, having to fetch and pro-
cess bitslices that are very long might have a negative effect on query processing
performance.

Because the bitslices are likely to be sparse, one alternative is to store them in
compressed form. Although this may help reduce storage costs, once fetched from

1 According to Kent et al. [1990], approximately one bit in eight should be set to “1”.

187

188

Indexing, Search, and Retrieval of Sequences

the database, these compressed slices need to be decompressed before the matching
process and, overall, this may still be too costly. An alternative to naive compression
is to group documents into blocks, where each bit in a slice corresponds to a block
of B documents. Although this reduces the sizes of the slices that need to be fetched
from the database, block-level aggregation of documents may have two potential
disadvantages [Kent er al., 1990]:

m First, the reduction in the slice length may increase the overall slice density. This
may then cause an increase in false positives, negatively affecting the retrieval
quality. When using blocking, to keep the overall slice density low for the entire
database, the signature length (i.e., the total number of slices) needs to be in-
creased. Also, the larger the blocking factor is, the more slices must be fetched
to eliminate false matches.

B A second disadvantage of aggregating documents into blocks is that, in the case
of a false match, the entire block of documents needs to be verified all together.
The degree of block-level false matches needs to be reduced by using different
document-to-block mappings for different slices.

When block-based aggregation is used, each bit in the blocked slice corresponds to a
set of documents. Consequently, to find the individual matches, the blocked bitslices
need to be decoded back to document identifiers. Because blocking may potentially
result in a larger number of candidate matches and because more slices would need
to be fetched from the database to reduce the false positive rate, identifying candi-
date matches may require a significant amount of work [Sacks-Davis ef al., 1995].
Thus, informed choice of appropriate parameters, based on a cost model (which
takes into account the I/O characteristics and the available memory) and a proper
understanding of the data characteristics, is crucial.

5.2.3 Data Characteristics and Signature File Performance

As described previously, the likelihood of false positives is a function of the number
of distinct words in a given document. Thus, given a database with a heterogeneous
collection of documents, setting the appropriate size for the signature is not straight-
forward: a short signature will result in a large degree of false positives for long
documents, whereas a long signature may be redundant if most of the documents
in the database are short. Although partitioning the database into sets of roughly
equal-sized documents [Kent ez al., 1990] or dividing documents into roughly equal-
sized fragments might help, in general, signature files are easier to apply when the
documents are of similar size.

A related challenge stems from common terms [Zobel et al., 1998] that occur in
a large number of documents. Having a significant number of common terms results
in bitslices that are unusually dense and thus increases the false positive rate (not
only for queries that contain such common terms, but even for other rare terms that
share the same bitslices). This problem is often addressed by separating common
terms from rare terms in indexing.

5.2 Signature Files

5.2.4 Word-Overlap-Based Fuzzy Retrieval Using Signature Files

Although the original signature file data structure was developed for quick-and-
dirty lookup for exact keyword matches, it can also be used for identifying fuzzy
matches between a query document and the set of documents in the database. Kim
et al. [2009] extend the basic signature file method, with a range search mechanism
to support word-overlap based retrieval.

Let doc be a document containing n words and g be a query document that con-
tains the same n words as doc plus an additional set of u words.” Let Sigq, and Sig,
denote the signatures of these two documents, respectively. As described earlier,
document signatures are formed through the bitwise-OR of the signatures of the
words in the documents. Let us assume that the signature size is m bits and signa-
tures are obtained by setting random bits in / < m rounds. As before, the probability
of a given bit in the document signature being set to “1” can be computed as follows:

1" 1\" ,
1-((1_—>> :1_<1——> ~l—e .
m m

Here, (1 — %)l is the probability that in any given signature, the selected bit remains
“0” despite / rounds in which a randomly selected bit is set to “1”. The formula
then reflects the probability of the position corresponding to the selected bit being
occupied by a “0” in all the contributing # bit-strings.

Let us now consider g. Because g contains u additional words, the bits set to 1
for the query signature, Sig,, will be a superset of the bits set to 1 in Sigg,.. Some of
the bits that are 0 in Sigg,. will switch to 1 because of the additional u# words. The
probability of a given bit switching from 0 to 1 as a result of the addition of these u
new words can be be computed as follows:

1\" 1\“ . }
Prisswiten(m, [, n, u) = <1 — —) X <1 — (1 - —)) A e X (1 — e_7n1> .
m m

Given this, the probability, P,cac:_pir_air, that exactly ¢ bits will differ between doc and
q due to these u additional words can be formulated as follows:

m

Pexacl,bil,dlff(m» l» n,u, [) = < "

Furthermore, the probability, Px_pi_aif, that there will be at most d bits differing
between signatures, Sigq,. and Sig,, due to u words is

Prax_pir_aif(m, I, n, u, d) = Z Povact_vir_aigf(m, I, n, u,).
1<t<d

Let us assume that the user allows up to u-words flexibility in the detection of word
overlaps between the document and the query. Under this condition, doc should be
returned as a match to g by the index structure with high probability. In other words,

2 Missing words are handled similarly.

) Pbitswitch(mv lv n, u)[(l - PbilSWl‘l(,‘h (m7 lv n, u))mit'

189

190

Indexing, Search, and Retrieval of Sequences

under u-words flexibility, for the given values of m, [, n, and u and an acceptable false
hit rate pg,, we need to pick the largest bit-difference value, d, such that

Prax_vit_aigf(m, [, n,u +1,d) < pg.

For any document with more than u words difference with the query, the probability
of being returned within d bit differences will be at most pg,. In other words, given
the mismatch upper bound u, d is computed as

argnowx Prax pic_aif(m, [n, u+1,d) < py,.

>

To leverage this for retrieval, Kim e al. [2009] treat the signatures of all the docu-
ments in the database as points in an m-dimensional Euclidean space, where each
dimension corresponds to one signature bit. Given a query and an upper bound, u, of
the number of mismatching words between the query and the returned documents,
a search with a range of +/d is performed using a multidimensional index struc-
ture, such as the Hybrid-tree [Chakrabarti and Mehrotra, 1999] (Section 7.2.4.3),
and false positives are eliminated using a postprocessing step.

5.3 SIGNATURE- AND INVERTED-FILE HYBRIDS

Both signature and inverted files have their advantages and disadvantages. Some
schemes try combining the inverted file and signature file approaches to get the
best of both worlds. Faloutsos and Christodoulakis [1985] argue that if there exist
discriminatory terms that are used frequently in user queries but do not appear in
data, then significant savings can be achieved in signature files if such high discrim-
inatory terms are treated differently from the others. Based on this observation,
Kent et al. [1990] propose to index common terms using bitmaps and rare terms
using signature files to eliminate the problems signature files face when the distri-
bution of the term frequencies is highly heterogeneous in the database. Chang et al.
[1989] propose a hybrid method, integrating signature files with postings lists. Sim-
ilarly, Faloutsos and Jagadish [1992] propose the use of signature files along with
variable-length postings lists. The postings file is used only for the highly discrim-
inatory terms, whereas the signature file is built for common, low discriminatory
terms. Given a query, a shared index file is used to route the individual query terms
to the postings file or the signature file for further matching.

Sacks-Davis [1985] presents a two-level signature file, composed of a block sig-
nature file and a record signature file. Given a query, first the block signature file
(implemented as a bitslice) is searched to determine matching blocks. Then, the
record signatures (implemented as bit strings) of the matching blocks are further
searched to identify matching documents. Chang ez al. [1993] improve the two-level
signature method by integrating postings files, for leveraging term discrimination,
and block signature files, for document signature clustering. In this scheme, as in
the approach by Faloutsos and Jagadish [1992], a shared index file is used to route
the individual query terms to the postings or the signature file for further matching.
Unlike the approach by Faloutsos and Jagadish [1992], however, both the postings
and signature files are implemented as block-based index structures, which cluster
multiple documents. Once matching blocks are identified using the postings and

5.4 Sequence Matching

Figure 5.5. The (implicit) KMP state machine corresponding to the query sequence “artalar”:
each node corresponds to a subsequence already verified, and each edge corresponds to a
new symbol seen in the data sequence. When a symbol not matching the query sequence
is seen (denoted by “="), the state machine jumps back to the longest matching query
prefix.

signature files, then the record signatures (implemented as bit strings of the match-
ing blocks) are further searched to identify individual matching documents. Lee and
Chang [1994] show experimentally that the hybrid methods tend to outperform the
signature files that do not discriminate between terms. More recently, Zobel et al.
[1998] argue theoretically and experimentally that, because of the postprocessing
costs, in general inverted files, supported with sufficient in-memory data structures
and compressed postings files, tend to perform better than signature files and hybrid
schemes in terms of the disk accesses they require during query processing.

5.4 SEQUENCE MATCHING

In the previous two subsections, we described approaches for addressing the
problem of searching long sequences (e.g., documents) based on whether or not
they contain predefined subpatterns (e.g., words) picked from a given vocabu-
lary. More generally, the sequence-matching problem (also known as the string-
matching problem) involves searching for an occurrence of a given pattern (a sub-
string or a subsequence) in a longer string or a sequence, or to decide that none
exists.

The problem can be more formally stated as follows: given two sequences g, of
length m, and p, of length n, determine whether there exists a position x such that the
query sequence g matches the target sequence p at position x. The query sequence
q matches the target sequence p at position x iff Yo<j<m—1p[x + i] = ¢q[1 +i].

A naive approach to the sequence-matching problem would be to slide the query
sequence (of size m) over the given data sequence (of size n) and to check matches
for each possible alignment of these two sequences. When done naively, this would
lead to O(mn) worst-case time. The Knuth-Morris-Pratt (KMP) [Knuth ez al., 1977]
and Boyer-Moore (BM) [Boyer and Moore, 1977] algorithms improve this by pre-
venting redundant work that the naive approach implies. As in the naive algorithm,
KMP slides the data sequence over the query sequence but, using an implicit struc-
ture that encodes the overlaps in the given query sequence (Figure 5.5), it skips
unpromising alignment positions. Consequently, it is able to achieve linear O(n)
worst-case execution time. BM allows linear-time and linear-space pre-processing
of the query sequence to achieve sublinear, O(nlog(m)/m), average search time
by eliminating the need to verify all symbols in the sequence. The worst-case

191

192

Indexing, Search, and Retrieval of Sequences

C v '“--__““
Crlel 1] [l [l 1.17]
“CAT"
(a)
,,"
~ R4 /_‘,\"/,«v el
[a4
Vroot /,{\d:’----_» /"\l_:r""’ Vroot /,"%—/ ,,r’(_,«r
OCUAUTUT\rL\()E() C(A) T T(LE)
‘CAT” CATTLE “CAT” “CATTLE”
(b) (c)

Figure 5.6. (a) Trie data structure. (b) A sample trie for a database containing sequences
“cat” and “cattle” among others. (c) The corresponding Patricia trie that compresses the
subpaths.

behavior [Cole, 1994] of the BM algorithm, however, is still O(n) and in general
is worse than the worst-case behavior of the KMP.

5.4.1 Tries

Tries [Fredkin, 1960] are data structures designed for leveraging the prefix common-
alities of a set of sequences stored in the database. Given an alphabet, X, and a set,
S, of sequences, the corresponding trie is an edge-labeled tree, T(V, E), where each
edge, e¢; € E, is labeled with a symbol in ¥ and each path from the root of 7 to any
node v; € V corresponds to a unique prefix in the sequences stored in the database
(Figures 5.6(a) and (b)). The leaves of the trie are specialized nodes correspond-
ing to complete sequences in the database. Because each sequence is encoded by a
branch, tries are able to provide O(/) search time for a search sequence of length /,
independent of the database size. To further reduce the number of nodes that need
to be stored in the index structure and, most importantly, traversed during search,
Patricia tries [Morrison, 1968] compress subpaths where the nodes do not contain
any branching decisions (Figure 5.6(c)).

5.4.2 Suffix Trees and Suffix Arrays

Although benefiting from the prefix commonalities of the sequences in the database
may reduce the cost of searches, this also limits the applicability of the basic trie
data structure to only those searches that start from the leftmost symbols of the se-
quences. In other words, given a query sequence g, tries can help only when looking
for matches at position x = 1.

Suffix trees [McCreight, 1976; Ukkonen, 1992b] support more generalized se-
quence searches simply by storing all suffixes of the available data: given a

5.4 Sequence Matching

T T T ™™ T T 71

1 2 3 48 5% 6 7 8 9

[3[o|8[4]1]2]6]5]7
index: 0 1 2 3 5 6 7 8
(b) (©)

Figure 5.7. (a) Suffixes of a sample string (in this example only those suffixes that start at
word boundaries are considered). (b) The corresponding suffix tree and (c) the suffix array.

4

sequence p, of length n, the corresponding suffix tree indexes each subsequence
in {p[i,n] | 1 <i < n}in a trie or a Patricia trie (Figure 5.7(a,b)). Thus, in this case,
searches can start from any relevant position in p. A potential disadvantage of suffix
trees is that, since they store all the suffixes of all data sequences, they may be costly
in terms of the memory space they require. Suffix arrays [Manber and Myers, 1993]
reduce the corresponding space requirement by trading off space with search time:
instead of storing the entire trie, a suffix array stores in an array only the leaves of
the trie (Figure 5.7(c)). In a database with s unique suffixes, searches can be per-
formed in log(s) time using binary search on this array.

5.4.3 Suffix Automata

As described in Section 5.4.2, suffix trees and suffix arrays are able to look into the
stored sequences for matches at positions other than the leftmost symbols. They, on
the other hand, assume that the input sequence needs to be matched starting from
its leftmost symbol. If the goal, however, is to recognize and trigger matches based
on the suffixes of an incoming sequence, these data structures are not immediately
applicable.

One way to extend suffix trees to support matches also on the suffixes of the data
sequences is to treat the suffix tree as a nondeterministic finite automaton: for each
new incoming symbol, search restarts from the root of the trie. When naively per-
formed, however, this may be extremely costly in terms of time as well as memory
space needed to maintain all simultaneous executions of the finite automaton.

Directed Acyclic Word Graphs

A suffix automaton is a deterministic finite automaton that can recognize all
the suffixes of a given sequence [Crochemore and Vrin, 1997; Crochemore e al.,
1994]. For example, the backward directed acyclic word graph matching (BDM)

193

194

Indexing, Search, and Retrieval of Sequences

Figure 5.8. A suffix automaton clusters the subsequences of the input sequence (in this case
“artalar”) to create a directed acyclic graph that serves as a deterministic finite automaton
that can recognize all the suffixes of the given sequence.

algorithm [Crochemore ef al., 1994] creates a suffix automaton (also referred to as
a directed acyclic word graph) for searching the subsequences of a given pattern in
a longer sequence. Let p be a given sequence and let u and v be two subsequences
of p. These subsequences are said to be equivalent (=) to each other for cluster-
ing purposes if and only if the set of end positions of u in p is the same as the set
of end positions of v in p. For example for the sequence “artalar”, “tal” =“al” but
“ar” # “lar”. The nodes of the suffix automaton are the equivalence classes of =,
that is, each node is the set of subsequences that are equivalent to each other. There
is an edge from one node to another if we can extend the subsequences using a new
symbol while keeping the positions that still match (Figure 5.8). The suffix automa-
ton is linear in the size of the given sequence and can be constructed in linear time.

Bit Parallelism

An alternative approach to the deterministic encoding of the automaton, as fa-
vored by BDM, is to directly simulate the nondeterministic finite automaton. As de-
scribed earlier, however, a naive simulation of the nondeterministic finite automa-
ton can be very costly. Thus, this alternative requires an efficient mechanism that
does not lead to an exponential growth of the simulation. The backward nondeter-
ministic directed acyclic word graph matching (BNDM) algorithm [Navarro and
Raffinot, 1998] follows this approach to implement a suffix automaton that simu-
lates the corresponding non-deterministic finite automaton by leveraging the bit-
parallelism mechanism first introduced in Baeza-Yates and Gonnet [1989, 1992].

In bit parallelism, states are represented as numbers, and each transition step is
implemented using arithmetic and logical operations that give new numbers from
the old ones. Let m be the length of the query sequence, ¢, and n be the length of
the data sequence, d. Let s/ denote whether there is a mismatch between g[1..i] and
d[(j —i+1)..j]. If sh, = 0, then the query is matched at the data position j. Let T[]
be a table such that

o JO x=dli]
Tix] = { 1 otherwise.

Then the value of sl’ can be computed from the value of s{j as follows:

s = s v Tdlf]].

1

Here, sé = 0 for all j because an empty query sequence does not lead to any mis-
matches with any data.

5.5 Approximate Sequence Matching

Let the global state of the search be represented using a vector of m states: in-
tuitively there are m parallel-running comparators reading the same text position,
and the vector represents the current state for each of these comparators. The global
state vector, gs;, after the consumption of the jth data symbol can be represented us-
ing a single number that combines the bit representations of all individual m states:

m—1

- I i
85 = Zsi+12 -
i=0

For every new symbol in the data, the state machine is transitioned by shifting the
vector gs; left 1 bit to indicate that the search advanced 1 symbol on the data se-
quence, and the individual states are updated using the table T7[x]:

gsj = (gsj-1 << 1) v GT[d[j]].

where GT|[x] is a generalized version of the table T that matches the bit structure of
the global state vector:

m—1
GTlx =" [x £ qli + 1]] 2,
i=0
Because of this, this algorithm is referred to as the shift-or algorithm. A match is
declared when gs; < 2m=1- that is, there is at least one individual state which finds
a match (i.e., Ji<i<m s{ = 0). Given a computational device with w bit words, the
shift-or algorithm achieves a worst-case time of O(%").

5.5 APPROXIMATE SEQUENCE MATCHING

Unlike the previous algorithms, which all search for exact matches, approximate
string or sequence matching algorithms focus on finding patterns that are not too
different from the ones provided by the users [Baeza-Yates and Perleberg, 1992;
Navarro, 2001; Sellers, 1980].

5.5.1 Finite Automata

One way to approach the approximate sequence matching problem is to repre-
sent the query pattern in the form of a nondeterministic finite automaton (NFA).
Figure 5.9 shows a nondeterministic finite automaton created for the sequence
“SAPINO”. Each row of this NFA corresponds to a different number of errors.
In the NFA, insertions are denoted as vertical transitions (which consume one extra
symbol), substitutions are denoted as diagonal transitions (which consume an alter-
native symbol), and deletions are denoted as diagonal € (or null) transitions (which
proceed without consuming any symbols). Note that the NFA-based representation
assumes that each error has a cost of 1 and, thus, it cannot be directly used when
insertions, deletions, and substitutions have different costs.

Ukkonen [1985] proposed a deterministic version of the finite automaton to
count the number of errors observed during the matching process. This allows
for O(n) worst-case time but requires exponential space complexity. Kurtz [1996]
showed that the space requirements for the deterministic automaton can be reduced

195

196

Free ebooks ==> www.Ebook777.com

Indexing, Search, and Retrieval of Sequences

Figure 5.9. The NFA that recognizes the sequence “SAPINO” with a total of up to two insertion,
deletion, and substitution errors. See color plates section.

to O(mn) using a lazy construction, which avoids enumerating the states that are
not absolutely necessary. More recently, Baeza-Yates and Navarro [1999], Baeza-
Yates [1996], and Wu and Manber [1991] proposed bit-parallelism—based efficient
simulations of the NFA. These avoid the space explosion caused by NFA-to-DFA
conversion by carefully packing the states of the NFA into memory words and
executing multiple transitions in parallel through logical and arithmetic operations
(Section 5.5.3).

5.5.2 Dynamic Programming-Based Edit Distance Computation

Let g (of size m) and p (of size n) be two sequences. Let C[i, j] denote the edit
distance between p[1..i]] and g[1..j]. The following recursive definition of the number
of errors can be easily translated into an O(mn) dynamic programming algorithm for
computing edit distance, C[n, m], between p and g¢:

C[i,0] = i
Clo,j]=j
cri i1 - | i (i = glj]) then Cli-1,j-1]
i 1= { else 1+ min{C[i — 1,], C[i,j — 1], C[i = 1, j — 1]}.

Note that the foregoing recursive formulation can also be viewed as a column-based
simulation of the NFA, where the active states of the given NFA are iteratively
evaluated one column at a time [Baeza-Yates, 1996].

This recursive formulation can easily be generalized to the cases where the edit
operations have nonuniform costs associated to them:

Cli — 1, j — 1] + substitution_cost(p[i], q[}]).
Cli, j] = min Cli — 1, j] + deletion_cost(p[i]), ’
Cli, j — 1] + insertion_cost(q[]])

where substitution_cost(a, a) = 0 for all symbols, a, in the symbol alphabet and
C[-1,j] = CJi,—1] for all i and j.

Www.Ebook777.com

http://www.ebook777.com

5.5 Approximate Sequence Matching

Landau and Vishkin [1988] improve the execution time of the dynamic
programming-based approach to O(k?n) time (where k is the maximum number of
errors) and O(m) space by considering the diagonals of the NFA as opposed to its
columns. Consequently, the recurrence relationship is written in terms of the diag-
onals and the number of errors, instead of the rows, i, and columns, j. Landau and
Vishkin [1989] and Myers [1986] further reduce the complexity to O(kn) time and
O(n) space by exploiting a suffix tree that helps maintain the longest prefix common
to both suffixes g[i..m] and p[j..n] efficiently.

5.5.3 Bit Parallelism for Direct NFA Simulation

As stated previously, dynamic programming based solutions essentially simulate the
automaton by packing its columns into machine words [Baeza-Yates, 1996]. Wu and
Manber [1991, 1992], on the other hand, simulate the NFA by packing each row into
a machine word and by applying the bit-parallelism approach (which was originally
proposed by Baeza-Yates and Gonnet [1989]; see Section 5.4.3). Wu and Manber
[1991] maintain k + 1 arrays R*, R, R, ..., R¥, such that array R stores all possible
matches with up to d errors (i.e., R¢ corresponds to the dth row).” To compute the
transition from R{ to R?, |, Wu and Manber [1991] consider the four possible ways
that lead to a match, for the first i characters of the query sequence g, with < d errors

uptop[j+1]:

B Matching: There is a match of the first i — 1 characters with < d errors up to p[j]
and p[j + 1] = q[i].

B Substituting: There is a match of the first i — 1 characters with < d — 1 errors up
to p[j]. This case corresponds to substituting p[j + 1].

B Deletion: There is a match of the first i — 1 characters with < d — 1 errors up to
p[j+ 1]. This corresponds to deleting of g[i].

m [nsertion: There is a match of the first i characters with < d — 1 errors up to p[j].
This corresponds to inserting d[j + 1].

Based on this, Wu and Manber [1991] show that R, can be computed from R,
R;-i_l, and R;tll using two shifts, one and, and three ors. Because each step requires
a constant number of logical operations, and because there are k£ + 1 arrays, approx-
imate sequence search on a data string of length n takes O((k + 1)n) time.

Wu and Manber [1991] further propose a partitioning approach that partitions
the query string into r blocks, all of which can be searched simultaneously. If one
of the blocks matches, then the whole query pattern is searched directly within a
neighborhood of size m from the position of the match. Baeza-Yates and Navarro
[1999] further improve the search time of the algorithm to O(n) for small query pat-
terns, where mk = O(logn), by simulating the automaton by diagonals (as opposed
to by rows). Baeza-Yates and Navarro [1999] also propose a partition approach that

mk
ow

can search for longer query patterns in O(n) time, for a partitioning constant,

w, and symbol alphabet size, o.

3 RO, that is, the array corresponding to zero matching error, corresponds to the original string.

197

198

Indexing, Search, and Retrieval of Sequences

5.5.4 Filtering, Fingerprinting, and p-Grams

Filtering-based schemes rely on the observation that a single matching error can-
not affect two widely separated regions of the given sequence. Thus, they split the
pattern into pieces and perform exact matching to count the number of pieces that
are affected to have a sense of the number of errors there are between the query
pattern and the text sequence. For example, given a maximum error rate, k, Wu and
Manber [1991] cut the pattern into k + 1 pieces and verify that at least one piece is
matched exactly. This is because k errors cannot affect more than k pieces. Jokinen
et al. [1996] slide a window of length m over the text sequence and count the num-
ber of symbols that are included in the pattern. Relying on the observation that in
a subsequence of length m with at most k errors, there must be at least m — k sym-
bols that are belonging to the pattern, they apply a counting filter that passes only
those window positions that have at least m — k such symbols. These candidate text
windows are then verified using any edit-distance algorithm.

p-Grams

Holsti and Sutinen [1994], Sutinen and Tarhio [1995], Ukkonen [1992a],
Ullmann [1977] and others rely on filtering based on short subsequences, known
as p-grams, of length p.* Given a sequence p, its p-grams are obtained by sliding
a window of length p over the symbols of p. To make sure that all p-grams are of
length p, those window positions that extend beyond the boundaries of the sequence
are prefixed or suffixed with null symbols. Because two sequences that have a small
edit distance are likely to share a large number of p-grams, the sets of p-grams of
the two sequences can be compared to identify and eliminate unpromising matches.

Karp and Rabin [1987] propose a fingerprinting technique, referred as KR, for
quickly searching for a p-length string in a much longer string. Because comparing
all p-grams of a long string to the given query string is expensive, Karp and Rabin
[1987] compare hashes of the p-grams to the hash of the query g. Given a query
sequence ¢ (of size p) and a data sequence p (of size n), KR first computes the hash
value, hash(q), of the query sequence. This hash value is then compared to the hash
values of all p-symbol subsequences of p; that is, only if

hash(q) = hash(p[i..(i + p — 1)])
is the actual p-symbol subsequence match at data position i verified. Note that be-
cause the hash values need to be computed for all p-symbol subsequences of p,
unless this is performed efficiently, the cost of the KR algorithm is O(pn). Thus,
reducing the time complexity requires efficient computation of the hash values
for the successive subsequences of p. To speed up the hashing process, Karp and
Rabin [1987] introduce a rolling hash function that allows the hash for a p-gram to
be computed from the hash of the previous p-gram. The rolling hash function allows
computation of hash(p[i + 1..(i + p)]) from hash(p[i..(i + p — 1)]) using a constant
number of operations independent from p. Consider, for example,

i+p—1
hash(pli..(i+p—D]) = Y _ nv(p[k]) Ip*,

k=i

4 In the literature, these are known as q-grams or n-grams. We are using a different notation to distin-
guish it from the query pattern, g, and length of the text, n.

5.5 Approximate Sequence Matching

where nv(p[k]) is the numeric value corresponding to the symbol p[k] and Ip is a
large prime. We can compute hash(p[i + 1..(i + p)]) as follows:

hash(p[i..(i + p — 1)] — nv(p[i])
Ip
+ (nv(pli + p]) Ip”).

Focusing on the matching performance, as opposed to the hashing performance,
Manber [1994] proposes a modsampling technique that selects and uses only p-gram
hashes that are 0 modulo P, for some P. On the average, this scheme reduces the
number of hashes to be compared to 1/P of the original number and is shown to be
robust against minor reorderings, insertions, and deletions between the strings. On
the other hand, when using modsampling, the exact size of the resulting fingerprint
depends on how many p-gram hashes are 0 modulo P. Heintze [1996] proposes using
the n smallest hashes instead. The advantage of this scheme, called minsampling, is
that (assuming that the original number of p-grams is larger than ») it results in
fixed-size (i.e., p x n) fingerprints, and thus the resulting fingerprints are easier to
index and use for clustering.

Schleimer et al. [2003] extend this with a technique called winnowing that takes a
guarantee threshold, ¢, as input; if there is a substring match at least as long as ¢, then
the match is guaranteed to be detected. This is achieved by defining a window size
w=1t—p+1 and, given a sequence of hashes ik, ...h, (each hash correspond-
ing to a distinct position on the input sequence of length n), dividing the sequence
into nonoverlapping windows of w consecutive hashes. Then, in each window, the
minimum hash is selected (if there is more than one hash with the minimum value,
the algorithm selects the rightmost p-gram in the window). These selected hashes
form the signature or fingerprint of the whole string. Schleimer et al. [2003] also
define a local fingerprinting algorithm as an algorithm that, for every window of w
consecutive hashes, includes one of these in the fingerprint, and the choice of the
hash depends only on the window’s contents. By this definition, winnowing is a local
fingerprinting scheme. Schleimer ef al. [2003] show that any local algorithm with a
window size w =t — p + 1is correct in the sense that any matching pair of substrings
of length at least ¢ is found by any local algorithm. Schleimer et al. [2003] further es-
tablish that any local algorithm with a window size w =t — p + 1 has a density (i.e.,
expected proportion of hashes included in the fingerprint),

1.5

w+1"

hash(p[i +1..(i + p)]) =

In particular, the winnowing scheme has a density of wiﬂ; that is, it selects only 33%

more hashes than the lower bound to be included in the fingerprint.

Ukkonen [1992a] proposes a p-gram distance measure based on counting the
number of p-grams common between the given pattern query and the text sequence.
A query sequence, ¢, of length m has (m — p + 1) p-grams. Each mismatch between
the query sequence and the text sequence, p, can affect p p-grams. Therefore, given
kerrors, (m — p+ 1 — kp) p-grams must be found. Ukkonen [1992a] leverages a suf-
fix tree to keep the counts of the p-grams and, thus, implements the filter operation
in linear time. To reduce the number of p-grams considered, Takaoka [1994] picks
nonoverlapping p-grams each / symbols of the text. If & = | m=k=ptl | "at least one p-

K+l
gram will be found and the full match can be verified by examining its neighborhood.

199

200

Indexing, Search, and Retrieval of Sequences

Notes that if, instead of 1, s many p-grams of the query pattern are required to

identify a candidate match, then the sampling distance needs to be reduced to
h= Lm—k—,o-&-lJ.

k+s
String Kernels
Let S be an input space, and let F be a feature space with an inner product (see
Section 3.1.1). The function « is said to be a (positive definite) kernel if and only if
thereisamap ¢ : S — F,such thatforallx,y € S,

K(x,y) = ¢(x) - $(y)-

In other words, the binary function x can be computed by mapping elements of S
into a suitable feature space and computing this inner product in that space. For
example, S could be the space of all text documents, and ¢ could be a mapping
from text documents to normalized keyword vectors. Then the inner product would
compute the dot product similarity between a pair of text documents. String kernels
extend this idea to strings. Given an alphabet, X, the set, £*, of all finite strings
(including the empty string), and the set, X*, of all strings of length exactly p, the
function ¢, : £¥* — 2%"*Z" maps from strings to a feature space consisting of p-grams
and their counts in the input strings. In other words, given a string s, ¢, counts the
number of times each p-gram occurs as a substring in s.

Given this mapping from strings to a feature space of p-grams, the p-spectrum
kernel similarity measure, «,, is defined as the inner product of the feature vectors
in the p-gram feature space:

Ko(51,52) = (1) - P,(52).

The weighted all-substrings kernel similarity (WASK) [Vishwanathan and Smola,
2003] takes into account the contribution of substrings of all lengths, weighted by
their lengths:

)
Kwask(slv SZ) = Z Otpr(Sl, S2)7

p=1

where «,, is often chosen to decay exponentially with p.
Martins [2006] shows that both p-spectrum kernel and weighted all-substrings
kernel similarity measures can be computed in O(|s1| + |s2|) time using suffix trees.

Locality Sensitive Hashing
Indyk and Motwani [1998] define a locality sensitive hash function as a hash func-
tion, &, where given any pair, o; and 0,, of objects and a similarity function, sim(),

prob (h(o1) = h(0y)) = sim(o1, 02).

In other words, the probability of collision between hashes of the objects is high for
similar objects and low for dissimilar ones.

Conversely, given a set of independent locality-sensitive hash functions, it is pos-
sible to build a corresponding similarity estimator [Urvoy et al., 2008]. Consider the
minsampling scheme [Broder, 1997; Broder er al., 1997; Heintze, 1996] discussed
earlier, where a linear ordering < is used to order the hashes to pick the smallest

5.5 Approximate Sequence Matching

n to form a fingerprint. If the total order < is to be picked at random, then for any
pair of sequences s; and s, we have

hashes(s1) N hashes(sz)

prob(h<(s1) = h<(s2)) = hashes(s1) U hashes(s)’

that is, the probability that the same n hashes will be selected from both sequences
is related to the number of hashes that are shared between s; and s,.
Remember from Section 3.1.3 that this ratio is nothing but the Jaccard similarity,

prob (h.(s1) = h<(s2)) = siMjzccara(1, 52)-

Thus, given a set of m total orders picked at random, we can construct a set, H,
of independent locality sensitive hash functions, each corresponding to a different
order. If we let simy(s1, s7) be the number of locality-sensitive hash functions in H
that return the same smallest # hashes for both s; and s,, then we can approximately
compute the similarity function, simjaccara(s1, 52), as

) simp(s1, $2)
Slmjuccard(sla 52) X
m
In Section 10.1.4.2, we discuss the use of locality-sensitive hashing to support
approximate nearest neighbor searches.

5.5.5 Compression-Based Sequence Comparison

The Kolmogorov complexity K(q) of a given object ¢ is the length of the short-
est program that outputs g [Burgin, 1982]. Intuitively, complex objects will require
longer programs to output them, whereas objects with inherent simplicity will be
produced by simple and short programs.

Given this definition of complexity, Bennett ef al. [1998] define the information
distance between two objects, g and p, as

Akol(g. p) = max{K(qlp). K(plq)},

where K(gq|p) is the length of the shortest program with input p that outputs g. In the
extreme case where p and g are identical, the only operation the function that com-
putes g needs to do is to output the input p. Thus, intuitively, K(¢g|p) measures the
amount of work needed to convert p to g and is thus an indication of the difference
of g from p.

Similarly, the normalized information distance between the objects can be de-
fined as

AKol(‘]ap)
max{K(q), K(p)}

Because, in the extreme case where p and g have nothing to share, the program can
ignore the p (or g) provided as input and create g (or p) from scratch, the denom-
inator corresponds to the maximum amount of work that needs to be done by the
system to output p and g independently from the other.

Unfortunately, the Kolmogorov complexity generally is not computable. There-
fore, this definition of distance is not directly useful. On the other hand, the length

ANorm,Kol(Q» P) -

201

202

Indexing, Search, and Retrieval of Sequences

of the maximally compressed version of g can be seen as a form of complexity mea-
sure for data object g and thus can be used in place of the Kolmogorov complexity.
Based on this observation, Cilibrasi and Vitanyi [2005] introduce a normalized com-
pression distance, A,.4, by replacing the Kolmogorov complexity in the definition
of the normalized information distance with the length of a compressed version of g
obtained using some compression algorithm:

C(gp) — min{C(q), C(p)}
max{C(q), C(p)}

Here C(q) is the size of the compressed g, and C(gp) is the size of the compressed
version of the sequence obtained by concatenating g and p.

Anca(q, p) =

5.5.6 Cross-Parsing—-Based Sequence Comparison

Ziv and Merhav cross-parsing is a way to measure the relative entropy between
sequences [Helmer, 2007; Ziv and Merhav, 1993]. Let g (of size m) and p (of size
n) be two sequences. Cross-parsing first finds the longest (possibly empty) prefix of
q that appears as a string somewhere in p. Once the prefix is found, the process is
restarted from the very next position in g, this continues until the whole document
q is parsed. Let ¢(g|p) be the number of times the process had to start before ¢ is
completely parsed. The value

c(qlp) —1+c(plg) — 1
2

can be used as a distance measure between strings g and p. Note that each symbol
in g is visited only once. In fact, the entire cross-parsing can be performed in linear
time if the string p is indexed using a suffix tree (introduced in Section 5.4.2).

Acrossjparse(qv p) =

5.6 WILDCARD SYMBOLS AND REGULAR EXPRESSIONS

A variant of the non-exact string-matching problem is when wildcard symbols are
allowed [Amir ef al., 1998; Muthukrishnan and Ramesh, 1995]. For example, a “*”
wildcard in the query pattern g can match any symbol in the alphabet and a “//”
wildcard can match 0 or more symbols in the text sequence p. When there are wild-
card symbols in the query pattern, matches found on p may differ from each other.
In general, it is possible to extend edit-distance functions to accommodate these
special wildcard symbols. Baeza-Yates and Gonnet [1989] and others have shown
that many of the techniques, such as bit parallelism, developed for patterns without
wildcard symbols can be adapted to capture patterns with wildcards.

5.6.1 Regular Expressions

Regular-expression-based frameworks further generalize the expressive power of
the patterns [Chan er al., 1994]. Each regular expression, R, defines a set, L(R), of
strings (symbol sequences). Let ¥ be a finite symbol alphabet, and let the regular
expression, s, denote the set L(s) = {“s”}. Also, let ¢ denote the empty string (a
sequence without any symbol). We can create more complex regular expressions by

5.6 Wildcard Symbols and Regular Expressions

combining simpler regular expressions using concatenation, union, and Kleene star
operators. Given two regular expressions R; and Ry:

B The concatenation, R = R R;, of R; and R, denotes the language L(R1R;) =
{uv | u € L(R1) Av € L(R)}

® The union, R = R;|R,, of Ry and R, defines L(Ri|R;) ={u||ue L(R\)vVuce
L(R>)}

m The Kleene star, Rj, of the regular expression, Ry, denotes the set of all strings
that can be obtained by concatenating zero or more strings in L(R;)

For example, the regular expression R = 1(0|1]...|9)* denotes the set of all strings
representing natural numbers having 1 as their more significant digit.

5.6.2 Regular Languages and Finite Automata

Strings in a language described by a regular expression (i.e., a regular language) can
be recognized using a finite automaton. Any regular expression can be matched us-
ing a nondeterministic finite automaton (NFA) in linear time. However, converting
a given NFA into a deterministic finite automaton (DFA) for execution can take
O(m2™) time and space [Hopcroft and Ullman, 1979]. Once again, however, the bit-
parallelism approach can be exploited to simulate an NFA efficiently [Bacza-Yates
and Ribeiro-Neto, 1999]. Baeza-Yates and Gonnet [1996] use the Patricia tree as
a logical model and presents algorithms with sublinear time for matching regular
expressions. It also presents a logarithmic time algorithm for a subclass of regular
expressions.

5.6.3 RE-Trees

The RE-tree data structure, introduced by Chan er al. [1994], enable quick access
to regular expressions (REs) matching a given input string. RE-trees are height-
balanced, hierarchical index structures. Each leaf node contains a unique identifier
for an RE. In addition, the leaf node also contains a finite automaton corresponding
to this RE. Each internal node of the RE-tree contains a set of (M, ptr) pairs, where:

B M is a finite automaton

B ptris pointer to a child node, N, such that the union of the languages recognized
by the finite automata in node N is contained in the language recognized by the
bounding automaton, M

Intuitively, the bounding automaton is used for pruning the search space: if a given
sequence ¢ is not contained in M (i.e., is not recognized by the corresponding au-
tomaton), then it cannot match any of the regular expressions accessible through
the corresponding pointer to node N. Therefore, the closer the language recognized
by M is to the union of all the languages recognized by the corresponding node, the
more effective will be the pruning. On the other hand, implementing more precise
(minimal bounding) automata may require too much space, possibly exceeding the
size of the corresponding index node. To reduce the space requirements, the au-
tomata stored in the RE-tree nodes are nondeterministic. Furthermore, the number

203

204

Indexing, Search, and Retrieval of Sequences

of states used for constructing each automaton is limited by an upper bound, «. For
space efficiency, each RE node is also required to contain at least m entries.

Searches proceed top-down along all the relevant paths whose bounding au-
tomata accept the input sequence. Insertions of new regular expressions require
selection of an optimal insertion node such that the update causes minimal expan-
sions in (the size of the languages recognized by the) bounding automata of the
internal nodes. This ensures that the precision is not lost. Furthermore, it minimizes
the amount of further updates (in particular splits) that insertions may cause on
the path toward the root. Note that estimating the size of a language recognized
by an RE is not trivial, in particular since these languages may be infinite in size.
Therefore, Chan ef al. [1994] propose two heuristics. The first heuristic, max-count,
simply counts the size of the regular language upto some predetermined maxi-
mum sequence length. The second heuristic uses the minimum description length
(MDL) [Rissanen, 1978] instead of the sizes of the language. The MDL is computed
by first picking a random set, R, of strings in the language recognized by the automa-
ton, M, and then computing

1 MDL(M, w)
IR

9
weR |w|

such that for w = wjw,ws ... w, and the corresponding state sequence 5515253 - . - Sy,

n—1
MDL(M, w) = Zlogz(fanouti),

i=0
where fanout; is the number of outgoing transitions (in a minimal-state DFA repre-
sentation of M) from state s; and, thus, log,(fanout;) is the number of bits required
to encode the transition out of state s;. This measure is based on the intuition that
given two DFAs, M; and M;, if |L(M;)| is larger than |L(M;)|, then the per-symbol
cost of a random string in L(M;) will likely to be higher than the per-symbol cost of
arandom string in L(M;). This intuition follows information theoretical observation
that, in general, more bits are needed to specify an item that comes from a larger
collection of items.

When a node split is not avoidable, the REs in the node need to be partitioned
into two disjoint sets such that, after the split, the total sizes of the languages cov-
ered by the two sets will be minimum. Furthermore, during insertions, node splits,
and node merges (due to deletions), the corresponding bounding automata need
to be updated in such a way that the size of the corresponding language is mini-
mal. Chan ef al. [1994] show that the problems of optimal partitioning and minimal
bounding automaton construction are NP-hard and proposes heuristic techniques
for implementing these two steps efficiently.

5.7 MULTIPLE SEQUENCE MATCHING AND FILTERING

In many filtering and triggering applications, there are multiple query sequences
(also called patterns) that are registered in the system to be checked against incom-
ing data or observation sequences. Although each filter sequence can be evaluated
separately against the data sequence, this may cause redundant work. Therefore, it

5.7 Multiple Sequence Matching and Filtering

Figure 5.10. Aho-Corasik trie indexes multiple search sequences. Into a single integrated
data structure. In this example, sequences “artalar” and “tall” are indexed together.

may be more advantageous to find common aspects of the registered patterns and
avoid repeated checks for these common parts.

5.7.1 Trie-Based Multiple Pattern Filtering

Aho-Corasick tries [Aho and Corasick, 1975] eliminate redundant work by ex-
tending the KMP algorithm (Section 5.4) with a trie-like data structure that lever-
ages overlaps in input patterns registered in the system (Figure 5.10). Because
all overlaps in the registered patterns are accounted for in the integrated in-
dex structure, they are able to provide O(n) search with O(m) trie construction
time, where n is the length of the data sequence and m is the length of the
query sequence. In a similar fashion, the Commentz-Walter algorithm [Commentz-
Walter, 1979] extends the BM algorithm with a trie of input patterns to
provide simultaneous search for multiple patterns. Unlike Aho-Corasick tries, how-
ever, the resulting finite-state machine compares starting from the ends of the regis-
tered patterns as in the BM algorithm.

5.7.2 Hash-Based Multiple Pattern Filtering

As described in Section 5.5.4, in contrast to the foregoing algorithms that work on
the plain-text or plan-symbol domain, to improve efficiency, the Karp-Rabin (KR)
algorithm [Karp and Rabin, 1987] and others rely on sequences’ hashes, rather
than on the sequences themselves. These techniques can be adapted to the multi-
ple pattern filtering task using a randomized set data structure, such as Bloom fil-
ters [Bloom, 1970], which can check whether a given data object is in a given set in
constant time (but potentially with a certain false positive rate).

Like signature files (introduced in Section 5.2), a Bloom filter is a hash-based
data structure, commonly used for checking whether a given element is in a set or
not. A Bloom filter consists of an array, A, of m bits and a set, H, of independent
hash functions, each returning values between 1 and m. Let us be given a database,
D, of objects.

m To insert the objects in the database into the Bloom filter, for each data object,
0; € D, for each h; € H, the bit A[h;(0;)] is set to 1.

205

206

Free ebooks ==> www.Ebook777.com

Indexing, Search, and Retrieval of Sequences

m To check whether an object, o;, is in the database D or not, all bit positions
Alhj(0;)] are checked, in O(m) time, to see if the corresponding bit is 1 or 0. If
any of the bits is “0”, then the object o; cannot be in the database. If all bits are
“1”, then the object o; is in the database, D, with false positive probability

<1 - (1 _ %)HID)H (- ele||D|/m)|H‘ '

Intuitively, (1 — %)lHHDl is the probability that a given bit in the array is “0” despite

all hash operations for all objects in the database. Then the preceding equation gives
the probability for the event that, for the given query and for all || hash functions,
the corresponding position will contain “1” (by chance). Thus, given a data sequence
of length n, we can use the hashes produced by the KR (or other similar algorithms)
as the basis to construct a Bloom filter, which can filter for a set of k registered
patterns in O(n) average time, independent of the value of k.

5.7.3 Multiple Approximate String Matching

Navarro [1997] extends the counting filter approach to the multiple pattern match-
ing problem. For each pattern, the algorithm maintains a counter that keeps track of
the matching symbols. As the window gets shifted, the counters are updated. Given r
query patterns, the multipattern algorithm packs all counters into a single machine
word and maintains this packed set of counters incrementally in a bit-parallel man-
ner. Although the worst-case behavior of this algorithm is O(rmn), if the probability
of reverifying (when a potential match is found) is low (O(1/n??)), the algorithm is
linear on average.

Baeza-Yates and Navarro [2002] also adapt other single approximate sequence
matching algorithms to the multiple matching problem. In particular, it proposes to
use a superimposed NFA to perform multiple approximate matching. The proposed
scheme simulates the execution of the resulting combined automaton using bit par-
allelism. Baeza-Yates and Navarro [2002] also propose a multipattern version of
the partitioning-based filtering scheme, discussed by Wu and Manber [1991], which
cuts the pattern into k + 1 pieces and verifies that at least one piece is matched ex-
actly. Given r patterns, Baeza-Yates and Navarro [2002] propose to cut each pattern
into k + 1 partitions, and all r(k 4 1) pieces are searched using an exact matching
scheme, such as the one adopted by Sunday [1990], in parallel.

5.8 SUMMARY

As we have seen in this chapter, a major challenge in indexing sequences is that,
in many cases, the features of interest are not available in advance. Consequently,
techniques such as p-grams help extract parts of the sequences that can be used as
features for filtering and indexing. Still, many operations on sequences, including
edit-distance computation or regular expression matching, require very specialized
data structures and algorithms that are not very amenable to efficient indexing and
require algorithmic approaches. Nevertheless, when the registered data (or query

Www.Ebook777.com

http://www.ebook777.com

5.8 Summary

patterns) have significant overlaps, carefully designed index structures can help one
leverage these overlaps in eliminating redundant computations.

In the next section, we see that graph- and tree-structured data also show similar
characteristics, and many techniques (such as edit distances) applied to sequences
can be revised and leveraged when dealing with data with more complex structures.

207

208

6

Indexing, Search, and Retrieval of
Graphs and Trees

In Chapter 2, we have seen that most high-level multimedia data models
(especially those that involve representation of spatiotemporal information, object
hierarchies — such as X3D - or links — such as the Web) require tree or graph-based
modeling. Therefore, similarity-based retrieval and classification commonly involve
matching trees and graphs.

In this chapter, we discuss tree and graph matching. We see that, unlike the case
with sequences, computing edit distance for finding matches may be extremely com-
plex (NP-hard) when dealing with graphs and trees. Therefore, filtering techniques
that can help prune the set of candidates are especially important when dealing with
tree and graph data.

6.1 GRAPH MATCHING

Although, as we discussed in Section 3.3.2, graph matching through edit distance
computation is an expensive task, there are various heuristics that have been de-
veloped to perform this operation efficiently. In the rest of this section, we con-
sider three heuristics, GraphGrep, graph histograms, and graph probes, for matching
graphs.

6.1.1 GraphGrep

Because the graph-matching problem is generally very expensive, there are various
heuristics that have been developed for efficient matching and indexing of graphs.
GraphGrep [Giugno and Shasha, 2002] is one such technique, relying on a path-based
representation of graphs.

GraphGrep takes an undirected, node-labeled graph and, for each node in the
graph, finds all paths that start at this node and have length up to a given, small
upper bound, /,. Given a path in the graph, the corresponding id-path is defined as
the list of the ids of the nodes on the path. The list-path is also defined similarly: the
list of the labels of the nodes on the path.

6.1 Graph Matching

Although the id-paths in the database are unique, there can be multiple paths
with the same label sequence. Thus, GraphGrep clusters the id-paths corresponding
to a single label-path and uses the resulting set of label-paths, where each label-path
has a set of id-paths, as the path representation of the given graph. The fingerprint of
the graph is a hash table, where each row corresponds to a label-path and contains
the hash of the label-path (i.e., the key) and the corresponding number of id-paths
in the graph.

Given the fingerprint of a query graph and the fingerprints of the graphs in the
database, irrelevant graphs are filtered out by comparing the numbers of id-paths for
each matching hash key and by discarding those graphs that have at least one value
in their fingerprints that is less than the corresponding value in the fingerprint of
the query. Among the graphs in the database that have sufficient overlaps with the
query, matching subgraphs are found by focusing on the parts of the graph that cor-
respond to the label-paths in the query. After, the relevant id-path sets are selected
and overlapping id-paths are found and concatenated to build matching subgraphs.

6.1.2 Graph Histograms and Probes

Let us consider unlabeled graphs and three primitive graph edit operations: vertex
insertion, vertex deletion, and vertex update (deletion or insertion of an incident
edge). We can define a graph edit distance A¢() based on these primitives. Given a
query graph, the goal is then to identify graphs that have small edit distances from
this query graph.

6.1.2.1 Graph Histograms

Given an unlabeled undirected graph, G(V, E), let us construct a graph histogram,
hist(G), by calculating the degree (valence) of each vertex of the graph and as-
signing the vertex to a histogram bin based on this value. Let us also compute a
sorted graph histogram, hist;(G), by sorting the histogram bins in decreasing order.
Papadopoulos and Manolopoulos [1999] show that given two graphs, G; and G,

L1 (hist(G1), hist(G2)) = Ac(G1, Gr),

where L, is the Manhattan distance between the corresponding histogram vectors
(Section 3.1.3). Thus, a sorted graph histogram based multidimensional representa-
tion can be used for indexing graphs that are mapped onto a metric vector space, for
efficient retrieval.

6.1.2.2 Graph Probes

Graph probes [Lopresti and Wilfong, 2001] are also histogram-based, but they apply
to more general graphs. Consider for example two unlabeled, undirected graphs, Gy
and Gy, and a graph distance function, Ag(), based on an editing model with four
primitive operations: (a) deletion of an edge, (b) insertion of an edge, (c) deletion of
an (isolated) vertex, and (d) insertion of an (isolated) vertex. Lopresti and Wilfong
[2001] show that the function, probe(Gi, G»), defined as

probe(Gy, G2) = Li(PR(G), PR(G)),

209

210

Indexing, Search, and Retrieval of Graphs and Trees

where PR(G) is a probe-histogram, obtained by assigning the vertices with the same
degree into the same histogram bin, has the following property:

probe(Gy, Gy) < 4- Ag(Gy, Gy).

Note that, although the probe() function does not provide a bound as tight as the
bound provided by the approach based on the sorted graph histogram described
earlier, it can still be used as a filter that does not result in any misses. Moreover,
under the same graph edit model, the foregoing result can be extended to unlabeled,
directed graphs, simply by counting in-degrees and out-degrees of vertices indepen-
dently while creating the probe-histograms.

Most importantly, for general graph-matching applications, Lopresti and Wil-
fong [2001] also show that, if the graph edit model is extended with two more oper-
ations, (e) changing the label of a node and (f) changing the label of an edge, then
a similar result can be obtained for node- and edge-labeled directed graphs as well.
In this case, the in- and out-degrees of vertices are counted separately for each edge
label. The histogram is also extended with bins that are simply counting the vertices
that have a particular vertex label. If & denotes the number of unique edge labels
and d is the maximum number of edges incident on any vertex, then the total index-
ing time for graph G(V, E) is linear in the graph size: O(«(d + |V]) + |E|). Note that,
although it is highly efficient when « and d are small constants, this approach does
not scale well when the dictionary size of edge labels is high and/or when d ~ V.

6.1.3 Graph Alignment

Let us consider two graphs, G1(Vi, E1) and G, (Va, E,), with a partially known map-
ping (or correspondence) function, u : V; x V, — [0, 1] U {_L}, between the nodes in
Vi and V5, such that if u(v;, v;) = L, itis not known whether v; is related to v;; that is,
v; and v; are unmapped. The graph alignment problem [Candan er al., 2007] involves
estimation of the degree of mapping for v; € Vi and v; € V5, where u(v;, vj) = L, us-
ing the structural information inherent in G; and G,. Candan et al. [2007] propose a
graph alignment algorithm involving the following steps:

(i) Map the vertices of V; and V5 into multidimensional spaces S; and S;, both
with the same number (k) of dimensions.

(ii) Identify transformations required to align the space S; with the space S,
such that the common/mapped vertices of the two graphs are placed as close
to each other as possible in the resulting aligned space.

(iii) Use the same transformations to map the uncommon vertices in Sy onto S,.

(iv) Now that the vertices of the two graphs are mapped into the same space,
compute their similarities or distances in this space.

6.1.3.1 Step (i): MDS-Based Mapping into a Vector Space

Step (i) is performed using a multidimensional scaling (MDS) algorithm described in
Section 4.3.1: for every pair of nodes in a given graph, the shortest distance between
them is computed using an all-pairs shortest path algorithm [Cormen ef al., 2001],
and these distances are used for mapping the vertices onto a k dimensional space
using MDS.

6.1 Graph Matching

6.1.3.2 Step (ii): Procrustes-Based Alignment of Vector Spaces

In step (ii), the algorithm aligns spaces S; and S,, such that related vertices are
colocated in the new shared space, using the Procrustes algorithm [Gower, 1975;
Kendall, 1984; Schonemann, 1966]. Given two sets of points, the Procrustes algo-
rithm uses linear transformations to map one set of points onto the other set of
points. Procrustes has been applied in diverse domains including psychology
[Gower, 1975] and photogrammetry [Akca, 2003], where alignment of related but
different data sets is required. The orthogonal Procrustes problem [Schonemann,
1966] aims finding an orthogonal transformation of a given matrix into another one
in a way that minimizes transformation errors. More specifically, given matrices A
and B, both of which are n x k, the solution to the orthogonal Procrustes problem is
an orthogonal transformation 7, such that the sum of squares of the residual matrix
E = AT — B is minimized. In other words, given the k x k square matrix S = ETE
(note that M' denotes the transpose of matrix M)

trace(S) = Zs,, = Z Z €jj is minimized.

i=1 j=1

The extended Procrustes algorithm builds on this by redefining the residual ma-
trix as E = cAT + [11...1]%" — B, where c is a scale factor, T'is a k x k orthogonal
transformation matrix, and ¢ is a k x 1 translation vector [Schoenemann and Car-
roll, 1970]. The general Procrustes problem [Gower, 1975] further extends these by
aiming to find a least-squares correspondence (with translation, orthogonal trans-
formation, and scaling) between more than two matrices.

Weighted extended orthogonal Procrustes [Goodall, 1991] is similar to extended
orthogonal Procrustes in that it uses an orthogonal transformation, scaling, and
translation to map points in one space onto the points in the other. However, unlike
the original algorithm, it introduces weights between the points in the two spaces.
Given two n x k matrices A and B, while the extended orthogonal Procrustes min-
imizes the trace of the term E'E, where E = cAT + [11...1]%' — B, the weighted
extended orthogonal Procrustes minimizes the trace of the term S,, = ETWE, where
W is an n x n weight matrix: that is;

trace(S,) = st,, = Z Z Z Wine;jehj

i=1 h=1 j=1

is minimum. Note that if the weight matrix, W, is such that V; w; = 1 and V; j4; wi, =
0 (i.e., if the mapping is one-to-one and nonfuzzy), then this is equivalent to the
nonweighted extended orthogonal Procrustes mapping. On the other hand, when
V; w;; € [0, 1] and V; j wi, = 0, then we get

k n k
trace(S,) = stii = Z Z wiiegj.
i=1

i=1 j=1

In other words, the mapping errors are weighted in the process. Consequently, those
points that have large weights (close to 1.0) will be likely to have smaller mapping
errors than those points that have lower weights (close to 0.0).

211

212

Indexing, Search, and Retrieval of Graphs and Trees

, ; AR ﬁ
{ [| |O0O Iy P
® = q \ Soo=—=> G a e
7 X &
(a) (b)

(©)

Figure 6.1. (a) Node relabeling, (b) node deletion, and (c) node insertion.

Let us assume that we are given the mapping function, i, between the nodes of
the two input graphs, G; and Gy; let us further assume that p(v;, v;) € [0, 1] and p is
1-to-1. Then, u can be used to construct a weight matrix, W, such that V; w; € [0, 1]
and V; s wip = 0. This weight matrix can then be used to align the matrices A and
B, corresponding to the graphs G and G, using the weighted extended orthogo-
nal Procrustes technique. When the mapping function p is not 1-to-1, however, the
weighted extended orthogonal Procrustes cannot be directly applied. Candan ef al.
[2007] introduce a further extension to the Procrustes technique to accommodate
many-to-many mappings between the vertices of the input graphs.

6.1.3.3 Steps (iii) and (iv): Alignment of Unmapped Vertices

and Similarity Computation

Once the transformations needed to align the two spaces, S; and S,, are found, these
transformations are used to align unmapped vertices of graphs G; and G,. Similari-
ties or distances of the unmapped vertices are then computed in the resulting aligned
space.

6.2 TREE MATCHING

In Section 3.3.3, we have seen that matching unordered trees can be very costly.
As in the case of approximate string and graph matching, many approximate tree
matching algorithms rely on primitive edit operations that can be used for trans-
forming one tree into another. These primitive operations, relabeling, node deletion,
and node insertion, are shown in Figure 6.1. The following three approximate tree
matching problems all are expressed using these primitive edit operations:

m Tree edit distance: Let y() be a metric cost function associated with primitive
tree edit operations. Let 77 and 7> be two trees and let S be a sequence of edit
operations that transforms 7; into 7;. The cost of the edit sequence, S, is the
sum of the costs of the primitive operations. Given this, the tree edit distance,
Ar(Ti, To) is defined as

Ar(hLT) = min (S}

m Tree alignment distance: The tree alignment distance, A, 7(Ti, T5), between T
and 7, is defined by considering only those edit sequences where all insertions
are performed before deletions.

m Tree inclusion distance: The tree inclusion distance, A; 7(Tq, T3), between 77 and
T; is defined by considering only insertions to tree 7. Conversely, 7 is included
in 73 if and only if 7 can be obtained from 7; by deleting nodes from 75.

6.2 Tree Matching

(a) (b)

Figure 6.2. (a) Postorder numbering of the tree, (b) leftmost leaf under node t[4], and (c) the
substructure induced by the nodes t[1], t[2], and t[3].

Tai [1979] and [Shasha and Zhang, 1990; Zhang and Shasha, 1989] provide post-
order traversal-based algorithms for calculating the editing distance between or-
dered, node-labeled trees. Zhang er al. [1996] extend their work to edge-labeled
trees. They first show that the problem is NP-hard and then provide an algorithm for
computing the edit distance between graphs where each node has at most two neigh-
bors. Chawathe et al. provide alternative algorithms to calculate the edit distance be-
tween ordered node-labeled trees [Chawathe, 1999; Chawathe and Garcia-Molina,
1997]. Other research in tree similarity includes works by Farach and Thorup [1997],
Luccio and Pagli [1995], Myers [1986], and Selkow [1977]. In the following subsec-
tion, we present Shasha and Zhang’s algorithm for tree edit-distance computation
[Bille, 2005; Shasha and Zhang, 1995].

6.2.1 Tree Edit Distance

Ordered Trees

Given an ordered tree, T, we number its vertices using a left-to-right postorder
traversal: ¢[] is the ith node of T during postorder traversal (Figure 6.2(a)).

Given two ordered trees 7; and T, let M be a one-to-one, sibling-order and
ancestor-order preserving mapping from the nodes of 77 to the nodes of 7;. Fig-
ure 6.3(a) shows an example mapping. In this example, nodes #[2] and #1[3] in 77 and
nodes ;[3] and 5,[4] in T, are not mapped. Also, the labels of the mapped nodes #[5]
and 5,[5] are not compatible. This mapping implies a sequence of edit operations

change

delete
delete

insert

(b)

Figure 6.3. (a) A one-to-one, sibling-order and ancestor-order preserving mapping and (b) the
corresponding tree edit operations.

213

214

Indexing, Search, and Retrieval of Graphs and Trees

(i) treedist(?, 9) = 0;
(ii)) Fork=1I(i)toi
(a) forestdist(T[1(i)..k], T5) = forestdist(T[1(i)..k — 1], T5) + y(delete(t1[k]))

(iii) Forh =1(j) to j
(a) forestdist(Th, T[1(j)..h]) = forestdist(Ty, T[I(j)..h — 1]) + y(insert(tz[h]))

(iv) Fork=I(i)toi
(a) Forh=1[(j)toj

1. if I(k) = I(i) and I(h) = I(j) then
a. A = forestdist(Ti[1(i)..k — 1], T[I(j)..h]) + y(delete(t;[k]))
b. B = forestdist(T[1(i)..k], Ta[I(j)..h — 1]) + y(insert(t,[h]))
c. C = forestdist(T[1(i)..k — 1], B[I(j)..h — 1]) + y(change(t,[k], tz[h]))
d. forestdist(Ti[1(i)..k], T3[I(})..h]) = min{A, B, C}
e. treedist(k, h) = forestdist(T[1(i)..k], T3[I(})..h])

2. else
a. A = forestdist(Ti[1(i)..k — 1], T[I(j)..h]) + y(delete(t;[k]))
b. B = forestdist(Ti[1(i)..k], T3[I(j)..h — 1]) + y(insert(t,[h]))
c. C = forestdist(T[1(i)..I(k) — 1], T [I(j)..I(h) — 1]) + treedist(k, h)
d. forestdist(Ti[1(i)..k], T3[I(})..h]) = min{A, B, C}

(v) return(treedist(i,j))

Figure 6.4. Pseudocode for computing the edit distance, treedist(i, j), between T, and To; i
and j indicate the roots of T4 and T,, respectively.

where #1[2] and #[3] are deleted from 7; and %,[3] and #,[4] are inserted. Further-
more, the sequence of edit operations needs to include a node relabeling operation
to accommodate the pair of mapped nodes with mismatched labels (Figure 6.3(b)).

Let us define the cost of the mapping M as the sum of all the addition, dele-
tion, and relabeling operations implied by it. In general, for any given mapping M
between two trees 71 and 1>, there exists a sequence, S, of edit operations with a cost
equal to the cost of M. Furthermore, given any S, there exists a mapping M such that
y(M) < y(§) (the sequence may contain redundant operations). Consequently, the
tree edit distance Ar(Ti, T>) can be stated in terms of the mappings between the trees:

Ar(Th, 1) = L (M)}

The pseudocode for the tree edit distance computation algorithm is presented
in Figure 6.4. In this pseudocode, /(a) denotes the leftmost leaf of the subtree
under t[a] (Figure 6.2(b)). Also, given a < b, Ta..b] denotes the substructure de-
fined by nodes t[a] through t[b] (Figure 6.2(c)). As was the case for string edit-
distance computation, this algorithm leverages dynamic programming to eliminate
redundant computations. Unlike the string case (where substructures of strings are
also strings), however, in the case of trees, the subproblems may need to be de-
scribed not as other smaller trees, but in terms of sets of trees (or forests). Figure 6.5
provides an overview of the overall process.

m Step (i) initializes the base case, treedist(#, #) = 0, that is, the edit distance be-
tween two empty trees.

m Steps (ii) and (iii) visit the nodes of the two trees in postorder (Figure 6.5(a)).
For each visited node, these steps compute the appropriate forestdist value (edit

6.2 Tree Matching

| k=4
o/ 2 g h=4 | - "
. \ |
O L0, == WO MO, OO, mm) L 2O,
2 3 2 3 :

(b) (©)

I(6)=1(1) |}

(d)

Figure 6.5. Building blocks of the tree edit distance computation process: (a) Post-order
traversal of the data; (b) Deletion of a node; (c) Insertion of a node; (d) I(k) = (i); and (e) I(k) #
(i) (t[1]...t[4] define a forest).

distances between the forest defined by the node and the other tree) using the

forestdist values computed for the earlier nodes (Figures 6.5(b) and (c)).

m Step (iv) is the main loop where treedist values are computed in a bottom-up
fashion. This step involves a double loop that visits the nodes of the two trees in
a postorder manner (Figure 6.5(a)). For each pair, t[k] and #,[4], of nodes the
forestdist and treedist values are computed using the values previously computed.

There are two possible cases to consider:

— In the first case (step (iv)((a))1), #1[k] and 5,[h] define complete subtrees (Fig-
ure 6.5(d)). Thus, along with a forestdist value, a treedist value can also be
computed for this pair.

— In the other case (step (iv)((a))2), either #[k] or t;[h] defines a forest (Fig-
ure 6.5(e)); thus only a forestdist value can be computed for this pair.

In both cases, three possible edit operations (corresponding to deletion, inser-

tion, and relabeling of nodes, respectively) are considered, and the operation

that results in the smallest edit cost is picked.

The running time of the preceding algorithm is O(|Tq| x |T2| x depth(T}) x
depth(Tr)) (ie., O(|Ti)* x | T5%) in the worst case), and it requires O(|T;| x |T3|)
space. Klein [1998] presents an improvement that requires only O(|Ti|* x || x
log(T)) run time.

Unordered Trees
The tree edit-distance problem is NP-hard for unordered trees [Shasha er al,
1994]. More specifically the problem is MAX SNP-hard; that is, unless P = NP; there

215

216

Indexing, Search, and Retrieval of Graphs and Trees

is no polynomial time approximation solution for the problem. On the other hand,
if the number of leaves in 75 is logarithmic in the size of the tree, then there is an
algorithm for solving the problem in polynomial time [Zhang ef al., 1992].

6.2.2 Tree Alignment Distance

Because of its restricted nature, the tree alignment distance [Jiang et al., 1995]
has specialized algorithms that work more efficiently than the tree edit distance
algorithms. The algorithm presented by Jiang et al. [1995] has O(|Ti| x |Tz| x
max_degree(T7) x max_degree(T>)) complexity for ordered trees. Thus, it is more ef-
ficient, especially for trees with low degrees.

Unlike the tree edit-distance problem, however, the alignment distance has ef-
ficient solutions even for unordered trees. For example, the algorithm presented
by Jiang et al. [1995] can be modified to run in O(|T;| x |T3|) for unordered, degree-
bounded trees. When the trees have arbitrary degree, then the unordered alignment
is still NP-hard.

6.2.3 Tree Inclusion Distance

The special case of the problem where we want to decide whether there is an em-
bedding of 7; in 7, (known as the tree inclusion problem [Kilpelainen and Mannila,
1995]) has a solution with O(|Tq| x |T3|) time and space complexities [Kilpelainen
and Mannila, 1995]. An alternative solution to the problem, with O(num_
leaves(T1) x | T;|) time and O(num_leaves(Ty) x min{max_degree(T;), num_leaves(T3)})
space complexities, may work more efficiently for certain types of trees [Chen,
1998]. The problem is NP-complete for unordered trees [Kilpelainen, 1992].

6.2.4 Other Special Cases

There are various other special cases of the ordered tree edit distance problem that
often have relatively cheaper solutions.

Top-Down Distance

In the top-down edit distance problem [Nierman and Jagadish, 2002; Yang,
1991], the mapping M from T to T; is constrained such that if #[i;] is mapped to
K[j1], then the parents of #[i1] and %[j;] are also mapped to each other. In other
words, insertions and deletions are not allowed for the parts of the trees that are
mapped: any unmapped node (i.e., node insertion or deletion) causes the subtree
rooted at this node to be removed from the mapping.

Because, when node insertions and deletions are eliminated, the tree mapping
process does not need to consider forests, the top-down edit distance problem has an
efficient O(|T1| x |T3]) solution (in the algorithm presented in Figure 6.6, the value
of y(change(t1[i], 12[j])) is considered only once for each pair of tree nodes). The
space complexity of the algorithm is O(| ;| + | T3).

Isolated-Subtree Distance
In the isolated-subtree distance problem [Tai, 1979], the mapping M from 7; to
T, is constrained such that if # [i;] is mapped to 5[ji] and # [iz] is mapped to £[j2],

6.2 Tree Matching

(i) Let m denote the number of children of #[i];
(ii) Let n denote the number of children of %[/];
(iii) Foru =0 tom

(a) M[u,0]=0
(iv) Forv=0ton
(a) M[0,v] =0

(v) Foru=1tom
(a) Forv=1ton
Mlu,v —1],
1. M[u, v] = min { Mu —1,v],
M[u — 1, v — 1] + topdowndist(t[i].child(u), t,[j].child(v))

(vi) return(M[m, n] + y(change(t,[i], t2(j])))

Figure 6.6. Pseudocode for computing the top-down tree edit distance, topdowndist(i, j),
between T, and T,; i and j indicate the roots of T, and T,, respectively.

then the subtree rooted under #[i1] is to the left of #[i,] if and only if the subtree
rooted under 5,[ji] is to the left of #,[j,]. In other words, isolated-subtree mappings
map disjoint subtrees to disjoint subtrees. The isolated-subtree distance problem is
known to have an O(num_leaves(Ty) x |T3|) time solution [Tai, 1979].

Note that an isolated-subtree mapping from 7; to 7; is also an alignment map-
ping from 7; to T;; moreover, any top-down mapping M is also an isolated-subtree
mapping [Wang and Zhang, 2001].

Bottom-Up Distance

A bottom-up mapping is defined as an isolated-subtree mapping in which the
children of the mapped nodes are also in the mapping [Valiente, 2001; Vieira
et al., 2009]. Consequently, the largest bottom-up mappings between a given pair
of trees correspond to the largest common forest, consisting of complete subtrees
between these two trees. Valiente [2001] shows that the bottom-up distance be-
tween two rooted trees, 7; and 7, can be computed very efficiently, in linear time
O(|Ti| + | 1)), for both ordered and unordered trees. Note that the bottom-up dis-
tance coincides with the top-down distance only for trees that are isomoporhic
[Valiente, 2001].

6.2.5 Tree Filtering

As described earlier, unordered tree matching is an NP-complete problem. Thus, for
applications where the order between siblings is not relevant, alternative matching
schemes that can handle unordered trees efficiently are needed. One approach to
the problem of unordered tree matching is to use specialized versions of the graph-
matching heuristics, such as GraphGrep, graph histograms, graph probing, and graph
alignment techniques. For example, Candan er al. [2007] present a tree alignment
technique based on known mappings between nodes of two trees, similar to the one
we discussed in Section 6.1.3. In this section, we do not revisit these techniques.
Instead, we introduce other techniques that approach the tree-matching problem
from different angles.

217

218

Indexing, Search, and Retrieval of Graphs and Trees

6.2.5.1 Cousin Set Similarity

Shasha er al. [2009] propose to compare unordered trees using a cousin set similar-
ity metric. According to this approach sibling is defined as a cousin of degree 0, a
nephew is a cousin of degree 0.5, a first cousin is a cousin of degree 1, and so on.
Given two trees and the corresponding sets of pairs of cousins up to a fixed degree,
the cousin distance metric is computed by comparing the two sets.

6.2.5.2 Path Set Similarity

Rafiei et al. [2006] describe the structure of a tree as a set of paths. In particular,
it focuses on root paths, each of which starts from the root and ends at a leaf. The
path set of the tree is then defined as the union of its root paths and all subpaths of
the root paths. Each path in the path set has an associated frequency, which reports
how often the path occurs in the given tree. Two trees are said to be similar if a large
fraction of the paths in their path sets are the same. Given a tree with n root paths of
maximum length /, there are w subpaths in the path set and thus the comparison
algorithm runs in O(nl?).

6.2.5.3 Time Series Encoding

Flesca et al. [2005] propose to leverage an alternative encoding of the ordered trees
to support comparisons. Each node label, t € X, in the label alphabet is mapped into
a real number, ¢(f), and the nodes of the given tree, 7, are considered in a preorder
sequence. The resulting sequence of tags of the nodes is then encoded as a series of
numbers. Alternative encodings include

en%/alue(T) = ¢(tl)’ ¢(t2)7 ceey ¢(tn)

and

encpreﬁx,sum(T') - ¢(t1)a ¢(t1) + ¢(l2), ey Z ¢([k)'

k<n

Given such an encoding, the distance between the two given trees, 77 and 1, is
computed as the difference between the discrete Fourier transforms (DFTs) of the
corresponding encodings:

A(Tlv TZ) = AEuclidean(DFT(enC(Tl))’ DFT(enC(TZ)))

6.2.5.4 String Encodings

An alternative to time-series encoding of the trees is to encode a labeled tree in
the form of a string (i.e., symbol sequence), which can then be used for computing
similarities using string comparison algorithms, such as string edit distance (Sec-
tion 3.2.2), the compression-based sequence comparison scheme introduced in Sec-
tion 5.5.5, or the Ziv-Merhav cross-parsing [Ziv and Merhav, 1993] algorithm, intro-
duced in Section 5.5.6.

There are many sequence-based encodings of ordered trees. Simplest of these
are based on preorder, postorder and in-order traversals of the trees. A common
shortcoming of these, on the other hand, is that they are not one-to-one. In partic-
ular, the same sequence of labels can correspond to many different trees. Thus, the
following encodings are more effective when used in matching algorithms.

6.2 Tree Matching

Priifer Encoding

Priifer [1918] proposed a technique for creating a sequence from a given tree,
such that there are no other trees that can lead to the same sequence. Let us be
given a tree T of n nodes, where the nodes are labeled with symbols from 1 to n. A
Priifer sequence is constructed by deleting leaves one at a time, always picking the
node with the smallest label, and recording the label of the parent of the deleted
node. The process is continued until only two nodes are left. Thus, given a tree with
n nodes, we obtain a sequence of length n — 2 consisting of the labels of the parents
of the deleted nodes. Priifer showed that the original tree T can be reconstructed
from this sequence.

Given an ordered tree T where the labels come from the alphabet %, a simi-
lar process can be used to create a corresponding sequence. In this case, the post-
order traversal value of each tree node is associated to that node as a metalabel.
The Priifer node elimination process is followed on these metalabels, but both
the actual node labels (from X) and the metalabels are used in creating the se-
quence [Rao and Moon, 2004]; that is, each symbol in the sequence is a pair in £ x
{1,...,n}.

Note that although this process ensures that a unique sequence is constructed
for each labeled tree, the reverse is not true: the sequence contains only non-
leaf node labels and, thus, labels of the leaf nodes cannot be recovered from the
corresponding sequence. Leaves can be accounted for by separately storing label
and postorder number of every leaf node. Alternatively, the Priifer sequence can
be constructed by using as symbols quadruples in X x {1,...,n} x ¥ x {1,...,n},
which record information about each deleted node along with the corresponding
parent.

Other Encodings

Helmer [2007] proposed to leverage the compression-based sequence compar-
ison scheme introduced in Section 5.5.5 to compute the distance between two or-
dered trees. More specifically, Helmer [2007] converts each ordered tree into a text
document using one of four different mechanisms:

m In the first approach, given an input tree, the labels of the nodes are concate-
nated in a postorder traversal of the tree.

m In the second approach, parent labels are appended to the node labels during
the traversal.

B In the third approach, for each node, the entire path from the root to this node
is prepended.

E In the fourth approach, all children of a node are output as one block and
thereby all siblings occur next to each other.

The resulting documents are then compressed using Ziv-Lempel encoding [Ziv and
Lempel, 1977], and the normalized compression distance between the given trees
is computed and used as the tree distance. Alternatively, the Ziv-Merhav cross-
parsing [Ziv and Merhav, 1993] algorithm introduced in Section 5.5.6 can also be
used to compare the resulting documents.

219

220

Indexing, Search, and Retrieval of Graphs and Trees

%@
® © ® © O
(a) (b)

Figure 6.7. (a) Ancestor-supplied context and (b) descendant-supplied context for node dif-
ferentiation.

6.2.5.5 Propagation Vector-Based Tree Comparison
The propagation vectors for trees (PVT) approach [Cherukuri and Candan, 2008] re-
lies on a label propagation process for obtaining tree summaries. It primarily lever-

ages the following observations:

B A node in a given hierarchy clusters all its descendant nodes and acts as a context
for the descendant nodes (Figure 6.7(a)).

m Similarly, the set of descendants of a given node may also act as a context for
the node (Figure 6.7(b)), differentiating the node from others that are similarly

labeled.

Consequently, one way to differentiate nodes from each other is to infer the con-
texts imposed on them by their neighbors, ancestors, and descendants in the given
hierarchy, enrich (or annotate) the nodes using vectors representing these contexts,
and compare these context vectors along with the label of the node (Figure 6.8).
Mapping a tree node into a vector (representing the node’s relationship to all
the other nodes in the tree) requires a way to quantify the structural relationship
between the given node and the others in the tree. Rada er al. [1989], for example,
propose that the distance between two nodes can be defined as the number of edges
on the path between two nodes in the tree. This approach, however, ignores vari-
ous structural properties, including variations of the local densities in the tree. To
overcome this shortcoming, R. Richardson and Smeaton [1995] associate weights to
the edges in the tree: the edge weight is affected both by its depth in the tree and
by the local density in the tree. To capture the effect of the depth, Wu and Palmer
[1994] estimate the distance between two nodes, ¢; and ¢;, in a tree by counting the

Wy g Wg oW g5l
2
n3 n
? %Q[wzj,wy,w ‘]
) .
cy !
0 h R c2
! .
r7 ni
X@ NP =0 Wy Wy oWy 5]
@ E i o
{Ca} {Ca} ci
(a) (b)

Figure 6.8. Mapping of the nodes of a tree onto a multidimensional space: (a) A sample tree,
(b) Vector space defined by the node labels.

6.2 Tree Matching 221

[1,0,0]
{Cq} @
{Ca} {Ca} [0,1,0] [0,0,1]
(a) (b)
W1 ﬁ‘bz Wois] [Whi,1,Whi2Whia]
O‘éz// \; Ogg / \
[Whz,1 W22 ,0] Wiz1,0 Wigs] Wh2,1 Wha2 Wiz 1 [Wha 1, Whao Whas |
(©) (d)

Figure 6.9. (a) The input hierarchy, (b) initial concept vectors and propagation degrees («),
(c) concept vectors and propagation degrees after the first iteration, and (d) status after the
second iteration.

number of edges between them, and normalizing this value using the number of
edges from the root of the tree to the closest common ancestor of ¢; and c;.

CP/CV [Kim and Candan, 2006] was originally developed to measure the seman-
tic similarities between terms/concepts in a given taxonomy (concept tree). Given
a user-supplied concept tree, C = H(N, E) with ¢ concepts, it maps each node into
a vector in the concept space with ¢ dimensions. These concept vectors are con-
structed by propagating concepts along the concept tree (Figure 6.9). How far and
how much concepts are propagated are decided based on the shape of the tree
and the structural relationships between the tree nodes. Unlike the original use
of CP/CV (which is to compare the concept nodes in a single taxonomy with each
other), PVT uses the vectors associated to the nodes of two trees to compare the
two trees themselves. This difference between the two usages presents a difficulty:
whereas the vectors corresponding to the nodes of a single tree all have the same di-
mensions (i.e., they are all in the same vector space), this is not necessarily the case
for vectors corresponding to nodes from different trees. PVT handles the mismatch
between the dimensions of the vector spaces corresponding to two different trees
being compared by mapping them onto a larger space containing all the dimensions
of the given two spaces. A second difficulty that arises when comparing trees is that,
unlike a taxonomy where each concept is unique, in trees, multiple tree nodes may
have identical labels. To account for this, PVT combines the weights of all nodes
with the same label under a single combined weight: let S be a set of tree nodes with

the same label; the combined weight, wg, is computed as ws = /Zmes wp,2. Note

that after the collapse of the dimensions corresponding to the identically labeled
nodes in S, the magnitude of the new vector remains the same as that of the original
vector. Thus the original vector is transformed from the space of tree nodes to the

222

Indexing, Search, and Retrieval of Graphs and Trees

space of node labels, but keeping its energy (or the distance from the origin, O) the
same.

In order to compare two trees using the sets of vectors corresponding to their
nodes, one needs to decide which vectors from one tree will be compared to which
vectors from the other. In order to reduce the complexity of the process, PVT relies
on the special position of the root node in the trees. Because the vector correspond-
ing to the root node represents the context provided to it through all its descendants
(i.e., the entire tree), the vector representation for the root node could be consid-
ered as a structural summary for the entire tree. Note that, for a given tree, the
PVT summary (i.e., the vector corresponding to the root node) consists of only the
unique labels in the tree.

The PVT summary vectors, vy and >, of two trees can be compared using differ-
ent similarity/difference measures: cosine similarity (measuring the angles between
the vectors),

Simcosme(lylv 172) = COS(JL 172)7

average KL divergence (which treats the vectors as probability distributions and
measures the so-called relative entropy between them),

Agr(V1, 12) + Agp (05, U] 1< vy, Vo;
kL(v1, ©2) + Agr (02, 01) _ —Zv1ilogi+vzilogﬁ,
2 2 i1 V2; V1
and intersection similarity (which considers to what degree v; and v, overlap along
each dimension),

27:1 min(vi;, v2;)

Z?:l max(vy;, v2;)

are candidates. Cherukuri and Candan [2008] showed that, in general, the KL-
divergence measure performs best in helping cluster similar trees together.

Slminterseclion(vl s U2) =

6.3 LINK/STRUCTURE ANALYSIS

So far, in this chapter, we have concentrated on problems related to the manage-
ment of graph- and tree-structure data objects. In particular, we have assumed that
each data object has a graph or tree structure and that we need to find a way to
compare these structures for querying and search. In many other applications of
graph- and tree-structured data, however, the main challenge is not comparing two
graphs/trees to each other, but to understand the structure of these graphs/trees to
support efficient and effective access to their constituent nodes.

As we see in this section, similarly to principal component analysis (PCA, Sec-
tion 4.2.6) and latent semantic indexing (LSI, Section 4.4.1.1), structural analysis of
graphs also relies on eigenvector analysis. The major difference from PCA and LSI
is that, instead of the object-feature or document-keyword matrices, for link analysis
the adjacency matrices of the underlying graphs are used as input.

6.3.1 Web Search

As mentioned previously in Section 3.5.4, there are many applications requiring
such structural analysis of graphs. Consider, for example, the World Wide Web,

6.3 Link/Structure Analysis

where the Web can be represented as a (very large) graph, G(V, E), of pages (V)
connected to each other through edges (E) representing the hyperlinks. Because
each edge in the Web graph is essentially a piece of evidence that the author of the
source page found the destination page to be relevant in some context, many sys-
tems and techniques have been proposed to utilize links between pages to determine
the relative importances of the pages or degrees of page-to-page associations [Brin
and Page, 1998; Candan and Li, 2000; Gibson et al., 1998; Kleinberg, 1999; Li and
Candan, 1999b; Page et al., 1998].

Given a query ¢ (often described as a set of keywords), web search involves iden-
tifying a subset of the nodes that relate to g. Although web search queries can be
answered simply by treating each page as a separate document and indexing it using
standard IR techniques, such as inverted indexes, early web search systems that re-
lied on this approach failed quickly. The reason for this is that web search queries are
often underspecified (users provide only up to two or three keywords), and the Web
is very large. Consequently, these systems could not filter out the not-so-relevant
pages from important pages and burdened users with the task of sifting through a
potentially large number of matches to find the few that are most useful to them.

6.3.1.1 Hubs and Authorities
An edge in the Web graph often indicates that the source page is directing or refer-
ring the user to the destination page; thus, each edge between two pages can be used
to refer that these two documents are related to each other. Cocitation relationship,
where two edges point to the same destination, and social filtering, where two pages
are linked by a common page, indicate topical relationships between sources and
destinations, respectively. More generally, an m : n bipartite core of the Web graph
consists of two disjoint sets, V; and V;, of vertices such that there is an edge from each
vertex in V; to each vertexin V;, |V;| = m, and |V}| = n. Such bipartite cores indicate
close relationships between groups of pages. We discuss properties of bipartite cores
of graphs in Section 6.3.5.

One of the earlier link-analysis algorithms, HITS [Gibson et al., 1998; Kleinberg,
1999], recognized two properties of web pages that can be useful in the context of
web search:

B Hubness: A hub is essentially a web page that can be used as a source from which
one can locate many good web pages on a given topic.

B Authoritativeness: An authority, on the other hand, is simply a web page that
contains good content on a topic.

A web page can be a good hub, a good authority, or neither. Given a web search
query, the HITS algorithm tries to locate good authorities related to the query to
help prevent poor pages from being returned as results to the user. HITS achieves
this by further recognizing that

B a good hub must be pointing to a lot of good authorities, and
B a good authority must be pointed to by a lot of good hubs.

This observation leads to an algorithm that leverages mutual reinforcement between
hubs and authorities in the Web. In particular, given a keyword query, g,

(i) HITS first uses standard keyword search to identify a set of candidate web
pages relevant for the query.

223

224 Indexing, Search, and Retrieval of Graphs and Trees

(ii) It then creates a web graph, G,(V,, E,) consisting of these core pages as
well as other pages that link and are linked by this core set.

(iii) Next, in order to measure the degrees of hubness and authoritativeness of
the pages on the Web, HITS associates a hubness score, A(p), and an au-
thority score, a(p), to each page, p. Note that, based on the earlier observa-
tion that hubs and authorities are mutually enforcing, HITS mathematically
relates these two scores as follows: given a page, p € V,, let in(p) € V, de-
note the pages that link to p and out(p) C V, denote the set of pages that
are linked by p; then we have

VpieVylap)=) h(pp)| and [h(p)=) ap)

pj€in(p;) pj€out(p;)

(iv) Finally, HITS solves these mathematical equations to identify hubs and au-
thority scores of the pages in V;, and selects those pages with high authority
scores to be presented to the user as answers to the query, g.

Bharat and Henzinger [1998] refer to this process as topic distillation.

One way to solve the foregoing set of equations is to rewrite them in matrix
form. Let m denote the number of pages in v, and E be an m x m adjacency matrix,
where E[i, j] = 1if there is an edge (p;, p;) € E, and E[i, j] = 0 otherwise. Let h be
the vector of hub scores and & be the vector of authority scores. Then, we have

a=E"h and h=Ea.
Moreover, we can further state that
a=E"Eq and h=EE"h.

In other words, a is the eigenvector of E’E with the eigenvalue 1, and h is the
eigenvector of EE” with the eigenvalue 1 (see Section 4.2.6 for eigenvectors and
eigenvalues).

As discussed in Section 3.5.4, when the number of pages is small, it is relatively
easy to solve for these eigenvectors. When the number of pages is large, however,
approximations may need to be used. One solution, which is often effective in prac-
tice, is to assign random initial hub and authority scores to each page and iteratively
apply the foregoing equations to compute new hub and authority scores (from the
old ones). This iterative process is repeated until the scores converge (the differ-
ences between old and new values become sufficiently small). In order to prevent it-
erations from resulting in ever-increasing authority and hub scores, HITS maintains
an invariant that ensures that, before each iteration, the scores of each type are nor-
malized such that 37, h*(p) =1and }_,.,, a*(p) = 1. If the process is repeated
infinitely many times, the hub and authority scores will converge to the correspond-
ing values in the hub and authority eigenvectors, respectively. In practice, however,
about twenty iterations are sufficient for the largest scores in the eigenvectors to
become stable [Gibson ef al., 1998; Kleinberg, 1999].

Note that a potential problem with the direct application of the foregoing tech-
nique for web search is that, although the relevant web neighborhood (G,) is
identified using the query, g, the neighborhood also contains pages that are not

6.3 Link/Structure Analysis

necessarily relevant to the query, and it is possible that one of these pages will be
identified as the highest authority in the neighborhood. This problem, where au-
thoritative pages are returned as results even if they are not directly relevant to the
query, is referred to as topic drift. Such topic drift can be avoided by considering the
content of the pages in addition to the links in the definition of hubs and authorities:

VpiGVq a(pl-)z Z w]-,ih(pj) and /’l(p,)z Z w,-,]-a(pj) s

pj€in(p;) pj€out(p;)

where w; j is a weight associated to the edge between p; and p; (based on content
analysis) within the context of the query q.

6.3.1.2 PageRank

A second problem with the preceding approach to web search is that, even for rela-
tively small neighborhoods, the iterative approach to computing hub and authority
scores in query time can be too costly for real-time applications.

In order to avoid query-time link analysis, the PageRank [Brin and Page, 1998;
Page et al., 1998] algorithm performs the link analysis as an offline process indepen-
dently of the query. Thus, the entire web is analyzed and each web page is assigned
a pagerank score denoting how important the page is based on structural evidence.
At the query time, the keyword scores of the pages are combined with the pagerank
scores to identify the best matches by content and structure.

The PageRank algorithm models the behavior of a random surfer. Let G(V, E)
be the graph representing the entire web at a given instance. The random surfer is
assumed to navigate over this graph as follows:

B At page p with probability g the random surfer follows one of the available links:
— If there is at least one outgoing hyperlink, then the surfer jumps from p to one
of the pages linked by p with uniform probability.
— If there is no outgoing hyperlink, then the random surfer jumps from p to a
random page.
m Occasionally, with probability 1 — g, the surfer decides to jump to a random web
page.

Let the number of web pages be N (i.e., |V| = N). This random walk (see Sec-
tion 3.5.4) over G can be represented with a transition matrix

1
S I
NxN

where [%] Ny 18 an N-by-N matrix where all entries are }\l, and M is an N-by-N
matrix, where
Im%(p')\’ if there is an edge from p; to p;,
M[i, j] = s if lout(p;)| = 0,

0, if Jout(p;)| # 0 but there is no edge from p; to p;.

Given the transition matrix, T, the pagerank score of each page, p, is defined as
the percentage of the time the random surfer spends on visiting p. As described in

225

226

Free ebooks ==> www.Ebook777.com

Indexing, Search, and Retrieval of Graphs and Trees

Section 3.5.4, the components of the first eigenvector of T will give the portion of
the time spent at each node after an infinite run; that is, (similarly to HITS) the
components of this eigenvector can be used as the pagerank scores of the pages
(denoting how important the page is based on link evidence).

6.3.1.3 Discovering Page Associations with Respect to a Given

Set of Seed Pages

Let us assume that we are given a set, S, of (seed) pages and asked to create a
summary of the Web graph with respect to the pages in S. In other words, we need
to identify pages in the Web that are structurally critical with respect to S. Candan
and Li [2000] observe that, given a set, S, of seed pages,

m astructurally critical page must be close to the pages in S, and
m it must also be highly connected to the pages in S.

A page with high overall connectivity (i.e., more incoming links and outgoing links)
is more likely to be included in more paths. Consequently, such a page is more likely
to be ranked higher according to the foregoing criteria. This is consistent with the
principle of topic distillation discussed earlier. On the other hand, a page with a high
connectivity but far away from the seed pages may be less significant for reasoning
about the associations than a page with low connectivity but close to the seed pages.
A page that satisfies both of the foregoing criteria (i.e., near seed URLs and with
high connectivity) would be a critical page with respect to the seeds in S.

Based on the preceding observation, Candan and Li [2000] first calculate for each
page a penalty that reflects the page’s overall distance from the seed pages. Because
a page with high penalty is less likely to be critical with respect to S, each outgoing
link from page p is associated with a weight inversely proportional to the destination
page’s penalty score. By constraining the sum of all weights of the outgoing links
from p to be equal to 1.0, Candan and Li [2000] create a random walk graph and
show that the primary eigenvector of the transition matrix corresponding to this
graph can be used to pick the structurally critical pages that can then be used to
construct a map connecting the pages in S [Candan and Li, 2002].

6.3.2 Associative Retrieval and Spreading Activation

As we have seen, given a data collection modeled as a graph, understanding associ-
ations between the nodes of this graph can be highly useful in creating summaries
of these graphs with respect to a given set of seed nodes. Researchers have also no-
ticed that such associations can also be used to improve retrieval, especially when
the features of the objects are not sufficient for purely feature-based (or content-
based) retrieval [Huang er al., 2004; Kim and Candan, 2006; Salton and Buckley,
1988a]. Intuitively, in these associative retrieval schemes, given a graph representa-
tion of the data (where the nodes represent objects and edges represent certain —
transitive — relationships between these objects), first pairwise associations between
the nodes in the graph are discovered; and then these discovered associations
are used for sharing features among highly associated data nodes. Consequently,
whereas originally the features of the nodes may be too sparse to support effective
retrieval, after the feature propagation the nodes may be more effectively queried.

Www.Ebook777.com

http://www.ebook777.com

6.3 Link/Structure Analysis

For example, in Section 6.2.5.5, we have seen a use of the feature-sharing approach
in improving retrieval of tree-structured data: whereas originally the label of the
root of the tree is not sufficient for similarity-based search, after label propagation
in the tree using the CP/CV propagation technique [Kim and Candan, 2006], the
root of the tree is sufficiently enriched in terms of labels to support efficient and
effective tree-similarity search.

Most of the existing associative-retrieval techniques are based on the spread-
ing activation theory of the semantic memory [Collins and Loftus, 1975], where the
memory is modeled as a graph: when some of the nodes in the graph are activated
(for example, as a result of an observation), spreading activation follows the links of
the graph to iteratively activate other nodes that can be reached from these nodes.
These activated nodes are remembered based on the initial observations.

Note that, when the iterative activation process is unconstrained, all nodes reach-
able from the initial nodes will eventually be activated. Different spreading acti-
vation algorithms regulate and constrain the amount of spreading in the graph in
different ways. Kim and Candan [2006], for example, regulate the degree of prop-
agation based on the depth and density of the nodes in a given hierarchy. Candan
and Li [2000], which we discussed in Section 6.3.1.3, on the other hand, regulate the
degree of activation based on distance from the seeds as well as the degree of con-
nectivity of the Web pages. In addition, the spreading activation process is repeated
until certain predetermined criteria are met. For example, because its goal is to in-
form all nodes in a given hierarchy of the content of all other nodes, in theory the
CP/CV [Kim and Candan, 2006] algorithm continues the process until all nodes in
the given hierarchy have had chance to affect all other nodes. In practice, however,
the number of iterations required to achieve a stable distribution is relatively small.
Most algorithms, thus, constrain the activation process in each step in such a way
that only a small subset of the nodes in the graph are eventually activated.

Note that the algorithms previously mentioned [Candan and Li, 2000; Kim and
Candan, 2006] leverage certain domain-specific properties of the application do-
mains in which they are applied to improve the effectiveness of the spreading
process. In the rest of this section, we discuss three more generic spreading acti-
vation techniques: (a) the constrained leaky capacitor model [Anderson, 1983b],
(b) the branch-and-bound [Chen and Ng, 1995], and the Hopfield net approach
[Chen and Ng, 1995].

6.3.2.1 Constrained Leaky Capacitor Model

Let G(V, E) be a graph, and let S be the set of starting nodes. At the initialization
step of the constrained leaky capacitor model for spreading activation [Anderson,
1983b], two vectors are created:

B A seed vector, §, where each entry corresponds to a node in the graph G and all
entries of the vector, except for those that correspond to the starting nodes are
set to 0; those entries that are corresponding to the starting nodes in S are set
to 1.

® An initial activation vector, cio, which captures the initial activation levels of all
the nodes in G: since no node has been activated yet, all entries of the vector are
initialized to 0.

227

228

Indexing, Search, and Retrieval of Graphs and Trees

The algorithm also creates an adjacency matrix, G, corresponding to the graph G
and a corresponding activation control matrix, M, such that

M=1-MI+aG.

Here, X is the amount of decay of the activation of the nodes at each iteration, and
o is the efficiency with which the activations are transmitted between neighboring
nodes. Given M, at each iteration, the algorithm computes a new activation vector
using a linear transformation:

d: =§+M67t71-

Often, only a fixed number of nodes with the highest activation levels keep their
activation levels; activation levels of all others are set back to 0. The algorithm ter-
minates after a fixed number of iterations or when the difference between 07, and
d,_, becomes sufficiently small. The threshold can be constant, or to speed up con-
vergence, it can be further tightened with increasing iterations.

6.3.2.2 Hopfield Net Spreading Activation

Structurally, the Hopfield net based spreading activation algorithm [Chen and Ng,
1995] is very similar to the constrained leaky capacitor model just described. How-
ever, instead of a spreading strategy based on linear transformations, the Hopfield
net uses sigmoid transformations. In this scheme, at the initialization step only one
vector is created:

® An initial activation vector, dj, where only those entries that are corresponding
to the starting nodes in S are set to 1 and all others are set to 0.

Once again, the algorithm creates an activation control matrix, M, where the entry
M[:, j] is the weight of the link connecting node v; of the graph to node v;. At each it-
eration, the activation levels are computed based on the neighbors’ activation levels
as follows:

Al =1 3 Ml jldialil]

UiGV
where f() is the following nonlinear transformation function:

) =~
1+e®
Here 6; and 6, are two control parameters that are often emprically set.

Once again, after each iteration, often only a fixed number of nodes with the
highest activation levels keep their activation levels. Also, the algorithm terminates
after a fixed number of iterations or when the difference between d, and d, 1 be-
comes sufficiently small.

6.3.2.3 Branch-and-Bound Spreading Activation

The branch-and-bound algorithm [Chen and Ng, 1995] is essentially an alternative
implementation of the matrix multiplication approach used by the constrained leaky
capacitor model. In this case, instead of relying on repeated matrix multiplications
which do not distinguish between highly activated and lowly activated nodes in

6.3 Link/Structure Analysis

computations, the activated nodes are placed into a priority queue based on their ac-
tivation levels, and only the high-priority nodes are allowed to activate their neigh-
bors. This way, most of the overall computation is focused on highly activated nodes
that have high spreading impact. In this algorithm, first

® an activation vector, do, where only those entries that are corresponding to the
starting nodes in § are set to 1 and all others set to 0, is created; and

B then, each node v; € Vis inserted into a priority queue based on the correspond-
ing activation level, c?o[i].

The algorithm also creates an activation control matrix, M.

At each iteration, the algorithm first sets d, = d,_y. Then, the algorithm picks a
node, v;, with the highest current activation level from the priority queue, and for
each neighbor, v;, of v;, it computes a new activation level:

d{j] = dialj]+ ML, jldi i)

All the nodes whose activation scores changed in the iteration are removed from
the priority queue and are reinserted with their new weights.

In many implementations, the algorithm often terminated after a fixed number
of iterations.

6.3.3 Collaborative Filtering

Another common use of link analysis is the collaborative filtering applica-
tion [Brand, 2005; Goldberg et al., 1992], where analysis of similarities between in-
dividuals’ preferences is used for predicting whether a given user will prefer to see
or purchase a given object or not. Although the collaborative filtering approach to
recommendations dates from the early 1990s [Goldberg er al., 1992], its use and im-
pact greatly increased with the widespread use of online social networking systems
and e-commerce applications, such as Amazon [Amazon] and Netflix [Netflix].
In collaborative filtering, we are given a bipartite graph, G(V,,, V,, E), where

B V, is a set of individuals in the system.

m V, is the set objects in the data collection.

m E is the set of edges between users in V, and objects in V, denoting past access/
purchase actions or ratings provided by the users. In other words, the edge
(u;, 0j) € Eindicates that the user u; declared his preference for object o; through
some action, such as purchasing the object o;.

In addition, each user u; € V,, may be associated with a vector #; denoting any meta-
data (e.g., age, profession) known about the user ;. Similarly, each object 0; € V,,
may be associated with a vector ¢; describing the content and metadata (e.g., title,
genre, tags) of the object o;.

Generating recommendations through collaborative filtering is essentially a clas-
sification problem (see Chapter 9 for classification algorithms): we are given a set
of preference observations (the edges in E) and we are trying to associate a “pre-
ferred” or “not preferred” label or a rating to each of the remaining user-object
pairs (i.e., (V, x V,) — E). Relying on the assumption that similar users tend to
like similar objects, collaborative filtering systems leverage the graph G(V,, V,, E)
and the available user and object vectors to discover unknown preference

229

230

Indexing, Search, and Retrieval of Graphs and Trees

relationships among users and objects. Here, similarity of two users, u; and uy,
may mean similarity of the metadata vectors, i; and uy, as well as the similar-
ity of their object preferences (captured by the overlap between the destinations,
out(u;) and out(uy), of the outgoing edges from u; and uy in the graph). In a parallel
manner, similarity of the objects, o; and o;, may be measured through the similar-
ity of content/metadata vectors, 0; and g, as well as the similarity of the sets of
users accessing these objects (i.e., sources, in(o;) and in(o;), of incoming edges to o;
and o).

We discuss the collaborative filtering-based recommendation techniques in
more detail in Section 12.8.

6.3.4 Social Networking

Online social networking gained recent popularity with the emergence of web-based
applications, such as Facebook [Facebook] and LinkedIn [LinkedIn], that help bring
together individuals with similar backgrounds and interests. These social network-
ing applications are empowering for their users, not only because they can help users
maintain their real-world connections in a convenient form online, but also because
social networks can be used to discover new, previously unknown individuals with
shared interests. The knowledge of individuals with common interests (declared ex-
plicitly by the users themselves or discovered implicitly by the system through social
network analysis) can also be used to improve collaborative feedback based rec-
ommendations: similarities between two individuals’ preferences can be used for
predicting whether an object liked by one will also be liked by the other or not.
Moreover, if we can analyze the network to identify prominent or high-prestige
users who tend to affect (or at least reflect) the preferences of a group of users,
we may be able to fine-tune the recommendations systems to leverage knowledge
about these individuals [Shardanand and Maes, 1995].

A social network is essentially a graph, G(V, E), where V is a set of individuals
in the social network and E is the set of social relationships (e.g., friends) between
these individuals [Wasserman et al., 1994].

Because their creation processes are often subject to the preferential-attachment
effect, where those users with already large numbers of relationships are more likely
to acquire new ones, most social networks are inherently scale-free (Section 6.3.5).
This essentially means that, as in the case of the Web graphs, social network graphs
can be analyzed for key individuals (who act as hubs or authorities) in a given con-
text. More generally though, social networks can also be analyzed for various social
properties of the individuals or groups of individuals, such as prestige and promi-
nence (often measured using the authority scores obtained through eigen analysis),
betweenness (whether deleting the node or the group of nodes would disconnect
social network graph), and centrality/cohesion (quantified using the clustering coef-
ficient that measures how close to a clique a given node and its neighbors are; see
Section 6.3.5). The social network graph can also be analyzed for locating strongly
connected subgroups and cliques of individuals (Section 8.2). As in the case of web
graphs, given a group of (seed) individuals in this network, one can also search for
other individuals that might be structurally related to this group. An extreme ver-
sion of this analysis is searching for individuals that are structurally equivalent to

6.3 Link/Structure Analysis

each other; this is especially useful in finding very similar (or sometimes duplicate)
individuals in the network [Herschel and Naumann, 2008; Yin et al., 2006, 2007].

6.3.5 The Power Law and Other Laws That Govern Graphs

In the rest of this section, we see that there are certain laws and patterns that seem
to govern the shape of graphs in different domains. Understanding of these patterns
is important, because these can be used not only for searching for similar graphs,
but also for reducing the sizes of large graphs for more efficient processing and in-
dexing. Graph data reduction approaches exploit inherent redundancies in the data
to find reduction strategies that preserve statistical and structural properties of the
graphs [Candan and Li, 2002; Leskoec et al., 2008; Leskovec and Faloutsos, 2006].
Common approaches involve either node or edge sampling on the graph or graph
partitioning and clustering (see Section 8.2) to develop summary views.

6.3.5.1 Power Law and the Scale-Free Networks

In the late 1990s, with the increasing research on the analysis of the Web and the
Internet, several researchers [Barabasi and Albert, 1999; Kleinberg, 1999] observed
that the graphs underlying these network have a special structure, where some hub
nodes have significantly more connections than the others. The degrees of the ver-
tices in these graphs, termed scale-free or Barabdsi-Albert networks, obey a power
law distribution, where the number, count(d), of nodes with degree d is O(d™?),
for some positive «. Consequently, the resulting frequency histograms tend to be
heavy-tailed, where there are many vertices with small degrees and a few vertices
with a lot of connections. In other words, the graph degree frequency distributions
in these graphs show the Zipfian-like behaviors we have seen for keyword distri-
butions in document collections (Sections 3.5 and 4.2) and the inverse exponential
distribution we have seen for the number of objects within a given distance from
a point in a high-dimensional feature space (Sections 4.1, 4.2.5, and 10.4.1). The
term “scale-free” implies that these graphs show fractal-like structures, where low-
degree nodes are connected to hubs to form a dense graphs, which are then con-
nected to other higher-degree hubs to form bigger graphs, and so on. The scale-free
structure emerges due to preferential-attachment effect, where vertices with high de-
grees/relationships with others are more likely to acquire new relationships. As we
have seen in Sections 6.3.1 through 6.3.4, this strongly impacts the analysis of web
and social-network structures for indexing and query processing.

6.3.5.2 Triangle and Bipartite Core Laws

Degrees of the vertices are not the only key characteristic that can be leveraged
in characterizing a graph. The number and distribution of triangles (for example,
highlighting friends of friends who are also friends in social networks [Faloutsos
and Tong, 2009]) can also help distinguish or cluster graphs.

Tsourakakis [2008] showed that for many real-world graphs, including social net-
works, coauthorship networks for scientific publications, blog networks, and Web
and Internet graphs, the distribution of the number of triangles the nodes of the
graphs participate in, obeys the power law. Moreover, the number of triangles also
obeys the power law with respect to the degree of the nodes (i.e., the number

231

232

Indexing, Search, and Retrieval of Graphs and Trees

of triangles increases exponentially with the degree of the vertices). Tsourakakis
[2008] also showed that the number of triangles in a graph is exactly one sixth of the
sum of cubes of eigenvalues and proposes a triangle counting algorithm based on
eigen analysis of graphs.

Not all social communities are undirected. Many others, such as citation net-
works, are directed. In these cases, the number and distribution of bipartite cores
can also be used to characterize (index and compare) graphs. An m : n bipartite
core consists of two disjoint sets, V; and V}, of vertices such that there is an edge
from each vertex in V; to each vertex in V}, |V;| = m, and |V;| = n. Similar to the
triangles in (undirected) social networks, bipartite cores can indicate a close rela-
tionship between groups of individuals (for example members of V; being fans of
members of Vj). Kumar ef al. [1999] showed that in many networks, bipartite cores
also show power-law distributions. In particular, the number of m : n bipartite cores
is O(m~* x 10#=7"), for some positive a, B, and y.

6.3.5.3 Diameter, Shortest Paths, Clustering Coefficients,

and the Small-Worlds Law

Other properties of graphs that one can use for comparing one to another include
diameter, distribution of shortest-path lengths, and cluster coefficients. The small-
worlds law observes that in many real-world graphs, the diameter of the graph
(i.e., the largest distance between any pair of vertices) is small [Erdos and Renyi,
1959]. Moreover, many of these graphs also have large clustering coefficients in ad-
dition to small average shortest path lengths [Watts and Strogatz, 1998]. It has also
been observed that in most real-world graphs (such as social networks) the net-
works are becoming denser over time and the graph diameter is shrinking as the
graph grows [Leskoec er al., 2008; Leskovec et al., 2007]. The clustering coefficient
of a vertex measures how close to a clique the vertex and its neighbors are. In di-
rected graphs, the clustering coefficient of vertex, v;, is defined as degree(ui)(‘dEeiglree(v,‘)fl)’
where E; is the number of edges in the neighborhood of v; (i.e., among v;’s im-

mediately connected neighbors); in undirected graphs, the coefficient is defined
as 7 2|E;| .
egree(v;)(degree(v;)—1)

6.3.6 Proximity Search Queries in Graphs

As mentioned earlier, in many multimedia applications, the underlying data can be
seen as a graph, often enriched with weights, associated with the nodes and edges
of the graph. These weights denote application specific desirability/penalty assess-
ments, such as popularity, quality, or access cost.

Let us be given a graph structured data, G(V, E), where V is the set of atomic
data objects and FE is the links connecting these. Given a set of features, let x :
V — 2F denote the node-to-feature mapping. Also, let §: E — R be a function
that associates cost or distance to each edge of the graph. Given a set of fea-
tures, Q = {f1, ..., fu}, each answer to the corresponding proximity query is a set,
{vi, ..., vy} C Vof nodes that covers all the features in the query [Li ez al., 2001a]:

m(v) U...Un(vy) 2 0.

For example, if the graph G corresponds to the Web and Q is a set of keywords, an
answer to this proximity query would be a set of web pages that collectively covers

6.4 Summary

Figure 6.10. A graph fragment and a minimal-cost answer to the proximity query Q =
{Kl, K2, K3, K4}, with cost 12.

all the keywords in the query. A minimal answer to the proximity query, Q, is a set
of pages, Vp, such that no proper subset of Vj is also an answer to Q. Let Vg be
the set of all minimal answers to Q and Vj be a minimal answer in V. The cost,
8(Vp) of this answer to Q is the sum of the edge costs of the tree with minimal cost
in G that connects all the nodes in Vj. Figure 6.10 shows an example: in the given
graph fragment, there are at least two ways to connect all three vertices that make
up the answer to the query. One of these ways is shown with solid edges; the sum of
the corresponding edge costs is 12. Another possible way to connect all three nodes
would be to use the dashed edges with costs 7 and 8. Note that if we were to use this
second option, the total edge costs would be 15; that is, greater than 12, which we
can achieve using the first option. Consequently, the cost of the answer is 12, not 15.

Li et al. [2001a] called the answers to such proximity queries on graphs informa-
tion units and showed that the problem of finding minimum-cost information units
(i.e., the minimum weighted connected subtree, T, of the given graph, G, such that T’
includes the minimum cost answer to the proximity query Q) can be formulated in
the form of a group Steiner tree problem, which is known to be NP-hard [Reich and
Widmayer, 1991]. Thus, the proximity search problem does not have known poly-
nomial time solutions except for certain special cases, such as when vertex degrees
are bounded by 2 [Ihler, 1991] or the number of groups is less than or equal to 2 (in
which case the problem can be posed as a shortest path problem). However, there
are a multitude of polynomial time approximation algorithms that can produce so-
lutions with bounded errors [Garg et al., 1998]. In addition, there are also various
heuristics proposed for the group Steiner tree problem. Some of these heuristics
also provide performance guarantees, but these guarantees are not as tight. Such
heuristics include the minimum spanning tree heuristic [Reich and Widmayer, 1991],
shortest path heuristic [Reich and Widmayer, 1991], and shortest path with origin
heuristic [Ihler, 1991]. However, because users are usually interested in top-k best
only, proximity query processing algorithms that have practical use, such as RIU [Li
et al., 2001a], BANKS-I [Bhalotia et al., 2002], BANKS-II [Kacholia et al., 2005],
and DPBF [Ding er al., 2007], rely on efficient heuristics and approximations for
progressively identifying the small (not necessarily smallest) k trees covering the
given features.

6.4 SUMMARY

Graph- and tree-structured data are becoming more ubiquitous as more and more
applications rely on the higher-level (spatial, temporal, hierarchical) structures of

233

234

Indexing, Search, and Retrieval of Graphs and Trees

the media as opposed to lower level features, such as colors and textures. Anal-
ysis and understanding of graphs is critical because most large-scale data, such as
collections of media objects in a multimedia database or even user communities,
can be represented as graphs (in the former case, based on the object similarities
and in the second case, based on explicit relationships or implicit similarities be-
tween individual users). In Chapter 8, we discuss how the structure of graphs can be
used for clustering and/or partitioning data for more efficient and effective search.
Later, in Chapter 12, we discuss collaborative filtering, one of the applications of
social graph analysis, in greater detail.

7

Indexing, Search, and Retrieval of Vectors

As we have seen in the previous chapters, it is common to map the relevant features
of the objects in a database onto the dimensions of a vector space and perform near-
est neighbor or range search queries in this space (Figure 7.1). The nearest neighbor
query returns a predetermined number of database objects that are closest to the
query object in the feature space. The range query, on the other hand, identifies and
returns those objects whose distance from the query object is less than a provided
threshold.

A naive way of executing these queries is to have a lookup file containing the
vector representations of all the objects in the database and scan this file for the
required matches, pruning those objects that do not satisfy the search condition.
Although this approach might be feasible for small databases where all objects
fit into the main memory, for large databases, a full scan of the database quickly
becomes infeasible. Instead, multimedia database systems use specialized indexing
techniques to help speed up search by pruning the irrelevant portions of the space
and focusing on the parts that are likely to satisfy the search predicate (Figure 7.2).

Index structures that support range or nearest neighbor searches in general lay
the data out on disk in sorted order (Figure 7.3(a)). Given a pointer to a data el-
ement on disk, this enables constraining further reads on the disk to only those
disk pages that are in immediate neighborhood of this data element (Figure 7.3(b)).
Search structures also leverage the sorted layout by dividing the space in a hierarchi-
cal manner and using this hierarchical organization to prune irrelevant portions of
the data space. For example, consider the data layout in Figure 7.3(c) and consider
the search range [6, 10]:

(i) The root of the hierarchical search structure divides the data space into
two: those elements that are <14.8 and those that are > 14.8. Because the
search range falls below 14.8, the portion of the data space > 14.8 (and the
corresponding portions of the disk) are pruned.

(ii) In this example, the next element in the search structure divides the space
into the data regions <4.2 and > 4.2 (and <14.8); because the search range

235

Free ebooks ==> www.Ebook777.com

236 Indexing, Search, and Retrieval of Vectors

e
e)
e
IS
IS
®)
© o
I}
® e
IS
(b)

Figure 7.1. (a) 6-Range query, (b) Nearest-2 (or top-2) query on a vector space; matching
objects are highlighted.

falls above 4.2, the portion of the data space <4.2 (and the corresponding
portions of the disk) are eliminated from the search.

(iii) The process continues by pruning the irrelevant portions of the space at
each step, until the data elements corresponding to the search region are
identified.

This basic idea of hierarchical space subdivision led to many efficient index struc-
tures, such as B-trees and BT -trees [Bayer and McCreight, 2002], that are used today
in all database management systems for efficient data access and query processing.

Note that the underlying fundamental principle behind the space subdivision
mechanism just described is a sorted representation of data. Such a sorted represen-
tation ensures the following:

m Desideratum I: Data objects closer to each other in the value space are also closer
to each other on the disk.

B Desideratum II: Data objects further away from each other in the value space
are also further away from each other on the storage space.

A

E
Index Structure @ ery

D E A C

Data regions on disk

Figure 7.2. A multidimensional index structure helps prune the search space and limit the
lookup process only to those regions of the space that are likely to contain a match. The
parts of the disk that correspond to regions that are further away from the query are never
accessed.

Www.Ebook777.com

http://www.ebook777.com

Indexing, Search, and Retrieval of Vectors

7 9.5 14.8 18.9 20 22.3

0O)
% ' '

I

........ 7 (9.5 (14.8]18.9| 20 [22.3

(a)

search

........ 7 195 (14.8(18.9| 20 |22.3

(b)

>22.3

| 7 195 |14.8|18.9| 20 {22.3]

(©)

Figure 7.3. (a) Data are usually laid out on disk in a sorted order to enable (b,c) processing
of range searches and nearest neighbor searches with few disk accesses.

The sorted representation of data, on the other hand, requires a totally ordered
value space; that is, there must exist some function, <, which imposes a total
order' on the data values. A particular challenge faced when dealing with mul-
tidimensional vector spaces, on the other hand, is that usually an intuitive total
order does not exist. For example, given a two-dimensional space and three vec-
tors v, = (1, 3), v, = (3, 1), and v, = (2.8, 2.8), even though there exist total orders
for the individual dimensions (e.g., 1 < 2.8 < 3), these total orders do not help us
define a similar <, order for the vectors, (1, 3), (3, 1), and (2.8, 2.8):

m If we consider the first dimension, then the order is
(1, 3)<vec(2.8, 2.8) <yec (3, 1).
m If, on the other hand, we consider the second dimension, the order should be

(3, 1) <vec(2.8,2.8) <vec (1, 3).

! The binary relation < is said to be a rotal order if reflexivity, antisymmetry, transitivity, and comparabil-
ity properties hold.

237

238

Indexing, Search, and Retrieval of Vectors

Although one can pick these or any other arbitrary total order to layout the data
on the disk, such orders will not necessarily satisfy the desiderata I or II listed here.
For example, if we are given the query point v, = (0, 0) and asked to identify the
closest two points based on Euclidean distance, the result should contain vectors,
(1,3) and (3, 1), which are both +/10 unit away (as opposed to the vector (2.8, 2.8),
which is +/15.68 away from (0, 0)). However, neither of the foregoing orders place
the vectors, (1, 3) and (3, 1), together so that they can be picked without having to
read (2.8, 2.8). Consequently, multidimensional index structures require some form
of postprocessing to eliminate false hits (or false positives) that the given data layout
on the disk implies.

In this chapter, we cover two main approaches to multidimensional data organi-
zation: space-filling curves and multidimensional space subdivision techniques. The
first approach tries to impose a total order on the multidimensional data in such a
way that the two desiderata listed earlier are satisfied as well as possible. The second
approach, on the other hand, tries to impose some subdivision structure on the data
such that, although it is not based on a total order, it still helps prune the data space
during searches as effectively as possible.

7.1 SPACE-FILLING CURVES

As their names imply space-filling curves are curves that visit all possible points in
a multidimensional space [Hilbert, 1891; Peano, 1890]. Although multidimensional
curves can also be defined over real-valued vector spaces, for simplicity we will first
consider an n-dimensional nonnegative integer-valued vector space S = Z” |, where
each dimension extends from 0 to 2" — 1 for some m > 0. Let 7 be a permutation of
the dimensions of this space. A w-order traversal, Cy_orger : ZZ) — Zg, of this space
is defined as follows: -

n
Cn,order(ﬁ) = Z ﬁ[ﬂ(l)] X (zm)n—i.
i=1
Figure 7.4 shows two possible traversals,” row-order and column-order, of an
8 x 8 2D space. In column-order traversal, for example, (1) corresponds to the
x dimension and 7(2) corresponds to the y dimension. Thus, the value that the
Ceolumnorder takes for the input point (1, 2) can be computed as

Ccolumnorder(u, 2)) = (1 X 81) + (2 X 80) =10.

It is easy to show that Ceonmmorder({1,1)) =9 and Ceopmmorder({1, 3)) = 11. In other
words, if the points in the space are neighbors along the y-axis, the column-order
traversal is able to place them on the traversal in such a way that they will be
neighbors to each other. On the other hand, the same cannot be said about points
that are neighbors to each other along the other dimensions. For example, if we
again consider the column-order traversal shown in Figure 7.4(b), we can see that
while Ceonmmorder({0, 1)) = 1, Ceonmmorder({1, 1)) = 9; that is, for two points neigh-
boring along the x-axis, desideratum I fails significantly. A quick study of Fig-
ure 7.4(b) shows that desideratum II also fails: while C.oupmmorder({0,7)) =7 and

2 Note that these are not curves in the strict sense because of their noncontinuous nature.

7.1 Space-Filling Curves

2 34 567
|
2 34 567

1
1

L] E]L])

0
0

0 1 2 34 567 0 1 2 34 567
(a) (b)

Figure 7.4. (a) Row- and (b) column-order traversals of 2D space. See color plates section.

Ceolumnorder({1, 0)) = 8, these two points that are far from each other in the 2D space
are mapped onto neighboring positions on the Ceopmnorder traversal.

It is easy to see that the reason why both desiderata I and II fail are the long
jumps that these two row-order and column-order filling traversals are making.
Therefore, errors that space-filling traversals introduce can be reduced by reduc-
ing the length and frequency of the jumps that the traversal has to make to fill
the space. Row-prime-order and Cantor-diagonal-order traversals® of the space are
two such attempts (Figure 7.5(a) and (b), respectively). For example, whereas in
the row-order traversal, Cyoworder({7,0)) =7 and Croworder((7, 1)) = 15, in the row-
prime-order traversal, this problem has been solved: Crouprimeorder((7,0)) =7 and
Crowprimeorder({7, 1)) = 8. On the other hand, the row-prime-order traversal is actu-
ally increasing the degree of error in other parts of the space. For example, whereas

|Crow0rder(<07 0)) - Croworder(«)’ 1)) = |0 - 8| = 87

for the same pair of points neighboring in the 2D space, the amount of error is larger
in the row-prime-order traversal:

|Crowprimeorder(<os 0)) - Crowprimeorder((o’ 1)) = |O - 15| =15.

In general, given an n-dimensional nonnegative integer valued vector space S =
7, where each dimension extends from 0 to 2" — 1 for some m > 0, and a traversal
(or a curve), C, filling this space, the error measure, &(S, C) can be used for assessing
the degree of deviation from desiderata I and II:

€8.0)= Y3 [AG@.7) - @) - (@)

y;eS vjeS

|,

where A is the distance metric (e.g., Euclidean, Manhattan) in the original
vector space S. Intuitively, the smaller the deviation is, the better the curve

3 Note that these traversals lead to curves in that they are continuous.

239

240

Indexing, Search, and Retrieval of Vectors

0 1 2 34 5 6 7 01 2 34 5 6 7
T o = = <
© : © NN NN
o} W N 3¢ \ \, \\\\ N
<t = % [N\ N\ N N
o 1) \ N\ N N _\ 1
N1 “ B ININOINGIN ANANA
A Lo i ' Nl 2\ NEIN i e [%
o . il LN N NN

(a) (b)

Figure 7.5. (a) Row-prime- and (b) Cantor-diagonal-order traversals of 2D space. See color
plates section.

approximates the characteristics of the space it fills. Although any curve that fills the
space approximates these characteristics to some degree, a special class of curves,
called fractals, are known to be especially good in terms of capturing the character-
istics of the space they fill.

7.1.1 Fractals

A fractal is a structure that shows self-similarity; that is, it is composed of simi-
lar structures at multiple scales. A fractal curve, thus, is a curve that looks similar
when one zooms in or zooms out in the space that contains it. Fractals are com-
monly generated through iterated function systems that perform contraction map-
pings [Hutchinson, 1981]: Let F C R be the set of points in n-dimensional real val-
ued space corresponding to a fractal. Then, there exists a set of mappings F, where

B f; € F are contraction mappings; that is, f; : R” — R” and

Jo<k<1Vayern A(fi(x), fi(y)) < kA(x,y)
such that F is the fixed set of F:

F = fuF).

f,'€.7'-

Because of the recursive nature of the definition, many fractals are created by pick-
ing an initial fractal set, Fy, and iterating the contraction mappings until sufficient
detail is obtained. (Figure 7.6 shows the iterative construction of the fractal known
as the Hilbert curve; we discuss this curve in greater detail in the next subsection.)
How well a fractal covers the space can be quantified by a measure called the
Hausdorff dimension. Traditionally, the dimension of a set is defined as the num-
ber of independent parameters needed to uniquely identify an element of the set.
For example, a point has dimension 0, a line 1, a plane 2, and so on. Although the
Hausdorff dimension generalizes this definition (e.g., Hausdorff dimension of a

7.1 Space-Filling Curves

N~ _—I [|
o [P T[0T O
- @ 2 o [milns
I R [|
~ <
> oM
_ ~ O] |__|
° o EsindlinnlEs
0 !) o | 11]t]
0 1 0 1 2 3 01 2 34 56717
(a) (b) (©)

Figure 7.6. Hilbert curve: (a) First order, (b) Second order, (c) Third order. See color plates
section.

plane is still 2), its definition also takes into account the metric used for defining
the space. Let F be a fractal and let N(F, €) be the number of balls of radius at most
€ needed to cover F. The Hausdorff dimension of F is defined as

_In(N(F, €))

 In(1/e)
In other words, the Hausdorff dimension of a fractal is the exponential rate, d, at
which the number of balls needed to cover the fractal grows as the radius is reduced
(N(F,¢) = %d). Fractals that are space-filling, such as the Hilbert curve and Z-order
curve (both of which we discuss next), have the same Hausdorff dimension as the
space they fill.

7.1.2 Hilbert Curve

The Hilbert curve is one of the first continuous fractal space-filling curves described.
It was introduced in 1891 by Hilbert [1891] as a follow-up on Peano’s first paper on
space-filling curves in 1890 [Peano, 1890]. For that reason, this curve is also know as
the Peano-Hilbert curve.

Figure 7.6 shows the first three orders of the Hilbert curve in 2D space. Fig-
ure 7.6(a) shows the base curve, which spans a space split into four quadrants. The
numbers along the “U”-shaped curve give the corresponding mapping from the 2D
coordinate space to the 1D space. Figure 7.6(b) shows the second-order curve in
which each quadrant is further subdivided into four subquadrants to obtain a space
with a total of 16 regions. During the process, the line segments in each quadrant
are replaced with “U”-shaped curve segments in a way that preserves the adjacency
property (i.e., avoiding discontinuity — which would require undesirable jumps).
To obtain the third-order Hilbert curve, the same process is repeated once again:
each cell is split into four cells and these cells are covered with “U”-shaped curve-
segments in a way that ensures continuity of the curve.

Note that however many times the region is split into smaller cells, the resulting
curve is everywhere continuous and nowhere differentiable; furthermore, it passes
through every cell in the square once and only once. If this division process is con-
tinued to infinity, then every single point in the space will have a corresponding po-
sition on the curve; that is, all 2D vectors will be mapped onto a 1D value and vice

241

242

Indexing, Search, and Retrieval of Vectors

000 001 010 011 100 101 110 111
01 2 345617

-~ N 1 I\|
| l
s A OYENT AN
s<| L INEARRERL
5 N N
o N

5 N

sofl N7 \

l—| C,(010,011) = 001101

Figure 7.7. Z-order traversal of 2D space. See color plates section.

versa. Thus, since the Hilbert curve is filling the 2D space, its Hausdorff dimension
is 2 (i.e., equal to the number of dimensions that it fills).

The Hilbert curve fills the space more effectively than the row-prime- and
Cantor-diagonal-order traversals of the space. In particular, its continuity ensures
that any two nearby points on the curve are also nearby in space. Furthermore, its
fractal nature ensures that each “U” clusters four neighboring spatial regions, imply-
ing that points nearby in space also tend to be nearby on the curve. This means that
the Hilbert curve is a good candidate to be used as a way to map multidimensional
vector data to 1D for indexing.

However, to be useful in indexing and querying of multidimensional data, a
space-filling curve has to be efficient to compute, in addition to filling the space
effectively. A generating state-diagram-based algorithm, which leverages structural
self-similarities when computing Hilbert mappings from multidimensional space to
1D space, is given by Faloutsos and Roseman [1989]. For spaces with a large num-
ber of dimensions, even this algorithm is impractical because it requires large state
space representations in the memory. Other algorithms for computing Hilbert map-
pings back and forth between multidimensional and 1D spaces are given by Butz
[1971] and Lawder [1999]. None of the existing algorithms, however, is practical for
spaces with large numbers (tens or hundreds) of dimensions. Therefore, in practice,
other space filling curves, such as the Z-order curve (or Z-curve), which have very
efficient mapping implementations, are preferred over Hilbert curves.

7.1.3 Z-Order Curve

Because it allows for jumps from one part of the space to a distant part (i.e., because
it is discontinuous), the Z-order (or Morton-order [Morton, 1966]) curve, shown in
Figure 7.7, is not a curve in the strict sense. Nevertheless, like the Hilbert curve, it
is a fractal; it covers the entire space and is composed of repeated applications of
the same base pattern, a Z as opposed to a U in this case. Thus, despite the jumps

7.1 Space-Filling Curves

that it makes in space, like the Hilbert curve, it clusters neighboring regions in the
space and, except for the points where continuity breaks, points nearby in space are
nearby on the curve.

Because of the existence of points of discontinuity, the Z-order curve provides
a somewhat less effective mapping for indexing than the Hilbert mapping. Yet, be-
cause of the existence of extremely efficient implementations, Z-order mapping is
usually the space-filling curve of choice when indexing vector spaces with large num-
bers of dimensions.

Let us consider an n-dimensional nonnegative integer-valued vector space S =
7" ,, where each dimension extends from 0 to 2" — 1 for some m > 0. Let v =
([1], v[2], ..., v[n]) be a point in this n-dimensional space. Given an integer a
(0 <a<2m™—1),let a.base2(k) € {0, 1} denote the value of the kth least significant
bit of the integer a. Then,

Vi<j<nVi<k=m Cz_order(V).base2((m — k)n + j) = v[j].base2(k).

Because of the way it operates on the bit representation of the components of
the vector provided as input, this mapping process is commonly referred to as the
bit-shuffling algorithm. The bit-shuffling process is visualized in Figure 7.7: Given
the input vector (2, 3), the corresponding Z-order value, 001101, (= 13y9), is ob-
tained by shuffling the bits of the inputs, 010, (= 210) and 011, (= 31¢). Given an
n-dimensional vector space with 2™ resolution along all its dimensions, the bit-
shuffling algorithm takes only O(nm) time; that is, it is linear in the number of di-
mensions and logarithmic in the resolution of the space.

7.1.4 Executing Range Queries Using Hilbert and Z-order Curves

As we have discussed, space-filling curves can be used for mapping points (or vec-
tors) in multidimensional spaces onto a 1D curve to support indexing of multidi-
mensional data using data structures designed for 1D data. However, because the
point-to-point mapping does not satisfy desiderata I and II, mapping multidimen-
sional query ranges onto a single 1D query range is generally not possible. Because
a space-filling mapping can result in both over-estimations and under-estimations
of distances, range searches may result in false hits and misses. Since in many ap-
plications misses are not acceptable (but false hits can be cleaned through a post-
processing phase) one solution is to pick 1D search ranges that are sufficiently large
to cover all the data points in the original search range. This, however, can be pro-
hibitively expensive.

An alternative solution is to partition a given search range into smaller ranges
such that each can be processed perfectly in the 1D space. Figure 7.8 illustrates this
with an example: The query range shown in Figure 7.8(a) corresponds to two sep-
arate ranges on the Z-curve: [48, 51] and [56, 57]. These ranges can be considered
under their binary representations (“don’t care” symbol “*” denoting both 0 and
1) as “1100 *” and “11100«”, respectively. When ranges are represented this way,
each range corresponds to a prefix of a string of binary symbols and, thus, range
queries can be processed using a prefix-based index structure, such as the tries in-
troduced in Section 5.4.1.

243

244 Indexing, Search, and Retrieval of Vectors

000 001 010 011 100 101 110 111
01 2 34 567

0 1 2 34 567
N =~ ENL A LN A |
" o k TN N

- : | 11100X
: QY A
< 8)
© SN NN A NN
~ SN NJL i
- S— \ \ \K NE 1100XX
5 goll N \ [48,51]

(a) (b)

Figure 7.8. (a) A range query in the original space is partitioned into (b) two regions for
Z-order curve based processing on a 1D index structure. See color plates section.

7.2 MULTIDIMENSIONAL INDEX STRUCTURES

As discussed previously, when the multidimensional data is mapped to a one-
dimensional space for storage using traditional index structures, such as B+-trees,
there is an inherent degree of information loss that may result in misses or false pos-
itives. An alternative to multidimensional to one-dimensional mapping is to keep
the dimensions of the original data space intact and to apply subdivision process
directly in this multidimensional space.

Multidimensional space subdivision based indexing, however, poses new chal-
lenges. In the case of 1D space subdivision, the main task is to find where the sub-
division boundaries should be and how to store these boundaries in the form of a
search data structure to support efficient retrieval. In the case of multidimensional
spaces, on the other hand, there are new issues to consider and new questions to
answer. For example, one critical parameter that has a significant impact on choos-
ing the appropriate strategy for dividing a multidimensional space is the distance
measure/metric underlying the multidimensional space. In other words, to be able
to pick the right subdivision strategy, we need to know how the different dimensions
affect the distance between a pair of objects in the space.

A multidimensional space introduces new degrees of freedom, which can be
leveraged differently by different subdivision strategies. When we decide to place
a boundary on a point on a one-dimensional space, the boundary simply splits the
space into two (before and after the boundary). In a two-dimensional space, how-
ever, once we decide that a boundary (a line) is to be placed such that it passes
over a given point in the space, we further have to decide what the slope of this line
should be (Figure 7.9). This provides new opportunities for more informed subdivi-
sion, but it also increases the complexity of the decision-making process. In fact, as
we see next, to ensure that the index creation and updating can be done efficiently,
most index structures simply rely on rectilinear boundaries, where the boundaries
are aligned with the dimensions of the space; this reduces the degrees of freedom,
but consequently reduces the overall index management cost as well.

Space subdivision decision strategies can be categorized into two: open (Fig-
ure 7.10(a)) and closed (Figure 7.10(b,c,d)) approaches. In the former case, the
space is divided into two open halves, whereas in the latter cases, one of the

7.2 Multidimensional Index Structures

Figure 7.9. Multidimensional spaces introduce degrees of freedom in space sub-division.

subdivisions created by the boundary is a closed region of the space. As shown
in Figures 7.10(b) through (d), there can be different ways to carve out closed
subdivisions of the space, and we discuss the advantages and disadvantages of these
schemes in the rest of this section.

7.2.1 Grid Files

As its name implies, a grid file is a data structure where the multidimensional space
is divided into cells in such a way that the cells form a grid [Nievergelt er al., 1981].
Commonly, each cell of the grid corresponds to a single disk page (i.e., the set of
data records in a given cell can all be fetched from the disk using a single disk ac-
cess). Consequently, the sizes of the grid cells must be such that the number of data
points contained in each cell is not more than what a disk page can accommodate.
Conversely, the cells of the grid should not be too small, because if there are many
cells that contain only few data elements, then

B The pages of the disk are mostly empty and consequently the data structure
wastes a lot of storage space

B Because there are many grid cells, the lookup directory for the grid as well as
the cost of finding the relevant cell entry in the directory are large, and

B Because query ranges may cover or touch a lot of cells, all the corresponding
disk pages need to be fetched from disk, increasing the search cost substantially.

Therefore, most grid files adaptively divide the space in such a way that the sizes of
the grid cells are only large enough to cover as many data points as a data page can
contain (Figure 7.11(a)). However, because boundaries in a grid cut the space from
one end to the other, when the data distribution in the space is very skewed, this

() (b) (©) (d)

Figure 7.10. (a) An open subdivision strategy and (b,c,d) three closed subdivision strategies.

245

246

Indexing, Search, and Retrieval of Vectors

. ; L. e . ; L. e
A R S R
. P e : . P, e i
12 o T A i U2 o R A i
: . ; Poe
° o Wasted directory #pace!!!! ° o
172 3/4 1 172 3/4 1
(a) (b)

Figure 7.11. (a) A grid file where the cell boundaries are placed in such a way as to adapt
to the data distribution (in this example, each cell contains at most four data points).
(b) Nevertheless, when the data are not uniformy distributed, grid files can result in significant
wastages of directory and disk space.

can result in significant imbalance in utilization of the disk pages (Figure 7.11(b)).
More advanced grid file schemes, such as [Hinrichs, 1985], allow for the combina-
tion of adjacent, under-utilized cells in the form of supercells whose data points can
all be stored together in a single disk page. This, however, requires complicated
directory management schemes that may introduce large directory management
overheads.

7.2.2 Quadtrees

While relying on a gridlike subdivision of space, quadtrees are better able to adapt
to the distribution of the data [Finkel and Bentley, 1974]. The reason for this is that,
instead of cutting through the entire space, the boundaries creating the partitions of
the space have more localized extents. Thanks to this property, while subdividing a
dense region of the space finely using a large number of partitions, the boundaries
created in the process do not necessarily affect distant regions of the space that may
have much thinner distributions of points.

7.2.2.1 Point Quadtrees

A point quadtree [Finkel and Bentley, 1974] is a hierarchical partitioning of the
space where, in an m-dimensional space, each node in the tree is labeled with a
point at which the corresponding region of the space is subdivided into 2 smaller
partitions. Consequently, in two-dimensional space, each node subdivides the space
into 2? = 4 partitions (or quadrants); in three-dimensional space, each node sub-
divides the space into 23 = 8 partitions (or octants); and so on. The root node of
the tree represents the whole region, is labeled with a point in the space, and has
2" pointers corresponding to each one of the 2" partitions this point implies (Fig-
ure 7.12(a)). Similarly, each of the descendants of the root node corresponds to a
partition of the space and contains 2" pointers representing the subpartitions the
point corresponding to the node implies (Figure 7.12(b,c,d)).

Insertion
As shown in Figure 7.12, in the case of the simple point quadtree, each new data
point is inserted into the tree by comparing it to the nodes of the tree starting from

7.2 Multidimensional Index Structures

<9,15> <9,15>

<12,11> <12,115 <12,11

0,0 0,0 0,0

(a) (b) (© (d)

Figure 7.12. Point quadtree creation: points are inserted in the following order: (12, 11),
(9, 15), (14, 3), (1, 13).

the root and following the appropriate pointers based on the relative position of the
new data point with respect to the points labeling the tree nodes visited during the
process. For example, in order to insert the data point (1, 13), the data point is first
compared to the point (12, 11) corresponding to the root of the quadtree. Because
the new point falls to the northwest of the root, the insertion process follows the
pointer corresponding to the northwest direction. The data point (1, 13) is then com-
pared against the next data point, (9, 15), found along the traversal. Because (1, 13)
falls to the southwest of (9, 15), the insertion process follows the southwest pointer
of this node. Because there is no child node along that direction (i.e., the pointer
is empty), the insertion process creates a new node and attaches that node to the
tree by pointing the southwest pointer of the node with label (9, 15) to the new data
node. Note that, as shown in this example, the structure of the tree depends on the
order in which the points are inserted into the tree. In fact, given n data points, the
worst-case height of a point quadtree can be n (Figure 7.13). This implies that, in
the worst case, insertions can take O(n) time. The expected insertion time for the

yany
Nz

Va