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How can we estimate the number
of clusters in a database?

covering(o,,0,) = 3" p(k| 0,)p(0, |§)
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e Suppose the database is a perfect cluster
- features are uniformly distributed
- all document are equally likely to be selected
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e Suppose the database is a single cluster
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e Let’'s sum up all self-coverings, then

Ecovering(ol.,oi) = 2% =1
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How can we estimate the number
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There are approximately r
p clusters
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Use of clusters (prune search
space)

e ...eliminate clusters based on their representatives
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G

e Each document is a binary vector

e Documents are organized into clusters

e Each cluster has a representative
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Use of clusters

Binary independent features
G

e Each document is a binary vector

e Documents are organized into clusters

e Each cluster has a representative

e Goal: for each cluster, estimate # of
documents having t or more matching
keywords with a query with k keywords
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Use of clusters
Binary independent features

e Each document is a binary vector
e Documents are organized into clusters
e Each cluster has a representative
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Use of clusters
Binary independent features

e Each document is a binary vector
e Documents are organized into clusters
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Use of clusters
Binary independent features
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Use of clusters
Binary independent features
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Use of clusters

Non-binary, independent features
G

e Each document is a non-binary vector

e Documents are organized into clusters

e Each cluster has a representative

e Goal: for each cluster, find the probability that
one object in the cluster will be more than S
similiar to the query
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Use of clusters
Non-binary independent features
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Use of clusters
Non-binary independent features
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Use of clusters
Non-binary independent features
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Use of clusters
Non-binary independent features
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Use of clusters
Non-binary independent features
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Use of clusters
Non-binary independent features
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What if features are not
independent?

e Metric spaces assume that features are
independent (orthogonal to each other)

e ...what if they are not?
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Latent Semantic Indexing
. |

e Used for hidden (latent) concepts in a given
collection
- mostly for text collections (cosine similarity)!

e Let us have
- |O| objects
- Each object o is represented with a vector of size
[v| (number of features)
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Document-feature vector

e N

feature
value

OF =

]
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How can we use this matrix?
G

e This matrix is the database!!!

e Can we use it to find

- object-object similarities?

- feature-feature correlation?

- independent concepts in the collection?
e Can we use it for efficient indexing?
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OF x OF'=

Obj-feature X feature-obj
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Obj-feature X feature-obj
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Obj-feature X feature-obj
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Obj-feature X feature-obj

OF x OF'=

vector multiplication (dot)
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Obj-obj similarity matrix!!!!
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Feature-feature correl. matrix!!!!
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Singular valued decomposition

e N
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Singular valued decomposition
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Singular valued decomposition
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Concept space...and importance
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We can ignore less important
concepts....
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Singular valued decomposition

OF=
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Remove unimportant concepts
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Query processing
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Query processing
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