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First topic: formalisms 

1. Check the kind of 
system to analyze. 

2. Choose formalisms, 
methods and tools. 

3. Express system 
properties. 

4. Model the system. 

5. Apply methods. 

6. Obtain verification 
results. 

7. Analyze results. 

8. Identify errors. 

9. Suggest correction. 
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Concurrent Systems 

 Involve several computation agents. 

 Interaction through global, common 
variables or through message exchange 
(memoria condivisa vs scambio di messaggi) 

 Global state or distributed state 

 May involve remote components. 

 May interact with users (Reactive). 

 May involve hardware components 
(Embedded). 
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Problems in modeling  
concurrent systems 

 Representing concurrency: 
- Allow one transition at a time, or 
- Allow coinciding transitions. 

 Granularity of transitions. 

 Assignments and checks? 

 Application of methods? 

 Global (all the system) or local (one 
thread at a time) states. 
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Formalisms considered 

 Petri nets (reti di Petri).  
 Process algebra. (algebra dei processi)  
 LTL (Logica temporale lineare) 
 CTL (Logica temporale branching) 
 Language of guarded commands (nusmv 

modelling language) 
 Timed automata  (automi temporizzati o 

tempificati) 
 

Specifying the system or its properties? 
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Petri nets 

Formalism to describe  

Discrete Events Dynamic Systems (DEDS)  

Dynamic: the system is described through its 
evolution 

Event: what cause a change of state 

Discrete: system state described by discrete 
variables (or variables that are considered discrete 
(discretization). A discrete variable takes its value 
over natural numbers or over finite sets of element  
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Type of systems which are easily 
modelled with Petri Nets 

FMS (sistemi flessibili di produzione). 

Distributed algorithms of various sorts (per 
esempio i dining philosophers, e vari 
algoritmi di mutua esclusione) 

Control system (per esempio di un ascensore). 

Workflows  

Protocols. 

Any finite state automata 
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Petri nets - applets  

 GreatSPN editor 
 www.di.unito.it/~greatspn/index.html (contiene 

riferimento al sito github della nuova versione) 
 www.di.unito.it/~amparore/mc4cslta/editor.html 

 
 

 Give a look at the site  http://www.informatik.uni-
hamburg.de/TGI/PetriNets/tools/java/ 

http://www.di.unito.it/~greatspn/index.html
http://www.di.unito.it/~greatspn/index.html
http://www.di.unito.it/~amparore/mc4cslta/editor.html
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/java/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/java/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/java/
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 Petri Nets (PN) definition 

Petri nets + initial state = PN system 

 

Definition 1: a Petri Net N is a 4-tuple 

N = (P, T, F, W) 

where  

 P, set of places and T, set of transitions,  are finite and non 
empty set and   P T =  

 The flow  relation F  PxT  TxP              

 The weight  function W: F --> N+  
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 Petri Nets (PN) definition 

 

 Places: state variables 

 

 Transitions: change of state 

 

 Marking: evaluation of the state variables 



15 

 Petri Nets (PN) definition 

Petri nets have an easy visualization as bipartite graph  

 

inscripciones
en los arcos

N = < P,   T,   F,   W >

PRE POST

Iscrizioni sugli archi 

Pre e post sono definiti rispetto alle transizioni 

Posti: stato 
transizioni: 
eventi 
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 A first example of a PN 
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Any choice for names 
and transitions: it helps 
if names are distinct 

In the example W is 
equal to the constant 1 
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 Petri Nets (PN) definition  
in matrix form 

Definition 2: a Petri Net N is a 4-tuple  N = (P, T, Pre, Post) 

where:  

 P, set of places, and T, set of transitions,  are finite and non 
empty set and   P T =  

 The Pre-function Pre:   PxT --> N  

 Pre(p,t) = W(p,t)         if (p,t)  F  

             = 0                if (p,t)  F        

 The Post-function Post:   PxT --> N  

 Post(p,t) = W(t,p)       if (t,p)  F 

              = 0               if (t,p)  F           

Alternative definition as vectors:  

 Pre  NPxT  

 Post  NPxT 

 

Input of  the 
transition 

Output of  the 
transition 
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A PN in matrix form 
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 Petri Nets (PN) definition  
in matrix form 

Based on the matrix representation of bipartite graph 
with weighted arcs: 

 

 P: rows 

 T: columns 

 How many matrix do I need?  

1. one for Pre and one for Post? 

2. can I use a single one? 

 incidence matrix C:PxT --> Z,  C = Post- Pre 
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 Another example 

p1

p4

p3

p2

p6

p5

t5

t1

t6

t2

t3

t4

3
3

 1 0 0 0 1 0 
 0 1 0 0 0 0 

 0 0 1 0 0 0 
 0 1 0 0 0 0 
 0 0 0 1 0 0 
 0 0 0 0 0 3

Pre =

 0 0 0 0 0 3 
 1 0 0 0 0 0 

 0 1 0 0 0 0 
 0 0 0 1 0 0 
 0 0 1 0 0 0 
 0 0 0 0 1 0

Post =

 -1 0 0 0 -1 3 
 1 -1 0 0 0 0 

 0 1 -1 0 0 0 
 0 -1 0 1 0 0 
 0 0 1 -1 0 0 
 0 0 0 0 1 -3

C =
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 Marking 

Petri nets + initial state = PN system 

 

Definition: the marking (marcatura, stato) of  a Petri Net N = (P, 
T, F, W) is a function 

                 m: P --> N 

Definition: the marking of  a Petri Net N = (P, T, F, W) is a vector 
m  NP  

 

Graphical representation: black dots (tokens) in places  

 

m(p) = n  is read as "there are n tokens in place p" 
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 PN system 

Petri nets + initial state = PN system 

 

Definition: a PN system  is a pair S = (N,m0) where 

 N=(P, T, F, W) is a PN 

 m0 is a marking (initial marking)  

 

Note: PN have a notion of "composite state": the state of the PN 
system is the union of the  states of the single places 
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 PN evolution  

The evolution of the system is due to the firing of transitions 

The firing of a transition change the marking in a formally 
defined manner 

A transition can fire only if it is enabled 

 

Definition: tT is enabled in marking m iff  

         m  Pre[-,t]                (also written as Pre[P,t]) 

 

Definition: tT  enabled in marking m can fire, and its firing 
produce the marking m', with  

m' = m + C[P,t] 

m' = m + Post[P,t] - Pre[P,t] 
State equation 
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 PN and concurrency structures 

Fork: a task Tk activates two of more tasks Tk1, …, Tkn. 

Join: two or more tasks synchronize into a single task 
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 PN and concurrency structures 

Choice (distribution): in a given (local) state there is a choice 
between executing event e1 or event e2 or …..event en  

Collection: event e1, e2 , …..and en lead to the same local state 
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 PN and concurrency structures 

An event causing another event 

Two concurrent events 
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 PN and concurrency structures 

Flow-chart 
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 I 5 filosofi (da S.O.) 

Vedi modello dei filosofi nella distribuzione  di GreatSPN 

Per accedere alla libreria dei modelli: 

• attivate l’interfaccia grafica di GreatSPN 

• create un progetto (se non ne avete già  uno aperto) 

• cliccate sull’icona  ``add a new page page to the active 
project’’ 

• scegliete ``add a library model’’ 

• selezionate il modello dei filosofi (attenzione, ce ne sono 
due, uno colorato e uno con le reti P/T, che è  quello da 
usare in questa fase) 
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 I 3 filosofi (rete costruita a lezione) 



54 

 PN evolution  
through a firing sequence 

 

Definition: s [t1,..,tk], with tiT, is a  firing sequence  in 

marking m, and we write m [s >m'  iff  a set of marking  

{m0,.., mk}: i[1..k],  mi-1[ti>mi   

and we say that m' is reachable from m through s.           
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Language of a PN  

Definition: Given a P/T system S=(N, m0), the language L(S) is 
defined as 

L(S) = {s (t1,..,tk), s.t.s is a firing sequence for S in  m0}     

 

Example  with m0= 2•p1, L(N, m0) ={t1, t1t2, …, t1t1t2t2, 
t1t2t1t2,..} 

 

        

 

p1 

p2 

t2 

t1 
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State space of a PN system 

Definition: the reachability set of a PN system S=(N,m0) , 
RS(S) or RS(N,m0), or RSN(m0) is the set of all marking 
reachable from m0 through a firing sequence of L(S) 

 

RSN(m0) = { m:  s  L(N,m0) s.t. m0 [s > m } 
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RSN(m0) =  

{    p1+p6, 
p2+p4+p6, 
p3+p4+p6, 
p2+p5+p6, 
p3+p5+p6 } 
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State space of a PN system 

Definition: the reachability graph  of a PN system S=(N,m0), 
RG(S) or RG(N,m0), or RGN(m0) is the direct graph defined 
as follows: 

RGN(m0) = (V,E), where 

 1.  V=RSN(m0) 

 2. (v1,v2)  = (m1,m2)  E iff   t  T s.t. m1[t>m2 
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State space of a PN system -  
some basic properties 

Def.: A system is finite iff the RG is finite 

The PN system below is not finite 
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State space of a PN system -  
some basic properties 

A system exhibits absence of deadlock iff it does not exist a 
reachable state that does not enable at least a transition 
(all reachable states enable at least a transition) 

The PN system below has a deadlock 
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State space of a PN system -  
some basic properties 

A PN system is live if, for all  reachable states m and for all 
transitions t, it is possible to reach a state in which t is 
enabled 

The PN system below is live, because in each BSCC of the 
RG it is possible to fire all transitions 
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State space of a PN system -  
some basic properties 

A PN system is reversible if, for all  reachable states m, it 
exists a firing sequence, firable in m, that leads to the 
initial marking  

The PN system below is not reversible (there are two SCC) 
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 Other Petri nets classes 

We distinguish subclasses (restriction of the basic PN formalism) and 
superclasses (extensions) 

 

Example of subclasses: state machines, marked graphs (no choice), free 
choice, ordinary nets 

 

Example of superclasses: nets with inhibitor arcs, nets with priorities, colored 
nets 

 

Subclass --> same enabling and firing rule 

Superclass --> modified enabling and/or firing rule 

 

Subclass --> more analysis techniques, less expressive power 

Superclass --> (usually) less analysis techniques, more  expressive power 
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Petri nets subclasses -  
ordinary vs. weighted 
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 Superclass: PN with inhibitor arcs 

Definition: a Petri Net N with inhibitor arcs is a 5-tuple   

N = (P, T, Pre, Post, Inh) 

where:  

P, set of places, and T, set of transitions,  are finite and non empty set and  P 
T =  

Pre is the Pre-function, Pre:   PxT --> N 

Post is the Post-function, Post:   PxT --> N 

Inh is the Inhibitor-function, Inh:   PxT --> N+  

 

Def: a transition t is enabled in m if  

         m  Pre[-,t]   and m < Inh[-,t] 

 

Definition:the firing of  tT in  m  produce the marking m', with  

m' = m + C[P,t] 
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 Superclass:  
example of PN with inhibitor arcs 

With inhibitor arc 
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 Superclass:  
example of PN with inhibitor arcs 

Example of the lazy lad (scapolo pigro): he prepares a number of dishes, 
and then eats everything from the fridge until it is empty. Then he starts 
cooking again 

Inhibitor arc 
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 Superclass: PN with priorities 

Definition: a Petri Net N with priorities is a 5-tuple   

N = (P, T, Pre, Post, Pri) 

where:  

P,T, Pre and Post as usual 

Pri is the priority function, Pri:T --> N  

 

Def: a transition t has concession in m if  

         m  Pre[-,t]    

Def: a transition t is enabled  in m if  

        t has concession and ,  t' with concession in m,  Pri(t)  Pri(t')    

 

Note: firing unchanged 

Note: PN and local enabling 
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 Superclass:  
example of PN with priorities 

The lazy lad with priorities 

Pri(t3) =  0 

Pri(t1) >  0 


