
1

VERIFICA DEI PROGRAMMI CONCORRENTI
VPC 19-20

Formalismi: le reti di Petri
(versione ridotta per le lezioni on-line)

Prof.ssa Susanna Donatelli

Università di Torino

www.di.unito.it

susi@di.unito.it

http://www.di.unito.it/

2

Reference material books:

Notes of the EU-sponsored Jaca
MATCH school

3

First topic: formalisms

1. Check the kind of
system to analyze.

2. Choose formalisms,
methods and tools.

3. Express system
properties.

4. Model the system.

5. Apply methods.

6. Obtain verification
results.

7. Analyze results.

8. Identify errors.

9. Suggest correction.

4

Concurrent Systems

 Involve several computation agents.

 Interaction through global, common
variables or through message exchange
(memoria condivisa vs scambio di messaggi)

 Global state or distributed state

 May involve remote components.

 May interact with users (Reactive).

 May involve hardware components
(Embedded).

6

Problems in modeling
concurrent systems

 Representing concurrency:
- Allow one transition at a time, or
- Allow coinciding transitions.

 Granularity of transitions.

 Assignments and checks?

 Application of methods?

 Global (all the system) or local (one
thread at a time) states.

8

Formalisms considered

 Petri nets (reti di Petri).
 Process algebra. (algebra dei processi)
 LTL (Logica temporale lineare)
 CTL (Logica temporale branching)
 Language of guarded commands (nusmv

modelling language)
 Timed automata (automi temporizzati o

tempificati)

Specifying the system or its properties?

9

Petri nets

Formalism to describe

Discrete Events Dynamic Systems (DEDS)

Dynamic: the system is described through its
evolution

Event: what cause a change of state

Discrete: system state described by discrete
variables (or variables that are considered discrete
(discretization). A discrete variable takes its value
over natural numbers or over finite sets of element

11

Type of systems which are easily
modelled with Petri Nets

FMS (sistemi flessibili di produzione).

Distributed algorithms of various sorts (per
esempio i dining philosophers, e vari
algoritmi di mutua esclusione)

Control system (per esempio di un ascensore).

Workflows

Protocols.

Any finite state automata

12

Petri nets - applets

 GreatSPN editor
 www.di.unito.it/~greatspn/index.html (contiene

riferimento al sito github della nuova versione)
 www.di.unito.it/~amparore/mc4cslta/editor.html

 Give a look at the site http://www.informatik.uni-
hamburg.de/TGI/PetriNets/tools/java/

http://www.di.unito.it/~greatspn/index.html
http://www.di.unito.it/~greatspn/index.html
http://www.di.unito.it/~amparore/mc4cslta/editor.html
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/java/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/java/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/java/

13

 Petri Nets (PN) definition

Petri nets + initial state = PN system

Definition 1: a Petri Net N is a 4-tuple

N = (P, T, F, W)

where

 P, set of places and T, set of transitions, are finite and non
empty set and P T = 

 The flow relation F  PxT  TxP

 The weight function W: F --> N+

14

 Petri Nets (PN) definition

 Places: state variables

 Transitions: change of state

 Marking: evaluation of the state variables

15

 Petri Nets (PN) definition

Petri nets have an easy visualization as bipartite graph

inscripciones
en los arcos

N = < P, T, F, W >

PRE POST

Iscrizioni sugli archi

Pre e post sono definiti rispetto alle transizioni

Posti: stato
transizioni:
eventi

16

 A first example of a PN

1

2 4

53

d

b c e

f

6

a

Any choice for names
and transitions: it helps
if names are distinct

In the example W is
equal to the constant 1

19

 Petri Nets (PN) definition
in matrix form

Definition 2: a Petri Net N is a 4-tuple N = (P, T, Pre, Post)

where:

 P, set of places, and T, set of transitions, are finite and non
empty set and P T = 

 The Pre-function Pre: PxT --> N

 Pre(p,t) = W(p,t) if (p,t)  F

 = 0 if (p,t)  F

 The Post-function Post: PxT --> N

 Post(p,t) = W(t,p) if (t,p)  F

 = 0 if (t,p)  F

Alternative definition as vectors:

 Pre  NPxT

 Post  NPxT

Input of the
transition

Output of the
transition

23

A PN in matrix form

1

2 4

5 3

d

b c e

f

6

a 























100000

001000

010100

001000

000010

000001

6

5

4

3

2

1

p

p

p

p

p

p

fedcba

Pre

























010000

000100

100001

000010

000001

001000

6

5

4

3

2

1

p

p

p

p

p

p

fedcba

Post

24

 Petri Nets (PN) definition
in matrix form

Based on the matrix representation of bipartite graph
with weighted arcs:

 P: rows

 T: columns

 How many matrix do I need?

1. one for Pre and one for Post?

2. can I use a single one?

 incidence matrix C:PxT --> Z, C = Post- Pre

25

 Another example

p1

p4

p3

p2

p6

p5

t5

t1

t6

t2

t3

t4

3
3

 1 0 0 0 1 0
 0 1 0 0 0 0

 0 0 1 0 0 0
 0 1 0 0 0 0
 0 0 0 1 0 0
 0 0 0 0 0 3

Pre =

 0 0 0 0 0 3
 1 0 0 0 0 0

 0 1 0 0 0 0
 0 0 0 1 0 0
 0 0 1 0 0 0
 0 0 0 0 1 0

Post =

 -1 0 0 0 -1 3
 1 -1 0 0 0 0

 0 1 -1 0 0 0
 0 -1 0 1 0 0
 0 0 1 -1 0 0
 0 0 0 0 1 -3

C =

26

 Marking

Petri nets + initial state = PN system

Definition: the marking (marcatura, stato) of a Petri Net N = (P,
T, F, W) is a function

 m: P --> N

Definition: the marking of a Petri Net N = (P, T, F, W) is a vector
m  NP

Graphical representation: black dots (tokens) in places

m(p) = n is read as "there are n tokens in place p"

27

 PN system

Petri nets + initial state = PN system

Definition: a PN system is a pair S = (N,m0) where

 N=(P, T, F, W) is a PN

 m0 is a marking (initial marking)

Note: PN have a notion of "composite state": the state of the PN
system is the union of the states of the single places

28

 PN evolution

The evolution of the system is due to the firing of transitions

The firing of a transition change the marking in a formally
defined manner

A transition can fire only if it is enabled

Definition: tT is enabled in marking m iff

 m  Pre[-,t] (also written as Pre[P,t])

Definition: tT enabled in marking m can fire, and its firing
produce the marking m', with

m' = m + C[P,t]

m' = m + Post[P,t] - Pre[P,t]
State equation

33

 PN and concurrency structures

Fork: a task Tk activates two of more tasks Tk1, …, Tkn.

Join: two or more tasks synchronize into a single task

34

 PN and concurrency structures

Choice (distribution): in a given (local) state there is a choice
between executing event e1 or event e2 or …..event en

Collection: event e1, e2 , …..and en lead to the same local state

35

 PN and concurrency structures

An event causing another event

Two concurrent events

36

 PN and concurrency structures

Flow-chart

49

 I 5 filosofi (da S.O.)

Vedi modello dei filosofi nella distribuzione di GreatSPN

Per accedere alla libreria dei modelli:

• attivate l’interfaccia grafica di GreatSPN

• create un progetto (se non ne avete già uno aperto)

• cliccate sull’icona ``add a new page page to the active
project’’

• scegliete ``add a library model’’

• selezionate il modello dei filosofi (attenzione, ce ne sono
due, uno colorato e uno con le reti P/T, che è quello da
usare in questa fase)

50

 I 3 filosofi (rete costruita a lezione)

54

 PN evolution
through a firing sequence

Definition: s [t1,..,tk], with tiT, is a firing sequence in

marking m, and we write m [s >m' iff  a set of marking

{m0,.., mk}: i[1..k], mi-1[ti>mi

and we say that m' is reachable from m through s.

69

Language of a PN

Definition: Given a P/T system S=(N, m0), the language L(S) is
defined as

L(S) = {s (t1,..,tk), s.t.s is a firing sequence for S in m0}

Example with m0= 2•p1, L(N, m0) ={t1, t1t2, …, t1t1t2t2,
t1t2t1t2,..}

p1

p2

t2

t1

72

State space of a PN system

Definition: the reachability set of a PN system S=(N,m0) ,
RS(S) or RS(N,m0), or RSN(m0) is the set of all marking
reachable from m0 through a firing sequence of L(S)

RSN(m0) = { m:  s  L(N,m0) s.t. m0 [s > m }

1

d

2

3

b

4

5

c

6

a

1(6)

24(6)

34(6)

35(6)

25(6)

cb

c b

a

d

RSN(m0) =

{ p1+p6,
p2+p4+p6,
p3+p4+p6,
p2+p5+p6,
p3+p5+p6 }

73

State space of a PN system

Definition: the reachability graph of a PN system S=(N,m0),
RG(S) or RG(N,m0), or RGN(m0) is the direct graph defined
as follows:

RGN(m0) = (V,E), where

 1. V=RSN(m0)

 2. (v1,v2) = (m1,m2)  E iff  t  T s.t. m1[t>m2
1

d

2

3

b

4

5

c

6

a

1(6)

24(6)

34(6)

35(6)

25(6)

cb

c b

a

d

77

State space of a PN system -
some basic properties

Def.: A system is finite iff the RG is finite

The PN system below is not finite

1

t

2
t

t t

3 4

t

3

4

2

1

5

0100

0010

1000

0011

1010

0101 0110

M

M
t

t t

t

t t t t

t

0

2

2 3

4

1
t1 1 4

4

5

5

1001

M1

M3

M6

M4

M7

M5

78

State space of a PN system -
some basic properties

A system exhibits absence of deadlock iff it does not exist a
reachable state that does not enable at least a transition
(all reachable states enable at least a transition)

The PN system below has a deadlock

1

t

2
t

t t

3 4

3

4

2

1

0100

0010

1000

0011

1010

0110

M

M

t

t t

t

t t

t

0

2

2 3

4

t 1

4

4

5

5

1001

M 1

M 3 M 4

M 6

M 5

79

State space of a PN system -
some basic properties

A PN system is live if, for all reachable states m and for all
transitions t, it is possible to reach a state in which t is
enabled

The PN system below is live, because in each BSCC of the
RG it is possible to fire all transitions

p

p

c

b

d

p
p

p

a

1

2

35
4

10103

01102

01013

10012

10101

01100

01011

10010

a

b

d

c

c

a

Cd

C2

1

M
1

M2a

b

c

M
0

80

State space of a PN system -
some basic properties

A PN system is reversible if, for all reachable states m, it
exists a firing sequence, firable in m, that leads to the
initial marking

The PN system below is not reversible (there are two SCC)

p

p

c

b

d

p
p

p

a

1

2

35
4

10103

01102

01013

10012

10101

01100

01011

10010

a

b

d

c

c

a

Cd

C2

1

M
1

M2a

b

c

M
0

89

 Other Petri nets classes

We distinguish subclasses (restriction of the basic PN formalism) and
superclasses (extensions)

Example of subclasses: state machines, marked graphs (no choice), free
choice, ordinary nets

Example of superclasses: nets with inhibitor arcs, nets with priorities, colored
nets

Subclass --> same enabling and firing rule

Superclass --> modified enabling and/or firing rule

Subclass --> more analysis techniques, less expressive power

Superclass --> (usually) less analysis techniques, more expressive power

94

Petri nets subclasses -
ordinary vs. weighted

95

 Superclass: PN with inhibitor arcs

Definition: a Petri Net N with inhibitor arcs is a 5-tuple

N = (P, T, Pre, Post, Inh)

where:

P, set of places, and T, set of transitions, are finite and non empty set and P
T = 

Pre is the Pre-function, Pre: PxT --> N

Post is the Post-function, Post: PxT --> N

Inh is the Inhibitor-function, Inh: PxT --> N+

Def: a transition t is enabled in m if

 m  Pre[-,t] and m < Inh[-,t]

Definition:the firing of tT in m produce the marking m', with

m' = m + C[P,t]

96

 Superclass:
example of PN with inhibitor arcs

With inhibitor arc

97

 Superclass:
example of PN with inhibitor arcs

Example of the lazy lad (scapolo pigro): he prepares a number of dishes,
and then eats everything from the fridge until it is empty. Then he starts
cooking again

Inhibitor arc

98

 Superclass: PN with priorities

Definition: a Petri Net N with priorities is a 5-tuple

N = (P, T, Pre, Post, Pri)

where:

P,T, Pre and Post as usual

Pri is the priority function, Pri:T --> N

Def: a transition t has concession in m if

 m  Pre[-,t]

Def: a transition t is enabled in m if

 t has concession and , t' with concession in m, Pri(t)  Pri(t')

Note: firing unchanged

Note: PN and local enabling

99

 Superclass:
example of PN with priorities

The lazy lad with priorities

Pri(t3) = 0

Pri(t1) > 0

