
Android: Activities, Intents and Intent Filters
http://developer.android.com/guide/components/activities.html

http://developer.android.com/guide/components/intents-filters.html

Ferruccio Damiani

Università di Torino
www.di.unito.it/~damiani

Mobile Device Programming
(Laurea Magistrale in Informatica, a.a. 2018-2019)

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 1 / 31

http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/intents-filters.html
www.di.unito.it/~damiani

Outline

1 Activities

2 Intents and Intent Filters

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 2 / 31

Outline

1 Activities

2 Intents and Intent Filters

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 3 / 31

Overview

An Activity is an application component that provides a screen with which users can interact in
order to do something, such as dial the phone, take a photo, send an email, or view a map.

Each activity is given a window in which to draw its user interface.

The window typically fills the screen, but may be smaller than the screen and float on top
of other windows.

An application usually contains multiple activities. Each activity should be designed around a
specific kind of action the user can perform and can start other activities.

Example

An email application might have one activity to show a list of new messages. When the user
selects a message, a new activity opens to view that message.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 4 / 31

An activity can even start activities that exist in other applications on the device.

Example

If your application wants to send an email message, you can define an intent to perform a
”send” action and include some data, such as an email address and a message. An activity
from another application that declares itself to handle this kind of intent then opens. In this
case, the intent is to send an email, so an email application’s ”compose” activity starts (if
multiple activities support the same intent, then the system lets the user select which one to
use). When the email is sent, your activity resumes and it seems as if the email activity was
part of your application. Even though the activities may be from different applications,
Android maintains this seamless user experience by keeping both activities in the same task.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 5 / 31

Tasks and Back Stack

A task is a collection of activities that users interact with when performing a certain job. The
activities are arranged in a stack (the back stack), in the order in which each activity is opened.

Each activity can start another activity
I Each time a new activity starts, the

previous activity is stopped

The system preserves the activities in a
LIFO stack

I The new activity is pushed on top of
the stack and takes the focus

I When the user presses the Back button,
the current activity is popped from the
top of the stack (the activity is
destroyed) and the previous activity
resumes (the previous state of its UI is
restored)

Representation of how each new activity in a task adds an item to the back stack.

When the user presses the Back button, the current activity is destroyed.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 6 / 31

The device Home screen is the starting place for most tasks.
I When the user touches an icon in the application launcher (or a shortcut on the Home

screen), that application’s task comes to the foreground.
F If no task exists for the application (the application has not been used recently), then a new

task is created and the ”main” activity for that application opens as the root activity in the
stack.

I If the user continues to press Back, then each activity in the stack is popped off to reveal the
previous one, until the user returns to the Home screen (or to whichever activity was running
when the task began).

F When all activities are removed from the stack, the task no longer exists.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 7 / 31

A task is a cohesive unit that can move to the ”background” when users begin a new task
or go to the Home screen, via the Home button.

I While in the background, all the activities in the task are stopped, but the back stack for the
task remains intact—the task has simply lost focus while another task takes place, as shown
in figure below.

Two tasks: Task B receives user interaction in the foreground,

while Task A is in the background, waiting to be resumed.

I Multiple tasks can be held in the background at once. However, if the user is running many
background tasks at the same time, the system might begin destroying background activities
in order to recover memory, causing the activity states to be lost.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 8 / 31

The activity lifecycle has three different phases:

Entire lifetime

Between onCreate() and onDestroy()

Setup of global state in onCreate()

Release remaining resources in onDestroy()

Visible lifetime

Between onStart() and onStop()

Maintain resources that have to be shown to the
user

Foreground lifetime

Between onResume() and onPause()

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 9 / 31

A simplified illustration of the Activity
lifecycle, expressed as a step pyramid.

Only three of these states can be static. That
is, the activity can exist in one of only three
states for an extended period of time:

Resumed. In this state, the activity is in the foreground and the user can interact with it. (Also
sometimes referred to as the “running” state.)

Paused. The activity is partially obscured by another activity—the other activity that’s in the foreground
is semi-transparent or doesn’t cover the entire screen. The paused activity does not receive user input and
cannot execute any code.

Stopped. The activity is completely hidden and not visible to the user; it is considered to be in the
background. While stopped, the activity instance and all its state information such as member variables is
retained, but it cannot execute any code.

The other states (Created and Started) are transient and the system quickly moves from them to the next state

by calling the next lifecycle callback method. That is, after the system calls onCreate(), it quickly calls

onStart(), which is quickly followed by onResume().

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 10 / 31

A summary of the activity lifecycle’s callback methods.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 11 / 31

Example (from PDM18kotlin2)

[git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/PDM18kotlin2.git]

File: activity main.xml

1 <?xml version="1.0" encoding="utf-8"?>

2 <android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"

3 ...

4 <Button

5 android:text="@string/button_send1"

6 android:onClick="sendMessage"

7 ... />

8 ...

9 </android.support.constraint.ConstraintLayout>

File: MainActivity.kt

1 const val EXTRA_MESSAGE = "it.unito.di.educ.pdm18kotlin2.MESSAGE"

2
3 class MainActivity : AppCompatActivity() {

4 ...

5 fun sendMessage(view: View) {

6 val intent = Intent(this, DisplayMessageActivity::class.java).apply {

7 putExtra(EXTRA_MESSAGE, edit_message.text.toString())

8 }

9 startActivity(intent)

10 }

11 }

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 12 / 31

File: AndroidManifest.xml

1 <?xml version="1.0" encoding="utf-8"?>

2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"

3 package="it.unito.di.educ.pdm18kotlin2">

4
5 <application

6 android:allowBackup="true"

7 android:icon="@mipmap/ic_launcher"

8 android:label="@string/app_name"

9 android:roundIcon="@mipmap/ic_launcher_round"

10 android:supportsRtl="true"

11 android:theme="@style/AppTheme">

12 <activity android:name=".MainActivity">

13 <intent-filter>

14 <action android:name="android.intent.action.MAIN" />

15
16 <category android:name="android.intent.category.LAUNCHER" />

17 </intent-filter>

18 </activity>

19 <activity android:name=".ShowTimeActivity" />

20 <activity android:name=".DisplayMessageActivity" />

21 <activity android:name=".ClearOnTopActivity"/>

22 </application>

23
24 </manifest>

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 13 / 31

File: DisplayMessageActivity.kt

1 package it.unito.di.educ.pdm18kotlin2

2
3 import ...

4
5 class DisplayMessageActivity : AppCompatActivity() {

6
7 override fun onCreate(savedInstanceState: Bundle?) {

8 super.onCreate(savedInstanceState)

9 saveLog("onCreate 1")

10
11 setContentView(R.layout.activity_display_message)

12
13 dm_message.apply {

14 text = intent.getStringExtra(EXTRA_MESSAGE)

15 }

16 }

17
18 ...

19 }

File: activity display message.xml

1 <android.support.constraint.ConstraintLayout

2 ...

3 tools:context=".DisplayMessageActivity">

4
5 <TextView

6 android:id="@+id/dm_title"

7 android:text="@string/display_message"

8 ... />

9
10 <TextView

11 android:id="@+id/dm_message"

12 android:text="@string/startMessage"

13 ... />

14
15 <Button

16 android:id="@+id/dm_home"

17 android:onClick="goHome"

18 ... />

19
20 </android.support.constraint.ConstraintLayout>

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 14 / 31

Check the back stack

For viewing the list of activities stored into the Back Stack is possible to use this command:

1. From the installation of the SDK (e.g. Android/sdk/platform-tools):

2. adb shell ”dumpsys activity activities | grep Run”

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 15 / 31

Applications

There is no main

There is a class Application
I A base class for keeping a global application state

Class Activity takes care of creating a window
I We can place our UI with setContentView(int)

Activities are presented
I As full-screen windows
I As floating windows

F via a theme with R.attr.windowIsFloating set

I Embedded inside of another activity
F using ActivityGroup (deprecated in API level 13)

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 16 / 31

Specify Your App’s Launcher Activity

When the user selects your app icon from the Home screen, the system calls the
onCreate() method for the Activity in your app that you’ve declared to be the ”launcher”
(or ”main”) activity. This is the activity that serves as the main entry point to your app’s
user interface.

The main activity for your app must be declared in the manifest with an <intent-filter>
that includes the MAIN action and LAUNCHER category. For example:

1 <activity android:name=".MainActivity">

2 <intent-filter>

3 <action android:name="android.intent.action.MAIN" />

4 <category android:name="android.intent.category.LAUNCHER" />

5 </intent-filter>

6 </activity>

Nothing forces each app to have one and only one starting activity
I The launcher screen would have different icons for the same program
I If either the MAIN action or LAUNCHER category are not declared for one of your activities,

then your app icon will not appear in the Home screen’s list of apps

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 17 / 31

Example: constraining instances with FLAG ACTIVITY CLEAR TOP (1/2)

(from PDM18kotlin2) [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/PDM18kotlin2.git]

File: MainActivity.java

1 class MainActivity : AppCompatActivity() {

2
3 ...

4 /**

5 * Called when the user clicks the ClearOnTop button

6 */

7 fun clearOnTop(view: View) {

8 val intent = Intent(this, ClearOnTopActivity::class.java).apply {

9 flags = Intent.FLAG_ACTIVITY_CLEAR_TOP

10 }

11 startActivity(intent)

12 }

13 }

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 18 / 31

Example: constraining instances with FLAG ACTIVITY CLEAR TOP (2/2)

If the activity being launched is already running in the current task
I Instead of launching a new instance of that activity

F All of the other activities on top of it will be closed
F The intent will be delivered to the (now on top) old activity as a new Intent

Example

Consider a task consisting of activities A, B, C, D

If D calls startActivity() with an Intent that resolves to activity B
I C and D will be finished and B receives the given Intent
I The stack now is: A, B

Other flags are available

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 19 / 31

Outline

1 Activities

2 Intents and Intent Filters

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 20 / 31

Intents

Allow for late binding between components
I Activities, Services, Broadcast receivers
I Components can also exchange data

Indirect communication
I “Android, please do that with this data”

Reuse existing and installed applications

Two possible types

Explicit The target receiver is specified through the Component Name1

Implicit The target is specified by data type/names. The system chooses the
receiver that matches the request2

1When you create an explicit intent to start an activity or service, the system immediately starts the app
component specified in the Intent object.

2When you create an implicit intent, the Android system finds the appropriate component to start by
comparing the contents of the intent to the intent filters declared in the manifest file of other apps on the
device. If the intent matches an intent filter, the system starts that component and delivers it the Intent object.
If multiple intent filters are compatible, the system displays a dialog so the user can pick which app to use.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 21 / 31

Illustration of how an implicit intent is delivered through the system to start another activity: [1] Activity A
creates an Intent with an action description and passes it to startActivity(). [2] The Android System searches
all apps for an intent filter that matches the intent. When a match is found, [3] the system starts the matching
activity (Activity B) by invoking its onCreate() method and passing it the Intent.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 22 / 31

Intent definition

Component Name: the receiver of the intent
I It is optional

Action name: the action to be performed
I Predefined actions exist, the programmer can define new ones
I The action largely determines how the rest of the intent is structured—particularly what is

contained in the data and extras

Data: information exchanged between caller and callee

Category: the kind of component that should handle the Intent
I Any number of category descriptions can be placed in an intent, but most intents do not

require a category

Extras: additional information in the form of key-value pairs

Flags: additional information to instruct Android how to launch an activity, and how to
treat it after execution

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 23 / 31

Action

A string that specifies the generic ac-
tion to perform (such as view or pick).

Examples of action/data pairs
ACTION VIEW content://contacts/people/1

I Display information about the person whose
identifier is “1”

ACTION DIAL content://contacts/people/1
I Display the phone dialer with the person filled

in

ACTION VIEW tel:123
I Display the phone dialer with the given

number filled in

ACTION DIAL tel:123
I Display the phone dialer with the given

number filled in

ACTION EDIT content://contacts/people/1
I Edit information about the person whose

identifier is “1”

ACTION VIEW content://contacts/people/
I Display a list of people, which the user can

browse through

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 24 / 31

Explicit intents

startActivity(intent: Intent!) starts a new activity, and places it on top of the stack
I The Intent parameter describes the activity we want to execute
I Often they do not include any other information

F It is a way for an application to launch internal activities

Intent(packageContext: Context!, cls: Class<*>!)
I Context is a wrapper for global information about an application environment
I Activity subclasses Context

1 val intent = Intent(this, SndAct::class.java)

2 startActivity(intent);

1 val intent = Intent().apply {

2 component = ComponentName(this@MainActivity, SndAct::class.java)

3 }

4 startActivity(intent)

Example
If you built a service in your app, named DownloadService, designed to download a file from the web, you can start it with
the following code:

1 // Executed in an Activity, so ’this’ is the Context,

2 // The fileUrl is a string URL, such as "http://www.example.com/image.png"

3 val downloadIntent = Intent(this, DownloadService::class.java).apply {

4 data = Uri.parse(fileUrl)

5 }

6 startService(downloadIntent);

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 25 / 31

Intents with results

Activities can return results
I startActivityForResult(intent: Intent!, requestCode: Int)
I onActivityResult(requestCode: Int, resultCode: Int, data: Intent?)

1 const val PICK_CONTACT_REQUEST = 1

2 // The request code

3 val pickContactIntent = Intent(Intent.ACTION_PICK, Uri.parse("content://contacts")).apply {

4 type = ContactsContract.CommonDataKinds.Phone.CONTENT_TYPE

5 }

6 // Show user only contacts with phone numbers

7 startActivityForResult(pickContactIntent, PICK_CONTACT_REQUEST)

1 override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent?) {

2 // Check which request we’re responding to

3 if (requestCode == PICK_CONTACT_REQUEST) {

4 // Make sure the request was successful

5 if (resultCode == RESULT_OK) {

6 // The user picked a contact.

7 // The Intent’s data Uri identifies which contact was selected.

8 // Do something with the contact here

9 } } }

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 26 / 31

setResult()
I void setResult(resultCode: int, data: Intent!)
I The result is delivered to the caller component only after invoking the finish() method!

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 27 / 31

Implicit intents

Target component is not named
I component name is left blank

When Intent is launched, Android tries to find an activity that can answer it
I If at least one is found, then that activity is started!
I If more than one matching activity is found, the user is prompted to make a choice

Implicit intents are very useful to re-use code and to launch external applications

1 val intent = Intent(android.content.Intent.ACTION_VIEW, Uri.parse("http://www.unito.it"))

2 startActivity(intent)

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 28 / 31

Intent filters

<intent-filter> tag in AndroidManifest.xml

1 <intent-filter>

2 <action android:name="android.intent.action.EDIT" />

3 <action android:name="android.intent.action.VIEW" />

4 ...

5 </intent-filter>

The action specified in the Intent must match one of the actions listed in the filter
I Fail if filter does not specify any action
I Success if intent does not specify an action but the filter contains at least one action

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 29 / 31

Data

The URI (a Uri object) that references the data to be acted on and/or the MIME type of that data. The type of
data supplied is generally dictated by the intent’s action.

Example
If the action is ACTION EDIT, the data should contain the URI of the document to edit.

Example
An activity that’s able to display images probably won’t be able to play an audio file, even though the URI formats could
be similar. So specifying the MIME type of your data helps the Android system find the best component to receive your
intent. However, the MIME type can sometimes be inferred from the URI.

The URI of the intent is compared with the parts of the URI mentioned in the filter

Both URI and type are compared

1 <intent-filter>

2 <data android:mimeType="audio/*" android:scheme="http"/>

3 <data android:mimeType="video/mpeg" android:scheme="http"/>

4 </intent-filter>

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 30 / 31

Category

A string containing additional information about the kind of component that should handle the
intent.

Every category in the Intent must match a category of the filter

If the category is not specified in the Intent
I Android assumes it is DEFAULT
I The filter must include this category to handle the intent

1 <intent-filter>

2 <category android:name="android.intent.category.DEFAULT" />

3 </intent-filter>

Here are some common categories:

CATEGORY BROWSABLE
I The target activity allows itself to be started by a web browser to display data referenced by

a link—such as an image or an e-mail message.

CATEGORY LAUNCHER
I The activity is the initial activity of a task and is listed in the system’s application launcher.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 31 / 31

	Activities
	Intents and Intent Filters

