
iOS

Some first elements

Model View Controller

Model

Controller

View

outlet
target

action

delegate (protocol)notification

data source

App structure

ApplicationDelegate

• A single window, where all of our app content is drawn
• “Skeletons” of important methods that allow the

application object to talk to the app delegate
– During runtime events (e.g., app launch, low-memory

warnings, and app termination) the application object calls
the corresponding method in the app delegate, giving it an
opportunity to respond appropriately

• Delegate design pattern

AppDelegate.swiftimport UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {

// Override point for customization after application launch.
return true}

func applicationWillResignActive(application: UIApplication) {
// Sent when the application is about to move from active
// to inactive state}

func applicationDidEnterBackground(application: UIApplication) {
// Use this method to release shared resources, save user data,
// invalidate timers, and store application state}

func applicationWillEnterForeground(application: UIApplication) {
// Called as part of the transition from the background to the inactive
// state}

func applicationDidBecomeActive(application: UIApplication) {
// Restart any tasks that were paused while the application was inactive}

func applicationWillTerminate(application: UIApplication) {
// Called when the application is about to terminate}

}

Views

• Represent user interface elements that display contents
or respond to user events
– Can be nested in a view hierarchy
– Can animate their property values

• Views do not know the role they play
– For example, clicking a button is always the same, it does not

know what it controls

View Controllers

• Provide the infrastructure for managing content and for
coordinating the showing and hiding of it
– Manage the views used to display content
– Communicate and coordinate with other view controllers

when transitions occur
• Different view controllers can control separate portions

of your user interface
• May also communicate with other controllers, such as

data controllers or document objects

View Controllers

• You use custom subclasses of UIViewController to
present your app’s content
– Content view controllers

• UIViewController, UITableViewController, UICollectionViewController

– Container view controllers
• UINavigationController, UITabBarController, UISplitViewController

Views and View Controllers

• Every view is controlled by only one view controller
– When a view is assigned to the view controller’s view

property, the view controller owns it

• If the view is a subview, it might be controlled by the
same view controller or a different view controller

Graphical elements (I)

View Controller Hierarchy (II)

Content View Controllers

• Present content on the screen using a view or a group
of views organized into a view hierarchy
– Each controller is responsible for managing all the views in a

single view hierarchy
– A single controller should never manage multiple screens

UITableViewController

• A built-in controller designed for managing tabular data
– Manages a table view and adds support for many standard

table-related behaviors
• A table view presents data in a single-column list of multiple rows

and is a means for displaying and editing hierarchical lists of
information

– Has a pointer to the root view of the interface, but it also has
a separate pointer to the table view

UICollectionViewController

• Represents a view controller whose content consists of
a collection view
– Displays an ordered collection of data

• Similar to a table view displays data using a combination
of cell, layout, and supplementary views
– can display items in a grid or in a custom layout that you

design
– Each cell must be an instance of UICollectionViewCell

UINavigationController

• Presents data organized hierarchically
• Provides methods for managing a stack-based collection of content view controllers

UITabBarController

• Used to divide your app into distinct modes of operation
• The tab bar has multiple tabs, each represented by a child view controller

UITabBarController

• What if we had more than 4
View Controllers?
– A More button appears

• Everything happens
automatically

UISplitViewController

• It presents a master-detail interface
– Changes in the primary view controller (the master) drive

changes in a secondary view controller (the detail)

Overall organization (storyboard)

Unified Storyboards for Universal Apps

• Create a single interface for your app that works well on
both iPad and iPhone, adjusting to orientation changes
and different screen sizes as needed

• Design apps with a common interface and then
customize them for different size classes

Size Classes

• Size classes are traits that are automatically assigned to
content areas based on their size

• A view may possess any combination of size classes
– Regular width, regular height
– Compact width, compact height
– Regular width, compact height
– Compact width, regular height

How to start

Two choices

iOS Simulator

• Easy to start and try apps
• Known problems

– Different devices

– Different orientations

• Better positioning of elements

Views (I)

Action sheet
Activity indicator

Alert view

Collection view Image view

Label
Navigation bar and items

Picker view

Views (II)

Progress view

Scroll view

Search bar

Tab bar Table view

Text view

Tool bar
Web view

UITextView

• Implements the behavior of a
scrollable, multiline text region

• Supports the display of text using
custom style information and also
supports text editing

• The appearance of the keyboard
itself can be customized using its
properties

Autolayout

• Determines where objects should
go and how big they should be
based on constraints we set on
them
– This allows interfaces to adapt to

being rotated between portrait and
landscape, and to handle differing
screen sizes

• Constraints allow us to express
what matters to us and to let
other factors vary as needed
– We can specify the size of

components, their alignment with or
distance from other components,
etc.

Example

Different devices

App content

• Xcode provides a library of objects
– Some of these are user interface elements that belong to a

view, such as buttons and text fields
– Others define the behavior of our app, such as view

controllers and gesture recognizers

• A view controller manages a corresponding view and its
sub-views

Interface Builder and code

• An IBOutlet connects a variable or property in code to
an object in a storyboard
– This lets us read and write objects’ properties, like reading

the value of a slider or setting the initial contents of a text
field

• An IBAction connects an event generated by a
storyboard object to a method in the code
– This lets us respond to a button being tapped or a slider’s

value changing

Generated code

Control-click, drag

… and the result is

Logging

• On iOS, we can use function print() to write a string out
to the system’s log file
– For example, we can implement our action to just log a

message every time the button is tapped
@IBAction func sendMessage(_ sender: UIButton) {

print ("Button pressed")
}

A first complete example

@IBAction func press(_ sender: Any) {
let alert = UIAlertController(title: "Sent",

message: "First App Done",
preferredStyle: UIAlertController.Style.alert)

alert.addAction(UIAlertAction(title: "Continue",
style: UIAlertAction.Style.default,
handler: nil))

self.present(alert, animated: true, completion: nil)
}

Outlets

• Preceding a property with the @IBOutlet modifier tells
Interface Builder that a property can serve as an outlet

• A stored property implies a variable to store the value
• A computed property does not imply a backing variable

Final result
import UIKit

class ViewController: UIViewController {

@IBOutlet weak var counterlabel: UITextField!

var counter = 0

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after
// loading the view, typically from a nib.

}

@IBAction func increment(_ sender: Any) {
counter += 1
counterlabel.text = "\(counter)"

}
}

Weak attribute

• Automatic Reference Counting (ARC) solves almost all memory
problems, but it cannot solve retain cycles

• Our ViewController knows about the UILabel, so ARC cannot free
the label from memory as long as the view controller exists

• But if the UILabel also requires the ViewController, then neither
can ever be freed from memory (cycle)

• The way to break this is to declare one side of the arrangement as
weak

• The rule of thumb is that
– Only “top-level” objects in a storyboard scene (like the view) need

strong references, and everything else can be weak
– Xcode defaults to this behavior when we made the connection

More scenes

Segue types

Unwind Segue

• Can be used to “unwind” the navigation stack and
specify a destination to go back to

• Unwind segues always segue from the source or current
view controller to an existing view controller, a view
controller that is already present in the navigation
hierarchy

UIGestureRecognizer

• We can get notified of the raw touch events or we can react to
certain, predefined “gestures”

• Gestures are recognized by class UIGestureRecognizer (abstract)
– TapGestureRecognizer, UIPinchGestureRecognizer,

UIRotationGestureRecognizer, UISwipeGestureRecognizer,
UIPanGestureRecognizer, UIScreenEdgePanGestureRecognizer,
UILongPressGestureRecognizer

• There are two sides to using a gesture recognizer
– Adding a gesture recognizer to a UIView to ask it to recognize that

gesture
– Providing the implementation of a method to “handle” that gesture

when it happens

Internationalization

• The ability of code to adapt to local conventions in
different parts of the world
– This includes things like language, time and date formatting,

and currency symbols and separators
• We must create a localization for each locale we want to

support
– A localization is a collection of strings, currency formats,

graphics, sounds, and other resources that are specific to
one locale

– We declare supported localizations at the project level

Data Management

Three options

• File System
– Based on the UNIX file system

• SQLite
– Embedded DBMS (like in Android)

• Core Data
– Object-oriented database
– Powerful framework in iOS

File system

• Interactions with the file system
are limited to the directories
inside the app’s sandbox
– Exception: when an app uses

public system interfaces to access
things such as the user’s contacts
or music

• During installation of a new app,
the installer creates a number of
containers for the app
– Each container has a specific role

Files and directories

• Directories
– You must use the methods of FileManager
– A process can create directories anywhere it has permission to do so

• Files
– When specifying the location of files, you can use either NSURL or

NSString objects
• The use of the URL class is generally preferred

– Two parts: creation of a record for the file in the file system and filling
the file with content

• To copy items around the file system, you use class FileManager
– The file manager asks its delegate whether the operation should begin

at all and whether it should proceed when an error occurs

iCloud Storage API

• Manage files and key-value data that are automatically
synchronized among a user's iCloud devices

How it works

• A document is not moved to iCloud immediately
– First, it is moved from its current location in the file system to a local

system-managed directory where it can be monitored by the iCloud
service

– After that transfer, the file is transferred to iCloud and to the user’s
other devices as soon as possible

• Apps are expected to use file coordinator objects to perform all
changes
– File coordinators mediate changes between your app and the daemon

that facilitates the transfer of the document to and from iCloud
– The file coordinator acts like a locking mechanism for the document

• Class Document helps manage documents in iCloud

File Coordinators and File Presenters

• NSFileCoordinator coordinates the reads and writes performed by
our app and the sync daemon on the same document
– We use presenters in conjunction with a file coordinator to coordinate

access to a file or directory among the objects of our application and
between our application and other processes

– Instances of NSFileCoordinator are meant to be used on a per-file-
operation basis

• The FilePresenter protocol should be implemented by objects that
allow the user to view or edit the content of files or directories
– The job of a file presenter is to protect the integrity of its own data

structures
– Class Document is an example of a file presenter that tracks changes

to its underlying file or file package

What apps should do to work with iCloud?

• Manage each document in iCloud using a file presenter
– After creating a file presenter, register it
– Before deleting a file presenter, unregister it

• All file-related operations must be performed through a file
coordinator object
– Create an instance of class NSFileCoordinator and initialize it with the

file presenter object that is about to perform the file operation
– Use the methods of the NSFileCoordinator object to read/write the file
– When we are done with the operations, release the file coordinator

object

SQLite

Different wrappers available (on GitHub)

SQLite.swift

• Swift interface to SQLLite
• Class Connection helps establish Database connections
– We can create a writable database in our app’s Documents

directory
– If we omit the path, SQLite.swift will provision an in-memory

database
– SQLite will attempt to create the database file if it does not

already exist
– We can also bundle a database with our app, and then we can

establish a read-only connection to it

Core Data

Core Data

• Is a framework that we use to manage the objects in the
model layer of our applications

• Provides generalized and automated solutions to
common tasks associated with lifecycle and graph
management of objects, including persistence

• Core Data can only do its magic because it keeps the
object graph it manages in memory

Key characteristics

• Change tracking and built-in management of undo and redo beyond basic text editing
• Maintenance of change propagation, including maintaining the consistency of relationships among

objects
• Lazy loading of objects, partially materialized futures (faulting), and copy-on-write data sharing to

reduce overhead
• Automatic validation of property values. Managed objects extend the standard key-value coding

validation methods to ensure that individual values lie within acceptable ranges, so that
combinations of values make sense

• Schema migration tools that simplify schema changes and allow you to perform efficient in-place
schema migration

• Optional integration with the application’s controller layer to support user interface synchronization
• Grouping, filtering, and organizing of data in memory and in the user interface
• Automatic support for storing objects in external data repositories
• Sophisticated query compilation. Instead of writing SQL, you can create complex queries by

associating an NSPredicate object with a fetch request
• Version tracking and optimistic locking to support automatic multiwriter conflict resolution

Let’s start
• AppDelegate.swift file

– quite a significant amount of new code (Core Data stack)
– Most of these methods are setting up the Core Data stack and the

defaults are fine for now

import UIKit
import CoreData

class ViewController: UIViewController {

func getContext () -> NSManagedObjectContext {
let appDelegate = UIApplication.shared.delegate as! AppDelegate
return appDelegate.persistentContainer.viewContext

}

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view

// Print it to the console
print(getContext())

}
}

Entities

• An Entity in the code becomes an NSManagedObject

Entities

• All attributes are objects
• Attributes can be accessed easily
– NSManagedObject offers valueForKey and setValue

func createData(){
//As we know that container is set up in the AppDelegates so we need to refer that container.

guard let appDelegate = UIApplication.shared.delegate as? AppDelegate else { return }

//We need to create a context from this container
let managedContext = appDelegate.persistentContainer.viewContext

//Now let’s create an entity and new user records.
let userEntity = NSEntityDescription.entity(forEntityName: "User", in: managedContext)!

//final, we need to add some data to our newly created record for each keys using
//here adding 5 data with loop

for i in 1...5 {
let user = NSManagedObject(entity: userEntity, insertInto: managedContext)
user.setValue("luciano\(i)", forKeyPath: "username")
user.setValue("luciano\(i)@test.com", forKey: "email")
user.setValue("milano\(i)", forKey: "password")

}

//Now we have set all the values. The next step is to save them inside the Core Data

do {
try managedContext.save()

} catch let error as NSError {
print("Could not save. \(error), \(error.userInfo)")

}
}

func retrieveData() {

//As we know that container is set up in the AppDelegates so we need to refer that container.
guard let appDelegate = UIApplication.shared.delegate as? AppDelegate else { return }

//We need to create a context from this container
let managedContext = appDelegate.persistentContainer.viewContext

//Prepare the request of type NSFetchRequest for the entity
let fetchRequest = NSFetchRequest<NSFetchRequestResult>(entityName: "User")

do {
let result = try managedContext.fetch(fetchRequest)
for data in result as! [NSManagedObject] {
print(data.value(forKey: "username") as! String)

}

} catch {
print("Failed")
}

}

func updateData(){
//As we know that container is set up in the AppDelegates so we need to refer that container.
guard let appDelegate = UIApplication.shared.delegate as? AppDelegate else { return }

//We need to create a context from this container
let managedContext = appDelegate.persistentContainer.viewContext

let fetchRequest:NSFetchRequest<NSFetchRequestResult> = NSFetchRequest.init(entityName: "User")
fetchRequest.predicate = NSPredicate(format: "username = %@", "luciano1")

do {
let test = try managedContext.fetch(fetchRequest)

let objectUpdate = test[0] as! NSManagedObject
objectUpdate.setValue("newName", forKey: "username")
objectUpdate.setValue("newmail", forKey: "email")
objectUpdate.setValue("newpassword", forKey: "password")
do {
try managedContext.save()

}
catch {
print(error)

}
}
catch {
print(error)

}
}

func deleteData(){
//As we know that container is set up in the AppDelegates so we need to refer that container.
guard let appDelegate = UIApplication.shared.delegate as? AppDelegate else { return }

//We need to create a context from this container
let managedContext = appDelegate.persistentContainer.viewContext

let fetchRequest = NSFetchRequest<NSFetchRequestResult>(entityName: "User")
fetchRequest.predicate = NSPredicate(format: "username = %@", "luciano3")

do {
let test = try managedContext.fetch(fetchRequest)

let objectToDelete = test[0] as! NSManagedObject
managedContext.delete(objectToDelete)

do {
try managedContext.save()

}
catch {
print(error)

}
}
catch {
print(error)

}
}

Relationships

• The type of relationships can be either toOne or to
Many

