
OpenACC Course: Lecture 3, October 29, 2015

Expressing Data Locality and
Optimizations with OpenACC

2

Course Syllabus

Oct 1: Introduction to OpenACC

Oct 6: Office Hours

Oct 15: Profiling and Parallelizing with the
OpenACC Toolkit

Oct 20: Office Hours

Oct 29: Expressing Data Locality and
Optimizations with OpenACC

Nov 3: Office Hours

Nov 12: Advanced OpenACC Techniques

Nov 24: Office Hours

3

Agenda

Review: Parallelizing with OpenACC and Unified
Memory

Expressing Data Movement

Optimizing Loops

Next Steps & Homework

4

Identify
Available

Parallelism

Express
Parallelism

Express Data
Movement

Optimize
Loop

Performance

5

Lab 2 Results (Lower is better)

0

5

10

15

20

25

30

35

40

Original Haswell Lab 2 K40 Original Qwiklab Lab 2 Qwiklab

Original Haswell Lab 2 K40 Original Qwiklab Lab 2 Qwiklab

T
im

e
 (

s)

PGI 15.9 Compiler

6

Identify
Available

Parallelism

Express
Parallelism

Express Data
Movement

Optimize
Loop

Performance

7

Expressing Data Management

8

Making Data Management Explicit

With Unified Memory

Unified Memory

We used CUDA Unified Memory to simplify the
first steps in accelerating our code.

This made the process simple, but it also made
the code not portable

• PGI-only: –ta=tesla:managed flag

• NVIDIA-only: CUDA Unified Memory

Explicitly managing data will make the code
portable and may improve performance.

9

Structured Data Regions

The data directive defines a region of code in which GPU arrays remain on the GPU
and are shared among all kernels in that region.

#pragma acc data

{

#pragma acc parallel loop

...

#pragma acc parallel loop

...

}

Data Region

Arrays used within the

data region will remain

on the GPU until the

end of the data region.

10

Structured Data Regions

The data directive defines a region of code in which GPU arrays remain on the GPU
and are shared among all kernels in that region.

!$acc data

!$acc parallel loop

...

!$acc parallel loop

...

!$acc end data

Data Region

Arrays used within the

data region will remain

on the GPU until the

end of the data region.

11

Unstructured Data Directives

Used to define data regions when scoping doesn’t allow the use of normal data
regions (e.g. the constructor/destructor of a class).

enter data Defines the start of an unstructured data lifetime

• clauses: copyin(list), create(list)

exit data Defines the end of an unstructured data lifetime

• clauses: copyout(list), delete(list)

#pragma acc enter data copyin(a)

...

#pragma acc exit data delete(a)

12

Unstructured Data: C++ Classes

Unstructured Data Regions
enable OpenACC to be used in
C++ classes

Unstructured data regions can
be used whenever data is
allocated and initialized in a
different scope than where it is
freed (e.g. Fortran modules).

class Matrix {

Matrix(int n) {

len = n;

v = new double[len];

#pragma acc enter data

create(v[0:len])

}

~Matrix() {

#pragma acc exit data

delete(v[0:len])

delete[] v;

}

private:

double* v;

int len;

};
12

13

Data Clauses

copyin (list) Allocates memory on GPU and copies data from host to GPU

when entering region.

copyout (list) Allocates memory on GPU and copies data to the host when

exiting region.

copy (list) Allocates memory on GPU and copies data from host to GPU

when entering region and copies data to the host when

exiting region. (Structured Only)

create (list) Allocates memory on GPU but does not copy.

delete(list) Deallocate memory on the GPU without copying.

(Unstructured Only)

present (list) Data is already present on GPU from another containing

data region.

14

Array Shaping

Compiler sometimes cannot determine size of arrays

Must specify explicitly using data clauses and array “shape”

Partial arrays must be contiguous

C/C++

#pragma acc data copyin(a[0:nelem]) copyout(b[s/4:3*s/4])

Fortran

!$acc data copyin(a(1:end)) copyout(b(s/4:3*s/4))

15

Coursework : Expressing Data Movement

16

Explicit Data Movement: Copy In Matrix
void allocate_3d_poission_matrix(matrix &A, int N) {

int num_rows=(N+1)*(N+1)*(N+1);

int nnz=27*num_rows;

A.num_rows=num_rows;

A.row_offsets = (unsigned int*) \

malloc((num_rows+1)*sizeof(unsigned int));

A.cols = (unsigned int*)malloc(nnz*sizeof(unsigned int));

A.coefs = (double*)malloc(nnz*sizeof(double));

// Initialize Matrix

A.row_offsets[num_rows]=nnz;

A.nnz=nnz;

#pragma acc enter data copyin(A)

#pragma acc enter data \

copyin(A.row_offsets[:num_rows+1],A.cols[:nnz],A.coefs[:nnz])

}

After allocating
and initializing our
matrix, copy it to
the device.

Copy the structure
first and its
members second.

17

Explicit Data Movement: Delete Matrix
void free_matrix(matrix &A) {

unsigned int *row_offsets=A.row_offsets;

unsigned int * cols=A.cols;

double * coefs=A.coefs;

#pragma acc exit data delete(A.row_offsets,A.cols,A.coefs)

#pragma acc exit data delete(A)

free(row_offsets);

free(cols);

free(coefs);

}

Before freeing the
matrix, remove it
from the device.

Delete the
members first,
then the structure.

Lab 3: Next do the
same for the
vector.

18

OpenACC present clause

function laplace2D(double[N][M] A,n,m)

{

#pragma acc data present(A[n][m]) create(Anew)

while (err > tol && iter < iter_max) {

err=0.0;

...

}

}

function main(int argc, char **argv)

{

#pragma acc data copy(A)

{

laplace2D(A,n,m);

}

}

When managing the memory at a higher level,

it’s necessary to inform the compiler that

data is already present on the device.

Local variables should still be declared in the

function where they’re used.

High-level data management and the present

clause are often critical to good performance.

19

Explicit Data Movement: Present Clause
#pragma acc kernels \

present(row_offsets,cols,Acoefs,xcoefs,ycoefs)

{

for(int i=0;i<num_rows;i++) {

double sum=0;

int row_start=row_offsets[i];

int row_end=row_offsets[i+1];

for(int j=row_start;j<row_end;j++) {

unsigned int Acol=cols[j];

double Acoef=Acoefs[j];

double xcoef=xcoefs[Acol];

sum+=Acoef*xcoef;

}

ycoefs[i]=sum;

}

}

At the compute regions
(kernels or parallel loop)
inform the compiler that
the data is already
present.

Lab 3: Do the same for
the waxpy and dot
functions on the vector.

20

Rebuild the code without managed memory. Change –ta=tesla:managed to
just –ta=tesla

Running With Explicit Memory Management

Expected:

Rows: 8120601, nnz: 218535025

Iteration: 0, Tolerance: 4.0067e+08

Iteration: 10, Tolerance: 1.8772e+07

Iteration: 20, Tolerance: 6.4359e+05

Iteration: 30, Tolerance: 2.3202e+04

Iteration: 40, Tolerance: 8.3565e+02

Iteration: 50, Tolerance: 3.0039e+01

Iteration: 60, Tolerance: 1.0764e+00

Iteration: 70, Tolerance: 3.8360e-02

Iteration: 80, Tolerance: 1.3515e-03

Iteration: 90, Tolerance: 4.6209e-05

Total Iterations: 100 Total Time:

8.458965s

Actual:

Rows: 8120601, nnz: 218535025

Iteration: 0, Tolerance: 1.9497e+05

Iteration: 10, Tolerance: 1.6919e+02

Iteration: 20, Tolerance: 6.2901e+00

Iteration: 30, Tolerance: 2.0165e-01

Iteration: 40, Tolerance: 7.4122e-03

Iteration: 50, Tolerance: 2.5316e-04

Iteration: 60, Tolerance: 9.9229e-06

Iteration: 70, Tolerance: 3.4854e-07

Iteration: 80, Tolerance: 1.2859e-08

Iteration: 90, Tolerance: 5.3950e-10

Total Iterations: 100 Total Time:

8.454335s

21

OpenACC Update Directive

Programmer specifies an array (or part of an array) that should be refreshed within a
data region.

do_something_on_device()

!$acc update self(a)

do_something_on_host()

!$acc update device(a)

Copy “a” from GPU to

CPU

Copy “a” from CPU to

GPU

22

Explicit Data Movement: Update Vector

void initialize_vector(vector &v,double val)

{

for(int i=0;i<v.n;i++)

v.coefs[i]=val;

#pragma acc update device(v.coefs[:v.n])

}

After we change vector on the
CPU, we need to update it on
the GPU.

Update device : CPU -> GPU

Update self/host: GPU -> CPU

23

Build & Run without Unified Memory

Rebuild the code without managed memory.

• Change –ta=tesla:managed to just –ta=tesla

0

5

10

15

20

25

30

35

K40 Managed K40 Explicit QwikLab Managed QwikLab Explicit

T
im

e
 (

s)

24

Optimize Loops

25

Apply Application Knowledge

We know that each row of
the matrix has 27
elements.

The compiler generates
vectors of length 128.

This means each vector
has 101 empty elements,
wasting compute
resources.

What do you know that the compiler doesn’t?

matvec(const matrix &, const vector &, const vector &):

8, include "matrix_functions.h"

15, Generating present(row_offsets[:],

cols[:],Acoefs[:],xcoefs[:],ycoefs[:])

16, Loop is parallelizable

Accelerator kernel generated

Generating Tesla code

16, #pragma acc loop gang, vector(128)

/* blockIdx.x threadIdx.x */

20, Loop is parallelizable

26

OpenACC: 3 Levels of Parallelism

• Vector threads work in

lockstep (SIMD/SIMT

parallelism)

• Workers compute a vector

• Gangs have 1 or more

workers and share resources

(such as cache, the

streaming multiprocessor,

etc.)

• Multiple gangs work

independently of each other

Workers

Gang

Workers

Gang

Vector

Vector

27

OpenACC loop directive: gang, worker, vector, seq

The loop directive gives the compiler additional information about the next loop.

• gang – Apply gang-level parallelism to this loop

• worker – Apply worker-level parallelism to this loop

• vector – Apply vector-level parallelism to this loop

• seq – Do not apply parallelism to this loop, run it sequentially

Multiple levels can be applied to the same loop, but the levels must be applied in a
top-down order.

27

28

Optimize Loops: Vector Length
#pragma acc kernels \

present(row_offsets,cols,Acoefs,xcoefs,ycoefs)

{

for(int i=0;i<num_rows;i++) {

double sum=0;

int row_start=row_offsets[i];

int row_end=row_offsets[i+1];

#pragma acc loop device_type(nvidia) vector(32)

for(int j=row_start;j<row_end;j++) {

unsigned int Acol=cols[j];

double Acoef=Acoefs[j];

double xcoef=xcoefs[Acol];

sum+=Acoef*xcoef;

}

ycoefs[i]=sum;

}

}

Inform the compiler that
on NVIDIA devices it
should use a vector
length of 32 on the
innermost loop.

On NVIDIA devices,
vector lengths must be
multiples of 32 (up to
1024)

29

Optimize Loops: Parallel Loop Vector Length
#pragma acc parallel loop

present(row_offsets,cols,Acoefs,xcoefs,ycoefs) \

device_type(nvidia) vector_length(32)

for(int i=0;i<num_rows;i++) {

double sum=0;

int row_start=row_offsets[i];

int row_end=row_offsets[i+1];

#pragma acc loop reduction(+:sum) \

device_type(nvidia) vector

for(int j=row_start;j<row_end;j++) {

unsigned int Acol=cols[j];

double Acoef=Acoefs[j];

double xcoef=xcoefs[Acol];

sum+=Acoef*xcoef;

}

ycoefs[i]=sum;

}

When using parallel
loop, the vector length
is specified at the top of
the region.

The vector clause is
then used to inform the
compiler which loop to
vectorize.

30

Optimize Loops: Adjust Vector Length

0

5

10

15

20

25

30

35

K40 Default K40 VL32 QwikLab Default QwikLab VL32

K40 Default K40 VL32 QwikLab Default QwikLab VL32

T
im

e
 (

s)

PGI 15.9 Compiler

31

Optimize Loops: Adjust Vector Length

0

5

10

15

20

25

30

35

K40 Default K40 VL32 QwikLab Default QwikLab VL32

K40 Default K40 VL32 QwikLab Default QwikLab VL32

T
im

e
 (

s)

PGI 15.9 Compiler

The compiler does something clever

when using kernels, so it actually

slows down on K40. We’ll still do

better in the end.

32

Profiling with Visual Profiler
Visual Profiler Guided Analysis

Performance

limited by gang

size.

33

Profiling with Visual Profiler
Visual Profiler Guided Analysis

Small gangs results

in low occupancy.

34

GPU Occupancy

GPU Occupancy is a measure of how well the GPU compute resources are being
utilized.

Roughly speaking: Occupancy is…

How much parallelism is running / How much parallelism the hardware could run

• 100% occupancy is not required for, nor does it guarantee best performance.

• Less than 50% occupancy is often a red flag, our occupancy is 25%

35

Profiling with Visual Profiler
Visual Profiler Guided Analysis

The GPU could run this…

36

Profiling with Visual Profiler
Visual Profiler Guided Analysis

The GPU could run this…

…but it’s only running this. Why?

37

Profiling with Visual Profiler
Visual Profiler Guided Analysis

Each gang could have as many as

1024 threads…

38

Profiling with Visual Profiler
Visual Profiler Guided Analysis

Each gang could have as many as

1024 threads…

…but only has 32 now.

39

Profiling with Visual Profiler
Visual Profiler Guided Analysis

That means we’d need 64 gangs

(blocks) to fill the hardware…

40

Profiling with Visual Profiler
Visual Profiler Guided Analysis

That means we’d need 64 gangs

(blocks) to fill the hardware…

…but it can only hold 16.

41

Profiling with Visual Profiler
Visual Profiler Guided Analysis

So we need bigger gangs, while

keeping a vector length of 32.

Let’s add some more workers.

42

Optimize Loops: Adding Workers
#pragma acc kernels \

present(row_offsets,cols,Acoefs,xcoefs,ycoefs)

{

#pragma acc loop device_type(nvidia) gang worker(32)

for(int i=0;i<num_rows;i++) {

double sum=0;

int row_start=row_offsets[i];

int row_end=row_offsets[i+1];

#pragma acc loop device_type(nvidia) vector(32)

for(int j=row_start;j<row_end;j++) {

unsigned int Acol=cols[j];

double Acoef=Acoefs[j];

double xcoef=xcoefs[Acol];

sum+=Acoef*xcoef;

}

ycoefs[i]=sum;

}

}

Inform the compiler that
on NVIDIA GPUs, the
outer loop should be
broken over gangs and
workers, with 32 workers
per gang.

Gang size is Workers X
Vector Length

This must be no more
than 1024 on NVIDIA
GPUs

43

Optimize Loops: Parallel Loop Adding Workers
#pragma acc parallel loop

present(row_offsets,cols,Acoefs,xcoefs,ycoefs) \

device_type(nvidia) vector_length(32) \

gang worker num_workers(32)

for(int i=0;i<num_rows;i++) {

double sum=0;

int row_start=row_offsets[i];

int row_end=row_offsets[i+1];

#pragma acc loop reduction(+:sum) \

device_type(nvidia) vector

for(int j=row_start;j<row_end;j++) {

unsigned int Acol=cols[j];

double Acoef=Acoefs[j];

double xcoef=xcoefs[Acol];

sum+=Acoef*xcoef;

}

ycoefs[i]=sum;

}

When using parallel
loop, the number of
workers is specified at
the top of the region.

The gang and worker
clauses are then used to
inform the compiler to
break the look over
workers and gangs.

44

Optimize Loops: Compiler Output

matvec(const matrix &, const vector &, const vector &):

8, include "matrix_functions.h"

15, Generating present(row_offsets[:],cols[:],Acoefs[:],xcoefs[:],ycoefs[:])

17, Loop is parallelizable

Accelerator kernel generated

Generating Tesla code

17, #pragma acc loop gang, worker(32) /* blockIdx.x threadIdx.y */

22, #pragma acc loop vector(32) /* threadIdx.x */

26, Sum reduction generated for sum

22, Loop is parallelizable

45

Optimize Loops: Final Performance

0

5

10

15

20

25

30

35

K40 Default K40 VL32 K40 Final QwikLab Default QwikLab VL32 QwikLab Final

T
im

e
 (

s)

PGI 15.9 Compiler

46

Additional Loop Optimizations

collapse(N) Take the next N tightly nested loops and turn them into 1, flattened

loop.

• This is really useful when you have many (> 2-3) nested loops or

when your loops are very small.

tile(N[,M,…]) Break the next loops into tiles/blocks before parallelizing the loops.

(See lecture 1 for an example)

• This is useful for algorithms with high locality, because it encourages

reuse of nearby data within each tile.

Important clauses not used in this example

47

In Summary

In this lecture we discussed the final 2 steps of accelerating an application using
OpenACC

• Express Data Movement – Move your data to/from the GPU at a high enough level
that the arrays can be reused between functions. (PCIe transfers are expensive!)

• Optimize Loops – Apply your knowledge of the code plus feedback from profiling
tools to adjust the way that loop iterations are distributed to the hardware.

In the next lecture we’ll discuss asynchronous execution as a way to further improve
data movement and performance and also how to interoperate with accelerated
libraries and CUDA.

48

Next Steps & Homework

49

Homework

This week’s homework will build upon the previous lab by applying the
two steps discussed today: Express Data Movement and Optimize
Loops.

Go to http://bit.ly/nvoacclab3 from your web browser to take the
free lab, or download the code from https://github.com/NVIDIA-
OpenACC-Course/nvidia-openacc-course-sources/ to do the lab on
your own machine.

If you have not already completed the previous labs, it’s highly
recommended that you do http://bit.ly/nvoacclab2 first.

http://bit.ly/nvoacclab3
https://github.com/NVIDIA-OpenACC-Course/nvidia-openacc-course-sources/
http://bit.ly/nvoacclab2

50

Office Hours Next Week

Next week’s session will be an office hours session.

Bring your questions from this week’s lecture and homework to next
week’s session.

If you can’t wait until then, post a question on StackOverflow tagged
with openacc.

51

Course Syllabus

Oct 1: Introduction to OpenACC

Oct 6: Office Hours

Oct 15: Profiling and Parallelizing with the
OpenACC Toolkit

Oct 20: Office Hours

Oct 29: Expressing Data Locality and
Optimizations with OpenACC

Nov 3: Office Hours

Nov 12: Advanced OpenACC Techniques

Nov 24: Office Hours

