
1

VPC 19-20

Computational tree logic (CTL)

Prof.ssa Susanna Donatelli

Universita’ di Torino

www.di.unito.it

susi@di.unito.it

2

Reference material books:

Prof. Doron A. Peled

(University of Warwick, UK) Prof. Jost-Pieter Katoen

(University of Aachen, D)

3

Acknowledgements

Some transparencies are adapted from the course
notes and trasparencies of

� Prof. Doron A. Peled, University of Warwick (UK) and Bar
Ilan University (Israel)
http://www.dcs.warwick.ac.uk/~doron/srm.html

�Prof. Paul Gastin (MOVEP04 school)

4

Steps in the
verification process

Check the kind of
system to analyze.

Choose formalisms,
methods and tools.

Express system
properties.

Model the system.

Apply methods.

Obtain verification
results.

Analyze results.

Identify errors.

Suggest correction.

5

CTL main concepts

Computational Tree Logic, has been introduced by
Clarke&Emerson in 1980

The linear notion of time (one single successor for
each event) is substituted by a branching notion of
time (each event has many successors, at each time
instant there are many possible futures)

CTL is interpreted over a model in which R(s) is a set
of states

6

Possibility can't be expressed in LTL

7

CTL: Syntax

AP, set of atomic proposition. p∈AP.

CTL formulae:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E[ϕU ϕ]| A[ϕU ϕ]

E: “for some path”

A: “for all paths”

EX: “for some path next”

U: until

Note: syntactically correct formulas quantifiers and
temporal operators are in strict alternation

8

Derived operators

� EFϕ ≡ E[true U ϕ] “ϕ holds potentially” - “ϕ is
possible”

� AFϕ ≡ A[true U ϕ] “ϕ is inevitable (unavoidable)”

� EGϕ ≡ ¬AF¬ϕ “potentially always ϕ” – "globally
along some path"

� AGϕ ≡ ¬EF¬ϕ “invariantly ϕ”

� AXϕ ≡ ¬EX¬ϕ “for all paths next”

9

CTL vs LTL

� LTL: statements about all paths starting in a state

� CTL: statements about all or some paths starting
in a state

� Checking Eϕ can be done in LTL using A¬ϕ,
(but it does not work for AGEFϕ)

� Incomparable expressiveness
� there are properties that can be expressed in LTL, but not in CTL

� there are properties that can be expressed in CTL, but not in LTL

� Distinct model-checking algorithms, and their time
complexities

� Distinct treatment of fairness

10

Semantic definition
CTL formulas are interpreted over Kripke structures

M(S, R, L)

where

� S is a set of states

� R: S-->2S is a successor function, assigning to s its set of
successors R(s)

� L: S-->2AP, is a labelling function

M can be seen as a tree of executions.

Given a model M and a formula ϕ, we define the satisfaction
relation as (M,s,ϕ) ∈ |= , and we write (M,s) |=ϕ.

11

Semantic definition

A model M and its computation tree

12

Semantic visualization

(EF red)

13

Formal semantics
Let M(S, R, L) be a Kripke structure

Def: a path is an infinite sequence of states
s0s1s2…… such that (si,si+1)∈R

Def: if σ is a path, σ[i] is the (i+1)-th element of
the sequence

Def: PM(s) is the set of all paths starting in s,

PM(s) = {σ ∈ Sω | σ[0] = s}

Def: s is a p-state if p∈L(s)

Def: σ is a p-path if it consists solely of p-states

14

Formal semantics

Given a Kripke structure M

� s |= p iff p ∈ L(s).

� s |= ¬ϕ iff ¬(s |= ϕ).
� s |= ϕ∨ψ iff s |= ϕ ∨ s |= ψ.

� s |= EXϕ iff ∃σ∈PM(s): σ[1] |=ϕ.

� s |= E[ϕU ψ] iff ∃σ∈PM(s): ∃j≥0, σ[j] |=ψ
∧ for each 0≤k<j, σ[k] |=ϕ.

� s |= A[ϕU ψ] iff ∀σ∈PM(s): ∃j≥0, σ[j] |=ψ
∧ for each 0≤k<j, σ[k] |=ϕ.

15

Examples

Sat(ϕ) = set of all states that satisfy ϕ. Compute
Sat(ϕ) for:
� EX p

� AX p

� EF p

� AF p

� E qU r

� A qU r

16

Examples

Color each state that
satisfy the formula.

Sat(ϕ) = set of all
states that satisfy ϕ.

s1 s2

s3

s4

17

Examples

Color each state that
satisfy the formula.

Sat(ϕ) = set of all
states that satisfy ϕ.

s1 s2

s3

s4

18

Examples

Sat(ϕ) = set of all states that satisfy ϕ. Compute
Sat(ϕ) for:
� EX p

� AX p

� EF p

� AF p

� E qU r

� A qU r

19

Examples

Color each state that
satisfy the formula.

Sat(ϕ) = set of all
states that satisfy ϕ.

s1 s2

s3

s4

20

Examples

Sat(ϕ) = set of all states that satisfy ϕ. Compute
Sat(ϕ) for:
� EX p

� AX p

� EF p

� AF p

� E qU r

� A qU r

21

Examples

Color each state that
satisfy the formula.

Sat(ϕ) = set of all
states that satisfy ϕ.

s1 s2

s3

s4

22

Spring Example

s1 s3s2

pull

release

release

extended
malfunction}
{extended,

Computation tree?

…

23

CTL satisfaction examples

malfunction

s1 s3s2pull

release

release

extended extended

si |= EG extended ??

si |= AG extended ??

si |= AX extended ??

si |= AX EX extended ??

si |= AF extended ??

si |= AG extended ??

si |= AFEG extended ??

si |= AGEF extended ??

si |= A((¬extended) U malfunction)

si |= EG(¬extended->AX extended)

EG(extended ∨A X extended)

24

Some axioms
(Peled's book notation)

Next

A

AF

AG

E

25

Some axioms

26

Some axioms

27

Comparing LTL and CTL

� Rewrite the syntax in state formulae and path
formulae

� PLTL:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕU ϕ

� CTL (existential form)

state ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ
path ψ ::= ¬ψ | Xϕ | ϕU ϕ

Meaning of LTL on Kripe
structures

28

Dal testo di Baier e Katoen ``Principles of Model Checking’’

Meaning of LTL on Kripe
structures

29

Need to be careful….

Dal testo di Baier e Katoen ``Principles of Model Checking’’

Meaning of LTL on Kripe
structures

30
Dal testo di Baier e Katoen ``Principles of Model Checking’’

31

Comparing LTL and CTL

Def: a CTL formula ϕ is equivalent to an LTL
formula ψ (ϕ≡ψ) if, for any model M, we have

M|=ϕ iff M|= ψ

Theorem: let ϕ be a CTL formula and ψ an LTL
formula obtained from ϕ eliminating all paths
quantifiers, then

� ϕ ≡ ψ or

� an LTL formula equivalent to ϕ does not exists

32

LTL and CTL are incomparable

� There are LTL formula that cannot be expressed in
CTL (an equivalent CTL formula does not exists)
� FG p

� F (p ∧ X p)

� G F p ⇒ Fq if p holds infinitely often, then q will eventually hold

� There are CTL formula that cannot be expressed in
LTL (an equivalent LTL formula does not exists)
� AF AG p

� AF (p ∧ AX p)

� AG EF p

33

LTL and CTL are incomparable

To show that they are incomparable we need to exhibit

� a formula LTL for which no corresponding equivalent CTL
formula exists

AND

� a formula CTL for which no corresponding equivalent LTL
formula exists

The proof relies on the "syntactical theorem" that limits the state
space of the search for equivalent formulas of a given formula
(remember that all LTL formula are implicitly quantified as
"forall", as we are verifying the all model M, and not only an
execution)

34

LTL and CTL are incomparable

Sketch of proof

LTL does not imply CTL: given a formula LTL show that for all
choices of quantifiers "addition" it is possible to exibit a
model for which one formula is satisfied and the other is not

CTL does not imply LTL: remove all quantifiers and exibit a
model for which one formula is satisfied and the other is not

35

LTL and CTL are incomparable

The LTL formula F(a ∧ X a) is not equivalent to the

CTL formula AF(a ∧ AX a)

s0|= F(a ∧ X a) not s0|=AF(a ∧ AX a)

36

LTL and CTL are incomparable

The LTL formula F(a ∧ X a) is not equivalent to the
CTL formula AF(a ∧ EX a)

It is enough to take a model in which s4 does not
satisfy a (LTL formula becomes false)

Prop: the LTL formula F(a ∧ X a) has no equivalent in CTL

37

LTL and CTL are incomparable

The CTL formula AF AG a is not equivalent to the
LTL formula F G a

s0|= F G a not s0|=AF AG a

38

LTL and CTL are incomparable

CTL* (existential form)

state ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ

path ψ ::= ϕ | ¬ψ | ψ ∨ ψ | X ψ | ψ U ψ

39

Model checking CTL

Problem definition: given a model M, a state s, and
a CTL formula ϕ, does (M,s) |= ϕ?

In practice the algorithm solves the problem: given
a model M and a CTL formula ϕ, which are the
states s, for which (M,s) |= ϕ?

As a by-product, at zero cost, the algorithm also
computes all states that satisfy the subformulae
of ϕ.

40

Model checking CTL

Definition of sub-formulae. Let p in AP, ϕ and ψ be
CTL formulae, then the set of sub-formulae is
defined as:

Sub(p) = {p}

Sub(¬ϕ) = Sub(ϕ) ∪ {¬ϕ}

Sub(ϕ\/ψ) = Sub(ϕ) ∪ Sub(ψ) ∪ {ϕ∨ψ}

Sub(EXϕ) = Sub(ϕ) ∪ {EX ϕ}

Sub(E[ϕU ψ]) = Sub(ϕ) ∪ Sub(ψ) ∪ {E[ϕU ψ]}

Sub(A[ϕU ψ]) = Sub(ϕ) ∪ Sub(ψ) ∪ {A[ϕU ψ]}

41

Model checking CTL

The algorithms starts with sub-formulae of length 1,
and proceed by induction, until the formula of
length |ϕ| is computed

Usually S: set of State, is global

function Sat(ϕ: CTL formula, S: set of State): set of
State

(* precondition: true*)

begin
if ϕ=true --> return S

[] ϕ=false --> return ∅
[] ϕ ∈ AP --> return {s| ϕ ∈ L(s)}

42

Model checking CTL

[] ϕ =¬ϕ1 --> return S - Sat(ϕ1)

[] ϕ=ϕ1\/ϕ2 --> return Sat(ϕ1) ∪ Sat(ϕ2)

[] ϕ=EXϕ1 --> return {s ∈ S| ∃ (s,s’) ∈ R ∧ s’ ∈ Sat(ϕ1)}

[] ϕ=E[ϕ1Uϕ2] --> return SatEU(ϕ1, ϕ2)

[] ϕ=A[ϕ1Uϕ2] --> return SatAU(ϕ1, ϕ2)

(* postcondition: Sat(ϕ) = {s ∈ S | (M,s) |= ϕ}

end

43

Model checking CTL

SatEU(ϕ1, ϕ2) and SatAU(ϕ1, ϕ2) are fixed point

algorithms that use the axiom of the Until in

terms of neXt and Until

44

Model checking CTL

45

46

Model checking CTL

{s| ∀ s': (s,s') ∈ R, s' ∈ Q}

47

Model checking CTL

{s| ∀ s': (s,s') ∈ R and s' ∈ Q}

48

Complexity of CTL model checking

Sat(ϕ) is computed |Sub(ϕ)| times, and |Sub(ϕ)| is

proportional to |ϕ|

SatAU(ϕ1, ϕ2) is proportional to |Sys|3, since the

iteration is traversed at most |Sys| and the

“forall” inside depend on the pairs in R (at most

|Sys|2)

Total complexity amounts to O(|ϕ| x |Sys|3)

More efficient algorithms gets to O(|ϕ| x |Sys|2)

49

CTL and fairnes: motivations

Recall the following piece of code:

where 〈..〉 means “atomic execution”.

Does the program satisfies “F terminates”? No, since there is
an execution in which only Inc is executed.

This situation is not possible if the OS schedule is fair, and we
would like to rule-out from the model checking whose
executions that are not fair

50

Fair executions: solutions

We want to consider only execution with fair behaviour.

Can be done:

• enforcing fairness in the formula: we should check whether
fairness can be expressed in CTL

• modifying the MC algorithm as to consider only fair
executions

Fair
executions

Executions

51

Recall the LTL fairness definitions

� Unconditional fairness:

� GF ψ also stated as true ⇒ GF ψ

� Weak fairness (justice):
� FG ϕ ⇒ GF ψ (as in: FG enab(a) ⇒ GF exec(a)

� Strong transition fairness:
� GF ϕ ⇒ GF ψ

Therefore: modify the model checking algorithm, defining a Fair-

model for CTL

Weak and strong cannot be
expressed in CTL

52

Fair executions: solutions

A fair CTL-model is a quadruple M = (S,R,L,F), where (S,R,L)
is a CTL-model and F ⊆ 2S is a set of fairness constraints

F = {F1, F2, …}

A path σ=s0s1s2……is F-fair if for every set of states Fi ∈ F,
there are infinitely many states in σ that belong to Fi

If lim(σ): set of states of σ visited infinitely often, then σ if F-
fair if lim(σ) ∩Fi ≠ ∅, for all i

Pf
M(s): set of F-fair paths starting in s

53

Fair executions: modified semantics

Given a Kripke structure M

�s |=f p iff p ∈ L(s).

�s |=f ¬ϕ iff ¬(s |=f ϕ).

�s |=f ϕ∨ψ iff s |=f = ϕ ∨ s |=f ψ.

�s |=f EXϕ iff ∃σ∈Pf
M(s): σ[1] |=f ϕ.

�s |=f E[ϕU ψ] iff ∃σ∈Pf
M(s): ∃j≥0, σ[j] |=f ψ

∧ for each 0≤k<j, σ[k] |=ϕ.

�s |=f A[ϕU ψ] iff ∀σ∈Pf
M(s): ∃j≥0, σ[j] |=f ψ

∧ for each 0≤k<j, σ[k] |=ϕ.

54

Fair executions: example

(M, so)|= AG[p � AF q] - false,

but with F = {F1, F2}, with F1={s3} and F2 ={s4}

(M, so) |=f AG[p � AF q]

55

Exercise on CTL

Check the validity of the formulae in each state

EFϕ ≡ E[true U ϕ] “ϕ holds potentially”

AFϕ ≡ A[true U ϕ] “ϕ is inevitable”

EGϕ ≡ ¬AF¬ϕ “potentially always ϕ”

AGϕ ≡ ¬EF¬ϕ “invariantly ϕ”

56

Exercise on CTL

EFp: start with Q = {s1, s2, s3, s4} and in one step add s0, and
at the next iteration the algorithm stops

AFp: start with Q = {s1, s2, s3, s4} and in the next step
consider s0. S0 can be added only if all arcs out of s0 are in Q

EFp ≡ E[true U p]

AFp ≡ A[true U p]

57

Exercise on CTL

EGp: the result is the complement of the states that satisfy AF¬p
that can be computed as before

AGp: the result is the complement of the states that satisfy EF¬p

EGp ≡¬AF¬p ≡ ¬A[true U ¬p]

AGp ≡ ¬EF¬p ≡ ¬E[true U ¬p]

58

Exercise on CTL

EFq: start with Q = {s1, s2} and in one step add s0, and s3, and
at the next iteration the algorithm stops

AFq: start with Q = {s1, s2} and in the next step s0 is added.
At the next iteration no new element is added and the algorithm
stops.

EFq ≡ E[true U q]

AFq ≡ A[true U q]

59

Exercise on CTL

EGq ≡¬AF¬q ≡ E[true U q]

AGq ≡ ¬EF¬q ≡A[true U q]

EGq: the result is the complement of the states that satisfy AF¬q
that can be computed as before

AGq: the result is the complement of the states that satisfy EF¬q

60

Exercise on CTL

Check the validity of the formulae in each state

61

End of CTL

