
Directories and LDAPDirectories and LDAP
(Lightweight Directory Access Protocol)(Lightweight Directory Access Protocol)

Francesco Bergadano
Università degli Studi di Torino, Computer Science Department
Corso Svizzera, 185 – 10149, Torino, Italy

Sicurezza II – Prof. Francesco Bergadano

Directories and LDAP

INTRODUCTION

Directories and LDAP

References:

Brian Arkills, “LDAP Directories Explained”, Independent Technology
Guides, 2005

G. Williamson, D. Yip, I. Sharoni, K. Spaulding, “Identity Management,
a Primer”, MC press, 2009

What is a “directory”?

o A set of records

• Each with a defined structure and containing defined attributes
(e.g. name, birth date, address)

• Organised in a hierarchy

• Searchable in a fast, hierarchical, decentralized way
o Example:

• A telephone directory

• A list of departments in some organization, each with a list of
employees

Information structure in a directory

o Each piece of information in a directory is usually called a record, an
entry, or a directory object

o Each entry comprises a set of attributes, or properties, including a
«type» and a «value»

o Some attributes may have more than one value

Directory vs Data Base

o Read optimized
o Information consistency may not be required, and there are no

implied locking mechanisms designed to avoid simultaneous writes
o No stored procedure, no complex queries, no «joins»
o Appropriate for hierarchical information, to be distributed over many

servers, and with the possibility of replicas
o Attributes may have more than one value

Example

A directory may be used to store

oinformation about the employees of some organization, with their
personal data, addresses, and access rights to enterprise applications
oa hierarchical set of products or components, with images, technical
characteristics, prices and applicable discounts
oa list of installed computers with their hw and sw characteristics

Use of a directory

o Manual

• Using a command line application

• Using a client-side graphic interface

• Using a Web application
o Integrated in some software, for instance:

• Email lookup in MUAs (Mail User Agents) – the user will click on
a name or link and obtain the corresponding email address

• Server-side authentication: the system looks up a user name on
a directory, and finds correponding credentials to be verified

Directory standards

o X.500

• ITU-T standard

• Documentation is not free

• Very complex

• Includes X.509, for PKIs and certificates
o LDAP – Lightweight Directory Access Protocol

• Open

• Free

• Documented via RFCs (www.ietf.org)

• Simplified for practical applications

• Relies on X.509 for certificate formats and PKIs

http://www.ietf.org/

LDAP summary

o Namespace: a hierarchical organization of entry names and
containers, with attribute values

o Client operation and protocol: how a client can communicate with
an LDAP server

o Schema
o Management

Directories and LDAP

NAMESPACE

Namespace

o Names: naming of directory entries with values
o Space: organization & hierarchical structure of entries, ensuring that

object names do not conflict

LDAP & DNS interaction

o LDAP clients use DNS to locate and LDAP server (possibly via a
DNS «SRV» record), i.e. the IP address of the LDAP server for
domain.com will be found in the associated SRV record

o DNS names may be used as entries in a directory tree

Some DNS record types:
- Address (A): IP address assigned to name
- MX: Mail eXchange for this domain
- SRV: LDAP server for this domain

LDAP directories (1)

o Entries are organized in a hierarchy, so that

(1) information may be distributed over multiple servers

(2) access control can also be hierarchical
o Intermediate nodes in the hierarchy are called «container» entries

(e.g., a, c are container entries in the directory below)
o Other nodes are called «leaf» nodes (f and g below)

a

db c

f g
«child of» a
«contained by» a

LDAP directories (2)

o A leaf entry may become a container, by creating children of that entry
o An entry is a list of attribute-value pairs
o There may be more than one value per attribute
o There is no attribute specifying whether an entry is a container and no

attribute for listing the children
o Typical containers are country (c), organization (o), organizational unit

(ou), as in X.500

c

o

ou
«child of» c
«contained by» c

Directory structure and Objectclass

o Directory structure defines how attributes may be used
o Every entry has the «Objectclass» attribute, that is assoiated to

defined structure rules (e.g. «Organizationalunit» must be a child of
«Organization»)

o Directory subtrees are also called «Naming Contexts»

c

o

ou
«child of» c
«contained by» c

Naming context
for «Organization»

Object Naming

o RDN = relative distinguished name, a unique ID within a container, it
is one of the attributes of the entry, called a «naming» attribute

o Attribute types may also be named via an «OID» (object identifier), a
numeric value such as 2.5.4.5

Dn: dc=bce, dc=eu

o=bce

Ou=board

cn=Mario Draghi

Ou=employeesRDN

Typical attribute names

o Typical attributes names, sometimes used as naming attributes:
o Common Name (cn)
o Organization (o)
o Organizational Unit (ou)
o Country (c)
o Domain Component (dc)
o User Identifier (uid)

o Naming attributes should be public and static, otherwise search will
not work

RDN with multiple attributes

o RDN may consist of 2 or more attributes if values are not unique for
just 1 attribute

Dn: dc=bce, dc=eu

o=bce

ou=board

cn=Mario Rossi
sn=Rossi
Birthyear=1962

ou=employees

Naming attribute =
cn
OR
sn & birthyear

cn=Luigi Rossi
sn=Rossi
Birthyear=1982

Distinguished Name (DN)

Fully qualified and complete, with position in the hierarchy, not fully
stored in the entry, includes attribute values up the hierarchy

Dn: dc=bce, dc=eu

o=bce

ou=board

cn=Mario Rossi
sn=Rossi

ou=employees

DN =
sn=Rossi,
ou=employees,
o=bce,dc=bce,dc=eu

cn=Mario Rossi
sn=Rossi

URL naming

ldap://hostname:port/dn?cn?scope?filter

Attributes to be returned

Well known
port = 389

Base DN
where search
should be done
(also called
a base object)

base (only at the baseDN)
one (below the baseDN only)
sub (all subtree)

further constraints on
attribute values,
default is
objectclass=*

URL naming - example

ldap://ldapserver.bce.eu/sn=Rossi,ou=employees,o=bce,dc=bce,dc=eu?cn

Dn: dc=bce, dc=eu

o=bce

Ou=board

cn=Mario Rossi
sn=Rossi

ou=employees

Returned value
is cn=Mario Rossi

cn=Mario Rossi
sn=Rossi

Base DN

URL naming – more examples

ldap://ldapserver.bce.eu/dc=bce,dc=eu?cn?sub?(sn=Rossi)

ldap://ldapserver.bce.eu/dc=bce,dc=eu??one?(sn=Rossi)

ldap://ldapserver.bce.eu/dc=bce,dc=eu??sub?(cn=Mario%20Rossi)

Dn: dc=bce, dc=eu

o=bce

Ou=board

cn=Luigi Rossi
sn=Rossi

ou=employees

cn=Mario Rossi
sn=Rossi

Escaping characters in DNs

, \,

space %20

\ \\

+ \+

’’ \’’

< \<

> \>

\#

; \;

Directory-enabled services

Email server:

Sendmail -> ldap server

Microsoft Exchange -> active directory server

When email is received, server looks up email address to find if user is local and where the corresponding mailbox is located

Email client:

To look up destination email address based on user-given search parameters (e.g. last name)

Software distribution to clients via active directory

Directories and LDAP

CLIENT OPERATION

LDAP clients

• Browser accepting LDAP urls

• Web-based (the user accesses an HTTP to LDAP gateway)

• Custom client

LDAP search

Client sends to LDAP server a search request with

Mandatory parameters:

•Base DN (also called a base object)

•Scope (base, one, subtree)

•Search filter (attributeType comparisonOperator attributeValue)

Optional parameters:

•Attributes to be returned (all if not present)

•derefAliases

•sizelimit, timelimit

•typesonly (only attribute types are returned, not values)

Search filters

May be combined with &, |, !

Example: (& (! cn=Mario%20Rossi)(sn=Rossi))

Comparison operators:

=,<=,>=, ~= (about equal, implementation-dependent)

Attribute values may include *

GUIs in clients may simplify search syntax/interface

Optional LDAP search parameters

• derefAliases:

• neverDerefAliases (alias is returned as is)

• derefInSearching (only in subtree)

• derefFindingBaseObs (only in base DN)

• derefAlways (always deref)

• Sizelimit (max number of entries returned, 0 if no limit). Limit may be set on server, so client may only limit further.

• Timelimit (max time in seconds to complete the search)

LDAP protocol

LDAP Client

LDAP ServerBind request

Bind result
code

Search / other operation

Entries or r
esult

unbind

Result code

Unbind resul
t code

LDAP protocol

Protocol stack

• TCP with keepalive

• UDP (CLDAP = connectionless LDAP)

Messages

• Operations

• Controls

• Client options

LDAP operations

bind DN credentials

search baseDN scope filter optional_parameters

compare DN attributeType attributeValue

add DNofNewEntry attribute_value_pairs

delete DNofEntryToBeDeleted

modify DNtoBeModified attribute_value_pairs

rename DN newRDN flag [newContainerDN]

unbind

abandon MessageID

LDAP operations

bind DN credentials

search baseDN scope filter optional_parameters

compare DN attributeType attributeValue

add DNofNewEntry attribute_value_pairs

delete DNofEntryToBeDeleted

modify DNtoBeModified attribute_value_pairs

rename DN newRDN flag [newContainerDN]

unbind

abandon MessageID

Credentials (username,
password) could be within the
namespace, in this case passwd
change can be done via modify

LDAP operations

bind DN credentials

search baseDN scope filter optional_parameters

compare DN attributeType attributeValue

add DNofNewEntry attribute_value_pairs

delete DNofEntryToBeDeleted

modify DNtoBeModified attribute_value_pairs

rename DN newRDN flag [newContainerDN]

unbind

abandon MessageID

Scope is base, one or subtree
Optional_parameters include
• attributes to be returned
• derefAliases
• timelimit, sizelimit
• typesonly

LDAP operations

bind DN credentials

search baseDN scope filter optional_parameters

compare DN attributeType attributeValue

add DNofNewEntry attribute_value_pairs

delete DNofEntryToBeDeleted

modify DNtoBeModified attribute_value_pairs

rename DN newRDN flag [newContainerDN]

unbind

abandon MessageID

returns true or false

LDAP operations

bind DN credentials

search baseDN scope filter optional_parameters

compare DN attributeType attributeValue

add DNofNewEntry attribute_value_pairs

delete DNofEntryToBeDeleted

modify DNtoBeModified attribute_value_pairs

rename DN newRDN flag [newContainerDN]

unbind

abandon MessageID

Adds an entry, if attribute
value pairs include
objectclass, the schema will
be checked.
Attribute-value pairs are
separated by a semicolon (;).

LDAP operations

bind DN credentials

search baseDN scope filter optional_parameters

compare DN attributeType attributeValue

add DNofNewEntry attribute_value_pairs

delete DNofEntryToBeDeleted

modify DNtoBeModified attribute_value_pairs

rename DN newRDN flag [newContainerDN]

unbind

abandon MessageID

Completely deletes an entry

LDAP operations

bind DN credentials

search baseDN scope filter optional_parameters

compare DN attributeType attributeValue

add DNofNewEntry attribute_value_pairs

delete DNofEntryToBeDeleted

modify DNtoBeModified attribute_value_pairs

rename DN newRDN flag [newContainerDN]

unbind

abandon MessageID

Deletes attribute-value pairs
and/or adds values to existing
attributes.
Attribute-value pairs are
separated by a semicolon (;).

LDAP operations

bind DN credentials

search baseDN scope filter optional_parameters

compare DN attributeType attributeValue

add DNofNewEntry attribute_value_pairs

delete DNofEntryToBeDeleted

modify DNtoBeModified attribute_value_pairs

rename DN newRDN flag [newContainerDN]

unbind

abandon MessageID

Flag tells if old RDN is kept
as an attribute

LDAP operations

bind DN credentials

search baseDN scope filter optional_parameters

compare DN attributeType attributeValue

add DNofNewEntry attribute_value_pairs

delete DNofEntryToBeDeleted

modify DNtoBeModified attribute_value_pairs

rename DN newRDN flag [newContainerDN]

unbind

abandon MessageID

TCP keepalive possible

LDAP operations

bind DN credentials

search baseDN scope filter optional_parameters

compare DN attributeType attributeValue

add DNofNewEntry attribute_value_pairs

delete DNofEntryToBeDeleted

modify DNtoBeModified attribute_value_pairs

rename DN newRDN flag [newContainerDN]

unbind

abandon MessageID

MessageID is an ID of a
previous message that is
blocked or taking too long to
respond.

LDAP operations examples

Exercise: do examples with command line OpenLDAP, using all the previous operations.

Example: rename entry ou=employees,cn=Mario Rossi

 into ou=employees,cn=Mario Bianchi,sn=Bianchi *

* with flag Delete-Old-RDN

 = TRUE, and no

 new parentDN

Dn: dc=bce, dc=eu

o=bce

Ou=board

cn=Mario Rossi
sn=Rossi

ou=employees

cn=Mario Rossi
sn=Rossi

LDAP controls

Extra parameter in an LDAP operation

Advertised in the root under the SupportedControl attribute

Effects:

• how the result is returned

• access entries that would otherwise be ignored

• added functionality

Designted with an OID (Object Identifier,

a string of numbers such as 3.4.7.2)

LDAP controls - examples

• Paged search control: returns one page at a time, thus allowing more
results than sizeLimit

• Server-side sort control: server will sort based on given attribute

Client options

These last for a whole client-server session, hence non related to a single
search operation like controls.

Examples:

LDAP_OPT_DEREF

LDAP_OPT_SIZELIMIT

LDAP_OPT_TIMELIMIT

LDAP_OPT_REFERRALS

LDAP_OPT_SSL

LDAP_OPT_REFERRAL_HOP_LIMIT

Client options

These last for a whole client-server session, hence non related to a single
serch operation like controls.

Examples:

LDAP_OPT_DEREF

LDAP_OPT_SIZELIMIT

LDAP_OPT_TIMELIMIT

LDAP_OPT_REFERRALS

LDAP_OPT_SSL

LDAP_OPT_REFERRAL_HOP_LIMIT

LDAP_DEREF_NEVER
LDAP_DEREF_ALWAYS
LDAP_DEREF_SEARCHING (subtree only)
LDAP_DEREF_FINDING (baseDN only)

Client options

These last for a whole client-server session, hence non related to a single
serch operation like controls.

Examples:

LDAP_OPT_DEREF

LDAP_OPT_SIZELIMIT

LDAP_OPT_TIMELIMIT

LDAP_OPT_REFERRALS

LDAP_OPT_SSL

LDAP_OPT_REFERRAL_HOP_LIMIT

LDAP_OPT_ON,
LDAP_OPT_SUBORDINATE_REFERRALS
LDAP_OPT_EXTERNAL_REFERRALS

C language APIs (RFC 1823)

• Syncronous/Asyncronous, e.g.

• ldap_add_s (blocks till result is returned)

• ldap_add

• Results and errors found in the LDAPMessage data structure, e.g.

• ldap_first_entry (returns entry)

• ldap_next_entry

• ldap_first_attribute

• ldap_next_attribute

ldap_open open a connection to an LDAP server
ldap_add_s synchronously add an entry
ldap_bind asynchronously bind to the directory
ldap_bind_s synchronously bind to the directory
ldap_unbind synchronously unbind from the LDAP
server,

close connection
ldap_compare asynchronous compare to a directory
entry
ldap_compare_s synchronous compare to a directory
entry
ldap_delete asynchronously delete an entry
ldap_delete_s synchronously delete an entrySicurezza II, A.A. 2008/2009

C language APIs - examples

Directories and LDAP

SCHEMA

Schema

o A set of rules and entry type definitions
o The schema is published under the subschemaSubentry attribute

of any directory entry. The corresponding value is the DN of the
entry publishing the schema.

thus, the schema is easy to read by clients and can also be more
easily modified and maintained.

o Schema checking is done on any add, modify, modifyDN operation
o Includes

o Structure rules, Content rules, Name Form for Object Class
o Syntax and matching rules for attributes

Schema components

o Object Class: entry types allowed
o Structure rules: how the Object Class relates to other objects in the

namespace
o Name form & syntax: attribute names and value types
o Matching rules: how to compare data values

Default schema: defined in RFC 2252

Can be extended in implementations

Distributed schemas

Widespread LDAP implementations are distributed with
a set of schema specifications ready to use.

For example, in OpenLDAP, schema files are installed
in /usr/local/etc/openldap/schema, and may be
included in the slapd.con configuration file.

For example include the files:
/usr/local/etc/openldap/schema/core.schema
/usr/local/etc/openldap/schema/cosine.schema
/usr/local/etc/openldap/schema/inetorgperson.schema

Objectclass

o Every directory entry has an objectclass attribute, and the values
correspond to objectclass definitions in the schema

o The objectclass defines required (Must) and optional (May)
attributes

o Directory implementations allow to query for objects with a selected
objectclass value, in the whole directory tree, e.g.,
objectclass=person

Objectclass types

o Abstract (templates):
o They cannot inherit from other objectclasses
o No entries with data belong to them, only used to define

structural classes
o Structural: uses inheritance via subclass/superclass
o Auxiliary: existing class + new attributes (no real inheritance)

Objectclasses inherit from other objectclasses, by including the
corresponding attributes, and adding more attributes

Elements of an objectclass

o OID – unique numeric object identifier
o Name – the name of the objectclass
o Superclass – the superclass it inherits from
o Category – abstract, auxiliary or structural
o Must attributes
o May attributes
o Naming attributes – those used for RDNs

Elements of an objectclass

The schema may be stored
•In a file, e.g.

/usr/local/etc/openldap/schema/core.schema), or
•In the directory itself, e.g.

cn=person, ou=schema, must=attr1, may=attr2, may=attr3

Creating entries

When we create a new entry in a directory we must associate to it one
or more objectclasses, and this can be done in one or more of the
following ways:

-Use existing objectclasses in the schema
-Create and use new objectclasses that are subclasses of any existing
objectclass
-Define and use new auxiliary classes

Syntax

• Data format used by attribute types and matching rules
• Defined via ASN.1
• Examples: image, string:

attributetype (0.9.2342.19200300.100.1.60

 NAME 'jpegPhoto'

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.28)

attributetype (2.16.840.1.113730.3.1.1

 NAME 'carLicense'

 EQUALITY caseIgnoreMatch

 SUBSTR caseIgnoreSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Attributes

• Defined by OID, name, superior class (hence also in a hierarchy, like
objectclass), equality, order, substring matching rules, syntax, number of
values, modifiable

• Can have multiple names (1° one is the canonical name and is normally
returned by searches)

• Subtypes possible, e.g.
attributetype (2.5.4.3

 NAME ‘cn‘

 SUP ‘name’)

attributetype (2.5.4.41

 NAME ‘name'

 EQUALITY caseIgnoreMatch

 SUBSTR caseIgnoreSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Attributes

• Defined by OID, name, superior class (hence also in a hierarchy, like
objectclass), equality, order, substring matching rules, syntax, number of
values, modifiable

• Can have multiple names (1° one is the canonical name and is normally
returned by searches)

• Subtypes possible, e.g.
attributetype (2.5.4.3

 NAME ‘cn‘

 SUP ‘name’)

attributetype (2.5.4.41

 NAME ‘name'

 EQUALITY caseIgnoreMatch

 SUBSTR caseIgnoreSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Hence, searching for name=*
will also return all values of cn

Attribute description

• Part of the schema
• Includes attributetype and attributeoptions

e.g.:
Binary (return as binary, not
converted to a string, useful for
certificates)

Namespace vs Schema

Namespace

Data:
An instantiated tree
of entries (attributes
and values), each
belonging to an
objectclass

Schema

Type:
A tree of
objectclasses, each
defined with
mandatory and
optional attributes,
and matching rules

Directories and LDAP

MANAGEMENT

Management

• Replication
• Referrals
• Aliases
• Distribution models
• Directory integration
• Data exchange formats

Replication

• Useful for availability & backup
• ‘Partitions’ (i.e., naming contexts, or subtrees) may be replicated on

other servers
• A replicated partition is called a ‘replica’

Single master (replicas are read-only)

Replication

Multi master (all replicas are read/write)

Referrals

• ‘Refer’, or redirect, the client to another server, port, baseDN
• Client will then ‘chase’ the referral for search (or modify, delete, etc.)
• Types of referrals:

• ‘Subordinate/superior’ referrals (up/down the directory tree)
• ‘External’ referrals (other DNS and server)
• ‘Default’ referral if search is outside the namespace

Referrals - example

Dn: dc=bce, dc=eu

o=bce

Referral

cn=Mario Rossi
sn=Rossi
Birthyear=1962

ou=persons

ldap1.bcefarm.com

cn=Luigi Rossi
sn=Rossi
birthyear=1982

Dn: dc=bce, dc=eu
ou=persons,
ou=consultants

cn=John Doe
sn=Doe
Birthyear=1990

ldap.it_supplier.com

Referrals – example with client search

ldap1.bcefarm.com

ldap.it_supplier.com

client search:
Server: ldap1.bcefarm.com
BaseDN: dc=bce,dc=eu,ou=persons
Scope: subtree

Referrals – syntax

ldap1.bcefarm.com

ldap.it_supplier.com

client

Syntax is url, e.g.:
Ldap://ldap.it_supplier.com/

 dc=bce,dc=eu,ou=persons??sub?sn=Doe

Referrals – chaining

ldap1.bcefarm.com

ldap.it_supplier.com

client

• Server may implement ‘chaining’, i.e. it will chase referrals on behalf
of the client. Otherwise the client will obtain the referral syntax from
the server and then autonomously chase the referral.

• When chasing a referral, the client may be asked for new credentials

Aliases

• Similar to referrals, but
• Alias points to another entry in the same directory, whilst

referrals may point to any URL
• Alias points to single entry, referrals may also point to subtrees
• Alias is always resolved by the server, referrals may be chased

by clients (unless chaining is in use)
• Example: same person in two subtrees (e.g. two University

Departments, where some professor is teaching, but main affiliation
and data are only in one Department).

Hai apakabar

Aliases - continued

• Client specifies (in the ldap search parameters) if the Server should
‘dereference’ aliases

• Aliases are resolved by the server only on search. Modify and
delete are done only on the alias entry, not on the target

• Target data can be kept private if alias has a different RDNHai apakabar

Distribution models

ldap1.bcefarm.com

ldap.it_supplier.com

Singlemaster
replication

Referral

Referrals and replication solve:
•Availability and disaster recovery
•Geographical distribution and delegation
•Efficiency

Directory Integration

• Not all directory products fully implement LDAP
• Many directories ad data sources may be present and need to be

integrated, via
• Analysis

• Data sources & owners
• Consumers of data
• Subscribers (other directories and services)

• Implementation
• Metadirectory products
• Custom integration via scripts and software tools

Hai apakabar

Metadirectories

• Master directory
• Syncronization
• Loose interconnection (just a common user interface)
• Harvester
• Connector (Harvester with extra funcionality, e.g. attribute name

mapping)
Hai apakabar

Directory integration via master directories

Master directory

Client
Initial message

Referral redirect

Redirected
 message

Directory integration via syncronization / multimaster replicas

Client

MessageMessage

syncronization

Directory integration via gateways (loose interconnection)

Gateway or proxy

Client
Message

Message*

* The gateway will choose the appropriate target
server, and forward the response back to the client

Directory integration via harvesters

Client

MessageMessage

Harvester

The harvester will continuously query each dir for
relevant entries, and write them to the other directory.

Data Interchange Formats

• LDIF – LDAP data interchange format
• Text based (may be edited and modified by scripts)

• Supports both LDAP data and LDAP operations (e.g. delete, add)

• Syntax examples (see also lab examples):
• #comments possible

• changetype: add/modrdn/delete/modify

• attribute::xxx (where :: force base64 coding)

• DSML – directory services markup language
• XML-based, LDAP data and operations, over HTTP or via file

• Supported by IBM, Oracle, Microsoft

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

