
OpenACC Subtleties
Lecture 21.2 - Related Programming Models: OpenACC

GPU Teaching Kit
Accelerated Computing

2

Objective
– To understand some important and sometimes subtle details in

OpenACC programming
– parallel loops
– simple examples to illustrate basic concepts and functionalities

© Wen-mei W. Hwu and John
Stone, Urbana July 22, 2010

3

Parallel vs. Loop Constructs
#pragma acc parallel loop copyin(M[0:Mh*Mw])
copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
for (int i=0; i<Mh; i++) {
…
}

is equivalent to:

#pragma acc parallel copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw])
copyout(P[0:Mh*Nw])
{

#pragma acc loop
for (int i=0; i<Mh; i++) {

…
}

}
(a parallel region that consists of a single loop)

4

More on Parallel Construct

– A parallel construct is executed on an accelerator
– One can specify the number of gangs and number of workers in

each gang
– Equivalent to CUDA blocks and threads

#pragma acc parallel copyout(a) num_gangs(1024) num_workers(32)
{

a = 23;
}

1024*32 workers will be created. a=23 will be executed
redundantly by all 1024 gang leads

5

What Does Each “Gang Loop” Do?

#pragma acc parallel num_gangs(1024)
{

for (int i=0; i<2048; i++) {
…

}
}

#pragma acc parallel num_gangs(1024)
{
#pragma acc loop gang

for (int i=0; i<2048; i++) {
…

}
}

6

Worker Loop
#pragma acc parallel num_gangs(1024) num_workers(32)
{

#pragma acc loop gang
for (int i=0; i<2048; i++) {

#pragma acc loop worker
for (int j=0; j<512; j++) {

foo(i,j);
}

}
}

1024*32=32K workers will be created, each executing 1M/32K = 32 instance of foo()

7

A More Substantial Example

– Statements 1, 3, 5, 6 are redundantly
executed by 32 gangs

#pragma acc parallel num_gangs(32)
{

Statement 1;
#pragma acc loop gang
for (int i=0; i<n; i++) {

Statement 2;
}
Statement 3;
#pragma acc loop gang
for (int i=0; i<m; i++) {

Statement 4;
}
Statement 5;
if (condition) Statement 6;

}

8

A More Substantial Example

– The iterations of the n and m for-loop
iterations are distributed to 32 gangs

– Each gang could further distribute the
iterations to its workers

– The number of workers in each gang
will be determined by the
compiler/runtime

#pragma acc parallel num_gangs(32)
{

Statement 1;
#pragma acc loop gang
for (int i=0; i<n; i++) {

Statement 2;
}
Statement 3;
#pragma acc loop gang
for (int i=0; i<m; i++) {

Statement 4;
}
Statement 5;
if (condition) Statement 6;

}

9

Avoiding Redundant Execution

#pragma acc parallel
num_gangs(1) num_workers(32)
{

Statement 1;
#pragma acc loop worker
for (int i=0; i<n; i++) {

Statement 2;
}
Statement 3;
#pragma acc loop worker
for (int i=0; i<m; i++) {

Statement 4;
}
Statement 5;
if (condition) Statement 6;

}

– Statements 1, 3, 5, 6 will be executed
only once

– Iterations of the n and m loops will be
distributed to 32 workers

10

Kernel Regions

#pragma acc kernels
{

#pragma acc loop gang(1024)
for (int i=0; i<2048; i++) {

a[i] = b[i];
}
#pragma acc loop gang(512)
for (int j=0; j<2048; j++) {

c[j] = a[j]*2;
}
for (int k=0; k<2048; k++) {

d[k] = c[k];
}

}

– Kernel constructs are descriptive of
programmer intentions

– The compiler has a lot of flexibility in its
use of the information

– This is in contrast with Parallel,
which is prescriptive of the action for
the compile follow

11

Kernel Regions

#pragma acc kernels
{

#pragma acc loop gang(1024)
for (int i=0; i<2048; i++) {

a[i] = b[i];
}
#pragma acc loop gang(512)
for (int j=0; j<2048; j++) {

c[j] = a[j]*2;
}
for (int k=0; k<2048; k++) {

d[k] = c[k];
}

}

– Code in a kernel region can be broken
into multiple CUDA/OpenCL kernels

– The i, j, k loops can each become a
kernel

– The k-loop may even remain as host code

– Each kernel can have a different
gang/worker configuration

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Lecture 21.2 - Related Programming Models: OpenACC
	Objective
	Parallel vs. Loop Constructs
	More on Parallel Construct
	What Does Each “Gang Loop” Do?
	Worker Loop
	A More Substantial Example
	A More Substantial Example
	Avoiding Redundant Execution
	Kernel Regions
	Kernel Regions
	Slide Number 12

