

What is media?

- Hypermedia brings together multiple media objects and allows users to interact with the collection to select relevant information.
 - Semantic heterogeneity
 - Resource heterogeneity
 - Interactivity

Sample application

- Police investigation...
 - Video data (surveillance cameras)
 - Audio data (telephone wiretabs)
 - Image data (surveillance, mugshots)
 - Document data (police reports)
 - Conventional data (bank records, employment records, police records)
 - Geographic data (maps)

Maria Luisa Sapino (BDM 2018)

Maria Luisa Sapino (BDM 2018)

Sample multimedia query

• "Find the records of every criminal who looks like the person seen in "surv_im.gif" and who had a bank transfer of more than \$500,000 within the last 5 months. Return all police reports which mention such persons and their past accomplices."

Semantic Heterogeneity

- Spatial, temporal, hierarchical dimensions
 - modeling
 - specification
 - indexing,
 - retrieval, and
 - visualization methods
- User- and context-dependence, subjectivity
- Availability at various quality levels

Maria Luisa Sapino (BDM 2018)

Interactivity

- 100ms interaction deadline
 - resource allocation
 - prefetching/caching
- Subjectivity and personalization of content
- Interaction structure along with spatial, hierarchical, and temporal structures

What is a data model?

- A set of constraints that describe - the structure and behavior of the data
- The roles of data models are
 - to enable description of data (conceptual)
 - to enable storage of data (physical)
 - to enable validation/redundancy removal of data (logical)
 - to enable retrieval of data
 - comparison, indexing, and query processiagapino (BDM 2018)

Different type of data models?

- Physical data models
 - describe how the data is stored on the disk
- Conceptual data models
 - describe the real world
- Logical data models
 - intermediary between physical and conceptual models

What is an image database?

- A collection of images – local or web
- A query processor (indices etc.) which
 - maps user query into data model
 - retrieves the relevant images
- An information visualization system which shows results to the user

Why "image" database?

- Size of data
- Properties of data
 - Visual: image processing
 - Semantical: users, context
- Similarity-based retrieval
 - similarity-based query processingnew index structures
 - relevance ordering
- Query language
 - How to let users specify what they want?
 - Maria Luisa Sapino (BDM 2018)

What are the features that may interest us?

- Colors, color histograms – "sunny day", "sea"
- Edges
- "maps", "aerial surveillance"
- Texture
- Image segments
- shape, location, color
- Objects
- visual features, semantics
- Metadata, captions

What kind of queries?

- Find all images created by "John Smith"
- Find all images which look like "im_ex.gif"
 Find me top-5 images which look like "im_ex.gif"
- Find all images which look like "sketch.bmp"
- Find all images which contain a part which looks like

Maria Luisa Sapino (BDM 2018)

Maria Luisa Sapino (BDM 2018)

What kind of queries?

- Find all objects contained in images of sunny days
- Find all images which contain two objects
 - first object looks like "im.gif"
 - second object is a car
 - first obj. to the right of second obj.
 - and return the semantics of these two objects.

Example select image P, object object1, object object2 where P contains object1 and P contains object2 and object1.semantical_property s_like "mountain" and object1.image_property image_match"Fuji_mountain.gif"

and object2.semantical_property is "lake"

and object2.image_property image_match "lake_image_sample.gif"

and object1.position is above object2.position

Relational databases (??)

- Business applications
- Data model is relational
- Queries are exact/declarative
- Updates are important
- Concurrency is important

Shortcomings...

- Image data doesn't fit into tuples – Media data need to be kept separately
- No image comparison
- No partial match processing
- No ranking
- Not computationally complete
 - Media processing requires more computational power.

Maria Luisa Sapino (BDM 2018)

Maria Luisa Sapino (BDM 2018)

Solutions

- Use a host language and embed database queries in it (relational approach)
- Provide more computational power in the data model itself (object-oriented approach)

Shortcomings...

- Too much overhead – Optimization is hard
- No partial match processing
- No ranking
- Query processing is cost driven
 - not "similarity" driven

Maria Luisa Sapino (BDM 2018)

What else?

- Deductive databases
 - Logic based
 - Boolean queries
- Fuzzy/probabilistic databases
 - usually logic-based, but not boolean
 - nothing is *true* or *false*
 - results are not-exact (like multimedia queries)

Research Issues

- Query processing
 - Online vs. off-line information extraction
 - Indices for different media
 - Optimization of queries with different media
 - Similarity-based retrieval, ranking
 - Relevance feedback