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Feature… 

l  …a property of interest that can help us 
index an object 

l  For a “student record” 
–  student_ID 

   can be a feature 
l  What are the features for an image? 
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Image features 

l  There are many possible features 
–  Color histogram 
–  Texture 
–  Edges   
–  Shapes 
–  Objects 
–  Object or scene semantics 

l  Feature selection: which one to use for 
indexing? 
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Good feature.. 

l  A good feature is significant and enables us 
to differentiate  objects from others as much 
as possible 

l  A good feature corresponds to users’ 
perception as much as possible 
–  Relevance feedback!!!! 
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What does “significant” mean 

l  Information theoric sense: 
–  An event is more significant if it carries more 

information  
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What does “significant” mean 

l  Information theoric sense: 
–  An event is more significant if it carries more 

information  
–  An event that has high occurrence rate carries 

less information 
l  Solar eclipse is more interesting then sunset 

High frequency ----- less information 
Low frequency  ----- high information 
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Entropy 

l  Total information content (uncertainty) 
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Entropy (example) 

l  Total information content (uncertainty) 

P(a) = 0.5, P(b) = 0.5 H > 0 

P(a) = 1.0, P(b) = 0.0 H = 0 

more uncertain 

less uncertain 
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Entropy (example) 

l  Total information content (uncertainty) 

P(a) = 0.5, P(b) = 0.5 H > 0 

P(a) = 1.0, P(b) = 0.0 H = 0 

more uncertain 
more information 

less uncertain 
less information 
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Which feature is better? 

F3 

F1 

F2 
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Which feature is better? 

F1 

F2 

F3 
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Which feature is better? 

F1 

F2 

F3 

Better separation! 
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Which feature is better? 

F1 

F2 

F3 

Better separation! 

Less frequent! 
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Principal component 

F1 

F2 

F3 

Better separation! 
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Principal component analysis 

F1 

F2 

F3 

Principal component 
is a combination of 
features! 
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Principal component analysis 

F1 

F2 

F3 

Principal component 
is a combination of 
features! 

The eigenvector of the 
covariance matrix  
with the largest 
eigenvalue 
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Principle Component Analysis 

l  ..also known as Karhunen-Loeve Transfrom 
–  ..a linear transform that  optimally decorrelates 

the input. 

Maria Luisa Sapino (BDM 2018) 

Maria Luisa Sapino (BDM 2018) 
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Linearly Independent Eigenvectors 

l  Suppose that A is and n × n square matrix. If 
the eigenvalues, c1....ck are distinct, then 
eigenvectors v1,...vk are a set of k linearly 
independent vectors. 

Maria Luisa Sapino (BDM 2018) 
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Eigen decomposition 

A =  

1 
2 

n 

1 2 n ……………………. 

…
…
…
…
…
…
…
…

. 
A[i, j]=Cov(i, j) = E (Fi−µi )(Fj −µ j )( )

Covariance matrix 
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…reminder 

l  Eigenvalue and eigenvector 
l  Given a matrix A, let c (scalar) and x (vector) 

be such that 
→→

= xAxc

Eigenvalue 
Eigenvector 
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Properties of Eigenvectors 

l  Suppose that A is and n × n square matrix  
–  if the eigenvalues, c1....ck, are distinct, then 

eigenvectors v1,...vk are a set of k linearly 
independent vectors. 
l  thus they can be used as the basis of the space!!! 

–  The value of ci describes the contribution of vi in 
A. Thus  
l  if we pick an A that describe the variation of data,  
l  ci will describe the directions along which variation is 

high 

Maria Luisa Sapino (BDM 2018) 
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eigen decomposition 

A=  

1 

2 

n 

1 2 k ….. 

…
…
…
…
…
…
…
…
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1 2 ……………………. 

…
…
…

. 

n 

X 

k 

X 

1 k ….. 

1 

2 

…
…
…

. 

k 

columns linearly 
independent 

(column orthonormal) 

rows linearly 
independent 
(row orthonormal) 

 

diagonal matrix 

(i,i)>= (i+1,i+1) 
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eigen decomposition 

A’=  

1 

2 

n 

1 2 k ….. 
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…
…
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1 2 ……………………. 
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Some variance is 
lost, but not 
much!!! Maria Luisa Sapino (BDM 2018) 

How many eigenvectors shall we 
maintain? 

l  Mean eigenvalue: use only the dimensions whose eigenvalues 
are greater than or equal to the mean eigenvalue. 

l  Kaiser rule: keep only those eigenvectors whose eigenvalues 
are greater than 1.  

l  Parallel analysis: 
–  analyze a random covariance matrix, 
–  Plots cumulative eigenvalues for both random and intended 

matrices; 
–  Find where the two curves intersect. 

l  Scree test: plot the successive eigenvalues to find a point 
where the plot levels off. 

l  Variance explained: keep enough dimensions to account for 
95% of the initial variance Maria Luisa Sapino (BDM 2018) 
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Compactness of a database  
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Compactness of a database  

),()( j
ji

i oosimilarityDcomp ∑
≠

=

more 
compact 
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Compactness of a database  

),()( j
ji

i oosimilarityDcomp ∑
≠

=

A compact database is not desirable!!! 
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Feature quality  

A feature is  
•   good if we remove it, the overall compactness increases 
•   bad   if we remove it, the overall compactness decreases 

good bad 

Maria Luisa Sapino (BDM 2018) 

Problem… 

l  Feature vector size: 628 × 1024  
–  Dimensionality curse: high dimensions make 

indices unusable (10-15 dimensions max!!!) 

628 

1024 
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Problem… 

l  Feature vector size: 628 × 1024  
–  Dimensionality curse: high dimensions make indices 

unusable (10-15 dimensions max!!!) 
l  Solution: Reduce # dimensions of the vector 

–  use distance-preserving transforms 
–  Ex: fourier trans., DCT,wavelet trans.  

628 × 1024 4 
DCT 
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Transforms 

A 
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Transforms 

A 

A 
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Transforms 

A 

Distances and angles are  
preserved 
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Transforms 

A 

Distances and angles are  
preserved 

Some dimensions are more 
important (differentiating) 
than the other 
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Transforms 

A 

Distances and angles are  
preserved 

Some dimensions are more 
important (differentiating) 
than the other 

Eliminate unimportant 
dimensions 
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Transform + Projection 
(Compression or Feature selection) 

A A 

Projection 
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What happens to distances??? 

A A 

Δ(A,B)   

B B 

Δ’(A,B)   

Δ(A,B) <> Δ’(A,B)  

Maria Luisa Sapino (BDM 2018) 

What happens to distances??? 

A A 

B B 

δ 
δ 

C 

C 
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What happens to distances??? 

A A 

B B 

δ 
δ 

C 

C 

False hit 
(Δ1> Δ1’) Miss 

(Δ2< Δ2’) 

Δ1’   Δ2’   
Δ1 

Δ2   
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What happens to distances??? 

A A 

B B 

δ 
δ 

C 

C 

False hit 
(Δ1> Δ1’) Miss 

(Δ2< Δ2’) 

Δ1’   Δ2’   
Δ1 

Δ2   

Misses are not desirable! 
Can not be eliminated with postprocessing 


