
OpenACC Course: Lecture 2 – October 15, 2015

Profiling and Parallelizing with the
OpenACC Toolkit

2

Course Syllabus

Oct 1: Introduction to OpenACC

Oct 6: Office Hours

Oct 15: Profiling and Parallelizing with the
OpenACC Toolkit

Oct 20: Office Hours

Oct 29: Expressing Data Locality and
Optimizations with OpenACC

Nov 3: Office Hours

Nov 12: Advanced OpenACC Techniques

Nov 24: Office Hours

3

Agenda

Introduction to Accelerated Computing

Identifying Available Parallelism

Expressing Parallelism with OpenACC

Next Steps and Homework

4

Introduction to Accelerated Computing

5

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

Accelerated Computing
10x Performance & 5x Energy Efficiency for HPC

6

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

Accelerated Computing
10x Performance & 5x Energy Efficiency for HPC

CPU Strengths

• Very large main memory

• Very fast clock speeds

• Latency optimized via large caches

• Small number of threads can run

very quickly

CPU Weaknesses

• Relatively low memory bandwidth

• Cache misses very costly

• Low performance/watt

7

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

Accelerated Computing
10x Performance & 5x Energy Efficiency for HPC

GPU Strengths

• High bandwidth main memory

• Significantly more compute

resources

• Latency tolerant via parallelism

• High throughput

• High performance/watt

GPU Weaknesses

• Relatively low memory capacity

• Low per-thread performance

8

Speed v. Throughput

Speed Throughput

*Images from Wikimedia Commons via Creative Commons

Which is better depends on your needs…

9

Accelerator Nodes

PCIe

RAM RAM
CPU and GPU have distinct
memories

• CPU generally larger and slower

• GPU generally smaller and faster

CPU and GPU communicate via PCIe

• Data must be copied between
these memories over PCIe

• PCIe Bandwidth is much lower
than either memories

10

CUDA Unified Memory
Simplified Developer Effort

Without Unified Memory With Unified Memory

Unified MemorySystem
Memory

GPU Memory

Sometimes referred to as

“managed memory.”

11

Identify
Available

Parallelism

Express
Parallelism

Express Data
Movement

Optimize
Loop

Performance

12

Identify
Available

Parallelism

Express
Parallelism

Express Data
Movement

Optimize
Loop

Performance

13

Case Study

For lectures and labs 2 & 3 we will use an example code that solves a conjugate
gradient problem.

• This code is available in C and Fortran, but only C will be shown in the lectures.

• We will be demonstrating OpenACC concepts using this code in the next 2
lectures.

• You will be profiling and accelerating this code in the next 2 labs.

• In addition to the labs, the code is available at https://github.com/NVIDIA-
OpenACC-Course/nvidia-openacc-course-sources/tree/master/labs

https://github.com/NVIDIA-OpenACC-Course/nvidia-openacc-course-sources/tree/master/labs

14

Identifying Available Parallelism

15

NVIDIA NVPROF Profiler

NVPROF is a command-line profiler provided in the OpenACC and CUDA Toolkits

• Basic CPU Profiling (New in OpenACC Toolkit & CUDA 7.5)

• GPU Profiling

• High-level usage statistics

• Timeline Collection

• Analysis Metrics

• Used behind-the-scenes by NVIDIA Visual Profiler (nvvp)

16

NVPROF CPU Profiling
$ nvprof --cpu-profiling on --cpu-profiling-mode top-down ./cg

Rows: 8120601, nnz: 218535025

Iteration: 0, Tolerance: 4.0067e+08

Iteration: 10, Tolerance: 1.8772e+07

Iteration: 20, Tolerance: 6.4359e+05

Iteration: 30, Tolerance: 2.3202e+04

Iteration: 40, Tolerance: 8.3565e+02

Iteration: 50, Tolerance: 3.0039e+01

Iteration: 60, Tolerance: 1.0764e+00

Iteration: 70, Tolerance: 3.8360e-02

Iteration: 80, Tolerance: 1.3515e-03

Iteration: 90, Tolerance: 4.6209e-05

Total Iterations: 100 Total Time: 33.926116s

======== CPU profiling result (top down):

99.89% main

| 83.22% matvec(matrix const &, vector const &, vector const &)

| 10.41% waxpby(double, vector const &, double, vector const &, vector const &)

| 3.81% dot(vector const &, vector const &)

| 2.42% allocate_3d_poission_matrix(matrix&, int)

| 0.03% free_matrix(matrix&)

| 0.03% munmap

0.11% __c_mset8

======== Data collected at 100Hz frequency

17

GPROF Profiler

Portable command-line profiler available from GCC.

When used with PGI or GCC, the following steps are required:

1. Add the –pg compiler flag to instrument your code

2. Run the executable (it will produce gmon.out)

3. Run gprof ./executable to analyze the collected data

18

GPROF Output for Case Study

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

77.32 24.82 24.82 101 245.74 245.74 matvec(matrix const&, vector const&,

vector const&)

15.36 29.75 4.93 302 16.32 16.32 waxpby(double, vector const&, double,

vector const&, vector const&)

4.24 31.11 1.36 200 6.80 6.80 dot(vector const&, vector const&)

3.08 32.10 0.99 1 990.00 990.00 allocate_3d_poission_matrix(matrix&,

int)

0.00 32.10 0.00 5 0.00 0.00 allocate_vector(vector&, unsigned

int)

0.00 32.10 0.00 4 0.00 0.00 free_vector(vector&)

0.00 32.10 0.00 2 0.00 0.00 initialize_vector(vector&, double)

0.00 32.10 0.00 1 0.00 0.00 free_matrix(matrix&)

Add –pg to compiler flags, rebuild & rerun, use gprof

19

PGI Compiler Feedback

Understanding what the compiler does with your code is critical to understanding the
profile.

PGI –Minfo flag, options we’ll use:

• accel – Print compiler operations related to the accelerator

• all – Print (nearly) all compiler output

• intensity – Print loop intensity information

• ccff – Add information to the object files for use by tools

20

Compiler Feedback for Case Study

$ pgc++ -fast -Minfo=all,intensity main.cpp -o cg

waxpby(double, const vector &, double, const vector &, const vector &):

5, include "vector_functions.h"

24, Intensity = 1.00

Generated 4 alternate versions of the loop

Generated vector and scalar versions of the loop; pointer

conflict tests determine which is executed

Generated 2 prefetch instructions for the loop

Loop unrolled 4 times

matvec(const matrix &, const vector &, const vector &):

7, include "matrix_functions.h"

14, Intensity = (num_rows*((row_end-row_start)*

2))/(num_rows+(num_rows+(num_rows+((row_end-row_start)+(row_end-row_start)))))

18, Intensity = 1.00

Unrolled inner loop 4 times

Generated 2 prefetch instructions for the loop

Add –Minfo=all,intensity to compiler flags and rebuild

21

Computational Intensity

Computational Intensity of a loop is a measure of how much work is
being done compared to memory operations.

Computation Intensity = Compute Operations / Memory Operations

Computational Intensity of 1.0 or greater is often a clue that
something might run well on a GPU.

22

Analyzing the Code: Matvec

for(int i=0;i<num_rows;i++) {

double sum=0;

int row_start=row_offsets[i];

int row_end=row_offsets[i+1];

for(int j=row_start;

j<row_end;j++) {

unsigned int Acol=cols[j];

double Acoef=Acoefs[j];

double xcoef=xcoefs[Acol];

sum+=Acoef*xcoef;

}

ycoefs[i]=sum;

}

Look for data dependencies:

• Does one loop iteration affect
other loop iterations?

• Do loop iterations read from
and write to different places in
the same array?

• Is sum a data dependency? No,
it’s a reduction.

23

Analyzing the Code: Waxpy and Dot

for(int i=0;i<n;i++) {

wcoefs[i] =

alpha*xcoefs[i] +

beta*ycoefs[i];

}

for(int i=0;i<n;i++) {

sum+=xcoefs[i]*ycoefs[i];

}

Look for data dependencies:

• Does one loop iteration affect
other loop iterations?

• Do loop iterations read from
and write to different places in
the same array?

24

Expressing Parallelism

25

OpenACC kernels Directive

#pragma acc kernels

{

for(int i=0; i<N; i++)

{

x[i] = 1.0;

y[i] = 2.0;

}

for(int i=0; i<N; i++)

{

y[i] = a*x[i] + y[i];

}

}

Identifies a region of code where I think the compiler can turn loops
into kernels

25

kernel 1

kernel 2

The compiler identifies

2 parallel loops and

generates 2 kernels.

26

OpenACC kernels Directive (Fortran)

!$acc kernels

do i=1,N

x(i) = 1.0

y(i) = 2.0

end do

y(:) = a*x(:) + y(:)

!$acc end kernels

Identifies a region of code where I think the compiler can turn loops
into kernels

26

kernel 1

kernel 2

The compiler identifies

2 parallel loops and

generates 2 kernels.

27

Loops vs. Kernels

for (int i = 0; i < 16384; i++)
{

C[i] = A[i] + B[i];
}

function loopBody(A, B, C, i)
{

C[i] = A[i] + B[i];
}

28

Loops vs. Kernels

for (int i = 0; i < 16384; i++)
{

C[i] = A[i] + B[i];
}

function loopBody(A, B, C, i)
{

C[i] = A[i] + B[i];
}

Calculate 0 -16383 in order.

29

Loops vs. Kernels

for (int i = 0; i < 16384; i++)
{

C[i] = A[i] + B[i];
}

function loopBody(A, B, C, i)
{

C[i] = A[i] + B[i];
}

Calculate 0 -16383 in order.

Calculate 0

30

Loops vs. Kernels

for (int i = 0; i < 16384; i++)
{

C[i] = A[i] + B[i];
}

function loopBody(A, B, C, i)
{

C[i] = A[i] + B[i];
}

Calculate 0 -16383 in order.

Calculate 0

Calculate 0
Calculate 1

Calculate 2
Calculate 3

Calculate 16383

Calculate 0
Calculate 1

Calculate 2
Calculate 3
Calculate …

Calculate 0
Calculate 1

Calculate 2
Calculate 3
Calculate 14

Calculate 0
Calculate 1

Calculate 2
Calculate 3

Calculate 9

Calculate 1
Calculate 2

Calculate 3
Calculate 4

31

The Kernels Directive

#pragma acc kernels
{
for (int i = 0; i < 16384;

i++)
{
C[i] = A[i] + B[i];

}
}

The Compiler will…

1. Analyze the code to determine
if it contains parallelism

2. Identify data that needs to be
moved to/from the GPU
memory

3. Generate kernels

4. Run on the GPU

Identifies a region of code where I think the compiler can turn loops
into kernels

32

Parallelizing the Code: Matvec

#pragma acc kernels

{

for(int i=0;i<num_rows;i++) {

double sum=0;

int row_start=row_offsets[i];

int row_end=row_offsets[i+1];

for(int j=row_start;

j<row_end;j++) {

unsigned int Acol=cols[j];

double Acoef=Acoefs[j];

double xcoef=xcoefs[Acol];

sum+=Acoef*xcoef;

}

ycoefs[i]=sum;

}

}

Let’s tell the compiler where we
think it can turn loops into
kernels.

Don’t worry about your data or
how to parallelize these loops,
let the compiler decide.

33

Building with OpenACC

Enable OpenACC with the –ta (target accelerator) flag.

Target Accelerator:

• tesla – NVIDIA Tesla GPU

• managed – Use CUDA Managed Memory (simplifies the process)

34

Building with OpenACC - Feedback

$ pgc++ -fast -Minfo=accel -ta=tesla:managed main.cpp -o challenge

matvec(const matrix &, const vector &, const vector &):

7, include "matrix_functions.h"

15, Generating copyout(ycoefs[:num_rows])

Generating

copyin(xcoefs[:],Acoefs[:],cols[:],row_offsets[:num_rows+1])

16, Complex loop carried dependence of row_offsets-> prevents

parallelization

Loop carried dependence of ycoefs-> prevents parallelization

Loop carried backward dependence of ycoefs-> prevents

vectorization

Complex loop carried dependence of cols->,Acoefs->,xcoefs->

prevents parallelization

Accelerator kernel generated

Generating Tesla code

20, #pragma acc loop vector(128) /* threadIdx.x */

24, Sum reduction generated for sum

20, Loop is parallelizable

35

False Loop Dependencies

The compiler things there’s a carried dependency in our loop iterations, but we
thought they were parallel. Only the innermost loop was parallelized.

In C/C++, the arrays are simply pointers, so they may be aliased (two pointers
accessing the same memory differently). If the compiler doesn’t know pointers
aren’t aliased, it must assume they are.

This is not a problem with Fortran arrays.

Aliasing prevents parallelization.

36

C99: restrict Keyword

• Promise given by the programmer to the compiler that pointer will not alias with

another pointer

• Applied to a pointer, e.g.

float *restrict ptr

• Meaning: “for the lifetime of ptr, only it or a value directly derived from it

(such as ptr + 1) will be used to access the object to which it points”*

• Parallelizing compilers often require restrict to determine independence

• Otherwise the compiler can’t parallelize loops that access ptr

• Note: if programmer violates the declaration, behavior is undefined

http://en.wikipedia.org/wiki/Restrict

float restrict *ptr
float *restrict ptr

http://en.wikipedia.org/wiki/Restrict

37

Loop independent clause

Specifies that loop iterations are data independent. This overrides any compiler

dependency analysis. This is implied for parallel loop.

#pragma acc kernels

{

#pragma acc loop independent

for(int i=0; i<N; i++)
{

a[i] = 0.0;
b[i] = 1.0;
c[i] = 2.0;

}
#pragma acc loop independent
for(int i=0; i<N; i++)
{

a[i] = b[i] + c[i]
}
}

kernel 1

kernel 2

Informs the compiler

that both loops are safe

to parallelize so it will

generate both kernels.

38

Fixing False Aliasing

unsigned int num_rows=A.num_rows;

unsigned int *restrict \

row_offsets=A.row_offsets;

unsigned int *restrict \

cols=A.cols;

double *restrict Acoefs=A.coefs;

double *restrict xcoefs=x.coefs;

double *restrict ycoefs=y.coefs;

By declaring our pointers with
the restrict keyword, we’ve
promised the compiler they will
not alias.

We could also use loop
independent on our loops, but
restrict fixes the underlying
issue.

39

Rebuilding with OpenACC - Feedback

$ pgc++ -fast -Minfo=accel -ta=tesla:managed main.cpp -o challenge

matvec(const matrix &, const vector &, const vector &):

7, include "matrix_functions.h"

15, Generating copyout(ycoefs[:num_rows])

Generating

copyin(xcoefs[:],Acoefs[:],cols[:],row_offsets[:num_rows+1])

16, Loop is parallelizable

Accelerator kernel generated

Generating Tesla code

16, #pragma acc loop gang, vector(128) /* blockIdx.x

threadIdx.x */

20, Loop is parallelizable

40

Performance Now

0

20

40

60

80

100

120

Original Matvec Kernels

Original Matvec Kernels

T
im

e
 (

se
c
o
n
d
s)

Put specs here…

Remember, a slow-down

is expected at this point

due to excess data

movement.

41

Re-profiling the code

Application Runtime

Total Time 135 s

GPU Kernels (matvec) 8 s

Data Migration (Unified Memory) 71 s

42

Performance After Lab 2

0

20

40

60

80

100

120

Original Matvec Kernels End of Lab 2

Original Matvec Kernels End of Lab 2

T
im

e
 (

se
c
o
n
d
s)

Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz and NVIDIA Tesla K40 GPU

Once you’ve moved all 3

functions to the GPU,

data movement will go

away.

43

OpenACC parallel loop Directive

parallel - Programmer identifies a block of code containing parallelism. Compiler generates

a kernel.

loop - Programmer identifies a loop that can be parallelized within the kernel.

NOTE: parallel & loop are often placed together

#pragma acc parallel loop

for(int i=0; i<N; i++)

{

y[i] = a*x[i]+y[i];

}

43

Generates a

Parallel

Kernel

NOTE: The independent

clause to loop is implied

when used within a

parallel region.

44

OpenACC loop directive: private & reduction

The private and reduction clauses are not optimization clauses, they may be
required for correctness.

• private – A copy of the variable is made for each loop iteration

• reduction - A reduction is performed on the listed variables.

• Supports +, *, max, min, and various logical operations

Note: The kernels directive will generally handle these for you.

44

45

Using Parallel Loop

#pragma acc parallel loop

for(int i=0;i<num_rows;i++) {

double sum=0;

int row_start=row_offsets[i];

int row_end=row_offsets[i+1];

#pragma acc loop reduction(+:sum)

for(int j=row_start;

j<row_end;j++) {

unsigned int Acol=cols[j];

double Acoef=Acoefs[j];

double xcoef=xcoefs[Acol];

sum+=Acoef*xcoef;

}

ycoefs[i]=sum;

}

• Instead of letting the compiler
analyze the loops, let’s tell
the compiler they’re parallel.

• Adding a loop directive to
inner loops will tell the
compiler they’re also
independent.

• We must specify the reduction
on sum for correctness.

46

Rebuilding with Parallel Loop - Feedback

$ pgc++ -fast -Minfo=accel -ta=tesla:managed main.cpp -o challenge

matvec(const matrix &, const vector &, const vector &):

8, include "matrix_functions.h"

12, Accelerator kernel generated

Generating Tesla code

15, #pragma acc loop gang /* blockIdx.x */

20, #pragma acc loop vector(128) /* threadIdx.x */

Sum reduction generated for sum

12, Generating copyout(ycoefs[:num_rows])

Generating

copyin(xcoefs[:],Acoefs[:],cols[:],row_offsets[:num_rows+1])

20, Loop is parallelizable

47

OpenACC parallel loop vs. kernels

PARALLEL LOOP

Programmer’s responsibility to
ensure safe parallelism

Will parallelize what a compiler
may miss

Straightforward path from
OpenMP

KERNELS

Compiler’s responsibility to
analyze the code an parallelize
what is safe.

Can cover larger area of code
with single directive

Gives compiler additional
leeway to optimize.

Both approaches are equally valid and can perform equally well.

48

Review

Today we discussed:

• Tools that can be used to profile a code and identify important routines and loops
where there is available parallelism

• How to analyze the code for parallelism blockers

• How to use the kernels and parallel loop directives to express the available
parallelism to the compiler

• How to build with PGI and OpenACC

• How to re-profile the accelerated code

49

Next Steps & Homework

50

Identify
Available

Parallelism

Express
Parallelism

Express Data
Movement

Optimize
Loop

Performance

The remaining steps will
be covered on October 29.

51

Homework

Go to http://bit.ly/nvoacclab2

Build and profile the example code using the PGI compiler and gprof.

Complete the acceleration of the example code by accelerating the
matvec, waxpy, and dot functions using either kernels or parallel loop.

Periodically use nvprof and/or Visual Profiler to obtain accelerated
profiles and observed the results of your changes.

Note: The GPUs provided via Qwiklabs will provide a much smaller
speed-up than shown here (10-15%). This is expected. Lab 3 will
improve upon this.

http://bit.ly/nvoacclab2

52

Office Hours Next Week

Next week’s session will be an office hours session.

Bring your questions from this week’s lecture and homework to next
week’s session.

If you can’t wait until then, post a question on StackOverflow tagged
with openacc.

53

Course Syllabus

Oct 1: Introduction to OpenACC

Oct 6: Office Hours

Oct 15: Profiling and Parallelizing with the
OpenACC Toolkit

Oct 20: Office Hours

Oct 29: Expressing Data Locality and
Optimizations with OpenACC

Nov 3: Office Hours

Nov 12: Advanced OpenACC Techniques

Nov 24: Office Hours

