

GPU Teaching Kit

Accelerated Computing

Module 12.2– Floating-Point Considerations

Numerical Stability

Objective

- Understand numerical stability in linear system solver algorithms
 - Cause of numerical instability
 - Pivoting for increased stability

Numerical Stability

- Some order of floating-point operations may cause some applications to fail
- Linear system solvers may require different ordering of floating-point operations for different input values
- An algorithm that can always find an appropriate operation order and thus a solution to the problem is a numerically stable algorithm
 - An algorithm that falls short is numerically unstable

Gaussian Elimination Example

Original

3X	+ 5Y	+2Z	= 19	Х	+ 5/3Y	+ 2/3Z	= 19/3
2X	+ 3Y	+ Z	= 11	Х	+ 3/2Y	+ 1/2Z	= 11/2
Х	+ 2Y	+ 2Z	= 11	Х	+ 2Y	+ 2Z	= 11

Step 1: divide equation 1 by 3, equation 2 by 2

$$X + 5/3Y + 2/3Z = 19/3$$

- 1/6Y - 1/6Z = -5/6
1/3Y + 4/3Z = 14/3

Step 2: subtract equation 1 from equation 2 and equation 3

Gaussian Elimination Example (Cont.)

Step 3: divide equation 2 by -1/6 and equation 3 by 1/3

Gaussian Elimination Example (Cont.)

5	2	19	1	5/3	2/3	19/3	1	5/3	2/3	19/3
3	1	11 🛋	• 1	3/2	1/2	11/2		- 1/6	- 1/6	-5/6
2	2	11	1	2	2	11		1/3	4/3	14/3
Origi	nal						Ste 2 a	ep 2: subtra ind row 3	act row 1 fro	om row
1	5/3	2/3	19/3			1	5/3	2/3	19/3	
	1	1	5	_			1	1	5	
Step 3: row 3 k	1 divide oy 1/3	4 row 2 by -	14 1/6 and	Ste	ep 1: divi 2	de row 1 Step	by 3, row 4: subtrac	2 ³ ct row 2 fro	9 om row 3	
1	5/3	2/3	19/3			1	5/3	2/3	19/3	
	1	1	5		•		1		2	
		1	3	ľ				1	3	
Step 5: Solutio	divide n for Z	equation 3	3 by 3			Step equa	6: substit tion 2. So	ute Z solut lution for \	ion into /!	
1			1							
	1		2							
Step 7:	substi	1 tute Y and	3 Z into							

Basic Gaussian Elimination is Easy to Parallelize

- Have each thread to perform all calculations for a row
 - All divisions in a division step can be done in parallel
 - All subtractions in a subtraction step can be done in parallel
 - Will need barrier synchronization after each step
- However, there is a problem with numerical stability

Pivoting

Pivoting: Swap row 1 (Equation 1) with row 2 (Equation 2)

1	3/2	1/2	11/2
	5	2	16
1	2	2	11

Step 1: divide row 1 by 3, no need to divide row 2 or row 3

Pivoting (Cont.)

Step 2: subtract row 1 from row 3 (column 1 of row 2 is already 0)

Step 3: divide row 2 by 5 and row 3 by 1/2

Pivoting (Cont.)

1	3/2	1/2	11/2		1	3/	2 1/	2 11/2
	1	2/5	16/5				1 2/	5 16/5
	1	3	11				13/	5 39/5
			Step 4: row 3	subtract ro	ow 2 from			
					1	5/3	2/3	19/3
						1	2/5	16/5

Step 5: divide row 3 by 13/5 Solution for Z! 3

1

Pivoting (Cont.)

Step 6: substitute Z solution into equation 2. Solution for Y!

	5	2	16	2	3	1 .	11	1	3/2	1/2	2 11/2
2	3	1	11 🛋		5	2	16		5	2	2 16
1	2	2	11	1	2	2	11	1	2	2	. 11
	Origi	inal		Pivoting: with row	Swap row 1 2 (Equation	(Equat 2)	ion 1)	Step 1: di divide rov	vide row v 2 or rov	1 by 3, no v 3	o need to
	1	3/2	1/2	11/2			1	3/2	1/2	11/2	
		5	2	16				1	2/5	16/5	
		1/2	3/2	11/2				1	3	11	
St (c	tep 2: sub column 1	row 3 y 0)		Ster 1/2	o 3: divi	de row 2 by	5 and row	/ 3 by			
	1	3/2	1/2	11/2			1	5/3	2/3	19/3	
		1	2/5	16/5	-			1	2/5	16/5	
			13/5	39/5					1	3	
St	tep 4: suk	otract ro	w 2 from	row 3		Ster Solu	o 5: divi ution for	de row 3 by 7 Z!	13/5		
	1	5/3	2/3	19/3			1			1	
		1		2	-			1		2	
			1	3					1	3	
St eo	Step 6: substitute Z solution intoStep 7: substitute Y and Z into equationequation 2. Solution for Y!Figure 7.11I. Solution for X!										
13									/		I ILLINOIS

Why is Pivoting Hard to Parallelize?

- Need to scan through all rows (in fact columns in general) to find the best pivoting candidate
 - A major disruption to the parallel computation steps
 - Most parallel algorithms avoid full pivoting
 - Thus most parallel algorithms have some level of numerical instability

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>