

GPU Teaching Kit

Accelerated Computing

Module 4.3 - Memory Model and Locality

Tiled Matrix Multiplication

Objective

- To understand the design of a tiled parallel algorithm for matrix multiplication
 - Loading a tile
 - Phased execution
 - Barrier Synchronization

Matrix Multiplication

—

Tiled Matrix Multiplication

- Break up the execution of each thread into phases
- so that the data accesses by the thread block in each phase are focused on one tile of M and one tile of N
- The tile is of BLOCK SIZE elements in each dimension

ILLINOIS

Loading a Tile

- All threads in a block participate
 - Each thread loads one M element and one N element in tiled code

Phase 0 Load for Block (0,0)

Phase 0 Use for Block (0,0) (iteration 0)

N _{0,0} N _{1,0}	N _{0,1} N _{1,1}	N _{0,2} N _{1,2}	N _{0,3} N _{1,3}		[N _{o,o} N _{1,o}	N _{o,} N ₁	,1 ,1	Sha	ared	Mem	ory
N _{2,0} N _{3,0}	N _{2,1} N _{3,1}	N _{2,2} N _{3,2}	N _{2,3} N _{3,3}		_		Π					
				Shared M	emory							
$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	M _{0,3}	M _{0,0} M _{0,1}		0,0	\$,	₁ F	0,2	P _{0,3}		
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$	$M_{1,0}M_{1,1}$		2		1 F) 1,2	P _{1,3}		
$M_{2,0}$	M _{2,1}	$M_{2,2}$	M _{2,3}			P _{2,0}	P ₂ ,	1 F) 2,2	P _{2,3}		
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	M _{3 3}			P_{30}	P_3	1 F) 3 2	$P_{3,3}$		

Phase 0 Use for Block (0,0) (iteration 1)

N _{0,0}	$N_{0,1}$	N _{0,2}	N _{0,3}			ſ	N _{0,0}	$N_{0,1}$	Sh	ared I	Nemo	ry
$N_{1,0}$	$N_{1,1}$	$N_{1,2}$	$N_{1,3}$				N _{1,0}	$N_{1,1}$				
$N_{2,0}$	$N_{2,1}$	N _{2,2}	N _{2,3}					Т	-			
$N_{3,0}$	$N_{3,1}$	$N_{3,2}$	$N_{3,3}$					Ш				
				Sh	ared Me	mory					I	
$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$	M	_{0,0} M _{0,1}	\Rightarrow	<mark>ل ر</mark>	<mark>}0</mark> 1	P _{0,2}	P _{0,3}		
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$	M	1,0 M _{1,1}		<mark>⊇</mark> 1,0	₽ 1,1	P _{1,2}	P _{1,3}		
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$				P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}		
M_{30}	M_{31}	M_{32}	$M_{3,3}$				$P_{3.0}$	P _{3.1}	$P_{3.2}$	P _{3.3}		

Phase 1 Load for Block (0,0)

Phase 1 Use for Block (0,0) (iteration 0)

Phase 1 Use for Block (0,0) (iteration 1)

Execution Phases of Toy Example

	Phase	0		Phase 1			
thread _{0,0}	$egin{array}{c} \mathbf{M}_{0,0} \ \downarrow \ \mathbf{Mds}_{0,0} \end{array}$	$egin{array}{c} \mathbf{N}_{0,0} \ \downarrow \ \mathbf{Nds}_{0,0} \end{array}$	$\begin{array}{l} PValue_{0,0} += \\ Mds_{0,0}*Nds_{0,0} + \\ Mds_{0,1}*Nds_{1,0} \end{array}$	M _{0,2} ↓ Mds _{0,0}	$egin{array}{c} \mathbf{N_{2,0}} \\ \downarrow \\ \mathrm{Nds}_{0,0} \end{array}$	$\begin{array}{l} PValue_{0,0} += \\ Mds_{0,0} *Nds_{0,0} + \\ Mds_{0,1} *Nds_{1,0} \end{array}$	
thread _{0,1}	$egin{array}{c} \mathbf{M_{0,1}} \ \downarrow \ \mathbf{Mds_{0,1}} \end{array}$	$egin{array}{c} \mathbf{N_{0,1}} \\ \downarrow \\ \mathbf{Nds}_{1,0} \end{array}$	$\begin{array}{l} PValue_{0,1} += \\ Mds_{0,0}*Nds_{0,1} + \\ Mds_{0,1}*Nds_{1,1} \end{array}$	$\mathbf{M}_{0,3}$ \downarrow $\mathrm{Mds}_{0,1}$	$\begin{array}{c} \mathbf{N_{2,1}} \\ \downarrow \\ \mathbf{Nds}_{0,1} \end{array}$	$\begin{array}{l} PValue_{0,1} += \\ Mds_{0,0}*Nds_{0,1} + \\ Mds_{0,1}*Nds_{1,1} \end{array}$	
thread _{1,0}	$\begin{array}{c} \mathbf{M_{1,0}} \\ \downarrow \\ \mathbf{Mds_{1,0}} \end{array}$	$\begin{array}{c} \mathbf{N_{1,0}} \\ \downarrow \\ \mathbf{Nds}_{1,0} \end{array}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0} *Nds_{0,0} + \\ Mds_{1,1} *Nds_{1,0} \end{array}$	$\mathbf{M_{1,2}} \\ \downarrow \\ \mathbf{Mds}_{1,0}$	$\begin{array}{c} \mathbf{N_{3,0}} \\ \downarrow \\ \mathbf{Nds}_{1,0} \end{array}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0}^*Nds_{0,0} + \\ Mds_{1,1}^*Nds_{1,0} \end{array}$	
thread _{1,1}	$\begin{array}{c} \mathbf{M_{1,1}} \\ \downarrow \\ \mathbf{Mds_{1,1}} \end{array}$	$\begin{array}{c} \mathbf{N_{1,1}} \\ \downarrow \\ \mathbf{Nds_{1,1}} \end{array}$	$\begin{array}{l} PValue_{1,1} += \\ Mds_{1,0}*Nds_{0,1} + \\ Mds_{1,1}*Nds_{1,1} \end{array}$	$\mathbf{M}_{1,3} \\ \downarrow \\ Mds_{1,1}$	$N_{3,1}$ \downarrow $Nds_{1,1}$	$\begin{array}{l} PValue_{1,1} += \\ Mds_{1,0}^*Nds_{0,1} + \\ Mds_{1,1}^*Nds_{1,1} \end{array}$	

Execution Phases of Toy Example (cont.)

	Phase	0		Phase 1			
thread _{0,0}	$egin{array}{c} \mathbf{M}_{0,0} \ \downarrow \ \mathbf{Mds}_{0,0} \end{array}$	N _{0,0} ↓ Nds _{0,0}	$\begin{array}{l} PValue_{0,0} += \\ Mds_{0,0} *Nds_{0,0} + \\ Mds_{0,1} *Nds_{1,0} \end{array}$	$\mathbf{M}_{0,2}$ \downarrow $\mathrm{Mds}_{0,0}$	$egin{array}{c} \mathbf{N_{2,0}} \\ \downarrow \\ \mathrm{Nds}_{0,0} \end{array}$	$\begin{array}{l} PValue_{0,0} += \\ Mds_{0,0} *Nds_{0,0} + \\ Mds_{0,1} *Nds_{1,0} \end{array}$	
thread _{0,1}	$\begin{array}{c} \mathbf{M_{0,1}}\\ \downarrow\\ \mathbf{Mds_{0,1}} \end{array}$	$egin{array}{c} \mathbf{N_{0,1}} \\ \downarrow \\ \mathbf{Nds_{1,0}} \end{array}$	$\begin{array}{l} PValue_{0,1} += \\ Mds_{0,1} * Nds_{0,1} + \\ Mds_{0,1} * Nds_{1,1} \end{array}$	$\mathbf{M}_{0,3}$ \downarrow $\mathbf{Mds}_{0,1}$	$\begin{matrix} \mathbf{N}_{2,1} \\ \downarrow \\ \mathbf{N}ds_{0,1} \end{matrix}$	$\begin{array}{l} PValue_{0,1} += \\ Mds_{0,0} *Nds_{0,1} + \\ Mds_{0,1} *Nds_{1,1} \end{array}$	
thread _{1,0}	$\begin{array}{c} \mathbf{M_{1,0}} \\ \downarrow \\ \mathbf{Mds_{1,0}} \end{array}$	$\begin{array}{c} \mathbf{N_{1,0}} \\ \downarrow \\ \mathbf{Nds}_{1,0} \end{array}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0}*Nds_{0,0} + \\ Mds_{1,1}*Nds_{1,0} \end{array}$	$\mathbf{M_{1,2}} \\ \downarrow \\ \mathbf{Mds}_{1,0}$	$egin{array}{c} \mathbf{N_{3,0}} \ \downarrow \ \mathbf{Nds_{1,0}} \end{array}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0}^*Nds_{0,0} + \\ Mds_{1,1}^*Nds_{1,0} \end{array}$	
thread _{1,1}	$\mathbf{M}_{1,1} \\ \downarrow \\ Mds_{1,1}$	$\begin{array}{c} \mathbf{N_{1,1}} \\ \downarrow \\ Nds_{1,1} \end{array}$	$\begin{array}{l} PValue_{1,1} += \\ Mds_{1,0}*Nds_{0,1} + \\ Mds_{1,1}*Nds_{1,1} \end{array}$	$\mathbf{M_{1,3}} \\ \downarrow \\ Mds_{1,1}$	$\begin{array}{c} \mathbf{N_{3,1}} \\ \downarrow \\ \mathrm{Nds}_{1,1} \end{array}$	$\begin{array}{l} PValue_{1,1} += \\ Mds_{1,0}^*Nds_{0,1} + \\ Mds_{1,1}^*Nds_{1,1} \end{array}$	

time

Shared memory allows each value to be accessed by multiple threads

Barrier Synchronization

- Synchronize all threads in a block
 - ____syncthreads()
- All threads in the same block must reach the __syncthreads() before any of the them can move on
- Best used to coordinate the phased execution tiled algorithms
 - To ensure that all elements of a tile are loaded at the beginning of a phase
 - To ensure that all elements of a tile are consumed at the end of a phase

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>