
Accelerated Computing

GPU Teaching Kit

Tile Boundary Conditions
Module 8.3 – Parallel Computation Patterns (Stencil)

2

Objective
– To learn to write a 2D convolution kernel

– 2D Image data types and API functions
– Using constant caching
– Input tiles vs. output tiles in 2D
– Thread to data index mapping
– Handling boundary conditions

3

2D Image Matrix with Automated Padding
• It is sometimes desirable to pad each row of a

2D matrix to multiples of DRAM bursts
• So each row starts at the DRAM burst boundary
• Effectively adding columns
• This is usually done automatically by matrix allocation

function
• Pitch can be different for different hardware

• Example: a 3X3 matrix padded into a 3X4 matrix

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2
height

width

pitch

Padded
elements

Height is 3
Width is 3
Channels is 1 (See MP Description)
Pitch is 4

3

4

Row-Major Layout with Pitch

M0,2

M1,1

M0,1M0,0

M1,0 M1,2

M0,2M0,1M0,0 M1,1M1,0 M1,2 M2,1M2,0 M2,2

M2,1M2,0 M2,2

M

Row*Pitch+Col = 2*4+1 = 9
M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11

M

Padded
elements

5

Image Matrix Type in this Course

// Image Matrix Structure declaration
//
typedef struct {

int width;
int height;
int pitch;
int channels;
float* data;

} * wbImage_t;

This type will only be used in the host code of the MP.

6

wbImage_t API Function for Your Lab
wbImage_t wbImage_new(int height, int
width, int channels)
wbImage_t wbImport(char * File);

void wbImage_delete(wbImage_t img)

int wbImage_getWidth(wbImage_t img)
int wbImage_getHeight(wbImage_t img)
int wbImage_getChannels(wbImage_t img)
int wbImage_getPitch(wbImage_t img)

float *wbImage_getData(wbImage_t img)

For simplicity, the pitch of all matrices are set to be
width * channels (no padding) for our labs.

The use of all API functions has been done in the provided host code.

7

Setting Block Size
#define O_TILE_WIDTH 12
#define BLOCK_WIDTH (O_TILE_WIDTH + 4)

dim3 dimBlock(BLOCK_WIDTH,BLOCK_WIDTH);
dim3 dimGrid((wbImage_getWidth(N)-1)/O_TILE_WIDTH+1,

(wbImage_getHeight(N)-1)/O_TILE_WIDTH+1, 1)

In general, BLOCK_WIDTH should be
O_TILE_WIDTH + (MASK_WIDTH-1)

8

Using constant memory and caching for Mask
– Mask is used by all threads but not modified in

the convolution kernel
– All threads in a warp access the same locations at each

point in time
– CUDA devices provide constant memory

whose contents are aggressively cached
– Cached values are broadcast to all threads in a warp
– Effectively magnifies memory bandwidth without

consuming shared memory
– Use of const __restrict__ qualifiers for the

mask parameter informs the compiler that it is
eligible for constant caching, for example:

__global__ void convolution_2D_kernel(float *P,
float *N, height, width, channels,
const float __restrict__ *M) {

9

Shifting from output coordinates to input coordinate
int tx = threadIdx.x;
int ty = threadIdx.y;
int row_o = blockIdx.y*O_TILE_WIDTH + ty;
int col_o = blockIdx.x*O_TILE_WIDTH + tx;

int row_i = row_o - 2;
int col_i = col_o - 2; row_o for

Thread (0,0)

row_i for
Thread (0,0)

10

Taking Care of Boundaries (1 channel example)

if((row_i >= 0) && (row_i < height) &&
(col_i >= 0) && (col_i < width)) {
Ns[ty][tx] = data[row_i * width + col_i];

} else{
Ns[ty][tx] = 0.0f;

}

Use of width here is OK since
pitch is set to width for this
MP.

11

Some threads do not participate in calculating output. (1 channel example)

float output = 0.0f;
if(ty < O_TILE_WIDTH && tx < O_TILE_WIDTH){

for(i = 0; i < MASK_WIDTH; i++) {
for(j = 0; j < MASK_WIDTH; j++) {
output += M[i][j] * Ns[i+ty][j+tx];

}
}

12

Some threads do not write output (1 channel example)

if(row_o < height && col_o < width)
data[row_o*width + col_o] = output;

You need to write the kernel for a 3-channel (RGB) image.
See more details in the Lab MP Description.

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 8.3 – Parallel Computation Patterns (Stencil)
	Objective
	2D Image Matrix with Automated Padding
	Row-Major Layout with Pitch
	Image Matrix Type in this Course
	wbImage_t API Function for Your Lab
	Setting Block Size
	Using constant memory and caching for Mask
	Shifting from output coordinates to input coordinate
	Taking Care of Boundaries (1 channel example)
	Some threads do not participate in calculating output. (1 channel example)
	Some threads do not write output (1 channel example)
	Slide Number 13

