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Objective
– To learn to write a 2D convolution kernel

– 2D Image data types and API functions
– Using constant caching
– Input tiles vs. output tiles in 2D
– Thread to data index mapping
– Handling boundary conditions
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2D Image Matrix with Automated Padding
• It is sometimes desirable to pad each row of a 

2D matrix to multiples of DRAM bursts 
• So each row starts at the DRAM burst boundary
• Effectively adding columns
• This is usually done automatically by matrix allocation 

function
• Pitch can be different for different hardware

• Example: a 3X3 matrix padded into a 3X4 matrix
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Row-Major Layout with Pitch
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Image Matrix Type in this Course

// Image Matrix Structure declaration
// 
typedef struct {

int width;
int height;
int pitch;
int channels;
float* data;

} * wbImage_t;

This type will only be used in the host code of the MP.
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wbImage_t API Function for Your Lab 
wbImage_t wbImage_new(int height, int
width, int channels)
wbImage_t wbImport(char * File);

void wbImage_delete(wbImage_t img)

int wbImage_getWidth(wbImage_t img)
int wbImage_getHeight(wbImage_t img)
int wbImage_getChannels(wbImage_t img)
int wbImage_getPitch(wbImage_t img)

float *wbImage_getData(wbImage_t img)

For simplicity, the pitch of all matrices are set to be 
width * channels (no padding) for our labs.

The use of all API functions has been done in the provided host code. 
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Setting Block Size
#define O_TILE_WIDTH 12
#define BLOCK_WIDTH (O_TILE_WIDTH + 4)

dim3 dimBlock(BLOCK_WIDTH,BLOCK_WIDTH);
dim3 dimGrid((wbImage_getWidth(N)-1)/O_TILE_WIDTH+1,   

(wbImage_getHeight(N)-1)/O_TILE_WIDTH+1, 1)

In general, BLOCK_WIDTH should be 
O_TILE_WIDTH + (MASK_WIDTH-1)
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Using constant memory and caching for Mask
– Mask is used by all threads but not modified in 

the convolution kernel
– All threads in a warp access the same locations at each 

point in time
– CUDA devices provide constant memory 

whose contents are aggressively cached
– Cached values are broadcast to all threads in a warp
– Effectively magnifies memory bandwidth without 

consuming shared memory
– Use of const __restrict__ qualifiers for the 

mask parameter informs the compiler that it is 
eligible for constant caching, for example:

__global__ void convolution_2D_kernel(float *P,  
float *N, height, width, channels,     
const float __restrict__ *M) {
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Shifting from output coordinates to input coordinate 
int tx = threadIdx.x;
int ty = threadIdx.y;
int row_o = blockIdx.y*O_TILE_WIDTH + ty;
int col_o = blockIdx.x*O_TILE_WIDTH + tx;

int row_i = row_o - 2;
int col_i = col_o - 2; row_o for 

Thread (0,0)

row_i for 
Thread (0,0)
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Taking Care of Boundaries (1 channel example)

if((row_i >= 0) && (row_i < height) && 
(col_i >= 0)  && (col_i < width)) {
Ns[ty][tx] = data[row_i * width + col_i];

} else{
Ns[ty][tx] = 0.0f;

}

Use of width here is OK since 
pitch is set to width for this 
MP.
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Some threads do not participate in calculating output. (1 channel example)

float output = 0.0f;
if(ty < O_TILE_WIDTH && tx < O_TILE_WIDTH){

for(i = 0; i < MASK_WIDTH; i++) {
for(j = 0; j < MASK_WIDTH; j++) {
output += M[i][j] * Ns[i+ty][j+tx];

}
}
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Some threads do not write output (1 channel example)

if(row_o < height && col_o < width)
data[row_o*width + col_o] = output;

You need to write the kernel for a 3-channel (RGB) image.
See more details in the Lab MP Description.
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