
Android: User Interface / Supporting Different Devices
https://developer.android.com/training/basics/supporting-devices/index.html

Ferruccio Damiani

Università di Torino
www.di.unito.it/~damiani

Mobile Device Programming
(Laurea Magistrale in Informatica, a.a. 2018-2019)

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 1 / 16

https://developer.android.com/training/basics/supporting-devices/index.html
www.di.unito.it/~damiani


Outline

1 Supporting Different Devices

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 2 / 16



Outline

1 Supporting Different Devices

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 3 / 16



Three mains issues

Supporting Different Languages and Cultures
I How to support multiple languages and cultures with alternative string resources.

Supporting Different Screens

How to optimize the user experience for different screen sizes and densities.

Supporting Different Platform Versions
I How to use APIs available in new versions of Android while continuing to support older

versions of Android.

The following slides focus on “Supporting Different Screens”:

Although the system performs scaling and resizing to make your application work on different screens, you
should make the effort to optimize your application for different screen sizes and densities.

In doing so, you maximize the user experience for all devices and your users believe that your application
was actually designed for their devices—rather than simply stretched to fit the screen on their devices.

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 4 / 16



Some guidelines

Use wrap content and match parent
I Use ConstraintLayout

Use configuration qualifiers
I Create a new directory in your project’s res/ and name it using the format:

<resources name>-<qualifier>
F <resources name> is the standard resource name (such as drawable or layout)
F <qualifier> is a configuration qualifier specifying the configuration for which these resources

are to be used (such as hdpi or xlarge)

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 5 / 16



Configuration qualifiers that allow you to provide special resources for different screen configurations.

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 6 / 16



Density1.

px = dp × (dpi / 160)

Android says that Launcher icons on a mobile device must be 48 × 48 dp

1px = actual pixels on the screen. dp = density-independent pixel. dpi = dots per inch
Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 7 / 16



Alternative way (since Android 3.2)

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 8 / 16



Examples of typical screen widths (smallestWidth):

320dp: typical phone screen
I QVGA handset (240x320 ldpi)
I hanset (320x480 mdpi)
I high-density hanset (480x800 hdpi)

480dp: tablet/hanset (480x800 mdpi)

600dp: 7” tablet (600x1024 mdpi)

720dp: 10” tablet (720x1280 mdpi, 800x1280 mdpi)

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 9 / 16



Example [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinDifferentScreen.git]

layout/activity main.xml

1 <?xml version="1.0" encoding="utf-8"?>

2 <<android.support.constraint.ConstraintLayout

3 ...>

4 ...

5 <TextView

6 android:layout_width="wrap_content"

7 android:layout_height="wrap_content"

8 android:text="@string/hello"

9 android:id="@+id/textView1"

10 android:textStyle="bold"

11 android:textSize="20dp"

12 android:textColor="@color/colorText1"

13 ... />

14 ...

15 </<android.support.constraint.ConstraintLayout>

values-normal/strings.xml

1 <?xml version="1.0" encoding="utf-8"?>

2 <resources>

3 <string name="hello">Hello Normal World! </string>

4 </resources>

values-xlarge/strings.xml

1 <?xml version="1.0" encoding="utf-8"?>

2 <resources>

3 <string name="hello">Hello Extra Large World! </string>

4 </resources>

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 10 / 16



Different options

Each layout can also be defined in an XML file in the res/layout
I Layout aliases are then used to assign them to each configuration

File res/values/layouts.xml

1 <resources>

2 <item name="main_layout" type="layout">

3 @layout/onepane_with_bar</item>

4 <bool name="has_two_panes">false</bool>

5 </resources>

File res/values-sw600dp-land/layouts.xml

1 <resources>

2 <item name="main_layout" type="layout">

3 @layout/twopanes</item>

4 <bool name="has_two_panes">true</bool>

5 </resources>

FragmentActivity is a special activity to handle fragments

1 class MyActivity : FragmentActivity() {

2 var mIsDualPane: Boolean = false

3
4 override fun onCreate(savedInstanceState: Bundle?) {

5 super.onCreate(savedInstanceState)

6 setContentView(R.layout.first)

7
8 val secondView: View? = findViewById(R.id.second)

9 mIsDualPane = secondView?.visibility === View.VISIBLE

10 }

11 }

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 11 / 16



Manifest and devices

We must also declare in the manifest file which screens your application supports

Through <supports-screens> manifest element

If your application supports all screen sizes supported by Android (as small as 426dp ×
320dp), then you don’t need to declare this attribute, because the smallest width your
application requires is the smallest possible on any device

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 12 / 16



Bitmaps

The system uses any size- or density-specific resources from your application and displays them
without scaling

If resources are not available in the correct density, the system loads the default resources
and scales them up or down as needed

The system assumes that default resources (those from a directory without configuration
qualifiers) are designed for the baseline screen density (mdpi)

A bitmap designed at 50 × 50 pixels for an mdpi screen is scaled to 75 × 75 pixels on an
hdpi screen (if there is no alternative resource for hdpi)

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 13 / 16



Density independence

An application achieves ”density independence” when it preserves the physical size (from the user’s point of view) of user
interface elements when displayed on screens with different densities.
The Android system helps your application achieve density independence in two ways:

The system scales dp units as appropriate for the current screen density

The system scales drawable resources to the appropriate size, based on the current screen density, if necessary

Example application without support for different densities, as shown on low, medium, and high-density screens.

Example application with good support for different densities (it’s density independent), as shown on low, medium, and high density screens.

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 14 / 16



Guidelines

Use wrap content, match parent, or the dp unit for layout dimensions

Do not use hard-coded pixel values in your application code

Do not use AbsoluteLayout (deprecated)

Use size and density-specific resources

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 15 / 16



For example, the following application resource directories provide different layout designs for different screen sizes and
different drawables. Use the mipmap/ folders for launcher icons.

Ferruccio Damiani (Università di Torino) Android: Multiple Devices Mobile Device Programming 16 / 16


	Supporting Different Devices

