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In this paper we initiate a new area of study dealing with the best way to search
a possibly unbounded region for an object. The model for our search algorithms is
that we must pay costs proportional to the distance of the next probe position
relative to our current position. This model is meant to give a realistic cost measure
for a robot moving in the plane. We also examine the effect of decreasing the
amount of a priori information given to search problems. Problems of this type are
very simple analogues of non-trivial problems on searching an unbounded region,
processing digitized images, and robot navigation. We show that for some simple
search problems, knowing the general direction of the goal is much more
informative than knowing the distance to the goal. " 1993 Academic Press, Inc.

1. INTRODUCTION

The problems considered in this paper were suggested by general
problems in graph searching [ 15], finding optimal paths [3, 17], boundary
detection in digital images [7], and robotic navigation. When searching a
graph or maze we usually assume that we have some representation of the
maze or graph. However, in the real world, we may not have a complete
representation, as is reasonable, for example, if we wish to have a robot
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explore an unknown building or if we are playing a computer maze game.
In cases of incomplete information in potentially unbounded domains how
can we best search the domain? Further, some non-geometric searching
problems can be phrased as geometric search problems in unbounded
domains. For example, consider the problem of searching sequentially for
a record which is known to be on one of m large tapes given that we have
only one tape drive and that we must rewind the current tape before
searching any other. How can we minimize the time needed to find the
record assuming that the tapes are so large that it is impractical to search
any one tape completely before searching any other tape? (This problem is
solved in Section 2.)

Bentley and Yao [4] constructed an almost optimal algorithm to find an
integer chosen from an unbounded set of positive integers. The problems
we consider in this paper differ from theirs in that we have to pay costs
proportional to the distance of a probe whereas they assume random
access to any location. Karp et al. [15] consider “wandering RAMs” with
bounded memory searching binary trees. For them the number of node
visits was the cost measure; this problem is closer in spirit to the class of
problems we consider here.

All problems considered in this paper are of the following form: we are
searching for an object in some space under the restriction that for each
new “probe” we must pay cests proportional to the distance of the probe
position relative to our current probe position and we wish to minimize
this cost. This is meant to model the cost in real terms of a robot (or
human) searching for an object when the mobile searcher must move about
to find the object.

To make this concrete, suppose that we are at the origin in the plane and
we are searching for a line. Suppose that the line is distance » steps (we use
steps as our metric) away from the origin.

+ Given a normal to the line we can find the line in » steps.

+ Given the line’s distance and slope we can find the line in 3n steps.

» Given the line’s distance and that the line is horizontal or vertical
we can find the line in 3,/2n~4.24n steps [1].

+ Given the line’s distance we can find the line in (1 + \/3 +Tn/6)n=
6.39n steps [13].

» Given the line’s slope we can find the line in 9n steps.

* Given that the line is horizontal or vertical we can find the line in
13.02n steps [1].

e Given nothing at all we can find the line in 13.81#x steps [1].

Except for the last two, all of the above results are provably optimal up to
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lower order terms. These results are representative of the gradation in cost
as information about the target decreases.

Searching for a line of arbitrary slope a known distance away in
the plane was posed by Bellman [3] and was solved by Isbell [13];
Melzak [16] has claimed a solution, but this solution is incorrect, giving
a bound of 6.459... instead of 6.397.... The first two results are trivial; we
present the fifth result and some generalizations in the next section, and
summarize the remaining results in Section 4.

In this paper we begin with search problems in the plane. We distinguish
between the cases in which the robot knows the distance (measured in
steps) to the object and the cases in which it does not know the distance.
In the first case, our bounds are functions of the known distance #n; in the
second case, our bounds are ratios of the distance walked divided by the
(unknown) distance to the object, #. In all cases we assume that the robot
starts at the origin; that the robot can only recognize the object when
directly upon it; and that the object is an integer number of steps away
from the robot (none of these restrictions lose generality). Finally, in all
but one problem, we are only concerned with the worst case.

2. SEARCHING FOR A POINT ON A LINE

Suppose that the robot needs to find some distinguished point on a line.
Assume that the point is n steps away along the line. If the robot knows
that the point is to its left (or to its right), whether or not it knows the
actual distance to the point, then it can optimally find the point in n steps.
If the robot knows that the point is # steps away but not whether the point
is to its left or right, then it is easy to show that the obvious algorithm is
also optimal: Go left for » steps, then turn and go right for 2n steps.

2.1. Point Arbitrarily Far Away

Suppose that the robot does not know how far away the point is. What
is the minimum number of steps it must make to find the point as a func-
tion of #? For this first, and simplest, problem we spend some time
developing the basic ideas and manipulations since they are used several
times.

Any algorithm to solve this problem can be described as a function, f,
where f(i) is the number of steps it makes to the left (or right) before the
ith turn and where the odd terms are the number of steps to the left and
the even terms are the number of steps to the right as measured from the
origin. That is, starting at the origin, the robot walks /(1) steps to the left,
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turns and returns to the origin, then walks f(2) steps to the right, etc.
Observe that if the robot is to find the point, then f must be such that

fiy=fli—2)+1 Vi1, where f(—1)=f((0)=0.

Linear Spiral Search. Execute cycles of steps where the function deter-
mining the number of steps to walk before the ith turn starting from the
origin is

fliy=2 izl

(We will see later why this algorithm is called linear spiral search.) The
total distance walked is 2 Y L'°8"J*1 2/ + p_ which is no more than 9n steps.
It is straightforward to show that this bound of 9n steps is achieved by an
infinite class of algorithms.

THEOREM 2.1. Linear Spiral Search is optimal up to lower order terms.

Proof. Let the point be found after the (i + 1)th turn and before the
(i + 2)th turn for some i. That is, let i be such that f(i}+ 1 <n< f(i+2).
The worst case ratio of the total distance walked divided by the distance
to the point is then

max<2z;:i (j)+f(i)+1)=l+2max<2}:}f(j)) "
i=1 f)+1 fy+1 )

izl

Since we already know that a 9n algorithm is possible suppose that f is
such that
o1 fU)

)+ 1 <c Vizl, (2)

where ¢ is a constant. A lower bound on ¢ yields a lower bound of
(2¢+ 1) n steps for the problem (from Eq. (1)). We now show that ¢ must
be at least 4, from which it follows that any 9» algorithm is optimal up to
lower order terms.

First, from Inequality (2) it follows that

c>1+f(i+ DS+ 1)

Since f is strictly monotone increasing for even or odd / we can choose

643 106 2-6
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a sufficiently large i so that 3!_, f(j)—c>f(i)+ 1. For a fixed and
sufficiently large i

i+k+1

c[fli+k)y+11= Y f())
=1
ithk+1
ofli+k)yz Y f(H—c
j=1
i k+1
23 f(D—c+ X fli+))
ji=1 Jj=1
and thus ¢ must also satisfy the following infinite set of inequalities:
FO+ 1+ S+ )= fi+k)

c—1

Sli+k)y>

Yk = 1.

Together with the previous inequality on c¢ this system of inequalities may
be solved inductively for each & by deleting the f(i + k) term on the right
hand side, substituting the derived bound on f(i + k) into the inequality for
f(i+k—1) and using that bound on f(i + k — 1), and so on.

As an example, here are the first two steps of this bounding process. For
ease of description we change variables to the normalized function
h(Y=£()/(f(D)+1). For k=0 we have that

c>1+h(i+1)>1

Therefore, ¢ > 1. This implies a lower bound of (2¢ + 1) n=13n.
For k=1 we have that

1+h(i+2 1
i+ 1)>FAED T

—1 c—1
Therefore,

1
C>l+h(i+l)>1+—1.
C_

This implies that
2 —2¢>0.

Therefore, ¢ > 2 (implying a lower bound of 5»). And so on inductively.
In general, ¢ must be such that the following polynomials are all positive:

= (k—j ‘
glk)=c* 1 Y, ( j’)(—l/c)f.
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The minimal value of ¢ for which each of these polynomials is greater than
zero bounds ¢ from below.
These polynomials obey the recurrence

glk)=cglk—1)—cg(k—-2)

which has characteristic equation

it—ci+c=0.
This equation has roots
ct./c2—4c
> .

If the roots are distinct then
) 1 <<c+,/62—4c>““ <c—,/c2—4c>"+’>
glk)= 5
¢/t —4c 2 2

and this function is positive for all k>0 if and only if ¢ > 4.
Alternately, if the roots are equal (¢ =4) then

gk) = (k+1)2++2

and this function is positive for all £ > 0.
Therefore any algorithm to find a point on a line an unknown distance,
n, away must take at least 9 steps. |

Note that this is a lower bound on the constant multiple of the distance
walked to the actual distance to the point. In fact there exist algorithms
which take no more than 97— @(ig n)’ steps for any /.

2.2. The Average Case for a Point a Bounded Distance Away

Suppose that the robot knows that the point is within n steps and that
it is distributed uniformly about the interval of length 2n centered on the
origin. Then the naive algorithm is also the best average case algorithm,
with an average distance of 3n/2. However, if the robot knows that the
point is likely to be near the origin, then it might want to turn after a
smaller number of steps, since if it goes very far from the origin the
probability of finding the point further on is much less than that if finding
it near the origin on the other side. We show below that the optimal
average case algorithm for most distributions, including bounded domains,
has an infinite number of turning points! Intuitively, this happens because
there is always a point at which it is better to turn back and look at ranges
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on the other side of the origin where the probability of finding the point is

greater.
For clarity in the following proof, we normalize over the range [ —1, 1].

THEOREM 2.2. Ler f(x) be a density function over the range [—1,1]
with right and left tail distributions F (1), F,(t). Suppose we have points —1,
and t, such that

F.(1, l—t,
—'—(—')—<———‘ where 0<t, <t,<l.
F,(—1) 1+, )

If the last turn was ar the point —1t,, then the average distance travelled if
we turn at the point t, is less than the average distance travelled if we do not
turn at the point t,.

Proof. Suppose we are at the point ¢, proceeding right, and the last
turn was at the point —7,. That is, we have not found the point yet. Let
d be the remaining distance we travel to find the point p. Thus 4 depends
on the search strategy we use, as well as the probability distribution of p.
The expected distance traveled if we turn at ¢, is

Er[d]l=E;[dlp>6L]F L]+ Er[dlp<—t,1F,(—1,)

Note that the only possibilities under the stated assumptions are — 1 <p <
—t; and t,<p<l. But E;ld|p<—t,]=0,+L+E[—1t,—plp<—1,]
and E,[d|p>t,1=2(1+t)+ E[p—1.] p>1,] (assuming that we only
turn at —1 on failing to find the point to the left of —1¢;). Thus

Eldl=(t,+ 6+ E[—t,—plp<~1,])
XF (—1)+Q2+2+ E[p—1:] p>1,]) Fo (1)
Alternatively, if we do not turn then by a similar breakdown
Exldl=Q+t,—t,+E[—t,—plp<—1t,])
xFAA—1)+E[p—t:lp>1t,] F (15)
It is better to turn if E,[d] < E,[d]; that is, when
(hh+L+E[—t)—plp<—t,DF,(—1))
+ (2, + 2+ E[p—t:lp>1,]) F.(15)
<R+t —1,+E[-t)—plp<—-t,])F,(—1))
+E[p—1t:1 p> 1] Fi(12),

from which the result follows by simple manipulation. J
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COROLLARY 2.1. If for each O <1t <1, there exists a t, such that the
conditions of the previous theorem are satisfied, and the density function f(x)
is symmetric with respect to the origin, then the optimal average case search
algorithm has infinitely many turning points.

Proof. If there exist such points 1, and ¢, then there also exists a point
1 >ty> 1, such that

F/([3)< 1—1¢,
F.(ty) 141,

because F,(1)=F,(1). Repeating this argument we obtain an infinite
number of turns. |

A similar result may be proved for any distribution depending on the
characteristics of the tail distributions. Suppose, for example, that the point
has a triangular distribution given by

n—x

2
n

V—n<gx<n.

plx)=

In this case, the search space is finitely bounded, yet the theorem can easily
be seen to apply.

2.3. Searching for a Point in m Concurrent Rays

Suppose that the robot is at the meeting point of » rays and that the
robot has to find a point at distance » away on some one of the rays with
the restriction that the robot can only travel along a ray (for example, the
rays may represent rails or corridors). If the robot knows the distance to
the point then it has an optimal (2m — 1) # algorithm as can be shown by
a straightforward argument.

Suppose that the robot does not know the distance to the point. f m=1
then the robot finds the point in n steps. If m=2 then we have the
equivalent of searching for a point on a line (Section 2.1) and so the robot
finds the point in 9#n steps.

It 1s straightforward to show that the robot need only visit the rays
cyclically since there is no advantage to favouring one over another. No
other order can improve the worst case. Let the rays be numbered in order
of visits (assuming a cyclic visiting pattern}j I, 2, ..., m, where m = 2. Let f(/)
be the distance moved counting from the origin before the ith turn. In
order to guarantee finding the point, f must be such that

fiyzfli—-m)+1 Viz 1 where f(—/)=0V0<j<m—1

Generalized Linear Spiral Search. Execute cycles of steps where the
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function determining the number of steps to walk before the ith turn
starting from the origin is

fli)= (—«"’ ) Vi1,
m—1
The worst case ratio is then

n

m

l+2——
+ (m__l)m—l

(for large m).

Thus to search two concurrent rays (equivalently, a line) we use
increasing powers of 2, to search three concurrent rays we use increasing
powers of 3, and so on. Note that if the rays are ordered uniformly in the
plane then the turning points of generalized linear spiral search describe the
intersection points of a logarithmic spiral (hence its name). Finally, recall
that we assume the point to be an integral number of steps away, so the
last turn may be a fraction of a step in excess.

THEOREM 2.3. Generalized Linear Spiral Search is optimal up to lower
order terms.

Proof. Let the point be found after the (i+m— 1)th turn and before
the (i + m)th turn. The worst case ratio is

1+2r‘_n?a]x( Zﬁ SOV + 1)>~

J=1
Let ¢ be a constant such that

i+m—1

Y SO+ D<e  Vizl
Jj=1
As in the lower bound analysis of the straight line search problem it is
possible to construct an infinite sequence of functions of ¢ each of which
must be positive. The positivity of each function places bounds on how
small ¢ can be.
The functions are

z [k —2—(m—1)j
N Gl

/=0

) (—1/c).

These functions obey the recurrence

glky=cglk —1)—c" 'glk —m).
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This recurrence has characteristic equation
Am iy emt =0

This equation has a positive real double root at c=m"/(m—1)""",
namely 4 =c(m— 1)/m. All other roots are negative or imaginary. |

3. SEARCHING FOR A POINT IN A LATTICE

Suppose that a robot has to find a point in a rectangular grid in the
plane and that the robot can move left, right, up, or down in one step. We
can think of this as an exploration of a simple rectangular maze with no
barriers. Call the points of the lattice which lie n steps from the origin the
reference diamond. This is of course a circle under the ¥, metric. We say
a point is within a reference diamond # if it is at distance &, 0 <k <n We
use compass bearings (north N, east E, south S, and west W} to describe
algorithms.

If the robot knows that the point is exactly » steps away, then it moves
directly to the northernmost point at distance n, then follows a zigzag path
that visits all the nodes at distance » in sequence. The total number of steps
is 9n — 2, which is optimal.

Suppose that the robot does not know how far away the point is. As a
function of the unknown distance n, the worst case behavior of any algo-
rithm is evoked by an adversary that places the point at the last point
visited at distance # by the algorithm. Counting the number of points in the
reference diamond, we get a trivial Jower bound of 2n? 4 2n steps for any
algorithm.

Suppose, without loss of generality, that any algorithm always begins by
going north. The simple spiral, which fills in a square centered on the
origin, requires 4n” + 3n steps to visit the last square at distance n, directly
west of the origin. (It visits all the points in a 27+ 1 by 2n+ 1 square,
except those directly north of the point at distance n west of the origin.)
This is nearly twice the lower bound, because the reference diamond
encloses about half of this square.

We can modify the spiral to yield a path that more closely follows the
boundary of a reference diamond on each cycle. However, one problem we
inevitably encounter is that we must visit points either further or closer to
the origin between every pair of points at distance n. That is, each cycle of
the spiral must visit nodes of two (at least) adjacent reference diamond
boundaries. This fact is used to establish the following improved lower
bound.
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THEOREM 3.1.  Any algorithm which can find a point at some unknown
finite distance n in the lattice requires at least 2n* 4 4n + 1 steps.

Proof. Consider any algorithm /. Let 4(n) be the number of steps
required by &/ to visit all points at distance n. We define /', (n) and f,(n)
respectively to be the number of poins on the (n + 1)th reference diamond
and the number of points beyond the (n + 1)th reference diamond visited
by « before the last visit to a point in reference diamond n.

We note that to visit m points, the algorithm must take at least m — 1
steps. Since there are 2(n—1)*+2(n—1)+1 points within reference
diamond # — 1, we have

An—1)=22n—1) 2 4+2(n—1)+f, (n=1)+f,(n—1)

where the inequality may occur if some point is visited more than once. We
consider the two cases where f, (n—1)22n—1and f, (n—1)<2n—-2. If
fi.(n—=1)=22n—1, then

An—1)22(n—1)*+4(n—-1)+1

and this meets our claim for distance n—1.

On the other hand, suppose f, (n — 1)< 2n — 2. After the last visit to a
point at distance # — 1, there remain 4n—f, (n— 1) points unvisited in the
nth reference diamond. Observing that it is impossible to visit any two
points of a reference diamond without visiting at least one point between
them, we see that visiting these remaining points requires at least
2(4n—f, (n—1))—1 steps. Thus,

AnyzAn—-1)+2(4n—f, (n—1))—1
22n—1)Y4+2n—1)+f, (n—1)
+f(n—1)+8n—=2f (n—1)—1
>2n+6n—1—f,(n—1)
=2 +4n+ 1. |

An examination of this proof leads to several observations which lead to
interesting consequences. The first observation is that we achieved the
lower bound by a balancing act which was optimized by choosing
[, (n)=2n. This implies that to get close to the lower bound, an algorithm
should attempt to visit about half of the points at distance » + | between
visits to those at », and between the remaining points at # we should visit
points at distance n — 1. Clearly, we should attempt to do the intermediate
visits to the closer points first. These concepts lead to the algorithm
illustrated in Fig. la.
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F1G. 1. Balanced algorithms for better worst case behavior: (a) balanced algorithm,
NSESWSNWN; (b) flipped balanced algorithm, NESSWSWNN.

The sequence of directions is indicated for the visits to the points at
distance 1. Note that alternate points on the line of points with horizontal
coordinate zero are visited twice, including the origin. The idea is that
between visits to points at distance one in the northern hemisphere, we visit
points at distance zero, while in the southern hemisphere, we visit points
at distance two. Similarly, between visits to points at distance three, in the
northern hemisphere we visit points at distance two, while in the southern
hemisphere we visit points at distance four.

In Fig. 1a, the circled points indicate the last points visited at the dis-
tance indicated by the dashed lines. Note that odd distances are completed
to the west of the origin, while even distances are completed to the east,
another indication of the balancing used in this algorithm. To continue the
algorithm from any circled point, move out to the next level, and visit the
points on the appropriate two sides of the reference diamond to the next
circled point. To complete the nth distance set takes 4n + 3 steps, and thus
by induction the algorithm requires 2n® + 51+ 2 steps before visiting the
last point at distance n.

The second observation about the proof of Theorem 3.1 is that from the
treatment of £, (n) it seems obvious that for the worst case analysis we may
choose fi(n)=0. In the previous algorithm, we only alternate between
adjacent levels. Nevertheless, revisiting points seems wasteful. Extension of
the pattern in Fig. 1b yields a 2n* + 51 + 2 step algorithm which does not
repeat points. The sequence of steps for visiting the points at distance one
is indicated in the caption. This algorithm can be derived from the previous
algorithm by “flipping” the paths which repeat points so that the inter-
mediate visit is to a point at the next distance out, and then avoiding this
point on the next cycle. In the event that the goal is located at one of these
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“flipped out” points, this algorithm is clearly superior to the previous
algorithm, but the worst case function of » is the same.

Third, we observe that the proof does not make use of induction. That
is, for points at distance less than n— | in the proof, only the trivial lower
bound is used. So far our lower bound and our best algorithm differ by
approximately »n. The question then arises, can we increase the lower bound
by using the lower bound for points at distance less than » — 1 inductively?

Interestingly, if we are given the parity of the point’s distance then we can
improve the search by » steps! That is, we can get a pair of algorithms
which make 2n? +4n 4+ n mod 2 steps by exploring the appropriate pair of
levels at each step. Either of these algorithms visits al/l points within any
distance n. These algorithms illustrate that this inductive approach is not
likely to improve the lower bound.

We illustrate the initial steps of these algorithms in Fig. 2. The algorithm
for odd n illustrated in Fig. 2a optimally visits all points at distance 1 in 7
steps using the indicated sequence, terminating at the circled point at
distance one. Note that it re-visits the origin three times. The last point
visited at distance n for odd # is at the western tip of the reference diamond.
After visiting this point, the algorithm proceeds WNE... visiting the points
at distance n+2 and n+ 1 until reaching the western most tip of the
(n+2)th diamond. Completion of the cycle which visits the points at
distance »n for odd n requires 8n steps. Letting n=2k + 1, the number of
steps required to visit all within distance n is 7+ Y. *_, 8(2i+1). This
simplifies to 2n* + 4n + 1 when n is odd. For even n, the algorithm visits the
last unvisited point at distance » just three steps before completing the

~

S
F1G. 2. Qdd and even spiral algorithms: (a) the odd algorithm, NSEWSNW; (b) the even
algorithm, NESEWSWSNWNWENEN.
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cycle for reference diamond » + 1. Using a similar argument, the algorithm
takes 2n? + 8n + 4 steps to visit the last point at distance n.

The algorithm for even # is illustrated in Fig. 2b. The first cycle is given,
which visits all points within distance 2 in 16 steps. The cycles end at the
north point of the reference diamond for n even. The cycles start NESE..
and follow around between the (n — 1)th and nth reference diamonds, for
even n. In general, this algorithm visits all points within n, for n, even, in
2n? 4+ 4n steps. However, if the goal is the last point visited at an odd
distance n, then this algorithm takes 2n® + 8n + 3 steps.

Flipped versions of the odd and even algorithms are illustrated in Fig. 3.
In addition to avoiding repetitions, the worst case for the non-optimized
parity is improved in each algorithm. For the odd algorithm, the last even
point visited is at the south tip of the reference diamond, and for the even
algorithm the last odd point is at the western tip. In each case, the worst
case is reduced by 2n steps to 2n°+ 6n+ 4 for the odd algorithm and to
2n? + 6n+ 3 for the even one.

For both algorithms, if the adversary is free to place the point at a
distance of opposite parity to the parity that the algorithm was designed
for, then the bound is worse than modified spiral search. The 2n® + 51+ 2
step algorithms can be seen as a trade off between the even and odd
algorithms, making some of the wasted steps at even levels useful at the
odd levels and vice versa.

Intuitively, the cost of turning the corners from one side of the reference
diamond to the next combined with the need to make all the visits from the
nth level to the closer intermediate points before any visits to the outer
intermediate points, seems to prevent us from achieving the lower bound.
We seem to require one extra step at each reference diamond to make these
turns, and this apparently accounts for the difference of n between our
upper and lower bounds. However, the gap remains open.
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Fic. 3. Odd and even spiral algorithms: (a) the flipped odd algorithm, NESSWWN;
(b) the flipped even algorithm, NESESWSWNWNWNENE.
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4, SEARCHING FOR A LINE IN THE PLANE

Suppose that the robot has to find a line in the plane. There are four
natural scenarios: the robot either knows or does not know the distance to
the line and it either does or does not have any information about the line’s
slope. We consider only the least information version of the problem; the
other cases have been solved elsewhere. The first case, when the slope is
known, is trivial. When the distance but not the slope is known the worst
case search distance is (1 +\/§+7n/6)nz6.397n steps. An algorithm to
optimize the average distance walked in this case is discussed in [11], and
a variation where instead of searching for a line we are searching for a
circle 1s discussed in [12]. For further results see [1, 3, 13, 17, 14, 10].

Suppose that the robot does not know the line’s distance or slope. It
seems clear that the optimal search path must be similar with respect to
rotations and dilations (that is, the curve must have spiral similarity). The
only known curve with these properties is the logarithmic spiral.

The robot executes a logarithmic spiral r=k" where k=1.250.. (this
value is a numerical approximation for the best logarithmic spiral). I the
line is n steps away this algorithm takes approximately 13.81# + O(ln n)
steps. (Note that this is only an upper bound since we have assumed that
the search path is a logarithmic spiral.)

If we restrict the line to be horizontal or vertical (that is, two orthogonal
directions), we can prove a 12.74n lower bound assuming a logarithmic
spiral, and a 13.02 upper bound, using similar techniques as before (see
[11]). This lower bound also applies to the general case.

5. FURTHER PROBLEMS

We conclude by stating, and giving some partial results for, three general
planar search problems.

5.1. Line of Restricted Slope a Bounded Distance Away

Suppose that the robot knows the line’s distance away and that the line’s
slope belongs to the finite set {6, 8,, .., 6,}.

Given the distance »n to the line, the possible set of slopes describes a
polygon that circumscribes a circle of radius a. It is not difficult to for-
mulate the optimal algorithm as a function minimization problem where
the function has between k and 2k variables. If we restrict the polygon to
be a regular j-gon then Table 5.1 summarizes the results for j< 6. These
results are all optimal as may be proved by direct (although tedious)
algebraic manipulation of the appropriate path minimization problems.

The minimum length for general j is unknown. In the above results the
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TABLE §.1

Results for Regular j-gons for Small j

J Path length

3 4n

4 3 nx4.24n

5 (4sin?(n/S) + (1 + 2 cos(n/10))/cos(n/5)) n = 4.9n
6 (4423 nx515

optimal path is a collection of diagonals of the regular j-gon. All of the
above minimal paths stay within the boundary of the j-gon. However, it is
possible to show that there exists a j for which the minimal algorithm must
leave the boundary of the regular j-gon.

5.2. Searching for a Point on the Boundary of a Region

Suppose that we have a polygonal line (a non-self-intersecting con-
tinuous curve made up of straight line segments) bisecting the plane into
two halfplanes. The robot’s task is to find a point known to be somewhere
on the polygonal line. The difference between this problem and the simpler
one of searching for a point on a line is that the robot can at times shorten
its path by moving off of the polygonal line.

For example, suppose the robot must search the boundary of a region
bounded by two concurrent rays (assuming the robot is at the concurrent
point initially) where the robot is not constrained to stay on the rays.
There is a simple algorithm we call “bow-tie search™ —walk along one ray
for some number of steps, walk in the plane to the second ray, walk along
the second ray for some number of steps, then return to the last point of
departure on the first ray and repeat. As the angle between the rays is
reduced to zero, the problem reduces to searching for a point on a ray. As
the angle is increased to 180°, the problem reduces to searching for a point
on a line. If the angle between the rays is 90°, the best bow-tie algorithm
is given by f(i)=k', where k= 1.849... The worst case of this algorithm
takes 7.422... n steps.

In general, let ¢ =cos(8), where 6 is the smaller angle between the rays.
The optimal & (for bow-tie search) is

<4+ (c— D2 (2 +14c+17—4(c+ 3)\/5(’;:1—))1;3
+ (2 + 14c + 17 +4(c +3) /2(c + 1)) )
c+3

2
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The worst case ratio is then

k/k*—2ke+1
k—1 '
We do not know if “bow-tie search” is optimal.

k+1+

6. OPEN PROBLEMS AND CONCLUSIONS

For each of the problems discussed in this paper there are three different
criteria we could try to optimize:

+ Minimize the maximum distance walked.
» Minimize the average distance walked.

* Maximize the probability that the object is found given that the
robot can only walk x steps.

As we saw in the problem of searching for a point on a line, the best
average case algorithm can be different from the best worst case algorithm.
This answers a question of Oglivy [17] on whether the average case and
worst case are always the same. What are the best search strategies for the
problems considered in this paper with respect to the second and third
criteria? What are the best search strategies using each of the above criteria
assuming that we have & communicating (or non-communicating) robots
instead of only one?' How can we modify our search strategies if there are
obstacles in the plane? Finally, we pose the same search problems in higher
dimensions.

To our knowledge search problems in which we have only partial
information as to the location of the searched for object have not been
previously studied as a class. We think that they are deserving of com-
prehensive study as simple optimality arguments (in particular variants of
convexity and symmetry properties) are often applicable. Further, and
more importantly, these problems are (very simple) models of searching in
the real world. It is very often the case that we do not know many of the
parameters that are usually taken for granted when designing search
algorithms.

The results presented in this paper, summarized in Table 5.2, suggest
that the relative information of knowing the general direction of a goal is
much higher than knowing just the distance to the goal (in hindsight this
result is intuitively obvious). Of course these are very simple problems and
results from the more comprehensive problems may be more enlightening.

! Recently some results for this problem have been presented in Baeza-Yates and Schott,
Parallel searching in the plane, in “XII Int. Conf. of the Chilean Computer Society, Santiago,
Chile, Oct. 1992, pp. 269-279.
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TABLE 5.2
The Advantage of Knowing Where Things Are

Knowiedge
Problem Direction Distance Nothing
Point on line n 3n 9n
Point on m-rays n 2m—1)n (1+2m™(m—1)"""n
Point in lattice n 9n—2 <2n*+5n+2, 220 +4n—1
Point in lattice with parity n €2n’+4n+nmod?2 €2 +4n+ nmod 2
Orthogonal line in plane n 424...n <13.02n, 2 12.74n
Line in plane n 6.39...n <13.81n, 212.74n
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