
Accelerated Computing

GPU Teaching Kit

Introduction to Data Races
Module 7.2 – Parallel Computation Patterns (Histogram)



2

Objective
– To understand data races in parallel computing

– Data races can occur when performing read-modify-write operations
– Data races can cause errors that are hard to reproduce
– Atomic operations are designed to eliminate such data races



3

Read-modify-write in the Text Histogram Example

– For coalescing and better memory access performance

…



4

Read-Modify-Write Used in Collaboration Patterns

– For example, multiple bank tellers count the total amount of cash in the 
safe

– Each grab a pile and count
– Have a central display of the running total
– Whenever someone finishes counting a pile, read the current running 

total (read) and add the subtotal of the pile to the running total (modify-
write)

– A bad outcome
– Some of the piles were not accounted for in the final total



5

A Common Parallel Service Pattern
– For example, multiple customer service agents serving waiting customers 
– The system maintains two numbers, 

– the number to be given to the next incoming customer (I)
– the number for the customer to be served next (S)

– The system gives each incoming customer a number (read I) and 
increments the number to be given to the next customer by 1 (modify-
write I)

– A central display shows the number for the customer to be served next
– When an agent becomes available, he/she calls the number (read S) and 

increments the display number by 1 (modify-write S)
– Bad outcomes

– Multiple customers receive the same number, only one of them receives service
– Multiple agents serve the same number



6

A Common Arbitration Pattern
– For example, multiple customers booking airline tickets in parallel
– Each 

– Brings up a flight seat map (read)
– Decides on a seat
– Updates the seat map and marks the selected seat as taken (modify-

write)

– A bad outcome
– Multiple passengers ended up booking the same seat



7

Data Race in Parallel Thread Execution

Old and New are per-thread register variables.

Question 1: If Mem[x] was initially 0, what would the value of Mem[x] be 
after threads 1 and 2 have completed?

Question 2: What does each thread get in their Old variable?

Unfortunately, the answers may vary according to the relative execution 
timing between the two threads, which is referred to as a data race. 

thread1: thread2: Old Mem[x]
New  Old + 1
Mem[x]  New

Old Mem[x]
New  Old + 1
Mem[x]  New



8

Timing Scenario #1
Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (1) Mem[x]  New

4 (1) Old  Mem[x]

5 (2) New  Old + 1

6 (2) Mem[x]  New

– Thread 1 Old = 0
– Thread 2 Old = 1
– Mem[x] = 2 after the sequence



9

Timing Scenario #2
Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (1) Mem[x]  New

4 (1) Old  Mem[x]

5 (2) New  Old + 1

6 (2) Mem[x]  New

– Thread 1 Old = 1
– Thread 2 Old = 0
– Mem[x] = 2 after the sequence



10

Timing Scenario #3
Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (0) Old  Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

– Thread 1 Old = 0
– Thread 2 Old = 0
– Mem[x] = 1 after the sequence



11

Timing Scenario #4
Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (0) Old  Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

– Thread 1 Old = 0
– Thread 2 Old = 0
– Mem[x] = 1 after the sequence



12

Purpose of Atomic Operations – To Ensure Good Outcomes

thread1:

thread2: Old Mem[x]
New  Old + 1
Mem[x]  New

Old Mem[x]
New  Old + 1
Mem[x]  New

thread1:

thread2: Old Mem[x]
New  Old + 1
Mem[x]  New

Old Mem[x]
New  Old + 1
Mem[x]  New

Or 



Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 7.2 – Parallel Computation Patterns (Histogram)
	Objective
	Read-modify-write in the Text Histogram Example
	Read-Modify-Write Used in Collaboration Patterns
	A Common Parallel Service Pattern
	A Common Arbitration Pattern
	Data Race in Parallel Thread Execution
	Timing Scenario #1
	Timing Scenario #2
	Timing Scenario #3
	Timing Scenario #4
	Purpose of Atomic Operations – To Ensure Good Outcomes
	Slide Number 13

