
1

VERIFICA DEI PROCESSI CONCORRENTI
VPC 10-20

Reti di Petri colorate
Well-formed nets

Prof.ssa Susanna Donatelli

Universita’ di Torino

www.di.unito.it

susi@di.unito.it

http://www.di.unito.it/

2

Reference material books:

Notes of the EU-sponsored Jaca
MATCH school – ultima parte
del capitolo 2

3

Acknowledgements

Transparencies adapted from the course notes and
trasparencies of

 Prof.ssa Giuliana Franceschinis, Universita’ del Piemonte
orientale (Italy)

4

Colored Petri Nets modelling

Modelling convenience: more compact representation, models are
more easily parametrizable on the initial marking (and on colors)

Solution convenience: if colors and color functions are defined
appropriately, it is possible to automatically exploit symmetries

Various classes:

 colored PN (CPN): colors can be any denumerable set and
any function on denumerable set is allowed for defining
transition enabling and firing

 Predicate-transition net (algebraic nets)

 well-formed nets (WN): CPN with syntactical restriction

5

Colored Petri Nets

Basic ingredients:

 a set of colours C: {students identified by Ids}, {yellow,
red, green}, {1,2,3,…}, ..}

 marking is a function from P to Bag(C): place p is marked
with two yellow tokens and three green ones

 arcs have an associated function from colors of
transitions to colors of places : transition t fires for yellow if
there are at least 2 green tokens and one red token in
place p; the firing of t for yellow adds 2 yellow tokens to
place p

 we are assuming that the same set of colour is associated
to transitions and places

6

Colored Petri Nets

Example: dining philosophers. Color DF={a,b,c,d}

Id

Id

Id

Id

Id

Id

forks

forks

DF
DF

Id a b c d

a 1

b 1

c 1

d 1

forks a b c d

a 1 1

b 1 1

c 1 1

d 1 1

7

Colored Petri Nets

Example: dining philosophers. Color DF={a,b,c,d}, modify
for one fork at a time

Id

Id

Id

Id

Id

Id

fL+fR

DF
DF

fL a b c d

a 1

b 1

c 1

d 1

fR a b c d

a 1

b 1

c 1

d 1

fL+fR

8

Colored Petri Nets

One single set of colours? May be we do not want to mix processes and
resources

9

Colored Petri Nets: enabling rule

10

Colored Petri Nets: firing rule

11

Colored Petri Nets

Specifying arc functions can be cumbersome (for example the color of a
message can be a triplet <sender, receiver, msg id>) and tables can grow
quite big, unless there is some regularity, as in the philosophers model

Colours are only a modelling convenience, and can lead to very large state
spaces (many markings and each marking requires also to store the colours
of tokens)

Can't we use the high level description of the system to generate a state
space that has already been reduced according to bisimulation (exploitation
of symmetries)?

12

An introduction to Well-formed Nets

• Formalism syntax: example and definition

• Formalism semantics: example and definition

• Behavioral symmetries exploitation: the symbolic
marking and the symbolic reachability graph

13

WN Syntax

•Well-formed Nets are a colored version of P/T nets with
priorities and inhibitor arcs

• Tokens can have different colors (i.e. can carry a data
structure), so that they are no more indistinguishable. The
set of possible colors that tokens can have when they are in
place P is called color domain of P.

• Transitions can be parameterized through a set of typed
variables: the possible values of variables are of the same
nature of data (colors) associated with tokens. An assignment
of values to the variables of a given transition t identifies an
instance of t.

14

Advantages of colors

• It is more natural to represent data in the model

• It is possible to “fold” similar subnets into a single subnet,
and use colors to identify tokens belonging to different folded
subnets.

folding

15

A very simple example: the syntax

L

<x> <x>

S0 S1 Choice Mc P0 P1

<l2>

• P1 is a colored place, with color domain L = {l1,l2}

• The marking of P1 is < l2 > (a token of color l2).

• Mc and S1 are parametric transitions, with parameter x:L

• The instances of Mc are (Mc,x=l1), (Mc,x= l2)

<x> <x>

S1 Mc
colored places
and transitions

color class of
place L1

16

A very simple example:
enabling and firing

L

S0 S1 Choice Mc P0 P1

<l2>

• The arc expressions <x> (read as “variable x” or

identity) on the input and output arcs of P1

determine the state transformation due to the firing

of transition instances

• In the current marking, transition instance (S1,x=l2)

is enabled, and its firing leads to the marking P0(3)

<x> <x>

17

A very simple example:
enabling and firing

L

S0 S1 Choice Mc P0 P1

<l2>

• “Neutral” places and transitions behave as in PNs

• In the current marking “neutral” transition S0 is enabled:

after its firing a vanishing marking is reached:

P0(1)Choice(1)P1(<l2>).

• In the new vanishing marking both instances of Mc are

enabled (and they are in conflict !).

• m [(Mc,x=l1)> P0(1)P1(<l1>+<l2>)

• m [(Mc,x=l2)> P0(1)P1(2<l2>)

<x> <x>

18

A very simple example:
enabling and firing

L

S0 S1 Choice Mc P0 P1

<l2>

• “Neutral” places and transitions behave as in PNs

• In the current marking “neutral” transition S0 is enabled:

after its firing a vanishing marking is reached:

P0(1)Choice(1)P1(<l2>).

• In the new vanishing marking both instances of Mc are

enabled (and they are in conflict !).

• m [(Mc,x=l1)> P0(1)P1(<l1>+<l2>)

• m [(Mc,x=l2)> P0(1)P1(2<l2>)

<x> <x>

place markings are

multisets on the place

color domain

19

Second example: Fork and Join (1)

20

Second example: Fork and Join (2)

• <x> denotes a function of x, returning set {<x>}

• <S> denotes a constant function always returning the set of

all elements in the color domain of the corresponding place

(P1 or endS1). It allows to easily model fork (when used on

transition output arcs) and join (when used on transition input

arcs). – It is indicated with <All> in the tool

L

S0 S1 P0 P1

<l2> <S> <x> <S> <x>

<l1>

endS1

L

<S> = <All>

21

Second example: Fork and Join (3)

• To ensure that the final synchronization matches the threads

generated by the same process, we add a new color class,

and add the processes identity.

• Color domains can be Cartesian products of basic color

classes (as for places P1 and endS1).

• Transitions S0.fork and join have only one parameter: y;

Transition S1 has two parameters: y and x.

P×L

S0.fork S1 P0 P1

<p1,l2> <y,S> <y,x> <y,S> <y,x>
< p1,l1>

endS1

P

< p2>

< p3>

P×L

join

<y> <y>

22

Second example: Fork and Join (3)

• Function <x,y> simply returns the set {<x,y>}; function <y,S> returns the set

{<y,l1>+<y,l2>}. In general function <f1,f2 ,...,fn> returns f1 × f2 × ... × fn

•The marking reached after firing the sequence

(S0.fork,y=p3), (S1,y=p1,x=l1), (S1,y=p3,x=l2)

is P0(<p2>)P1(<p1,l2>,<p3,l1>)endS1(<p1,l1>,<p3,l2>).

In this marking only one instance of S0.fork and two instances of S1 are

enabled (the two threads in endS1 belong to different processes and hence

cannot synchronize).

P×L

S0.fork S1 P0 P1

<p1,l2> <y,S> <y,x> <y,S> <y,x>
< p1,l1>

endS1

P

< p2>

< p3>

P×L

join

<y> <y>

23

L

<x> <l1>

<l3>
<l2>

compKO

<x>

compOK

L

<x>

<x>

L

<S-x>

success

StartNewComp

<S-x>

Failure failure

• Function <S-x> returns all the elements of set L but one (namely, x). It

implements the 2:3 voter.

•If two computations out of three complete succesfully, a new computation

can start, if instead two computations out of three fail, then a failure has

occurred.

completed inProgress

failed

Third example: a 2:3 voter

24

• Why do we need colours at all in this example? A weight of 2 on the arc

to transitions success and failure will do! (assuming places completed and

failed are uncoloured).

• But immagine 2 parallel computation, then marking of place InProgress is

2<l1>+2<l2>+2<l3> and colours are needed

• 2<l1>+2<l2>+2<l3> can also be written as 2<S>

L

<x> <l1
> <l3
>

<l2
>

compKO

<x>

compOK

L

<x>

<x>

L

<S-x>

success

StartNewComp

<S-x>

Failure failure

completed inProgress

failed

Third example: a 2:3 voter

25

Static subclasses

 Can we distinguish behaviour according to colours?

route
<r,x>

[r=r1]<x>

[rr1]<x>

Depending on the routing the message goes to different buffers, and

destination r1 requires the upper buffer, while all other destinations require

the lower buffer.

This is NOT allowed in SWN as it destroy symmetries, but a colour class

may be split into colour sublasses (a partition of the colour class)

R={A,B}, A={r1}, B={r2,r3,r4,r5} and D(colour instance) = name of subclass

26

Transition predicates and
 guarded functions

• Guards are boolean functions built on standard predicates on the

transition variables. They restrict the set of fireable instances of a

transition.

• Guards can be used within arc function, to implement transition-instance

dependent arcs: an arc may be present for some instances and absent for

others.

route
<r,x>

[d(r)=A]<x>

[d(r)=B]<x>

Can be avoided by

adding immediate

transitions.

27

Model semantics:
RG of first example

This model has a symmetrical behavior, as can be visualized on

the reachability graph (RG)

28

Colored RG and bisimulation

We get 6 states (see the

colours) on which we

can build an aggregated

RG

What happens if we compute a

bisimulation on the colored RS,

using the name of transitions

as the set of actions?

29

Colored RG and bisimulation

But what is the point in building the RG and then aggregating

it? It would be better to compute directly the aggregated state

space, but how?

Problems:

• find a suitable representation for the element of the partition

(equivalence classes) that allows for an easy check of

• marking is already in the set

• transition t is enabled in a marking / eq. class of

markings

•Alternative: the process algebra approach: aggregate,

compose, aggregate, compose, ….

30

Equivalent markings

Equivalent markings and
transition instances (1)

31

Equivalent markings and
transition instances (2)

Equivalent transition

instances

32

Equivalent markings and
transition instances (3)

Intuitively: two markings are equivalent if they allow

the same future evolution (same firable transition

sequences), hence:

•equivalent markings must enable the same

transition sets

• The markings reached by firing corresponding

transitions from equivalent markings, must be

equivalent themselves.

NOTE: this definition recalls the bisimulation concept

33

Marking and firing of
equivalent transitions

34

Colour permutations

“s” is a permutation that satisfies:

• it respects the static subclasses (colors of

different subclasses cannot be permuted)

• for ordered color classes order should be

respected (therefore only rotations are allowed)

On s we can build an equivalence relation upon

which to partition the Reachability Set (RS) in

equivalence classes (symbolic markings)

35

Towards a symbolic representation

Colors are replaced

by variables

36

``Similar'' transition

instances are put

together

Towards a symbolic representation

37

 “variables” now represents

set of colours (instead that a

single one): they are called

dynamic subclasses

C = Z1  Z2

put together colours with an

equal distribution over

places

Towards a symbolic
representation

38

Symbolic marking interpreted as state

There is a client in queue l1
and none in l2  One of the two queues (x1) has
There is a client in l2 a client, the other is empty
and none in l1

end of service at l1  End of service in the busy
 queue(x1)

Equivalent markings

39

Example

What are the ordinary

markings corresponding

to the symbolic ones?

40

41

42

Il modello FJ con (|L|=2) e un token in P0 –
Colored RG

43

Il modello FJ con (|L|=2) e un token in P0 –
SymbolicRG

44

45

Il modello FJ con (|L|=2) e due token in P0 –
Colored RG

46

Il modello FJ con (|L|=2) e due token in P0 –
SymbolicRG

47

RG of unfolded, Colored RG, SRG

RG della rete

unfolded

RG colorato

della rete WN

Symbolic RG

(SRG) della rete

WN

LO()C()L1-1(1)L1-2(1)

LO()C() L1-2(2) LO()C()L1-1(2)

LO()C(1)L1-1(1) LO()C(1)L1-2(1)

LO(1)C()L1-1(1) LO(1)C()L1-2(1)

LO(2)C() L1-1()L1-2()

LO(1)C(1) L1-1()L1-2()

48

Minimality and uniqueness
of the representation

We need a unique symbolic reachability graph,

therefore:

maximal partition and unique name for an equivalent

class (symbolic marking)

49

Minimality and uniqueness
of the representation

Se non si fornisce un criterio univoco su quanto raggruppare

e che nomi dare alle sottoclassi dinamiche, la

rappresentazione non e’ unica, occorre:

• scegliere un raggruppamento che minimizza il numero di

sottoclassi dinamiche (inducendo massima compattazione

nella rappresentazione)

• numerare le sottoclassi dinamiche in modo da minimizzare

(in senso lessicografico) una certa funzione della marcatura

(si ottiene effettuando l’ordinamento di una rappresentazione

matriciale della marcatura simbolica)

50

Symbolic firing rule

Goal: to build the equivalence classes and the aggregated

reachability graph (Symbolic Reachability Graph) directly, and

not as a partition of the ordinary reachability graph

This requires a symbolic firing rule.

-dynamic subclasses are assigned to variables (instead than

single colours)

-the elements of the subclasses involved in the firing are kept

separate (“splitting”)

-transition is fired and state is changed

-the obtained symbolic marking is normalized to obtain a

symbolic marking according to the uniqueness criteria

51

L0()C()L1(Z1); | Z1|=2

 S1(Z1)

Splitting:

L0()C()L1(Z1,Z2); | Zi|=1

 S1(Z1)

Firing:

L0(1)C()L1(Z2); | Zi|=1

Minimization is not

required

Naming for uniqueness:

L0(1)C()L1(Z1); | Zi|=1

Example of symbolic firing

52

Another example of symbolic firing

N = non-ordered set of nations

A = oredered id of 4 athlets per team

Z = dynamic subclass of A with
cardinality 1

[!y<>k].<x,!y>

[!y=k].].<x,!y>

nella nuova interfaccia grafica:

 <!x> si scrive <x++>

 <S> si scrive <All>

53

Example of symbolic firing

[!y<>k].<x,!y>

[!y=k].].<x,!y>

54

Example of symbolic firing

[!y<>k].<x,!y>

[!y=k].].<x,!y>

55

Example of symbolic firing

56

Stochastic WN (SWN) -
per gli studenti di valutazione

delle prestazioni

Symbolic reachability graph + a set of rules on

transition firing rates allows to derive from SRG a

lumped Markov chain

All states of an equivalence class are equiprobable, so

there is no information loss w.r.t. the computation of the

Markov chain generated by the ordinary coloured

Reachability Graph

57

Saving memory and time

Saving depends on the level of symmetry in the

(description of) the system

It can be an advantage being able to describe

properties in terms of symbolic markings (for example

P- and T- invariants can be described in a more

abstract way): easier to reason about

58

State space reduction in a
multiprocessor system

States: Active, Accessing local memory (running or blocked),

waiting for the GlobalBus, Accessing an external memory.

An external access preempts the local bus.

P1 M1 Pn Mn

. . . LB1 LBn

GB

59

Symbolic marking interpretation (forgetting processors identity)

The
multiprocessor
SRG

60

Multiprocessor: number of symbolic
and ordinary states

61

State space reduction in the cyclic
and random polling system

Cyclic

Random

successor

function

<!x>

62

Polling system: number of symbolic
and ordinary states states

• ‘’tang.’’ is the number of tangible states (states that enable transitions of priority
zero)

• ‘’van.’’ is the number of vanishing states (states that enable transitions of priority
one or more)

63

Sender-receiver

64

Sender-receiver

Classe dei messaggi: {m_1..m_n} is Data + {ack} is Ack

65

Sender-receiver

Classe dei messaggi: {m_1..m_n} is Data + {ack} is Ack

<src>

66

Sender-receiver

Colored reachability graph

67

Sender-receiver

Colored reachability graph

<s4,s1,ack>

s1 s4

68

Sender-receiver

Symbolic markings

|Sit1| = 2

|Sit1| = 2

69

Sender-receiver

Symbolic firing

Sit0 viene splittata in due: Sit0:1

70

Sender-receiver

Symbolic firing

71

Sender-receiver

Symbolic firing

72

Philosopher

Colored and neutral

