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Colored Petri Nets modelling 

Modelling convenience: more compact representation, models are 
more easily parametrizable on the initial marking (and on colors) 

Solution convenience: if colors and color functions are defined 
appropriately, it is possible to automatically exploit symmetries 

Various classes:  

 colored PN (CPN): colors can be any denumerable set and 
any function on denumerable set is allowed for defining 
transition enabling and firing 

 Predicate-transition net (algebraic nets) 

 well-formed nets (WN): CPN with syntactical restriction  
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Colored Petri Nets 

Basic ingredients:  

 a set of colours C: {students identified by Ids}, {yellow, 
red, green}, {1,2,3,…}, ..} 

 marking is a function from P to Bag(C): place p is marked 
with two yellow tokens and three green ones   

 arcs have an associated function from colors of 
transitions to colors of places : transition t fires for yellow if 
there are at least 2 green tokens  and one red token in 
place p; the firing of t for yellow adds 2 yellow tokens to 
place p 

 we are assuming that the same set of colour is associated 
to transitions and places 
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Colored Petri Nets 

Example: dining philosophers. Color DF={a,b,c,d} 

Id 

Id 

Id 

Id 

Id 

Id 

forks 

forks 

DF 
DF 

Id a b c d 

a 1 

b 1 

c 1 

d 1 

forks a b c d 

a 1 1 

b 1 1 

c 1 1 

d 1 1 
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Colored Petri Nets 

Example: dining philosophers. Color DF={a,b,c,d}, modify 
for one fork at a time 

Id 

Id 

Id 

Id 

Id 

Id 

fL+fR 

DF 
DF 

fL a b c d 

a 1 

b 1 

c 1 

d 1 

fR a b c d 

a 1 

b 1 

c 1 

d 1 

fL+fR 
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Colored Petri Nets 

One single set of colours?  May be we do not want to mix processes and 
resources 
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Colored Petri Nets: enabling rule 
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Colored Petri Nets: firing rule 
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Colored Petri Nets 

Specifying arc functions can be cumbersome (for example the color of a 
message can be a triplet <sender, receiver, msg id> ) and tables can grow 
quite big, unless there is some regularity, as in the philosophers model 

 

Colours are only a modelling convenience, and can lead to very large state 
spaces (many markings and each marking requires also to store the colours 
of tokens) 

 

Can't we use the high level description of the system to generate a state 
space that has already been reduced according to bisimulation (exploitation 
of symmetries)? 
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An introduction to Well-formed Nets 

• Formalism syntax: example and definition 

• Formalism semantics: example and definition 

• Behavioral symmetries exploitation: the symbolic 
marking and the symbolic reachability graph 
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WN Syntax 

•Well-formed Nets are a colored version of P/T nets with 
priorities and inhibitor arcs 

• Tokens can have different colors (i.e. can carry a data 
structure), so that they are no more indistinguishable. The 
set of possible colors that tokens can have when they are in 
place P is called color domain of P. 

• Transitions can be parameterized through a set of typed 
variables: the possible values of variables are of the same 
nature of data (colors) associated with tokens. An assignment 
of values to the variables of a given transition t identifies an 
instance of t.  
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Advantages of colors 

• It is more natural to represent data in the model 

• It is possible to “fold” similar subnets into a single subnet, 
and use colors to identify tokens belonging to different folded 
subnets. 

folding 
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A very simple example: the syntax 

L 

<x> <x> 

S0 S1 Choice Mc P0 P1 

<l2> 

• P1 is a colored place, with color domain L = {l1,l2} 

• The marking of P1 is < l2 > (a token of color l2). 

• Mc and S1 are parametric transitions, with parameter x:L 

• The instances of Mc are (Mc,x=l1 ), (Mc,x= l2 ) 

<x> <x> 

S1 Mc 
colored places 
and transitions 

color class of 
place L1 
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A very simple example:  
enabling and firing 

L 

S0 S1 Choice Mc P0 P1 

<l2> 

• The arc expressions <x> (read as “variable x” or 

identity) on the input and output arcs of P1 

determine the state transformation due to the firing 

of transition instances 

• In the current marking, transition instance (S1,x=l2) 

is enabled, and its firing leads to the marking P0(3) 

<x> <x> 
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A very simple example:  
enabling and firing 

L 

S0 S1 Choice Mc P0 P1 

<l2> 

• “Neutral” places and transitions behave as in PNs 

• In the current marking “neutral” transition S0 is enabled: 

after its firing a vanishing marking is reached: 

P0(1)Choice(1)P1(<l2>).  

• In the new vanishing marking both instances of Mc are 

enabled (and they are in conflict !).  

• m [(Mc,x=l1)> P0(1)P1(<l1>+<l2>) 

• m [(Mc,x=l2)> P0(1)P1(2<l2>) 

<x> <x> 
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A very simple example:  
enabling and firing 

L 

S0 S1 Choice Mc P0 P1 

<l2> 

• “Neutral” places and transitions behave as in PNs 

• In the current marking “neutral” transition S0 is enabled: 

after its firing a vanishing marking is reached: 

P0(1)Choice(1)P1(<l2>).  

• In the new vanishing marking both instances of Mc are 

enabled (and they are in conflict !).  

• m [(Mc,x=l1)> P0(1)P1(<l1>+<l2>) 

• m [(Mc,x=l2)> P0(1)P1(2<l2>) 

<x> <x> 

place markings are 

multisets on the place  

color domain 
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Second example: Fork and Join (1) 
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Second example: Fork and Join (2) 

• <x> denotes a function of x, returning set {<x>}  

• <S> denotes a constant function always returning the set of 

all elements in the color domain of the corresponding place 

(P1 or endS1). It allows to easily model fork (when used on 

transition output arcs) and join (when used on transition input 

arcs). – It is indicated with <All> in the tool 

L 

S0 S1 P0 P1 

<l2> <S> <x> <S> <x> 

<l1> 

endS1 

L 

<S> = <All> 
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Second example: Fork and Join (3) 

• To ensure that the final synchronization matches the threads 

generated by the same process, we add a new color class, 

and add the processes identity. 

• Color domains can be Cartesian products of basic color 

classes (as for places P1 and endS1).  

• Transitions S0.fork and join have only one parameter: y; 

Transition S1 has two parameters: y and x. 

P×L 

S0.fork S1 P0 P1 

<p1,l2> <y,S> <y,x> <y,S> <y,x> 
< p1,l1> 

endS1 

P 

< p2> 

< p3> 

P×L 

join 

<y> <y> 
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Second example: Fork and Join (3) 

• Function  <x,y> simply returns the set {<x,y>}; function <y,S> returns the set 

{<y,l1>+<y,l2>}. In general function <f1,f2 ,...,fn> returns f1 × f2 × ... × fn 

•The marking reached after firing the sequence  

(S0.fork,y=p3), (S1,y=p1,x=l1), (S1,y=p3,x=l2)  

is P0(<p2>)P1(<p1,l2>,<p3,l1>)endS1(<p1,l1>,<p3,l2>).  

In this marking only one instance of S0.fork and two instances of S1 are 

enabled (the two threads in endS1 belong to different processes and hence 

cannot synchronize). 

P×L 

S0.fork S1 P0 P1 

<p1,l2> <y,S> <y,x> <y,S> <y,x> 
< p1,l1> 

endS1 

P 

< p2> 

< p3> 

P×L 

join 

<y> <y> 
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L 

<x> <l1> 

<l3> 
<l2> 

compKO 

<x> 

compOK 

L 

<x> 

<x> 

L 

<S-x> 

success 

StartNewComp 

<S-x> 

Failure failure 

• Function  <S-x> returns all the elements of set L but one (namely, x). It 

implements the 2:3 voter. 

•If two computations out of three complete succesfully, a new computation 

can start, if instead two computations out of three fail, then a failure has 

occurred. 

completed inProgress 

failed 

Third example: a 2:3 voter 
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• Why do we need colours at all in this example? A weight of 2 on the arc 

to transitions success and failure will do! (assuming places completed and 

failed are uncoloured). 

• But immagine 2 parallel computation, then marking of place InProgress is 

2<l1>+2<l2>+2<l3> and colours are needed 

• 2<l1>+2<l2>+2<l3> can also be written as 2<S> 

L 

<x> <l1
> <l3
> 

<l2
> 

compKO 

<x> 

compOK 

L 

<x> 

<x> 

L 

<S-x> 

success 

StartNewComp 

<S-x> 

Failure failure 

completed inProgress 

failed 

Third example: a 2:3 voter 
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Static subclasses 

 Can we distinguish behaviour according to colours? 

  

route 
<r,x> 

[r=r1]<x> 

[rr1]<x> 

Depending on the routing the message goes to different buffers, and 

destination r1 requires the upper buffer, while all other destinations require 

the lower buffer. 

This is NOT allowed in SWN as it destroy symmetries, but a colour class 

may be split into colour sublasses (a partition of the colour class) 

R={A,B}, A={r1}, B={r2,r3,r4,r5} and D(colour instance) = name of subclass 
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Transition predicates and 
 guarded functions 

• Guards are boolean functions built on standard predicates on the 

transition variables. They restrict the set of fireable instances of a 

transition. 

• Guards can be used within arc function, to implement transition-instance 

dependent arcs: an arc may be present for some instances and absent for 

others. 

route 
<r,x> 

[d(r)=A]<x> 

[d(r)=B]<x> 

Can be avoided by 

adding immediate 

transitions. 
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Model semantics:  
RG of first example 

This model has a symmetrical behavior, as can be visualized on 

the reachability graph (RG) 
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Colored RG and bisimulation 

We get 6 states (see the 

colours) on which we 

can build an aggregated 

RG 

What happens if we compute a 

bisimulation on the colored RS, 

using the name of transitions 

as the set of actions? 
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Colored RG and bisimulation 

But what is the point in building the RG and then aggregating 

it? It would be better to compute directly the aggregated state 

space, but how? 

 

Problems: 

• find a suitable representation for the element of the partition 

(equivalence classes) that allows for an easy check of 

• marking is already in the set 

• transition t is enabled in a  marking / eq. class of 

markings 

 

•Alternative: the process algebra approach: aggregate, 

compose, aggregate, compose, …. 
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Equivalent markings 

Equivalent markings and 
transition instances (1) 
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Equivalent markings and 
transition instances (2) 

Equivalent transition 

instances 
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Equivalent markings and 
transition instances (3) 

Intuitively: two markings are equivalent if they allow 

the same future evolution (same firable transition 

sequences), hence: 

•equivalent markings must enable the same 

transition sets 

• The markings reached by firing corresponding 

transitions from equivalent markings, must be 

equivalent themselves. 

 

NOTE: this definition recalls the bisimulation concept 
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Marking and firing of  
equivalent transitions 
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Colour permutations 

“s” is a permutation that satisfies: 

• it respects the static subclasses (colors of 

different subclasses cannot be permuted) 

• for ordered color classes order should be 

respected (therefore only rotations are allowed) 

  

 

On s we can build an equivalence relation  upon 

which to partition the  Reachability Set (RS) in 

equivalence classes (symbolic markings) 
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Towards a symbolic representation 

Colors are replaced 

by variables 
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``Similar'' transition 

instances are put 

together 

Towards a symbolic representation 
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 “variables” now represents 

set of colours (instead that a 

single one): they are called 

dynamic subclasses 

 

C = Z1   Z2 

 

 

put together colours with an 

equal distribution over 

places 

 

 

 

 

Towards a symbolic 
representation 
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Symbolic marking interpreted as state 

There is a client in queue l1 
and none in l2       One of the two queues (x1) has 
There is a client in l2                 a client, the other is empty 
and none in l1 
 
 
 
 
end of service at  l1                End of service in the busy                    
     queue(x1) 
 
 

Equivalent markings 
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Example 

 

 

 

What are the ordinary  

markings corresponding  

to the symbolic ones? 
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Il modello FJ con (|L|=2) e un token in P0 – 
Colored RG 
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Il modello FJ con (|L|=2) e un  token in P0 – 
SymbolicRG 
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Il modello FJ con (|L|=2) e due token in P0 – 
Colored RG 
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Il modello FJ con (|L|=2) e due token in P0 – 
SymbolicRG 
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RG of unfolded, Colored RG, SRG 

RG della rete 

unfolded 

 

RG colorato  

della rete WN 

Symbolic RG 

(SRG) della rete 

WN 

LO()C()L1-1(1)L1-2(1) 

LO()C() L1-2(2) LO()C()L1-1(2) 

LO()C(1)L1-1(1) LO()C(1)L1-2(1) 

LO(1)C()L1-1(1) LO(1)C()L1-2(1) 

LO(2)C() L1-1()L1-2() 

LO(1)C(1) L1-1()L1-2() 
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Minimality and uniqueness  
of the representation  

We need a unique symbolic reachability graph, 

therefore: 

maximal partition and unique name for an equivalent 

class (symbolic marking) 
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Minimality and uniqueness  
of the representation 

Se non si fornisce un criterio univoco su quanto raggruppare 

e che nomi dare alle sottoclassi dinamiche, la 

rappresentazione non e’ unica, occorre:  

 

• scegliere un raggruppamento che minimizza il numero di 

sottoclassi dinamiche (inducendo massima compattazione 

nella rappresentazione) 

 

• numerare le sottoclassi dinamiche in modo da minimizzare 

(in senso lessicografico) una certa funzione della marcatura 

(si ottiene effettuando l’ordinamento di una rappresentazione 

matriciale della marcatura simbolica) 
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Symbolic firing rule 

Goal: to build the equivalence classes and the aggregated 

reachability graph ( Symbolic Reachability Graph) directly, and 

not as a partition of the ordinary reachability graph 

This requires a symbolic firing rule. 

 

-dynamic subclasses are assigned to variables (instead than 

single colours) 

-the elements of the subclasses involved in the firing are kept 

separate (“splitting”) 

-transition is fired and state is changed 

-the obtained symbolic marking is normalized to obtain a 

symbolic marking according to the uniqueness criteria 
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L0()C()L1(Z1); | Z1|=2 

 S1(Z1)  

Splitting: 

L0()C()L1(Z1,Z2); | Zi|=1 

 S1(Z1)  

Firing: 

L0(1)C()L1(Z2); | Zi|=1 

 

Minimization is not  

required 

 

Naming for uniqueness: 

L0(1)C()L1(Z1); | Zi|=1 

 

Example of symbolic firing 
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Another example of symbolic firing 

N = non-ordered set of nations 

A = oredered id of 4 athlets per team 

Z = dynamic subclass of A with 
cardinality 1 

[!y<>k].<x,!y> 

[!y=k]. ].<x,!y> 

nella nuova interfaccia grafica: 

 <!x> si scrive <x++>  

 <S> si scrive <All>  
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Example of symbolic firing 

[!y<>k].<x,!y> 

[!y=k]. ].<x,!y> 
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Example of symbolic firing 

[!y<>k].<x,!y> 

[!y=k]. ].<x,!y> 



55 

Example of symbolic firing 
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Stochastic WN (SWN) -  
per gli studenti di valutazione 

delle prestazioni 

Symbolic reachability graph + a set of rules on 

transition firing rates allows to derive from SRG a 

lumped Markov chain 

 

All states of an equivalence class are equiprobable, so 

there is no information loss w.r.t. the computation of the 

Markov chain generated by the ordinary coloured 

Reachability Graph 
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Saving memory and time 

Saving depends on the level of symmetry in the 

(description of) the system 

 

It can be an advantage being able to describe 

properties in terms of symbolic markings (for example 

P- and T- invariants can be described in a more 

abstract way): easier to reason about 
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State space reduction in a 
multiprocessor system 

States: Active, Accessing local memory (running or blocked), 

waiting for the GlobalBus, Accessing an external memory. 

An external access preempts the local bus. 

P1 M1 Pn Mn 

. . . LB1 LBn 

GB 
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Symbolic marking interpretation (forgetting processors identity) 

The 
multiprocessor 
SRG 
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Multiprocessor: number of symbolic 
and ordinary states 
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State space reduction in the cyclic 
and random polling system 

Cyclic 

Random 

successor 

function 

<!x> 
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Polling system: number of symbolic 
and ordinary states states 

• ‘’tang.’’ is the number of tangible states (states that enable transitions of priority 
zero) 

• ‘’van.’’ is the number of vanishing states (states that enable transitions of priority 
one or more) 
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Sender-receiver 
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Sender-receiver 

Classe dei messaggi: {m_1..m_n} is Data + {ack} is Ack  
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Sender-receiver 

Classe dei messaggi: {m_1..m_n} is Data + {ack} is Ack  

<src> 
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Sender-receiver 

Colored reachability graph 



67 

Sender-receiver 

Colored reachability graph 

<s4,s1,ack>   

s1   s4 
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Sender-receiver 

Symbolic markings 

|Sit1| = 2 

|Sit1| = 2 
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Sender-receiver 

Symbolic firing 

Sit0 viene splittata in due: Sit0:1 
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Sender-receiver 

Symbolic firing 
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Sender-receiver 

Symbolic firing 
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Philosopher 

Colored and neutral 


