
PVM and MPI: a Comparison of Features

G. A. Geist

J. A. Kohl

P. M. Papadopoulos �

May 30, 1996

Abstract

This paper compares PVM and MPI features, pointing out the situ-

ations where one may be favored over the other. Application developers

can determine where their application most likely will run and if it re-

quires particular features supplied by only one or the other of the APIs.

MPI is expected to be faster within a large multiprocessor. It has

many more point-to-point and collective communication options than

PVM. This can be important if an algorithm is dependent on the ex-

istence of a special communication option. MPI also has the ability to

specify a logical communication topology.

PVM is better when applications will be run over heterogeneous net-

works. It has good interoperability between di�erent hosts. PVM allows

the development of fault tolerant applications that can survive host or

task failures. Because the PVM model is built around the virtual ma-

chine concept (not present in the MPI model), it provides a powerful set

of dynamic resource manager and process control functions.

Each API has its unique strengths and this will remain so into the

foreseeable future. One area of future research is to study the feasibility

of creating a programming environment that allows access to the virtual

machine features of PVM and the message passing features of MPI.

1. Introduction

The recent emergence of the MPI (Message Passing Interface) speci�cation

[2] has caused many programmers to wonder whether they should write their

applications in MPI or use PVM (Parallel Virtual Machine) [3]. PVM is the

existing de facto standard for distributed computing and MPI is being touted as

the future message passing standard. A related concern of users is whether they

�This work was supported in part by the Applied Mathematical Sciences subprogram

of the O�ce of Energy Research, U.S. Department of Energy, under Contract DE-AC05-

96OR22464 with Lockheed Martin Energy Research Corporation

1

should invest the time and e�ort to rewrite their existing PVM applications in

MPI.

In this paper we address these questions by comparing the features supplied

by PVM and the features supplied by MPI and showing under which situations

one API might be favored over another. Programmers can then assess the

needs of their application and decide accordingly.

Computer vendors are driven by the needs of their buyers, some of whom

insist on PVM and others on MPI. Therefore, all the major vendors have now

committed resources to provide both PVM and MPI on their systems. This

removes concerns of availability and support for either PVM or MPI and allows

us to concentrate on the features and capabilities that distinguish them.

We have been involved in the design of both PVM and MPI. The design

process was quite di�erent in both cases as were the focus and goals of the

designs. Some background material will help better illustrate how PVM and

MPI di�er and why each has features the other does not.

2. Background

The development of PVM started in the summer of 1989 when Vaidy Sun-

deram, a professor at Emory University, visited Oak Ridge National Laboratory

to do research with Al Geist on heterogeneous distributed computing. They

needed a framework to explore this new area and so developed the concept of

a Parallel Virtual Machine (PVM) [8, 4]. In 1991, Bob Manchek (a research

associate at the University of Tennessee) joined the research and implemented

a portable, robust version of the PVM design (PVM 2.0). Jack Dongarra, who

was also involved in our heterogeneous distributed computing research, was

instrumental in making PVM 2.0 publically available. The use of PVM grew

rapidly worldwide as scientists spread the word of the utility of this software

to do computational research.

Central to the design of PVM was the notion of a \virtual machine" {

a set of heterogeneous hosts connected by a network that appears logically

to the user as a single large parallel computer. One aspect of the virtual

machine was how parallel tasks exchanged data. In PVM this was accomplished

using simple message-passing constructs. There was a strong desire to keep the

PVM interface simple to use and understand. Portability was considered much

more important than performance for two reasons: communication across the

internet was slow; and, the research was focused on problems with scaling, fault

tolerance, and heterogeneity of the virtual machine.

As the PVM user base grew into the thousands, a conscious e�ort was

made to keep the PVM API backwards compatible so that all existing PVM

applications would continue to run unchanged with newer PVM versions. All

PVM version 2 releases are backwards compatible, as are all PVM version 3

releases. PVM 3.0 was released in 1993 with a completely new API. The API

change and new design were required to enable a PVM application to run across

a virtual machine composed of multiple large multiprocessors.

2

The PVM API has continuously evolved over the years to satisfy user re-

quests for additional features and to keep up with the fast-changing network

and computing technology. One example of a user-requested feature was the

addition of interfaces that allow third-party debuggers and resource managers

to be seamlessly incorporated into the virtual machine [9, 6]. Examples of

technology driven changes include the ability for PVM to transparently uti-

lize shared memory and high-speed networks like ATM to move data between

clusters of shared-memory multiprocessors.

In contrast to the PVM API, which sprang from and continues to evolve in-

side a research project, the MPI-1 API was speci�ed by a committee of about

40 high performance computing experts from research and industry in a se-

ries of meetings in 1993-1994. The impetus for developing MPI was that each

Massively Parallel Processor (MPP) vendor was creating their own proprietary

message-passing API. In this scenario it was not possible to write a portable

parallel application. MPI is intended to be a standard message-passing speci-

�cation that each MPP vendor would implement on their system. The MPP

vendors need to be able to deliver high performance and this became the focus

of the MPI design. Given this design focus, MPI is expected to always be faster

than PVM on MPP hosts. Even so, two recent comparison studies show that

PVM and MPI have very comparable performance on the Cray T3D and IBM

SP-2 [10, 5].

MPI-1 contains the following main features:

� A large set of point-to-point communication routines (by far the richest

set of any library to date),

� A large set of collective communication routines for communication among

groups of processes,

� A communication context that provides support for the design of safe

parallel software libraries,

� The ability to specify communication topologies,

� The ability to create derived datatypes that describe messages of non-

contiguous data.

MPI-1 users soon discovered that their applications were not portable across

a network of workstations because there was no standard method to start MPI

tasks on separate hosts. Di�erent MPI implementations used di�erent methods.

In 1995 the MPI committee began meeting to design the MPI-2 speci�cation

to correct this problem and to add additional communication functions to MPI

including:

� MPI SPAWN functions to start both MPI and non-MPI processes,

� One-sided communication functions such as put and get,

3

� Nonblocking collective communication functions

� Language bindings for C++.

The MPI-2 draft speci�cation is scheduled to be �nished by January 1997.

In its present form the MPI-2 draft adds an additional 120 functions to the 128

functions speci�ed in the MPI-1 API. This makes MPI a much richer source of

communication methods than PVM.

Will there be an MPI-3? It is too soon to tell but there are some useful

features available in PVM that will not be available in MPI-2. MPI users may

request an MPI-3 speci�cation that allows them to create fault tolerant appli-

cations, interoperates among di�erent MPI implementations, and dynamically

determines available resources.

In the sections that follow, we discuss the major feature di�erences between

MPI and PVM.

3. Portability versus Interoperability

Heterogeneity is becoming increasingly important for high performance

computing. Massively parallel processors appear to be a dying breed, leading

scientists with serious computational needs to look towards clusters of smaller

multiprocessors connected by new high-speed networks. Many organizations

already use a variety of di�erent computing systems in the form of di�erent

personal computers or workstations on their employees' desks. Integrating

these desktop machines and utilizing their unused cycles can be an e�ective

way of obtaining reasonable computational power. Parallel software systems

therefore need to accommodate execution on many di�erent vendor platforms.

In addition to running on MPPs, PVM and some implementations of MPI

already work on networked clusters of machines.

The MPI interface was developed with the intent of encompassing all of

the message-passing constructs and features of various MPP and networked

clusters so that programs would execute on each type of system. The portability

achieved by MPI means that a program written for one architecture can be

copied to a second architecture, compiled and executed without modi�cation.

PVM also supports this level of portability, but expands the de�nition of

portable to include interoperable. PVM programs similarly can be copied to

di�erent architectures, compiled and executed without modi�cation. However,

the resulting PVM executables can also communicate with each other. In other

words, an MPI application can run, as a whole, on any single architecture and is

portable in that sense. But a PVM program can be ported heterogeneously to

run cooperatively across any set of di�erent architectures at the same time (i.e.

interoperate). While the MPI standard does not prohibit such heterogeneous

cooperation, it does not require it. Nothing in the MPI standard describes

cooperation across heterogeneous networks and architectures. And there is

no impetus for one vendor to make its MPI implementation slower in order

4

to allow a user to use another vendor's machine. None of the existing MPI

implementations can interoperate.

There would need to be another standard { one for interoperability. MPI

would need to check the destination of every message and determine if the

destination task is on the same host or on some other host. If it is on some other

host, with that vendor's MPI implementation, the message must be converted

into a format that can be understood by the other MPI version.

The lack of MPI's
exibility in this scenario comes from the pre-emptive

priority of performance in its design. The best way to make a message-passing

program fast on any single architecture is to streamline the underlying library to

use native hardware and eliminate any unnecessary waste for that architecture.

For example, if a certain architecture provides some built-in mechanism for

broadcasting messages, the MPI implementation should use that mechanism

directly. However, using that native mechanism makes it more di�cult and

less e�cient to use broadcast functions to send messages to hosts of di�erent

vendors that do not support the mechanism.

The PVM solution to this problem is to sacri�ce some performance in fa-

vor of the
exibility to communicate across architectural boundaries. When

communicating locally or to another host of identical architecture, PVM uses

the native communication functions just like MPI. When communicating to a

di�erent architecture, PVM uses the standard network communication func-

tions. Because the PVM library must determine from the destination of each

message whether to use the native or network communication, there is some

small overhead incurred.

PVM and MPI also di�er in their approach to language interoperability. In

PVM, a C program can send a message that is received by a Fortran program

and vice-versa. In contrast, a program written in C is not required by the

MPI standard to communicate with a program written in Fortran, even if

executing on the same architecture. This restriction occurs because C and

Fortran support fundamentally di�erent language interfaces, causing di�culty

in de�ning a consistent standard interface that covers both. The MPI decision

was to not force the two languages to interoperate.

4. Virtual Machine

PVM is built around the concept of a virtual machine which is a dynamic

collection of (potentially heterogeneous) computational resources managed as

a single parallel computer. The virtual machine concept is fundamental to

the PVM perspective and provides the basis for heterogeneity, portability, and

encapsulation of functions that constitute PVM.

It is the virtual machine concept that has revolutionized heterogeneous dis-

tributed computing by linking together di�erent workstations, personal com-

puters and massively parallel computers to form a single integrated computa-

tional engine. In contrast, MPI has focused on message-passing and explicitly

5

states that resource management and the concept of a virtual machine are

outside the scope of the MPI (1 and 2) standard.

4.1. Process Control

Process control refers to the ability to start and stop tasks, to �nd out

which tasks are running, and possibly where they are running. PVM contains

all of these capabilities. In contrast MPI-1 has no de�ned method to start a

parallel application. MPI-2 will contain functions to start a group of tasks and

to send a kill signal to a group of tasks (and possibly other signals as well).

Some basic resource query capability is important in order to know how

many tasks can be started on the available (possibly dynamic) computing re-

sources. In this regard, PVM has a rich set of resource control functions.

4.2. Resource Control

In terms of resource management, PVM is inherently dynamic in nature.

Computing resources, or \hosts," can be added or deleted at will, either from a

system \console" or even from within the user's application. Allowing applica-

tions to interact with and manipulate their computing environment provides a

powerful paradigm for load balancing, task migration, and fault tolerance. The

virtual machine provides a framework for determining which tasks are running

and supports naming services so that independently spawned tasks can �nd

each other and cooperate.

Another aspect of virtual machine dynamics relates to e�ciency. User appli-

cations can exhibit potentially changing computational needs over the course of

their execution. Hence, a message-passing infrastructure should provide
exible

control over the amount of computational power being utilized. For example,

consider a typical application which begins and ends with primarily serial com-

putations, but contains several phases of heavy parallel computation. A large

MPP need not be wasted as part of the virtual machine for the serial portions,

and can be added just for those portions when it is of most value. Likewise,

consider a long-running application in which the user occasionally wishes to

attach a graphical front-end to view the computation's progress. Without vir-

tual machine dynamics, the graphical workstation would have to be allocated

during the entire computation. MPI lacks such dynamics and is, in fact, specif-

ically designed to be static in nature to improve performance. There is clearly

a trade-o� in
exibility and e�ciency for this extra margin of performance.

Aside from more tangible e�ects, the virtual machine in PVM also serves to

encapsulate and organize resources for parallel programs. Rather than leaving

the parallel programmer to manually select each individual host where tasks are

to execute and then log into each machine in turn to actually spawn the tasks

and monitor their execution, the virtual machine provides a simple abstraction

to encompass the disparate machines. Further, this resource abstraction is

carefully layered to allow varying degrees of control. The user might create an

arbitrary collection of machines and then treat them as uniform computational

6

nodes, regardless of their architectural di�erences. Or the user could traverse

the increasing levels of detail and request that certain tasks execute on machines

with particular data formats, architectures, or even on an explicitly named

machine.

The MPI standard does not support any abstraction for computing re-

sources and leaves each MPI implementation or user to customize their own

management scheme. Though such a customized scheme can ultimately be

more convenient for a particular user's needs, the overhead to construct the

scheme counters the gains. With PVM, this customization is always possible

using the existing \virtual machinery," should the user desire more control.

4.3. Topology

Although MPI does not have a concept of a virtual machine, MPI does

provide a higher level of abstraction on top of the computing resources in terms

of the message-passing topology. In MPI a group of tasks can be arranged in

a speci�c logical interconnection topology. Communication among tasks then

takes place within that topology with the hope that the underlying physical

network topology will correspond and expedite the message transfers. PVM

does not support such an abstraction, leaving the programmer to manually

arrange tasks into groups with the desired communication organization.

5. Fault Tolerance

Fault tolerance is a critical issue for any large scale scienti�c computer ap-

plication. Long-running simulations, which can take days or even weeks to

execute, must be given some means to gracefully handle faults in the system or

the application tasks. Without fault detection and recovery it is unlikely that

such applications will ever complete. For example, consider a large simulation

running on dozens of workstations. If one of those many workstations should

crash or be rebooted, then tasks critical to the application might disappear.

Additionally, if the application hangs or fails, it may not be immediately ob-

vious to the user. Many hours could be wasted before it is discovered that

something has gone wrong. Further, there are several types of applications

that explicitly require a fault-tolerant execution environment, due to safety or

level of service requirements. In any case, it is essential that there be some

well-de�ned scheme for identifying system and application faults and automat-

ically responding to them, or at least providing timely noti�cation to the user

in the event of failure.

PVM has supported a basic fault noti�cation scheme for some time. Under

the control of the user, tasks can register with PVM to be \noti�ed" when the

status of the virtual machine changes or when a task fails. This noti�cation

comes in the form of special event messages that contain information about the

particular event. A task can \post" a notify for any of the tasks from which

it expects to receive a message. In this scenario, if a task dies, the receiving

7

task will get a notify message in place of any expected message. The notify

message allows the task an opportunity to respond to the fault without hanging

or failing.

Similarly, if a speci�c host like an I/O server is critical to the application,

then the application tasks can post noti�es for that host. The tasks will then

be informed if that server exits the virtual machine, and they can allocate

a new I/O server. This type of virtual machine noti�cation is also useful in

controlling computing resources. When a host exits from the virtual machine,

tasks can utilize the notify messages to recon�gure themselves to the remaining

resources. When a new host computer is added to the virtual machine, tasks

can be noti�ed of this as well. This information can be used to redistribute

load or expand the computation to utilize the new resource. Several systems

have been designed speci�cally for this purpose, including the WoDi system [7]

which uses Condor [6] on top of PVM.

There are several important issues to consider when providing a fault no-

ti�cation scheme. For example, a task might request noti�cation of an event

after it has already occurred. PVM immediately generates a notify message in

response to any such \after-the-fact" request. For example, if a \task exit" no-

ti�cation request is posted for a task that has already exited, a notify message

is immediately returned. Similarly, if a \host exit" request is posted for a host

that is no longer part of the virtual machine, a notify message is immediately

returned. It is possible for a \host add" noti�cation request to occur simultane-

ously with the addition of a new host into the virtual machine. To alleviate this

race condition, the user must poll the virtual machine after the notify request

to obtain the complete virtual machine con�guration. Subsequently, PVM can

then reliably deliver any new \host add" noti�es.

The current MPI standard does not include any mechanisms for fault tol-

erance, although the upcoming MPI-2 standard will include a notify scheme

similar to PVM's. The problem with the MPI-1 model in terms of fault tol-

erance is that the tasks and hosts are considered to be static. An MPI-1

application must be started en masse as a single group of executing tasks. If

a task or computing resource should fail, the entire MPI-1 application must

fail. This is certainly e�ective in terms of preventing leftover or hung tasks.

However, there is no way for an MPI program to gracefully handle a fault, let

alone recover automatically.

The reasons for the static nature of MPI are based on performance as well

as convenience. Because all MPI tasks are always present, there is no need

for any time-consuming lookups for group membership or name service. Each

task already knows about every other task, and all communications can be

made without the explicit need for a special daemon. Because all potential

communication paths are known at startup, messages can also, where possible,

be directly routed over custom task-to-task channels.

MPI-2 will include a speci�cation for spawning new processes. This expands

the capabilities of the original static MPI-1. New processes can be created

dynamically, but MPI-2 still has no mechanism to recover from the spontaneous

8

loss of a process. One of the fundamental problems that keeps MPI from being

fault tolerant is the synchronous way that communicators are created and freed.

In the next section we compare the way MPI and PVM handle communicators

and communication context in general.

6. Context for Safe Communication

The most important new concept introduced by MPI is the communicator.

The communicator can be thought of as a binding of a communication con-

text to a group of processes. Having a communication context allows library

packages written in message passing systems to protect or mark their messages

so that they are not received (incorrectly) by the user's code. Message tag

and sender ID is not enough to safely distinguish library messages from user

messages. Figure 1 illustrates the fundamental problem. In this �gure two

identical worker tasks are calling a library routine that also performs message

passing. The library and user's code have both chosen the same tag to mark a

message. Without context, messages are received in the wrong order. To solve

this problem, a third tag that is assigned by the operating system is needed to

distinguish user messages from library messages. Upon entrance to a library

routine, for example, the software would determine this third tag and use it

for all communications within the library. The remainder of this section will

compare and contrast the speci�cation of context in MPI and PVM version

3.4. Context primitives are a new feature in PVM 3.4.

Context is assigned by the operating environment and cannot be wild-

carded by a user program. Two important issues are how this \magic" tag

is derived and how the tag is distributed to all processes that need to use it for

communication.

MPI couples the concepts of context and a group of processes into a commu-

nicator. When a program starts, all tasks are given a \world" communicator

and a (static) listing of all the tasks that started together. When a new group

(context) is needed, the program makes a synchronizing call to derive the new

context from an existing one (intra-communication). The derivation of context

becomes a synchronous operation across all the processes that are forming a

new communicator. This has several advantages: no servers are required to

dispense a context, instead processes need only decide among themselves on a

mutually exclusive safe context tag; all context state is dissolved (and hence

re-usable) when one or more of the processes terminates; and, derivation and

distribution of context are always performed in a single call. However, in MPI

it is possible (and in fact common in existing implementations) for two indepen-

dent groups of processes to use the same context tag. The MPI forum decided

it was too di�cult and expensive to generate a unique context tag. This means

that it is unsafe for two groups to send messages to each other. To solve this

problem, MPI introduces an inter-communicator which allows two groups of

processes to agree upon a safe communication context. Collective operations

such as broadcast are not supported over inter-communicators, but this is be-

9

Call lib Call lib

liblib

Worker 0 Worker 1

context β

α

β

α

Setcontext()

Setcontext() Setcontext()

βSetcontext()

Send(1,tag)

Send(1,tag)

Recv(1,tag)

Recv(0,tag)

Send(0,tag)

Recv(0,tag)

context
α

No Context

Figure 1: Messages sent without context are erroneously received

ing discussed for inclusion in MPI-2. Having two types of communicators and

having to convert between them is sometimes confusing, always messy, but nec-

essary given MPI's mandate not to require a server or daemon process. The

static nature of communicators makes it cumbersome to spawn new tasks and

enable communication between old and new tasks. Finally, when a task fails,

the world communicator becomes invalid. Because all intra-communicators

are derived from this now invalid construction, the behavior of the program

becomes unde�ned (and implementation dependent).

Since PVM already has a set of daemon processes maintaining the virtual

machine, it can use these to create a system-wide unique context tag, which

leads to a simpler and more general context model. PVM 3.4 views context as

merely another tag (without wildcarding). Primitives are provided for tasks to

request a new unique context tag. The program may use and distribute this

context in exactly the same way that MPI does. For example, in PVM 3.4 there

is a synchronous group formation operation that allocates and distributes a new

context to all members. This is analogous to the MPI group formation. But

in PVM the di�erent groups are each guaranteed a unique context, removing

the need for separate intra- and inter-communication constructs. As long as

a process knows (or can �nd out) the context of a group, it can communicate

with that group.

Other advantages to the PVM context scheme are that new processes can

use existing contexts to start communicating with an existing group. This is

especially useful for fault-tolerant programs that want to replace failed tasks.

10

In contrast, if a task fails in MPI, the result is unde�ned and usually leads

to system shutdown. The generality of the PVM approach, however, results

in some thorny issues involving when to reclaim context values for reuse. We

consider an existing communicator to be corrupted if one or more member

processes fail before the communicator has been collectively freed. There is

no one \correct" answer on how to deal with corrupted communicators. Auto-

matic recycling may cause errors in fault-tolerant programs. No recycling may

exhaust system resources.

MPI-1 side steps this issue by requiring tasks to never fail. MPI-2 will

have to address this problem since it allows tasks to spawn new tasks and

processes may be noti�ed about other failed processes. The fundamental prob-

lem is that the MPI COMM WORLD communicator, from which most intra-

communicators are derived, becomes corrupted. This leads to unde�ned con-

sequences.

To maintain backwards compatibility with existing PVM codes, a con-

text tag has not been explicitly added to the argument lists of pvm send and

pvm recv. Instead, a PVM task has an operating context that can be queried

and set by the program. Sends and receives are carried out in the current

operational context.

PVM 3.4 has the concept of a base context. All tasks will know the base

context and will be able to use it for communication even in the event of task

failure. In PVM, a spawned task will inherit the current operational context

of its parent. If the task has no parent (i.e., the task was started from the

command line), then it operates in the base context. Inheritance provides an

easy way for a master to encapsulate the messages of several parallel worker

groups.

PVM 3.4 will add some MPI-like communicator constructions, which are

shown in Table 1. The collective call pvm staticgroup() takes a list of tids and

returns a group communicator id. This allows PVM programs to arbitrarily

construct groups of processes with context. Group send and receive functions

will be added that take a group id and a rank as arguments. These functions

are \syntactic sugars" that handle the mappings of group rank to tids and the

proper management of the operating context.

Not having a context argument in pvm send points out an advantage MPI

has over PVM in general. MPI was designed to be thread-safe, that is, there

is no hidden state that could complicate writing a multi-threaded application.

PVM has hidden state in both the active context and the active message bu�er.

This requires programmers to be very careful when writing multi-threaded

PVM applications.

7. Name Service

It is often desirable for two programs to start independently and discover

information about each other. A common mechanism is for each of the pro-

grams to key on a \well-known name" to look up information in a database.

11

function PVM MPI-1

communicator

creation

pvm staticgroup MPI COMM CREATE

MPI INTERCOMM CREATE

communicator

destruction

pvm lvgroup MPI COMM FREE

new context pvm newcontext MPI COMM DUP

inter-

communication

no restrictions some restrictions

support fault

tolerance

yes no

Table 1: Similarities between manipulating communicators in PVM and MPI

A program that returns information about a requested name is called a name

server.

PVM is completely dynamic. Hosts may be added to and deleted from the

virtual machine. Processes may start, run to completion and then exit. The

dynamic nature of PVM makes name service very useful and convenient. In

PVM 3.4, the distributed set of PVM daemons have added functionality to

allow them to perform name server functions.

In comparison, MPI-1 supplies no functionality that requires a name server.

MPI-2 proposes to add functions to allow independent groups of processes to

synchronize and create an inter-communicator between them. The functions

are being de�ned so as not to mandate the use of a name server, allowing

implementations the freedom to use existing server software.

In PVM 3.4, there is a general name service. A PVM task or PVM daemon

can construct an arbitrary message and `put' this message in the name server

with an associated key. The key is a user de�ned string. Tasks that look

up a name are sent the stored message. This sort of name service is a very

general mechanism. The message could, for example, contain a group of task

ID's and an associated context, the location of a particular server, or simply

initialization data.

The insertion allows a task to specify the owner of the named message. The

owner may be any process, including a pvmd. A message is deleted when an

owner (or the pvmd) explictly calls pvm del, when the owner exits the virtual

machine, or when the entire virtual machine is reset. Two tasks may not insert

the same name since only the �rst insertion will succeed. The second insertion

returns an error. This has the advantage that third party modules, such as

visualizers, may start up, query the name server, and insure that they are

unique across the entire virtual machine.

There are three basic calls for the PVM name server:

12

pvm putmsg() Insert (key,message) pair into name server and specify owner

pvm getmsg() Return inserted message (if any) from key

pvm delmsg() Owner may delete a message from name server

Table 2: Routines that support name service

8. Message Handlers

User-level message handlers provide an extensible mechanism for building

event-driven codes that easily co-exist with traditional messaging. Both PVM

3.4 and MPI-2 will have user-level message handlers. A program may register a

handler function so that when a speci�ed message arrives at a task, the function

is executed. Message handlers are therefore very similar to active messages with

the caveat in PVM that they cannot interrupt a program while it is operating

outside of the PVM library. There will be two PVM interface calls for message

handlers:

pvm addmh() Add a message handler function matching (src,tag,context)

pvm delmh() Remove a previously de�ned message handler

Table 3: Routines that support message handlers

PVM has always had message handlers for system use. For example, when

a direct connection is requested, a message is sent from the requester to the

receiver. This request message is intercepted by the pvm library software before

it can be received by the user's code. The handler opens a socket and replies

to the requestor.

There are many possibilities for using message handlers. The following

example code segment shows a handler that returns the contents of a local

counter:

static int counter;

void show_count()

{

sbuf = pvm_setsbuf(0); /* remember the current send buf */

mysbuf = pvm_initsend(PvmDataDefault);

pvm_pkint(&counter,1,1);

pvm_send(src,tag);

pvm_freebuf(mysbuf);

pvm_setsbuf(sbuf); /* restore the send buf */

}

13

main()

{

pvm_addmh(show_count);

while(1) {

counter ++;

(do message passing)

}

}

The message handler can be called upon entry to any PVM library call. It is

clear from the above code segment that the user must be very careful to save

and restore any modi�ed PVM state.

9. Future Research: PVMPI

The Universitiy of Tennessee and Oak Ridge National Laboratory have

recently begun investigating the feasibility of merging features of PVM and

MPI. The project is called PVMPI [1] and involves creating a programming

environment that allows access to the virtual machine features of PVM and

the message passing features of MPI.

PVMPI would perform three symbiotic functions: It would use vendor im-

plementations of MPI when available on multiprocessors. It would allow appli-

cations to access PVM's virtual machine resource control and fault tolerance.

It would transparently use PVM's network communication to transfer data be-

tween di�erent vendor's MPI implementations allowing them to interoperate

within the larger virtual machine.

10. Conclusion

The recent publicity surrounding MPI has caused programmers to wonder

if they should use the existing de facto standard, PVM, or whether they should

shift their codes to the MPI standard. In this paper we compared the features

of the two APIs and pointed out situations where one is better suited than the

other.

If an application is going to be developed and executed on a single MPP,

then MPI has the advantage of expected higher communication performance.

The application would be portable to other vendor's MPP so it would not need

to be tied to a particular vendor. MPI has a much richer set of communication

functions so MPI is favored when an application is structured to exploit special

communication modes not available in PVM. The most often cited example is

the non-blocking send.

Some sacri�ces have been made in the MPI speci�cation in order to be

able to produce high communication performance. Two of the most notable

are the lack of interoperability between any of the MPI implementations, that

14

is, one vendor's MPI cannot send a messages to another vendor's MPI. The

second is the lack of ability to write fault tolerant applications in MPI. The

MPI speci�cation states that the only thing that is guaranteed after an MPI

error is the ability to exit the program.

Because PVM is built around the concept of a virtual machine, PVM has the

advantage when the application is going to run over a networked collection of

hosts, particularly if the hosts are heterogeneous. PVM contains resource man-

agement and process control functions that are important for creating portable

applications that run on clusters of workstations and MPP.

The larger the cluster of hosts, the more important PVM's fault tolerant

features become. The ability to write long running PVM applications that can

continue even when hosts or tasks fail, or loads change dynamically due to

outside in
uence, is quite important to heterogeneous distributed computing.

Programmers should evaluate the functional requirements and running en-

vironment of their application and choose the API that has the features they

need.

References

[1] Graham E. Fagg and Jack J. Dongarra. PVMPI: An integration of the

PVM and MPI systems. Calculateurs Paralleles, 2, 1996.

[2] MPI Forum. MPI: A message-passing interface standard. International

Journal of Supercomputer Application, 8 (3/4):165 { 416, 1994.

[3] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert

Manchek, and Vaidy Sunderam. PVM: Parallel Virtual Machine. MIT

press, 1994.

[4] G. A. Geist and V. S. Sunderam. Network-based concurrent computing on

the PVM system. Concurrency: Practice & Experience, 4 (4):293 { 311,

1992.

[5] Ken Koch and Harvey Wasserman. A message passing algorithm for

Sn transport. In Proceedings of 1996 PVM User Group meeting, 1996.

http://bay.lanl.gov/pvmug96.

[6] Jim Pruyne and Miron Livny. Providing resource management ser-

vices to parallel applications. In Proceedings of the Second Workshop

on Environments and Tools for Parallel Scienti�c Computing, 1994.

http://www.cs.wisc.edu/condor/publications.html.

[7] Jim Pruyne and Miron Livny.

Parallel processing on dynamic resources with CARMI. In Proceedings

of IPPS'95, 1995. http://www.cs.wisc.edu/condor/publications.html.

[8] V. S. Sunderam. PVM: A framework for parallel distributed computing.

Concurrency: Practice & Experience, 2 (4), 1990.

15

[9] BBN ToolWorks. Totalview parallel debugger.

http://www.bbn.com:80/tv.

[10] S. VanderWiel, D. Nathanson, and D. Lilja. Performance and program

complexity in contemporary network-based parallel computing systems.

Technical Report HPPC-96-02, University of Minnesota, 1996.

16

