
Translation Verification of the OCaml pattern

matching compiler

Francesco Mecca

1 Introduction

This dissertation presents an algorithm for the translation validation of the
OCaml pattern matching compiler. Given a source program and its compiled
version the algorithm checks whether the two are equivalent or produce a counter
example in case of a mismatch. For the prototype of this algorithm we have
chosen a subset of the OCaml language and implemented a prototype equiva-
lence checker along with a formal statement of correctness and its proof. The
prototype is to be included in the OCaml compiler infrastructure and will aid
the development.

1.1 Motivation

Pattern matching in computer science is a widely employed technique for de-
scribing computation as well as deduction. Pattern matching is central in many
programming languages such as the ML family languages, Haskell and Scala,
different model checkers, such as Murphi, and proof assistants such as Coq and
Isabelle. Recently the C++ community is considering[1] adding the support
for pattern matching in the compiler. The work done in this thesis provides a
general method that is agnostic with respect to the compiler implementation
and the language used.

The work focused on the OCaml pattern matching compiler that is a critical
part of the OCaml compiler in terms of correctness because bugs typically would
result in wrong code production rather than triggering compilation failures.
Such bugs also are hard to catch by testing because they arise in corner cases
of complex patterns which are typically not in the compiler test suite or most
user programs.

The OCaml core developers group considered evolving the pattern matching
compiler, either by using a new algorithm or by incremental refactoring of the

1

current code base. For this reason we want to verify that future implementations
of the compiler avoid the introduction of new bugs and that such modifications
don’t result in a different behavior than the current one.

One possible approach is to formally verify the pattern matching compiler
implementation using a machine checked proof. Another possibility, albeit with
a weaker result, is to verify that each source program and target program pair
are semantically correct. We chose the latter technique, translation validation
because is easier to adopt in the case of a production compiler and to integrate
with an existing code base. The compiler is treated as a black-box and proof
only depends on our equivalence algorithm.

1.2 The Pattern Matching Compiler

A pattern matching compiler turns a series of pattern matching clauses into
simple control flow structures such as if, switch. For example:

match scrutinee with

| [] -> (0, None)

| x::[] -> (1, Some x)

| _::y::_ -> (2, Some y)

Given as input to the pattern matching compiler, this snippet of code gets trans-
lated into the Lambda intermediate representation of the OCaml compiler. The
Lambda representation of a program is shown by calling the ocamlc compiler
with the -drawlambda flag. In this example we renamed the variables assigned
in order to ease the understanding of the tests that are performed when the
code is translated into the Lambda form.

(function scrutinee

(if scrutinee ;;; true when scrutinee (list) not empty

(let (tail =a (field 1 scrutinee/81)) ;;; assignment

(if tail

(let

y =a (field 0 tail))

;;; y is the first element of the tail

(makeblock 0 2 (makeblock 0 y)))

;;; allocate memory for tuple (2, Some y)

(let (x =a (field 0 scrutinee))

;;; x is the head of the scrutinee

(makeblock 0 1 (makeblock 0 x)))))

;;; allocate memory for tuple (1, Some x)

2

[0: 0 0a]))) ;;; low level representatio of (0, None)

1.3 Our approach

Our algorithm translates both source and target programs into a common rep-
resentation that we call decision trees. Decision trees where chosen because
they model the space of possible values at a given branch of execution.
Here are the decision trees for the source and target example program.

Switch(Root)
/ \

(= []) (= ::)
/ \

Leaf Switch(Root.1)
(0, None) / \

(= []) (= ::)
/ \

Leaf Leaf
[x = Root.0] [y = Root.1.0]
(1, Some x) (2, Some y)

Switch(Root)
/ \

(= int 0) (!= int 0)
/ \

Leaf Switch(Root.1)
(mkblock 0 / \

0 0a) / \
(= int 0) (!= int 0)
/ \

Leaf Leaf
[x = Root.0] [y = Root.1.0]
(mkblock 0 (mkblock 0

1 (mkblock 0 x)) 2 (mkblock 0 y))
(Root.0) is called an accessor, that represents the access path to a value

that can be reached by deconstructing the scrutinee. In this example Root.0 is
the first subvalue of the scrutinee.

Target decision trees have a similar shape but the tests on the branches are
related to the low level representation of values in Lambda code. For example,
cons blocks x::xs or tuples (x,y) are memory blocks with tag 0.

The following parametrized grammar D(π, e) describes the common struc-
ture of source and decision trees. We denote as π the conditions on each branch,
and a for our accessors, which give a symbolic description of a sub-value of the
scrutinee.
Source conditions πS are just datatype constructors; target conditions πT are
arbitrary sets of low level OCaml values. Expressions eS and eT are arbitrary
OCaml expressions that are lowered by the compiler into lambda expressions.

decision trees D(π, e) ::= Leaf(e(a))

| Failure
| Switch(a, (πi, Di)

i∈I , Dfb)

| Guard(e(a), D0, D1)

| Unreachable

environment σ(v) ::= [x1 7→ v1, . . . , vn 7→ vn]

closed term e(v) ::= (σ(v), e)

accessors a ::= Root | a.n (n ∈ N)

πS : datatype constructors
πT ⊆ {intn | n ∈ Z}] {tag n | n ∈ N}

a(vS), a(vT), DS(vS), DT (vT) (omitted)

The tree Leaf(e) returns a leaf expression e in a captured environment σ map-
ping variables to accessors.

3

Failure expresses a match failure that occurs when no clause matches the
input value.

Switch(a, (πi, Di)
i∈I , Dfb) has one subtree Di for every head constructor that

appears in the pattern matching clauses, and a fallback case that is used when
at least one variant of the constructor doesn’t appear in the clauses. The
presence of the fallback case does not imply non-exhaustive match clauses.

let f1 = function
| true -> 1
| false -> 0

let f1 = function
| true -> 1
| _ -> 0

let f1 = function
| true -> 1

Switch(Root)
/ \

(Bool true) (Bool false)
/ \

Leaf(Int 1) Leaf(Int 0)

Switch(Root)
/ \

(Bool true) (‘Fallback‘)
/ \

Leaf(Int 1) Leaf(Int 0)

Switch(Root)
/ \

(Bool true) (‘Fallback‘)
/ \

Leaf(Int 1) Failure
As we can see from these simple examples in which we pattern match on a
boolean constructor the fallback node in the second case implicitly covers the
path in which the value is equal to false while in the third case the failure
terminal signals the presence of non-exahustive clauses.

Guard(e,D0, D1) represents a when-guard on a closed expression e, expected
to be of boolean type, with sub-trees D0 for the true case and D1 for the false
case.

We write a(v) for the sub-value of the source or target value v that is reach-
able at the accessor a, and D(v) for the result of running a value v against a
decision tree D.

To check the equivalence of a source and a target decision tree, we proceed
by case analysis. If we have two terminals, such as leaves in the first example,
we check that the two right-hand-sides are equivalent. If we have a node N
and another tree T we check equivalence for each child of N , which is a pair
of a branch condition πi and a subtree Ci. For every child (πi, Ci) we reduce
T by killing all the branches that are incompatible with πi and check that the
reduced tree is equivalent to Ci.

1.4 From source programs to decision trees

Our source language supports integers, lists, tuples and all algebraic datatypes.
Patterns support wildcards, constructors and literals, Or-patterns such as (p1|p2)
and pattern variables. In particular Or-patterns provide a more compact way
to group patterns that point to the same expression.

4

match w with

| p1 -> expr

| p2 -> expr

| p3 -> expr

match w with

|p1 |p2 |p3 -> expr

We also support when guards, which are interesting as they introduce the eval-
uation of expressions during matching.

We write JtSKS to denote the translation of the source program (the set of
pattern matching clauses) into a decision tree, computed by a matrix decom-
position algorithm (each column decomposition step gives a Switch node). It
satisfies the following correctness statement:

∀ts, ∀vs, ts(vs) = JtsKs(vs)

The correctness statement intuitively states that for every source program, for
every source value that is well-formed input to a source program, running the
program tS against the input value vS is the same as running the compiled
source program JtSK (that is a decision tree) against the same input value vS .

1.5 From target programs to decision trees

The target programs include the following Lambda constructs: let, if, switch,

Match_failure, catch, exit, field and various comparison operations, guards.
The symbolic execution engine traverses the target program and builds an en-
vironment that maps variables to accessors. It branches at every control flow
statement and emits a Switch node. The branch condition πi is expressed as
an interval set of possible values at that point. In comparison with the source
decision trees, Unreachable nodes are never emitted.

Guards are black boxes of OCaml code that branches the execution of the
symbolic engine. Whenever a guard is met, we emit a Guard node that contains
two subtrees, one for each boolean value that can result from the evaluation
of the guard condition at runtime. The symbolic engine explores both paths
because we will see later that for the equivalence checking the computation of
the guard condition can be skipped. In comparison with the source decision
trees, Unreachable nodes are never emitted.

We write JtT KT to denote the translation of a target program tT into a deci-
sion tree of the target program tT , satisfying the following correctness statement
that is simmetric to the correctness statement for the translation of source pro-
grams:

∀tT , ∀vT , tT (vT) = JtT KT (vT)

5

1.6 Equivalence checking

The equivalence checking algorithm takes as input a domain of possible values
S and a pair of source and target decision trees and in case the two trees are not
equivalent it returns a counter example. Our algorithm respects the following
correctness statement:

equiv(S,CS , CT) = Yes ∧ CT covers S =⇒ ∀vS ≈ vT ∈ S, CS(vS) = CT (vT)

equiv(S,CS , CT) = No(vS , vT) ∧ CT covers S =⇒ vS ≈ vT ∈ S ∧ CS(vS) 6= CT (vT)

2 Background

2.1 OCaml

Objective Caml (OCaml) is a dialect of the ML (Meta-Language) family of
programming that features with other dialects of ML, such as SML and Caml
Light. The main features of ML languages are the use of the Hindley-Milner
type system that provides many advantages with respect to static type systems
of traditional imperative and object oriented language such as C, C++ and
Java, such as:

• Polymorphism: in certain scenarios a function can accept more than one
type for the input parameters. For example a function that computes
the length of a list doesn’t need to inspect the type of the elements and
for this reason a List.length function can accept lists of integers, lists of
strings and in general lists of any type. JVM languages offer polymorphic
functions and classes through subtyping at runtime only, while other lan-
guages such as C++ offer polymorphism through compile time templates
and function overloading. With the Hindley-Milner type system each well
typed function can have more than one type but always has a unique
best type, called the principal type. For example the principal type of the
List.length function is "For any a, function from list of a to int" and a is
called the type parameter.

• Strong typing: Languages such as C and C++ allow the programmer to
operate on data without considering its type, mainly through pointers[4].
Other languages such as Swift and Java performs type erasure[3, 2] so at
runtime the type of the data can’t be queried. In the case of programming
languages using an Hindley-Milner type system the programmer is not
allowed to operate on data by ignoring or promoting its type.

6

• Type Inference: the principal type of a well formed term can be inferred
without any annotation or declaration.

• Algebraic data types: types that are modeled by the use of two algebraic
operations, sum and product. A sum type is a type that can hold of many
different types of objects, but only one at a time. For example the sum
type defined as A + B can hold at any moment a value of type A or a
value of type B. Sum types are also called tagged union or variants. A
product type is a type constructed as a direct product of multiple types
and contains at any moment one instance for every type of its operands.
Product types are also called tuples or records. Algebraic data types can
be recursive in their definition and can be combined.

Moreover ML languages are functional, meaning that functions are treated as
first class citizens and variables are immutable, although mutable statements
and imperative constructs are permitted. In addition to that OCaml features an
object system, that provides inheritance, subtyping and dynamic binding, and
modules, that provide a way to encapsulate definitions. Modules are checked
statically and can be reifycated through functors[5].

2.2 Compiling OCaml code

The OCaml compiler provides compilation of source files in form of a bytecode
executable with an optionally embeddable interpreter or as a native executable
that could be statically linked to provide a single file executable. Every source
file is treated as a separate compilation unit that is advanced through different
states. The first stage of compilation is the parsing of the input code that is
trasformed into an untyped syntax tree. Code with syntax errors is rejected at
this stage. After that the AST is processed by the type checker that performs
three steps at once:

• type inference, using the classical Algorithm W [6]

• perform subtyping and gathers type information from the module system

• ensures that the code obeys the rule of the OCaml type system

At this stage, incorrectly typed code is rejected. In case of success, the untyped
AST in trasformed into a Typed Tree. After the typechecker has proven that the
program is type safe, the compiler lower the code to Lambda, an s-expression
based language that assumes that its input has already been proved safe[7]. Af-
ter the Lambda pass, the Lambda code is either translated into bytecode or goes

7

through a series of optimization steps performed by the Flambda optimizer[8]
before being translated into assembly.

This is an overview of the different compiler steps.

2.3 Memory representation of OCaml values

An usual OCaml source program contains few to none explicit type signatures.
This is possible because of type inference that allows to annotate the AST with

8

type informations. However, since the OCaml typechecker guarantes that a
program is well typed before being transformed into Lambda code, values at
runtime contains only a minimal subset of type informations needed to distin-
guish polymorphic values. For runtime values, OCaml uses a uniform memory
representation in which every variable is stored as a value in a contiguous block
of memory. Every value is a single word that is either a concrete integer or a
pointer to another block of memory, that is called block or box. We can abstract
the type of OCaml runtime values as the following:

type t = Constant | Block of int * t

where a one bit tag is used to distinguish between Constant or Block. In par-
ticular this bit of metadata is stored as the lowest bit of a memory block.

Given that all the OCaml target architectures guarantee that all pointers
are divisible by four and that means that two lowest bits are always 00 storing
this bit of metadata at the lowest bit allows an optimization. Constant values in
OCaml, such as integers, empty lists, Unit values and constructors of arity zero
(constant constructors) are unboxed at runtime while pointers are recognized
by the lowest bit set to 0.

2.4 Lambda form compilation

A Lambda code target file is produced by the compiler and consists of a single
s-expression. Every s-expression consist of (, a sequence of elements separated
by a whitespace and a closing). Elements of s-expressions are:

• Atoms: sequences of ascii letters, digits or symbols

• Variables

• Strings: enclosed in double quotes and possibly escaped

• S-expressions: allowing arbitrary nesting

The Lambda form is a key stage where the compiler discards type informations[11]
and maps the original source code to the runtime memory model described. In
this stage of the compiler pipeline pattern match statements are analyzed and
compiled into an automata.

type t = | Foo | Bar | Baz | Fred

let test = function

9

| Foo -> "foo"

| Bar -> "bar"

| Baz -> "baz"

| Fred -> "fred"

The Lambda output for this code can be obtained by running the compiler with
the -drawlambda flag or in a more compact form with the -dlambda flag:

(setglobal Prova!

(let

(test/85 =

(function param/86

(switch* param/86

case int 0: "foo"

case int 1: "bar"

case int 2: "baz"

case int 3: "fred")))

(makeblock 0 test/85)))

As outlined by the example, the makeblock directive allows to allocate low level
OCaml values and every constant constructor of the algebraic type t is stored
in memory as an integer. The setglobal directives declares a new binding in the
global scope: Every concept of modules is lost at this stage of compilation. The
pattern matching compiler uses a jump table to map every pattern matching
clauses to its target expression. Values are addressed by a unique name.

type t = | English of p | French of q

type p = | Foo | Bar

type q = | Tata| Titi

type t = | English of p | French of q

let test = function

| English Foo -> "foo"

| English Bar -> "bar"

| French Tata -> "baz"

| French Titi -> "fred"

In the case of types with a smaller number of variants, the pattern matching
compiler may avoid the overhead of computing a jump table. This example also
highlights the fact that non constant constructor are mapped to cons blocks
that are accessed using the tag directive.

10

(setglobal Prova!

(let

(test/89 =

(function param/90

(switch* param/90

case tag 0: (if (!= (field 0 param/90) 0) "bar" "foo")

case tag 1: (if (!= (field 0 param/90) 0) "fred" "baz"))))

(makeblock 0 test/89)))

In the Lambda language defines several numeric types:

• integers: that us either 31 or 63 bit two’s complement arithmetic depend-
ing on system word size, and also wrapping on overflow

• 32 bit and 64 bit integers: that use 32-bit and 64-bit two’s complement
arithmetic with wrap on overflow

• big integers: offer integers with arbitrary precision

• floats: that use IEEE754 double-precision (64-bit) arithmetic with the
addition of the literals infinity, neg_infinity and nan.

The are various numeric operations:

• Arithmetic operations: +, -, *, /, % (modulo), neg (unary negation)

• Bitwise operations: &, |, ˆ, «, » (zero-shifting), a» (sign extending)

• Numeric comparisons: <, >, <=, >=, ==

1. Functions Functions are defined using the following syntax, and close over
all bindings in scope: (lambda (arg1 arg2 arg3) BODY) and are applied
using the following syntax: (apply FUNC ARG ARG ARG) Evaluation is
eager.

2. Other atoms The atom let introduces a sequence of bindings at a smaller
scope than the global one: (let BINDING BINDING BINDING . . . BODY)

The Lambda form supports many other directives such as strinswitch that
is constructs aspecialized jump tables for string, integer range comparisons
and so on. These construct are explicitely undocumented because the
Lambda code intermediate language can change across compiler releases.

11

2.5 Pattern matching

Pattern matching is a widely adopted mechanism to interact with ADT[?]. C
family languages provide branching on predicates through the use of if state-
ments and switch statements. Pattern matching on the other hands express
predicates through syntactic templates that also allow to bind on data struc-
tures of arbitrary shapes. One common example of pattern matching is the
use of regular expressions on strings. provides pattern matching on ADT and
primitive data types. The result of a pattern matching operation is always one
of:

• this value does not match this pattern

• this value matches this pattern, resulting the following bindings of names
to values and the jump to the expression pointed at the pattern.

type color = | Red | Blue | Green | Black | White

match color with

| Red -> print "red"

| Blue -> print "blue"

| Green -> print "green"

| _ -> print "white or black"

Pattern matching clauses provide tokens to express data destructoring. For
example we can examine the content of a list with pattern matching

begin match list with

| [] -> print "empty list"

| element1 :: [] -> print "one element"

| (element1 :: element2) :: [] -> print "two elements"

| head :: tail-> print "head followed by many elements"

Parenthesized patterns, such as the third one in the previous example, matches
the same value as the pattern without parenthesis.

The same could be done with tuples

begin match tuple with

| (Some _, Some _) -> print "Pair of optional types"

| (Some _, None) | (None, Some _) -> print "Pair of optional types, one of which is null"

| (None, None) -> print "Pair of optional types, both null"

12

The pattern pattern1 | pattern2 represents the logical "or" of the two patterns,
pattern1 and pattern2. A value matches pattern1 | pattern2 if it matches pattern1
or pattern2.

Pattern clauses can make the use of guards to test predicates and variables
can captured (binded in scope).

begin match token_list with

| "switch"::var::"{"::rest -> ...

| "case"::":"::var::rest when is_int var -> ...

| "case"::":"::var::rest when is_string var -> ...

| "}"::[] -> ...

| "}"::rest -> error "syntax error: " rest

Moreover, the pattern matching compiler emits a warning when a pattern is not
exhaustive or some patterns are shadowed by precedent ones.

2.6 Symbolic execution

Symbolic execution is a widely used techniques in the field of computer security.
It allows to analyze different execution paths of a program simultanously while
tracking which inputs trigger the execution of different parts of the program.
Inputs are modelled symbolically rather than taking "concrete" values. A sym-
bolic execution engine keeps track of expressions and variables in terms of these
symbolic symbols and attaches logical constraints to every branch that is being
followed. Symbolic execution engines are used to track bugs by modelling the
domain of all possible inputs of a program, detecting infeasible paths, dead code
and proving that two code segments are equivalent.

Let’s take as example this signedness bug that was found in the FreeBSD
kernel[9] and allowed, when calling the getpeername function, to read portions
of kernel memory.

13

int compat;

{

struct file *fp;

register struct socket *so;

struct sockaddr *sa;

int len, error;

...

len = MIN(len, sa->sa_len); /* [1] */

error = copyout(sa, (caddr_t)uap->asa, (u_int)len);

if (error)

goto bad;

...

bad:

if (sa)

FREE(sa, M_SONAME);

fdrop(fp, p);

return (error);

}

The tree of the execution is presented below. It is built by evaluating the
function by consider the integer variable len the symbolic variable α, sa->sa_len
the symbolic variable β and π indicates the set of constraints on the symbolic
variables. The input values to the functions are identified by σ.

14

We can see that at step 3 the set of possible values of the scrutinee α is bigger
than the set of possible values of the input σ to the cast directive, that is: πα
* πσ. For this reason the cast may fail when α is len negative number, outside
the domain πσ. In C this would trigger undefined behaviour (signed overflow)
that made the exploit possible.

1. Symbolic Execution in terms of Hoare Logic Every step of the evaluation
in a symbolic engine can be modelled as the following transition:

(πσ, (πi)
i)→ (π′σ, (π

′
i)
i)

if we express the π transitions as logical formulas we can model the execu-
tion of the program in terms of Hoare Logic. The state of the computation
is a Hoare triple {P}C{Q} where P and Q are respectively the precondi-
tion and the postcondition that constitute the assertions of the program.
C is the directive being executed. The language of the assertions P is:

P ::= true | false | a < b | P1 ∧ P2 | P1 ∨ P2 | ¬ P

where a and b are numbers. In the Hoare rules assertions could also take
the form of

P ::= ∀ i. P | ∃ i. P | P1 ⇒ P2

where i is a logical variable, but assertions of these kinds increases the
complexity of the symbolic engine. \ Execution follows the following in-
ference rules:

• Empty statement :

{P}skip{P}

• Assignment statement : The truthness of P[a/x] is equivalent to the
truth of {P} after the assignment.

{P [a/x]}x := a{P}

• Composition : c1 and c2 are directives that are executed in order;
{Q} is called the mid condition.

{P}c1{R}, {R}c2{Q}

{P}c1; c2{Q}

15

• Conditional :

{P ∧ b}c1{Q}, {P ∧ ¬b}c2{Q}

{P}if b then c1 else c2{Q}

• Loop : {P} is the loop invariant. After the loop is finished P holds
and ¬b caused the loop to end.

{P ∧ b}c{P}

{P}while b do c{P ∧ ¬b}

Even if the semantics of symbolic execution engines are well defined, the
user may run into different complications when applying such analysis
to non trivial codebases[13] For example, depending on the domain, loop
termination is not guaranteed. Even when termination is guaranteed,
looping causes exponential branching that may lead to path explosion or
state explosion. Reasoning about all possible executions of a program is
not always feasible and in case of explosion usually symbolic execution
engines implement heuristics to reduce the size of the search space[?].

2.7 Translation Validation

Translators, such as compilers and code generators, are huge pieces of software
usually consisting of multiple subsystem and constructing an actual specifica-
tion of a translator implementation for formal validation is a very long task.
Moreover, different translators implement different algorithms, so the correct-
ness proof of a translator cannot be generalized and reused to prove another
translator. Translation validation is an alternative to the verification of existing
translators that consists of taking the source and the target (compiled) program
and proving a posteriori their semantic equivalence.

2.7.1 Translation Validation as Transation Systems

There are many successful attempts at translation validation of code translators[15]
and to a less varying degree of compilers[16]. Pnueli et al. provide a compu-
tational model based on synchronous transition systems to prove a translation
verification tool based on the following model.

16

The description of the computational models resembles closely the one in [15].
A synchronous transition system (STS) A = (V, Θ, ρ) where

• V: is a finite set of variables;
∑

v is the set of all states over V

• Θ: a satisfiable assertion over the state variables of A, representing its
initial state

• ρ: a transition relation computed as an assertion ρ(V, V’) that relates a
state s∈

∑
v to the successor s’∈

∑
v

A computation of A is an infinite sequence σ = (s0, s1, s2, . . .) where

∀i∈N si∈
∑

v

s0|=Θ

∀i∈N (si, si+1+)|=ρ

We can give a notion of correct implementation of the Source to Target compiler
in the translation validation settings by using the concept of refinement between
STS. Let A = (VA, ΘA, ρA, EA) and C = (VC, ΘC, ρC, EC) be an abstract
and a concrete STS where EA⊆VA and EC⊆VC and are externally observable
variables. We call a projection sF the state s projected on the subset F⊆V. An
observation of a STS is any infinite sequence of the form (s0E, s1E, s2E, . . .) for
a path σ = (s0, s1, s2, . . .). We say that the concrete STS C refines the abstract
STS A if Obs(C)⊆Obs(A). If we can prove a correct mapping of state variables
at the target and source levels (as highlighted by the figure) by a function map:
VA 7→VC we can use inductively prove equivalence using a simulation relation:∧

s∈V S
A
s = map(s) ∧ΘC ⇒ ΘA (initial condition)∧

i∈V I
A
i ∧
∧
s∈V S

A
s = map(s) ∧ ρA ∧ ρC ⇒∧

i∈V S
A
s′ ∧

∧
o∈V O

A
o′ = map(o′) (step)

Proof is out of scope for this thesis. Our work uses bisimulation to prove equiv-
alence.

17

3 Translation Validation of the Pattern Matching Com-

piler

3.1 Accessors

OCaml encourages widespread usage of composite types to encapsulate data.
Composite types include discriminated unions, of which we have seen different
use cases, and records, that are a form of product types such as structures in C.
struct Shape {

int centerx;

int centery;

enum ShapeKind kind;

union {

struct { int side; };

struct { int length, height; };

struct { int radius; };

};

};

type shape = {

x:int;

y:int;

kind:shapekind

}

and shapekind

| Square of int

| Rect of int * int

| Circle of int

Primitive OCaml datatypes include aggregate types in the form of tuples and
lists. Other aggregate types are built using module functors[10]. Low level
Lambda untyped constructors of the form

type t = Constant | Block of int * t

provides enough flexibility to encode source higher kinded types. This shouldn’t
surprise because the Lambda language consists of s-expressions. The field op-
eration allows to address a Block value; the expressions (field 0 x) and (field
1 x) are equivalent to the Lisp primitives (car x) and (cdr x) respectively.

let value = 1 :: 2 :: 3 :: []

(field 0 x) = 1

(field 0 (field 1 x)) = 2

(field 0 (field 1 (field 1 x)) = 3

(field 0 (field 1 (field 1 (field 1 x)) = []
We can represent the concrete value of a higher kinded type as a flat list of

blocks. In the prototype we call this "view" into the value of a datatype the
accessor a.

a ::= Here | n.a

Accessors have some resemblance with the low level Block values, such as the
fact that both don’t encode type informations; for example the accessor of a list
of integers is structurally equivalent to the accessor of a tuple containing the
same elements.

18

We can intuitively think of the accessor as the access path to a value that
can be reached by deconstructing the scrutinee. At the source level accessors
are constructed by inspecting the structure of the patterns at hand. At the
target level accessors are constructed by compressing the steps taken by the
symbolic engine during the evaluation of a value. Accessors don’t store any
kind of information about the concrete value of the scrutinee. Accessors respect
the following invariants:

v(Here) = v
K(vi)i(k.a) = vk(a) if k ∈ [0;n[

We will see in the following chapters how at the source level and the target level
a value vS and a value vT can be deconstructed into a value vector (vi)

i∈I of
which we can access the root using the Here accessor and we can inspect the
k-th element using an accessor of the form k.a.

3.2 Source program

The OCaml source code of a pattern matching function has the following form:

match variable with
| pattern1 → expr1
| pattern2 when guard → expr2
| pattern3 as var → expr3
...
| pn → exprn

Patterns could or could not be exhaustive.
Pattern matching code could also be written using the more compact form:

function
| pattern1 → expr1
| pattern2 when guard → expr2
| pattern3 as var → expr3
...
| pn → exprn

This BNF grammar describes formally the grammar of the source program:

19

start ::= "match" id "with" patterns | "function" patterns
patterns ::= (pattern0|pattern1) pattern1+
;; pattern0 and pattern1 are needed to distinguish the first case in which
;; we can avoid writing the optional vertical line
pattern0 ::= clause
pattern1 ::= "|" clause
clause ::= lexpr "->" rexpr
lexpr ::= rule (ε|condition)
rexpr ::= _code ;; arbitrary code
rule ::= wildcard|variable|constructor_pattern| or_pattern
wildcard ::= "_"
variable ::= identifier
constructor_pattern ::= constructor (rule|ε) (assignment|ε)
constructor ::= int|float|char|string|bool |unit

|record|exn|objects|ref |list|tuple|array|variant|parameterized_variant ;; data types
or_pattern ::= rule ("|" wildcard|variable|constructor_pattern)+
condition ::= "when" b_guard
assignment ::= "as" id
b_guard ::= ocaml_expression ;; arbitrary code

The source program is parsed using the ocaml-compiler-libs[?] library. The
result of parsing, when successful, results in a list of clauses and a list of type
declarations. Every clause consists of three objects: a left-hand-side that is the
kind of pattern expressed, an option guard and a right-hand-side expression.
Patterns are encoded in the following way:

pattern type

_ Wildcard
p1 as x Assignment
c(p1,p2,. . . ,pn) Constructor
(p1| p2) Orpat

Once parsed, the type declarations and the list of clauses are encoded in the
form of a matrix that is later evaluated using a matrix decomposition algorithm.

Patterns are of the form

20

pattern type of pattern

_ wildcard
x variable
c(p1,p2,. . . ,pn) constructor pattern
(p1| p2) or-pattern

The pattern p matches a value v, written as p 4 v, when one of the following
rules apply

_ 4 v ∀v
x 4 v ∀v
(p1 | p2) 4 v iff p1 4 v or p2 4 v
c(p1, p2, . . . , pa) 4 c(v1, v2, . . . , va) iff (p1, p2, . . . , pa) 4 (v1, v2, . . . , va)
(p1, p2, . . . , pa) 4 (v1, v2, . . . , va) iff pi 4 vi ∀i ∈ [1..a]

When a value v matches pattern p we say that v is an instance of p.
During compilation by the translator, expressions at the right-hand-side are

compiled into Lambda code and are referred as lambda code actions li.
We define the pattern matrix P as the matrix |m × n| where m is bigger or

equal than the number of clauses in the source program and n is equal to the
arity of the constructor with the gratest arity.

P =

p1,1 p1,2 · · · p1,n

p2,1 p2,2 · · · p2,n
...

...
. . .

...
pm,1 pm,2 · · · pm,n)

Every row of P is called a pattern vector ~pi = (p1, p2, . . . , pn); in every instance
of P pattern vectors appear normalized on the length of the longest pattern
vector. Considering the pattern matrix P we say that the value vector ~v = (v1,
v2, . . . , vi) matches the pattern vector pi in P if and only if the following two
conditions are satisfied:

• pi,1, pi,2, · · · , pi,n 4 (v1, v2, . . . , vn)

• ∀j < i pj,1, pj,2, · · · , pj,n � (v1, v2, . . . , vn)

In other words given the pattern vector of the i-th row pi, we say that pi matches
~v if every element vk of ~v is an instance of the corresponding sub-patten pi,k

and none of the pattern vectors of the previous rows matches.
We can define the following three relations with respect to patterns:

21

• Pattern p is less precise than pattern q, written p 4 q, when all instances
of q are instances of p

• Pattern p and q are equivalent, written p ≡ q, when their instances are
the same

• Patterns p and q are compatible when they share a common instance

Wit the support of two auxiliary functions

• tail of an ordered family

tail((xi)i ∈ I) := (xi)i 6= min(I)

• first non-⊥ element of an ordered family

First((xi)i) := ⊥ if ∀i, xi = ⊥
First((xi)i) := xmin{i | xi 6= ⊥} if ∃i, xi 6= ⊥

we now define what it means to run a pattern row against a value vector of the
same length, that is (pi)i(vi)i

pi vi resultpat

∅ (∅) []
(_, tail(pi)i) (vi) tail(pi)i(tail(vi)i)
(x, tail(pi)i) (vi) σ[x7→v0] if tail(pi)i(tail(vi)i) = σ

(K(qj)j , tail(pi)i) (K(v’j)j ,tail(vj)j) ((qj)j + tail(pi)i)((v’j)j + tail(vi)i)
(K(qj)j , tail(pi)i) (K’(v’l)l,tail(vj)j) ⊥ if K 6= K’
(q1|q2, tail(pi)i) (vi)i First((q1,tail(pi)i)(vi)i, (q2,tail(pi)i)(vi)i)

A source program tS is a collection of pattern clauses pointing to blackbox
bb terms. Running a program tS against an input value vS , written tS(vS)
produces a result r belonging to the following grammar:

tS ::= (p → bb)i∈I

tS(vS) → r
r ::= guard list * (Match (σ, bb) | NoMatch | Absurd)

We can define what it means to run an input value vS against a source
program tS :

tS(vS) := NoMatch if ∀i, pi(vS) = ⊥
tS(vS) = { Absurd if bbi0 = . (refutation clause)

Match (σ, bbi0) otherwise
where io = min{i | pi(vS) 6= ⊥}

22

Expressions of type guard and bb are treated as blackboxes of OCaml code. A
sound approach for treating these blackboxes would be to inspect the OCaml
compiler during translation to Lambda code and extract the blackboxes com-
piled in their Lambda representation. This would allow to test for structural
equality with the counterpart Lambda blackboxes at the target level. Given that
this level of introspection is currently not possibile because the OCaml compiler
performs the translation of the pattern clauses in a single pass, we decided to
restrict the structure of blackboxes to the following (valid) OCaml code:

external guard : ’a -> ’b = "guard"

external observe : ’a -> ’b = "observe"

We assume the existence of these two external functions guard and observe
with a valid type that lets the user pass any number of arguments to them.
All the guards are of the form guard <arg> <arg> <arg>, where the <arg>
are expressed using the OCaml pattern matching language. Similarly, all the
right-hand-side expressions are of the form observe <arg> <arg> ... with the
same constraints on arguments.

(* declaration of an algebraic and recursive datatype t *)

type t = K1 | K2 of t

let _ = function

| K1 -> observe 0

| K2 K1 -> observe 1

| K2 x when guard x -> observe 2 (* guard inspects the x variable *)

| K2 (K2 x) as y when guard x y -> observe 3

| K2 _ -> observe 4

We note that the right hand side of observe is just an arbitrary value and in
this case just enumerates the order in which expressions appear. This oversim-
plification of the structure of arbitrary code blackboxes allows us to test for
structural equivalence without querying the compiler during the TypedTree to
Lambda translation phase.

let _ = function

| K1 -> lambda0
| K2 K1 -> lambda1
| K2 x when lambda-guard0 -> lambda2
| K2 (K2 x) as y when lambda-guard1 -> lambda3
| K2 _ -> lambda4

23

3.2.1 Matrix decomposition of pattern clauses

We define a new object, the clause matrix P→ L of size |m x n+1| that associates
pattern vectors ~pi to lambda code action li.

P → L =

p1,1 p1,2 · · · p1,n → l1

p2,1 p2,2 · · · p2,n → l2
...

...
. . .

...→
...

pm,1 pm,2 · · · pm,n → lm

The initial input of the decomposition algorithm C consists of a vector of vari-
ables ~x = (x1, x2, . . . , xn) of size n where n is the arity of the type of x and
the clause matrix P → L. That is:

C((~x = (x1, x2, ..., xn),

p1,1 p1,2 · · · p1,n → l1

p2,1 p2,2 · · · p2,n → l2
...

...
. . .

...→
...

pm,1 pm,2 · · · pm,n → lm

)

The base case C0 of the algorithm is the case in which the ~x is an empty
sequence and the result of the compilation C0 is l1

C0((),

→ l1

→ l2

→
...

→ lm

) = l1

When ~x 6= () then the compilation advances using one of the following four
rules:

1. Variable rule: if all patterns of the first column of P are wildcard patterns
or bind the value to a variable, then

C(~x, P → L) = C((x2, x3, ..., xn), P ′ → L′)

where

P ′ → L′ =

p1,2 · · · p1,n → (let y1 x1) l1

p2,2 · · · p2,n → (let y2 x1) l2
...

. . .
... →

...
...

...
...

pm,2 · · · pm,n → (let ym x1) lm

24

That means in every lambda action li in the P’ → L’ matrix there is a
binding of x1 to the variable that appears on the pattern pi,1. When there
are wildcard patterns, bindings are omitted the lambda action li remains
unchanged.

2. Constructor rule: if all patterns in the first column of P are constructors
patterns of the form k(q1, q2, . . . , qn’) we define a new matrix, the special-
ized clause matrix S, by applying the following transformation on every
row p:

for every c ∈ Set of constructors

for i ← 1 .. m

let ki ← constructor_of(pi,1)

if ki = c then

p ← qi,1, qi,2, ..., qi,n′ , pi,2, pi,3, ..., pi,n

Patterns of the form qi,j matches on the values of the constructor and we
define the variables y1, y2, . . . , ya so that the lambda action li becomes

(let (y1 (field 0 x1))

(y2 (field 1 x1))

...

(ya (field (a−1) x1))
li)

and the result of the compilation for the set of constructors {c1, c2, ..., ck}
is:

switch x1 with

case c1: l1
case c2: l2
...

case ck: lk
default: exit

1. Orpat rule: there are various strategies for dealing with or-patterns. The
most naive one is to split the or-patterns. For example a row p containing
an or-pattern:

(pi,1|qi,1|ri,1), pi,2, ..., pi,m → l

results in three rows added to the clause matrix

pi,1, pi,2, ..., pi,m → l

25

qi,1, pi,2, ..., pi,m → l

ri,1, pi,2, ..., pi,m → l

2. Mixture rule: When none of the previous rules apply the clause matrix
P → L is split into two clause matrices, the first P1 → L1 that is the
largest prefix matrix for which one of the three previous rules apply, and
P2 → L2 containing the remaining rows. The algorithm is applied to both
matrices.

It is important to note that the application of the decomposition algorithm
converges. This intuition can be verified by defining the size of the clause matrix
P → L as equal to the length of the longest pattern vector ~pi and the length of
a pattern vector as the number of symbols that appear in the clause. While it
is very easy to see that the application of rules 1) and 4) produces new matrices
of length equal or smaller than the original clause matrix, we can show that:

• with the application of the constructor rule the pattern vector ~pi loses one
symbol after its decomposition:

|(pi,1 (q1, q2, . . . , qn’), pi,2, pi,3, . . . , pi,n)| = n + n’
|(qi,1, qi,2, . . . , qi,n’, pi,2, pi,3, . . . , pi,n)| = n + n’ - 1

• with the application of the orpat rule, we add one row to the clause matrix
P → L but the length of a row containing an Or-pattern decreases

|P → L| =
∣∣(p1,1|q1,1) p1,2 · · · p1,n → l1

...
...

. . .
...→

...

∣∣ = n+ 1

|P ′ → L′| =
∣∣

p1,1 p1,2 · · · p1,n → l1

q1,1 p1,2 · · · p1,n → l1
...

...
. . .

...→
...

∣∣ = n

In our prototype the source matrix mS is defined as follows

SMatrix mS := (aj)j∈J, ((pij)j∈J → bbi)i∈I

3.3 Target translation

The target program of the following general form is parsed using a parser gen-
erated by Menhir[18], a LR(1) parser generator for the OCaml programming
language. Menhir compiles LR(1) a grammar specification, in this case a sub-
set of the Lambda intermediate language, down to OCaml code. This is the
grammar of the target language[?] (TODO: check menhir grammar)

26

start ::= sexpr
sexpr ::= variable | string | "(" special_form ")"
string ::= "\"" identifier "\"" ;; string between doublequotes
variable ::= identifier
special_form ::= let|catch|if|switch|switch-star|field|apply|isout
let ::= "let" assignment sexpr ;; (assignment sexpr)+ outside of pattern match code
assignment ::= "function" variable variable+ ;; the first variable is the identifier of the function
field ::= "field" digit variable
apply ::= ocaml_lambda_code ;; arbitrary code
catch ::= "catch" sexpr with sexpr
with ::= "with" "(" label ")"
exit ::= "exit" label
switch-star ::= "switch*" variable case*
switch::= "switch" variable case* "default:" sexpr
case ::= "case" casevar ":" sexpr
casevar ::= ("tag"|"int") integer
if ::= "if" bexpr sexpr sexpr
bexpr ::= "(" ("!="|"="\vert{}">"|"<="|">"|"<") sexpr digit | field ")"
label ::= integer

The prototype doesn’t support strings.
The AST built by the parser is traversed and evaluated by the symbolic

execution engine. Given that the target language supports jumps in the form
of "catch - exit" blocks the engine tries to evaluate the instructions inside the
blocks and stores the result of the partial evaluation into a record. When a jump
is encountered, the information at the point allows to finalize the evaluation of
the jump block. In the environment the engine also stores bindings to values
and functions. For performance reasons the compiler performs integer addition
and subtraction on variables that appears inside a switch expression in order to
have values always start from 0. Let’s see an example of this behaviour:

let f x = match x with

| 3 -> "3"

| 4 -> "4"

| 5 -> "5"

| 6 -> "6"

| _ -> "_"

(let

27

(f/80 =

(function x/81

(catch

(let (switcher/83 =a (-3+ x/81))

(if (isout 3 switcher/83) (exit 1)

(switch* switcher/83

case int 0: "3"

case int 1: "4"

case int 2: "5"

case int 3: "6")))

with (1) "_")))

(makeblock 0 f/80))

The prototype takes into account such transformations and at the end of the
symbolic evaluation it traverses the result in order to "undo" such optimization
and have accessors of the variables match their intended value directly.

3.4 Decision Trees

We have already given the parametrized grammar for decision trees and we will
now show how a decision tree is constructed from source and target programs.

decision trees D(π, e) ::= Leaf(e(a))

| Failure
| Switch(a, (πi, Di)

i∈I , Dfb)

| Guard(e(a), D0, D1)

| Unreachable
accessors a ::= Root | a.n (n ∈ N)

πS : datatype constructors
πT ⊆ {intn | n ∈ Z}] {tag n | n ∈ N}

a(vS), a(vT), DS(vS), DT (vT)

While the branches of a decision tree represents intuitively the possible paths
that a program can take, branch conditions πS and πT represents the shape of
possible values that can flow along that path.

3.4.1 From source programs to decision trees

Let’s consider some trivial examples:

function true -> 1

is translated to

Switch ([(true, Leaf 1)], Failure)

28

while

function
| true -> 1
| false -> 2

will be translated to

Switch ([(true, Leaf 1); (false, Leaf 2)])

It is possible to produce Unreachable examples by using refutation clauses (a
"dot" in the right-hand-side)

function
| true -> 1
| false -> 2
| _ -> .

that gets translated into

Switch ([(true, Leaf 1); (false, Leaf 2)], Unreachable)

We trust this annotation, which is reasonable as the type-checker verifies
that it indeed holds. We’ll see that while we can build Unreachable nodes from
source programs, in the lambda target there isn’t a construct equivalent to the
refutation clause.

Guard nodes of the tree are emitted whenever a guard is found. Guards
node contains a blackbox of code that is never evaluated and two branches, one
that is taken in case the guard evaluates to true and the other one that contains
the path taken when the guard evaluates to false. We say that a translation of
a source program to a decision tree is correct when for every possible input, the
source program and its respective decision tree produces the same result

∀vS , tS(vS) = JtSKS(vS)

We define the decision tree of source programs JtSK in terms of the decision
tree of pattern matrices JmSK by the following:

J((pi → bbi)i∈IK := J(Here), (pi → bbi)i∈I K

Decision tree computed from pattern matrices respect the following invariant:

∀v (vi)i∈I = v(ai)i∈I → m(vi)i∈I = JmK(v) for m = ((ai)i∈I, (ri)i∈I)

29

The invariant conveys the fact that OCaml pattern matching values can be
deconstructed into a value vector and if we can correctly inspect the value
vector elements using the accessor notation we can build a decision tree JmK
from a pattern matrix that are equivalent when run against the value at hand.

We proceed to show the correctness of the invariant by a case analysys.
Base cases:

1. [| ∅, (∅→ bbi)i |] ≡ Leaf bbi where i := min(I), that is a decision tree [|m|]
defined by an empty accessor and empty patterns pointing to blackboxes
bbi. This respects the invariant because a source matrix in the case of
empty rows returns the first expression and (Leafbb)(v) := Match bb

2. [| (aj)j , ∅ |] ≡ Failure, as it is the case with the matrix decomposition
algorithm

Regarding non base cases: Let’s first define some auxiliary functions

• The index family of a constructor: Idx(K) := [0; arity(K)[

• head of an ordered family (we write x for any object here, value, pattern
etc.): head((xi)

i∈I) = xmin(I)

• tail of an ordered family: tail((xi)i∈I) := (xi)
i 6=min(I)

• head constructor of a value or pattern:

constr(K(xi)i) = K
constr(_) = ⊥
constr(x) = ⊥

• first non-⊥ element of an ordered family:

First((xi)i) := ⊥ if ∀i, xi = ⊥
First((xi)i) := x_min{i | xi 6= ⊥} if ∃i, xi 6= ⊥

• definition of group decomposition:

30

let constrs((pi)i ∈ I) = { K | K = constr(pi), i ∈ I }
let Groups(m) where m = ((ai)i ((pij)i → ej)ij) =

let (Kk)k = constrs(pi0)i in
(Kk →

((a0.l)l + tail(ai)i)
(
if poj is Kk(ql) then

(ql)l + tail(pij)i → ej
if poj is _ then

(_)l + tail(pij)i → ej
else ⊥
)j

), (
tail(ai)i, (tail(pij)i → ej if p0j is _ else ⊥)j

)

Groups(m) is an auxiliary function that decomposes a matrix m into submatri-
ces, according to the head constructor of their first pattern. Groups(m) returns
one submatrix m_r for each head constructor K that occurs on the first row of
m, plus one "wildcard submatrix" mwild that matches on all values that do not
start with one of those head constructors.
Intuitively, m is equivalent to its decomposition in the following sense: if the
first pattern of an input vector (v_i)ˆi starts with one of the head construc-
tors Kk, then running (v_i)ˆi against m is the same as running it against the
submatrix mKk

; otherwise (when its head constructor is not one of (Kk)k) it is
equivalent to running it against the wildcard submatrix.

We formalize this intuition as follows

1. Lemma (Groups): Let m be a matrix with

Groups(m) = (kr → mr)ˆk, mwild

For any value vector (vi)
l such that v0 = k(v′l)

l for some constructor k, we
have:

if k = kk for some k then
m(vi)i = mk((vl’)l + (vi)i∈I\{0})

else
m(vi)i = mwild(vi)i∈I\{0}

31

2. Proof: Let m be a matrix ((ai)i, ((pij)i → ej)j) with

Groups(m) = (Kk → mk)k, mwild

Below we are going to assume that m is a simplified matrix such that the
first row does not contain an or-pattern or a binding to a variable.

Let (vi)i be an input matrix with v0 = Kv(v’l)l for some constructor Kv.
We have to show that:

• if Kk = Kv for some Kk ∈ constrs(p0j)j , then

m(vi)i = mk((v’l)l + tail(vi)i)

• otherwise m(vi)i = mwild(tail(vi)i)

Let us call (rkj) the j-th row of the submatrix mk, and rjwild the j-th row
of the wildcard submatrix mwild.

Our goal contains same-behavior equalities between matrices, for a fixed
input vector (vi)i. It suffices to show same-behavior equalities between
each row of the matrices for this input vector. We show that for any j,

• if Kk = Kv for some Kk ∈ constrs(p0j)j , then

(pij)i(vi)i = rkj((v’l)l + tail(vi)i

• otherwise

(pij)i(vi)i = rjwild tail(vi)i

In the first case (Kv is Kk for some Kk ∈ constrs(p0j)j), we have to prove
that

(pij)i(vi)i = rkj((v’l)l + tail(vi)i

By definition of mk we know that rkj is equal to

if poj is Kk(ql) then
(ql)l + tail(pij)i → ej

if poj is _ then
(_)l + tail(pij)i → ej

else ⊥

By definition of (pi)i(vi)i we know that (pij)i(vi) is equal to

32

(K(qj)j , tail(pij)i) (K(v’l)l,tail(vi)i) := ((qj)j + tail(pij)i)((v’l)l + tail(vi)i)
(_, tail(pij)i) (vi) := tail(pij)i(tail(vi)i)
(K(qj)j , tail(pij)i) (K’(v’l)l,tail(vj)j) := ⊥ if K 6= K’

We prove this first case by a second case analysis on p0j .

TODO

In the second case (Kv is distinct from Kk for all Kk ∈ constrs(poj)j), we
have to prove that

(pij)i(vi)i = rjwild tail(vi)i

3.4.2 From target programs to target decision trees

Symbolic Values during symbolic evaluation have the following form

vT ::= Block(tag ∈ N, (vi)i∈I) | n ∈ N

The result of the symbolic evaluation is a target decision tree DT

DT ::= Leaf bb | Switch(a, (πi → Di)i∈S , D?) | Failure

Every branch of the decision tree is "constrained" by a domain πT that
intuitively tells us the set of possible values that can "flow" through that
path.

Domain π = { n|n∈N x n|n∈Tag⊆N }

πT conditions are refined by the engine during the evaluation; at the root
of the decision tree the domain corresponds to the set of possible values
that the type of the function can hold. D? is the fallback node of the
tree that is taken whenever the value at that point of the execution can’t
flow to any other subbranch. Intuitively, the πfallback condition of the D?
fallback node is

πfallback = ¬
⋃
i∈I

πi

The fallback node can be omitted in the case where the domain of the
children nodes correspond to set of possible values pointed by the accessor
at that point of the execution

33

domain(vs(a)) =
⋃
i∈I

pii

We say that a translation of a target program to a decision tree is cor-
rect when for every possible input, the target program and its respective
decision tree produces the same result

∀vT , tT (vT) = JtT KT (vT)

3.5 Equivalence checking

3.5.1 Introductory remarks

We assume as given an equivalence relation eS ≈expr eT on expressions (that
are contained in the leaves of the decision trees). As highlighted before, in the
prototype we use a simple structural equivalence between observe expressions
but ideally we could query the OCaml compiler and compare the blackboxes in
Lambda form. We already defined what it means to run a value vS against a
program tS :

tS(vS) := NoMatch if ∀i, pi(vS) = ⊥
tS(vS) = { Absurd if bbi0 = . (refutation clause)

Match (σ, bbi0) otherwise
where io = min{i | pi(vS) 6= ⊥}

and simmetrically, to run a value vT against a target program tT :
We denote as vS ≈val vT the equivalence relation between a source value

vS and a target value vT . The equivalence relation is proven by structural
induction.
integers

i ≈val (i)

boolean

false ≈val (0)

boolean

true ≈val (1)

unit value

() ≈val (0)

Empty List

[] ≈val (0)

List
vS ≈val vT v′S ≈val v

′
T

[vS ; v′S] ≈val (block vT v′T)

Tuple
vS ≈val vT v′S ≈val v

′
T

(vS ; v′S) ≈val (block vT v′T)

Record
vS ≈val vT v′S ≈val v

′
T

{vS ; v′S} ≈val (block vT v′T)

constant constructor
Ki ∈ V ariant

Ki ≈val (i)

Variant
Ki ∈ V ariant vS ≈val vT

KivS ≈val (block (tag i) vT)

34

The relation vS ≈val vT captures our knowledge of the OCaml value represen-
tation, for example it relates the empty list constructor [] to int 0. We can
then define closed expressions e, pairing a (source or target) expression with
the environment σ captured by a program, and what it means to “run” a value
against a program or a decision, written t(v) and D(v), which returns a trace
(e1, . . . , en) of the executed guards and a matching result r.

eS ≈expr eT (assumed) tS(vS), tT (vT), vS ≈val vT

rS ≈res rT , RS ≈run RT (simple)

environment σ(v) ::= [x1 7→ v1, . . . , vn 7→ vn]

closed term e(v) ::= (σ(v), e)

matching result r(v) ::= NoMatch | Match(e(v))

matching run R(v) ::= (e(v)1, . . . , e(v)n), r(v)

∀x, σS(x) ≈val σT (x)

σS ≈env σT

σS ≈env σT eS ≈expr eT

(σS , eS) ≈cl−expr (σT , eT)

∀vS ≈val vT , tS(vS) ≈run tT (vT)

tS ≈prog tT

Once formulated in this way, our equivalence algorithm must check the natural
notion of input-output equivalence for matching programs, captured by the
relation tS ≈prog tT .

3.5.2 The equivalence checking algorithm

During the equivalence checking phase we traverse the two trees, recursively
checking equivalence of pairs of subtrees. When we traverse a branch condition,
we learn a condition on an accessor that restricts the set of possible input values
that can flow in the corresponding subtree. We represent this in our algorithm
as an input domain S of possible values (a mapping from accessors to target
domains).

The equivalence checking algorithm equiv(S,DS , DT) takes an input domain
S and a pair of source and target decision trees. In case the two trees are not
equivalent, it returns a counter example.

It is defined exactly as a decision procedure for the provability of the judg-
ment (S `[] DS ≈ DT), defined below in the general form (S `G DS ≈ DT)

where G is a guard queue, indicating an imbalance between the guards observed
in the source tree and in the target tree. (For clarity of exposition, the inference
rules do not explain how we build the counter-example.)

35

input space
S ⊆ {(vS , vT) | vS ≈val vT }

boolean result
b ∈ {0, 1}

guard queues
G ::= (t1 = b1), . . . , (tn = bn)

The algorithm proceeds by case analysis. Inference rules are shown. If S is
empty the results is Yes.

empty

∅ `G DS ≈ DT S `[] Failure ≈ Failure

tS ≈expr tT

S `[] Leaf(tS) ≈ Leaf(tT)

If the source decision tree (left hand side) is a terminal while the target
decisiorn tree (right hand side) is not, the algorithm proceeds by explosion of
the right hand side. Explosion means that every child of the right hand side is
tested for equality against the left hand side.

explode-right
DS ∈ Leaf(t),Failure

∀i, (S ∩ a ∈ πi) `G DS ≈ Di (S ∩ a /∈ (πi)
i) `G DS ≈ Dfb

S `G DS ≈ Switch(a, (πi)
iDi, Dfb)

When the left hand side is not a terminal, the algorithm explodes the left
hand side while trimming every right hand side subtree. Trimming a left hand
side tree on an interval set domS computed from the right hand side tree con-
structor means mapping every branch condition domT (interval set of possible
values) on the left to the intersection of domT and domS when the accessors
on both side are equal, and removing the branches that result in an empty
intersection. If the accessors are different, domT is left unchanged.

explode-right
DS ∈ Leaf(t),Failure

∀i, (S ∩ a ∈ πi) `G DS ≈ Di (S ∩ a /∈ (πi)
i) `G DS ≈ Dfb

S `G DS ≈ Switch(a, (πi)
iDi, Dfb)

The equivalence checking algorithm deals with guards by storing a queue.
A guard blackbox is pushed to the queue whenever the algorithm encounters a
Guard node on the right, while it pops a blackbox from the queue whenever a
Guard node appears on the left hand side. The algorithm stops with failure if

36

the popped blackbox and the and blackbox on the left hand Guard node are
different, otherwise in continues by exploding to two subtrees, one in which
the guard condition evaluates to true, the other when it evaluates to false.
Termination of the algorithm is successful only when the guards queue is empty.

S `G,(eS=0) D0 ≈ DT S `G,(eS=1) D1 ≈ DT

S `G Guard(eS , D0, D1) ≈ DT

eS ≈expr eT S `G DS ≈ Db

S `(eS=b),G DS ≈ Guard(eT , D0, D1)

Our equivalence-checking algorithm equiv(S,CS , CT)G is a exactly decision pro-
cedure for the provability of the judgment (equiv(S,CS , CT)G), defined by the
previous inference rules. Running a program tS or its translation JtSK against
an input vS produces as a result r in the following way:

(JtSKS(vS) ≡ CS(vS)) → r
tS(vS) → r

Likewise

(JtT KT (vT) ≡ CT (vT)) → r
tT (vT) → r
result r ::= guard list * (Match blackbox | NoMatch | Absurd)
guard ::= blackbox.

Having defined equivalence between two inputs of which one is expressed in the
source language and the other in the target language, vS ' vT , we can define
the equivalence between a couple of programs or a couple of decision trees

tS ' tT := ∀vS'vT , tS(vS) = tT (vT)
CS ' CT := ∀vS'vT , CS(vS) = CT (vT)

The result of the proposed equivalence algorithm is Yes or No(vS, vT). In
particular, in the negative case, vS and vT are a couple of possible counter
examples for which the decision trees produce a different result.

In the presence of guards we can say that two results are equivalent modulo
the guards queue, written r1 'gs r2, when:

(gs1, r1) 'gs (gs2, r2) ⇔ (gs1, r1) = (gs2 ++ gs, r2)

We say that CT covers the input space S, written covers(CT , S) when every
value vS∈S is a valid input to the decision tree CT . (TODO: rephrase) Given
an input space S and a couple of decision trees, where the target decision tree
CT covers the input space S we can define equivalence:

37

equiv(S, CS , CT , gs) = Yes ∧ covers(CT , S) → ∀vS'vT ∈ S, CS(vS) 'gs CT (vT)

Similarly we say that a couple of decision trees in the presence of an input space
S are not equivalent in the following way:

equiv(S, CS , CT , gs) = No(vS ,vT) ∧ covers(CT , S) → vS'vT ∈ S ∧ CS(vS) 6=gs CT (vT)

Corollary: For a full input space S, that is the universe of the target program:

equiv(S, JtSKS , JtT KT , ∅) = Yes ⇔ tS ' tT

3.5.3 The trimming lemma

The trimming lemma allows to reduce the size of a decision tree given an accessor
a → π relation (TODO: expand)

∀vT ∈ (a→π), CT (vT) = Ct/a→π(vT)

We prove this by induction on CT :

• CT = Leafbb: when the decision tree is a leaf terminal, the result of
trimming on a Leaf is the Leaf itself

Leafbb/a→π(v) = Leafbb(v)

• The same applies to Failure terminal

Failure/a→π(v) = Failure(v)

• When CT = Switch(b, (π→Ci)i)/a→π then we look at the accessor a of
the subtree Ci and we define πi’ = πi if a 6=b else πi∩π Trimming a switch
node yields the following result:

Switch(b, (π→Ci)i∈I)/a→π := Switch(b, (π’i→Ci/a→π)i∈I)

For the trimming lemma we have to prove that running the value vT against
the decision tree CT is the same as running vT against the tree Ctrim that is the
result of the trimming operation on CT

CT (vT) = Ctrim(vT) = Switch(b, (πi’→Ci/a→π)i∈I)(vT)

We can reason by first noting that when vT /∈(b→πi)i the node must be a Failure
node. In the case where ∃k | vT∈(b→πk) then we can prove that

38

Ck/a→π(vT) = Switch(b, (πi’→Ci/a→π)i∈I)(vT)

because when a 6= b then πk’= πk and this means that vT∈πk’ while when a =
b then πk’=(πk∩π) and vT∈πk’ because:

• by the hypothesis, vT∈π

• we are in the case where vT∈πk

So vT ∈ πk’ and by induction

Ck(vT) = Ck/a→π(vT)

We also know that ∀vT∈(b→πk) → CT (vT) = Ck(vT) By putting together the
last two steps, we have proven the trimming lemma.

3.5.4 Equivalence checking

The equivalence checking algorithm takes as parameters an input space S, a
source decision tree CS and a target decision tree CT :

equiv(S, CS , CT) → Yes | No(vS , vT)

When the algorithm returns Yes and the input space is covered by CS we
can say that the couple of decision trees are the same for every couple of source
value vS and target value vT that are equivalent.

equiv(S, CS , CT) = Yes and cover(CT , S) → ∀ vS ' vT∈S ∧ CS(vS) = CT (vT)

In the case where the algorithm returns No we have at least a couple of counter
example values vS and vT for which the two decision trees outputs a different
result.

equiv(S, CS , CT) = No(vS ,vT) and cover(CT , S) → ∀ vS ' vT∈S ∧ CS(vS) 6= CT (vT)

We define the following

Forall(Yes) = Yes
Forall(Yes::l) = Forall(l)
Forall(No(vS ,vT)::_) = No(vS ,vT)

There exists and are injective:

39

int(k) ∈ N (arity(k) = 0)
tag(k) ∈ N (arity(k) > 0)
π(k) = {n| int(k) = n} x {n| tag(k) = n}

where k is a constructor.
We proceed by case analysis:

1. in case of unreachable:

CS(vS) = Absurd(Unreachable) 6= CT (vT) ∀vS ,vT

1. In the case of an empty input space

equiv(∅, CS , CT) := Yes

and that is trivial to prove because there is no pair of values (vS , vT)
that could be tested against the decision trees. In the other subcases S is
always non-empty.

2. When there are Failure nodes at both sides the result is Yes:

equiv(S, Failure, Failure) := Yes

Given that ∀v, Failure(v) = Failure, the statement holds.

3. When we have a Leaf or a Failure at the left side:

equiv(S, Failure as CS , Switch(a, (πi → CT i)i∈I)) := Forall(equiv(S∩a→π(ki)), CS , CT i)i∈I)
equiv(S, Leaf bbS as CS , Switch(a, (πi → CT i)i∈I)) := Forall(equiv(S∩a→π(ki)), CS , CT i)i∈I)

Our algorithm either returns Yes for every sub-input space Si := S∩(a→π(ki))
and subtree CT i

equiv(Si, CS , CT i) = Yes ∀i

or we have a counter example vS , vT for which

vS'vT∈Sk ∧ cS(vS) 6= CT k(vT)

then because

vT∈(a→πk) → CT (vT) = CT k(vT) ,
vS'vT∈S ∧ CS(vS)6=CT (vT)

40

we can say that

equiv(Si, CS , CT i) = No(vS , vT) for some minimal k∈I

4. When we have a Switch on the right we define πfallback as the domain of
values not covered but the union of the constructors ki

πfallback = ¬
⋃
i∈I

π(ki)

Our algorithm proceeds by trimming

equiv(S, Switch(a, (ki → CSi)i∈I, Csf), CT) :=
Forall(equiv(S∩(a→π(ki)i∈I), CSi, Ct/a→π(ki))

i∈I + equiv(S∩(a→πn), CS , Ca→πfallback))

The statement still holds and we show this by first analyzing the Yes case:

Forall(equiv(S∩(a→π(ki)i∈I), CSi, Ct/a→π(ki))
i∈I = Yes

The constructor k is either included in the set of constructors ki:

k | k∈(ki)i ∧ CS(vS) = CSi(vS)

We also know that

(1) CSi(vS) = Ct/a→πi
(vT)

(2) CT/a→πi
(vT) = CT (vT)

(1) is true by induction and (2) is a consequence of the trimming lemma.
Putting everything together:

CS(vS) = CSi(vS) = CT/a→πi
(vT) = CT (vT)

When the k/∈(ki)i [TODO]

The auxiliary Forall function returns No(vS, vT) when, for a minimum k,

equiv(Sk, CSk, CT/a→πk
= No(vS , vT)

Then we can say that

CSk(vS) 6= Ct/a→πk
(vT)

that is enough for proving that

CSk(vS) 6= (Ct/a→πk
(vT) = CT (vT))

41

4 Examples

In this section we discuss some examples given as input and output of the
prototype tool.

example0.ml

external observe : ’a -> ’b = "observe"

let mm = function

| 2 -> observe 2

| 3 -> observe 3

| 4 -> observe 4

| _ -> observe 5

We can see from this first source file the usage of the observe directive. The
following is the target file generated by the OCaml compiler.

example0.lambda

(setglobal Example0!

(let

(mm/81 =

(function param/82

(catch

(let (switcher/85 =a (-2+ param/82))

(if (isout 2 switcher/85) (exit 1)

(switch* switcher/85

case int 0: (observe 2)

case int 1: (observe 3)

case int 2: (observe 4))))

with (1) (observe 5))))

(makeblock 0 mm/81)))

The prototype tool states that the compilation was successful and the two pro-
grams are equivalent.

example0.trace

Target program constraint tree

Switch ({ var=AcAdd(-2 AcRoot=param/82); dom=Int [-inf; -1] [3; +inf] v Tag _; }) =

Leaf=VConstant:5

42

Switch ({ var=AcAdd(-2 AcRoot=param/82); dom=Int [0; 2]; }) =

Switch ({ var=AcAdd(-2 AcRoot=param/82); dom=Int 0; }) =

Leaf=VConstant:2

Switch ({ var=AcAdd(-2 AcRoot=param/82); dom=Int 1; }) =

Leaf=VConstant:3

Switch ({ var=AcAdd(-2 AcRoot=param/82); dom=Int 2; }) =

Leaf=VConstant:4

Fallback=None

Fallback=None

Source program constraint tree

Switch AcRoot:{

Int 3 ->

Leaf=’Int 3 ’

Int 4 ->

Leaf=’Int 4 ’

Int 2 ->

Leaf=’Int 2 ’

} Fallback: Leaf=’Int 5 ’

The two programs are equivalent.

References

[1] Sergei Murzin, Michael Park, David Sankel, Dan Sarginson.
P1371R1: Pattern Matching Proposal for C++. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2019/p1371r1.pdf

[2] Nayebi, Fatih. Swift Functional Programming. Packt Publishing Ltd, 2017.

[3] Radenski, Atanas, Jeff Furlong, Vladimir Zanev. The Java 5 generics com-
promise orthogonality to keep compatibility. Journal of Systems and Software
81.11 (2008): 2069-2078.

[4] Alexandrescu, Andrei. Modern C++ design: generic programming and de-
sign patterns applied. Addison-Wesley, 2001.

[5] Yallop, Jeremy, and Oleg Kiselyov. First-class modules: hidden power and
tantalizing promises. Workshop on ML. Vol. 2. 2010.

43

[6] Augustsson, Lennart. Compiling pattern matching. Conference on Functional
Programming Languages and Computer Architecture. Springer, Berlin, Hei-
delberg, 1985.

[7] Dolan, Stephen. Malfunctional programming. ML Workshop. 2016.

[8] OCaml core developers. OCaml Manual
http://caml.inria.fr/pub/docs/manual-ocaml/flambda.html

[9] https://www.cvedetails.com/cve/CVE-2002-0973/

[10] Charguéraud, A., Filliâtre, J. C., Pereira, M., Pottier F. (2017). VOCAL–A
Verified OCAml Library. https://hal.inria.fr/hal-01561094/

[11] Yaron Minsky, Anil Madhavapeddy, Jason Hickey Real
World OCaml: Functional Programming for the masses.
https://dev.realworld.org/compiler-backend.html

[12] Syme, Don, Gregory Neverov, James Margetson. Extensible pattern match-
ing via a lightweight language extension. Proceedings of the 12th ACM SIG-
PLAN international conference on Functional programming (2007).

[13] Baldoni, Roberto and Coppa, Emilio and D’Elia, Daniele Cono and Deme-
trescu, Camil and Finocchi, Irene. A Survey of Symbolic Execution Tech-
niques. ACM Computing Surveys (CSUR), 51(3), 1-39.

[14] Cadar, Cristian, and Koushik Sen. Symbolic execution for software testing:
three decades later. Communications of the ACM 56.2 (2013): 82-90.

[15] Amir Pnueli, Ofer Shtrichman, Michael Siegel. Translation Validation: from
SIGNAL to C. Correct System Design. Springer, Berlin, Heidelberg, 1999.
231-255.

[16] Necula, George C. Translation validation for an optimizing compiler. Pro-
ceedings of the ACM SIGPLAN 2000 conference on Programming language
design and implementation (2000).

[17] https://github.com/janestreet/ocaml-compiler-libs

[18] Régis-Gianas, François Pottier Yann. Menhir Reference Manual.

44

	Introduction
	Motivation
	The Pattern Matching Compiler
	Our approach
	From source programs to decision trees
	From target programs to decision trees
	Equivalence checking

	Background
	OCaml
	Compiling OCaml code
	Memory representation of OCaml values
	Lambda form compilation
	Pattern matching
	Symbolic execution
	Translation Validation
	Translation Validation as Transation Systems

	Translation Validation of the Pattern Matching Compiler
	Accessors
	Source program
	Matrix decomposition of pattern clauses

	Target translation
	Decision Trees
	From source programs to decision trees
	From target programs to target decision trees

	Equivalence checking
	Introductory remarks
	The equivalence checking algorithm
	The trimming lemma
	Equivalence checking

	Examples

