GPU Teaching Kit

Accelerated Computing

Module 10.1 — Parallel Computation Patterns (scan)

Prefix Sum



Objective

— To master parallel scan (prefix sum) algorithms
—  Frequently used for parallel work assignment and resource allocation

— A key primitive in many parallel algorithms to convert serial computation into
parallel computation

—  Afoundational parallel computation pattern
—  Work efficiency in parallel code/algorithms

— Reading —Mark Harris, Parallel Prefix Sum with CUDA
— http://http.developer.nvidia.com/GPUGems3/gpugems3 ch39.html



http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

Inclusive Scan (Prefix-Sum) Definition

Definition: The scan operation takes a binary associative operator @
(pronounced as circle plus), and an array of n elements

[Xos Xgs +-es Xpal,
and returns the array

[Xor (X0 D X1), s Ko B X, B ... D X, 9)]-

Example: If @ is addition, then scan operation on the array would return

31704 16 3]
[3 41111 15 16 22 25].




An Inclusive Scan Application Example

— Assume that we have a 100-inch sandwich to feed 10 people
—  We know how much each person wants in inches
- [35 2 7 284 30 8 1]
— How do we cut the sandwich quickly?
— How much will be left?

— Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc.

— Method 2: calculate prefix sum:
- [3,8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)




Typical Applications of Scan

— Scan is a simple and useful parallel building block

— Convert recurrences from sequential:
for(J=1;j<n;j++)
out[j] = out[j-1] + fQ);

— Into parallel:

forall () { temp[j] = () }:

scan(out, temp);

—  Useful for many parallel algorithms:

Radix sort . Polynomial
Quicksort evaluation

String comparison ~ * Solving recurrences
Lexical analysis *  Tree operations

Stream compaction Histograms, ...




Other Applications

— Assigning camping spots

— Assigning Farmer’s Market spaces

— Allocating memory to parallel threads

— Allocating memory buffer space for communication channels




An Inclusive Sequential Addition Scan

Given a sequence [Xg, X1, Xy, .. ]
Calculate output [Yq, Y1, Yo --- ]

Suchthat y,=X,

Y1 =Xot Xy
Yo = Xo T X1t Xy

Using a recursive definition
Yi=VYi-1tX




A Work Efficient C Implementation

y[O] = X[O];
for (i =1;i< Max_i; i++) y[i] =y [i-1] + X[i];

Computationally efficient:

N additions needed for N elements - O(N)!
Only slightly more expensive than sequential reduction.




A Naive Inclusive Parallel Scan

— Assign one thread to calculate each y element

— Have every thread to add up all x elements needed for the y element
Yo = Xo
Y1 =X+ X,
Yo =Xo T X+ X,

“Parallel programming is easy as long as you do not care about
performance.”
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