
Prefix Sum
Module 10.1 – Parallel Computation Patterns (scan)

GPU Teaching Kit
Accelerated Computing

2

Objective
– To master parallel scan (prefix sum) algorithms

– Frequently used for parallel work assignment and resource allocation
– A key primitive in many parallel algorithms to convert serial computation into

parallel computation
– A foundational parallel computation pattern
– Work efficiency in parallel code/algorithms

– Reading –Mark Harris, Parallel Prefix Sum with CUDA
– http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

2

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

3

Inclusive Scan (Prefix-Sum) Definition

Definition: The scan operation takes a binary associative operator ⊕
(pronounced as circle plus), and an array of n elements

[x0, x1, …, xn-1],

and returns the array

[x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)].

Example: If ⊕ is addition, then scan operation on the array would return

[3 1 7 0 4 1 6 3],
[3 4 11 11 15 16 22 25].

4

An Inclusive Scan Application Example
– Assume that we have a 100-inch sandwich to feed 10 people
– We know how much each person wants in inches

– [3 5 2 7 28 4 3 0 8 1]
– How do we cut the sandwich quickly?
– How much will be left?

– Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc.

– Method 2: calculate prefix sum:
– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

4

5

Typical Applications of Scan
– Scan is a simple and useful parallel building block

– Convert recurrences from sequential:
for(j=1;j<n;j++)
out[j] = out[j-1] + f(j);

– Into parallel:
forall(j) { temp[j] = f(j) };
scan(out, temp);

– Useful for many parallel algorithms:
• Radix sort
• Quicksort
• String comparison
• Lexical analysis
• Stream compaction

• Polynomial
evaluation

• Solving recurrences
• Tree operations
• Histograms, ….

6

Other Applications
– Assigning camping spots
– Assigning Farmer’s Market spaces
– Allocating memory to parallel threads
– Allocating memory buffer space for communication channels
– …

6

7

An Inclusive Sequential Addition Scan
Given a sequence [x0, x1, x2, ...]
Calculate output [y0, y1, y2, ...]

Such that y0 = x0
y1 = x0 + x1
y2 = x0 + x1+ x2

…
Using a recursive definition

yi = yi − 1 + xi

7

8

A Work Efficient C Implementation

y[0] = x[0];
for (i = 1; i < Max_i; i++) y[i] = y [i-1] + x[i];

Computationally efficient:

N additions needed for N elements - O(N)!
Only slightly more expensive than sequential reduction.

8

9

A Naïve Inclusive Parallel Scan
– Assign one thread to calculate each y element
– Have every thread to add up all x elements needed for the y element

y0 = x0
y1 = x0 + x1
y2 = x0 + x1+ x2

“Parallel programming is easy as long as you do not care about
performance.”

9

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 10.1 – Parallel Computation Patterns (scan)
	Objective
	Inclusive Scan (Prefix-Sum) Definition
	An Inclusive Scan Application Example
	Typical Applications of Scan
	Other Applications
	An Inclusive Sequential Addition Scan
	A Work Efficient C Implementation
	A Naïve Inclusive Parallel Scan
	Slide Number 10

