GPU Teaching Kit

Accelerated Computing

Module 10.1 — Parallel Computation Patterns (scan)

Prefix Sum

Objective

— To master parallel scan (prefix sum) algorithms
— Frequently used for parallel work assignment and resource allocation

— A key primitive in many parallel algorithms to convert serial computation into
parallel computation

— Afoundational parallel computation pattern
— Work efficiency in parallel code/algorithms

— Reading —Mark Harris, Parallel Prefix Sum with CUDA
— http://http.developer.nvidia.com/GPUGems3/gpugems3 ch39.html

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

Inclusive Scan (Prefix-Sum) Definition

Definition: The scan operation takes a binary associative operator @
(pronounced as circle plus), and an array of n elements

[Xos Xgs +-es Xpal,
and returns the array

[Xor (X0 D X1), s Ko B X, B ... D X, 9)]-

Example: If @ is addition, then scan operation on the array would return

31704 16 3]
[3 41111 15 16 22 25].

An Inclusive Scan Application Example

— Assume that we have a 100-inch sandwich to feed 10 people
— We know how much each person wants in inches
- [35 2 7 284 30 8 1]
— How do we cut the sandwich quickly?
— How much will be left?

— Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc.

— Method 2: calculate prefix sum:
- [3,8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

Typical Applications of Scan

— Scan is a simple and useful parallel building block

— Convert recurrences from sequential:
for(J=1;j<n;j++)
out[j] = out[j-1] + fQ);

— Into parallel:

forall () { temp[j] = () }:

scan(out, temp);

— Useful for many parallel algorithms:

Radix sort . Polynomial
Quicksort evaluation

String comparison ~ * Solving recurrences
Lexical analysis * Tree operations

Stream compaction Histograms, ...

Other Applications

— Assigning camping spots

— Assigning Farmer’s Market spaces

— Allocating memory to parallel threads

— Allocating memory buffer space for communication channels

An Inclusive Sequential Addition Scan

Given a sequence [Xg, X1, Xy, ..]
Calculate output [Yq, Y1, Yo ---]

Suchthat y,=X,

Y1 =Xot Xy
Yo = Xo T X1t Xy

Using a recursive definition
Yi=VYi-1tX

A Work Efficient C Implementation

y[O] = X[O];
for (i =1;i< Max_i; i++) y[i] =y [i-1] + X[i];

Computationally efficient:

N additions needed for N elements - O(N)!
Only slightly more expensive than sequential reduction.

A Naive Inclusive Parallel Scan

— Assign one thread to calculate each y element

— Have every thread to add up all x elements needed for the y element
Yo = Xo
Y1 =X+ X,
Yo =Xo T X+ X,

“Parallel programming is easy as long as you do not care about
performance.”

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 10.1 – Parallel Computation Patterns (scan)
	Objective
	Inclusive Scan (Prefix-Sum) Definition
	An Inclusive Scan Application Example
	Typical Applications of Scan
	Other Applications
	An Inclusive Sequential Addition Scan
	A Work Efficient C Implementation
	A Naïve Inclusive Parallel Scan
	Slide Number 10

