Petri Nets: Tutorial and Applications

Jeffrey W. Herrmann Edward Lin

November 5, 1997

The 32th Annual Symposium of the Washington Operations Research -Management Science Council Washington, D.C.

CIM Lab Institute for Systems Research University of Maryland College Park, Maryland

Edward Lin, University of Maryland

Outline

- Purpose
- Applications
- What is a Petri Net?
- Dynamics
- Basic Constructs
- Properties
- Analysis Methods
- Extensions of Petri Nets
- Resources for Petri Nets
- Summary

Purpose

- To describe the fundamentals of Petri nets so that you begin to understand what they are and how they are used.
- To give you resources that you can use to learn more about Petri nets.

- Manufacturing, production, and scheduling systems
- Sequence controllers (Programmable Logic Controller, PLC)
- Communication protocols and networks
- Software -- design, specification, simulation, validation, and implementation

 A bipartite directed graph containing places (circles), transitions (bars), and directed arcs (places <--> transitions).

A Petri net is a four-tuple: $PN = \langle P, T, I, O \rangle$ P: a finite set of places, $\{p_1, p_2, ..., p_n\}$ T: a finite set of transitions, $\{t_1, t_2, ..., t_s\}$ I: an input function, $(T \ge P) \longrightarrow \{0, 1\}$ O: an output function, $(T \ge P) \longrightarrow \{0, 1\}$

 M^0 : an initial marking, $P \longrightarrow N$ < P, T, I, O, M^0 > -- a marked Petri net

An Example

•
$$P = \{p1, p2, p3\}$$

• $T = \{t1, t2, t3\}$
• $I = p1 p2 p3$
 $t1 \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ t3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
• $M^0 = (1, 0, 0)$

Note:

p1 is the input place of transition t1p2 is the output place of transition t1

Edward Lin, University of Maryland

Dynamics

- Enabling Rule:
 - » A transition t is enabled if every input place contains at least one token
- Firing Rule:
 - » Firing an enabled transition
 - removes one token from each input place of the transition
 - adds one token to each output place of the transition

Dynamics

- Sequential actions
- Dependency
- Conflict (decision, choice)
- Concurrency
- Cycles
- Synchronization (mutually exclusive actions, resource sharing, communication, queues)

Sequential Actions

Each action is a transition.

Dependency

A transition requires two inputs.

Conflict Construct

Only one of the two transitions can fire.

Concurrency Construct

These two sequences can occur simultaneously.

Cycles

Synchronization

Machine can process one part at once.

Resource Sharing

One worker for two machines.

The worker can work at one machine at a time.

Buffer (Queue)

The buffer can hold a limited number of parts.

Communication

An Example

Machine States: Loading Processing Waiting for unloading Unloading

Buffer

Buffer State: Space availability

Edward Lin, University of Maryland

Put It Together

Properties (Questions)

Property

Example

Boundedness

- the number of tokens in a place is bounded

Safeness

- the number of tokens in a place never exceeds one

Deadlock-free

- none of markings in $R(PN, M^0)$ is a deadlock

Reachability - find *R*(*PN*, *M*⁰)

Work-in-process

Hardware devices

Resources competing

Messages delivery

Analysis Methods

Enumeration

- » Reachability Tree
- » Coverability Tree

• Linear Algebraic Technique

- » State Matrix Equation
- » Invariant Analysis: P-Invariant and T-invariant

Simulation

Reachability Tree (1)

Reachability Tree (2)

Edward Lin, University of Maryland

25

Reachability Tree (3)

Reachability Tree/Graph

Reachability Tree

Coverability Tree (1)

Coverability Tree (2)

Coverability Tree (3)

Step 5 (m4): Coverability Tree

Reachability Tree

State Equation: $M = M^{0+\mu} A$, where μ is a vector with s elements

• O = p1 p2 p3 • I = p1 p2 p3 Incidence Matrix • $M^0 = (1, 0, 0)$

•
$$A = O - I$$

$$= p1 \ p2 \ p3$$

$$t1 \begin{bmatrix} -1 & 1 & 0 \\ 12 & 0 & -1 & 1 \\ t3 \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

Linear Algebraic Technique

T-Invariant

T-Invariant: YA = 0, where Y is a s element vector Y is the number of transition firings

$$\begin{bmatrix} y1 & y2 & y3 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} = 0$$

minimum t-invariant = (1, 1, 1)

T-Invariant

P-Invariant

minimum p-invariant = (1, 1, 1)

P-Invariant

(1,0,0) \downarrow (0,1,0) \downarrow (0,0,1) \downarrow (1,0,0) The quantity S = x1 M(p1) + x2 M(p2) + x3 M(p3) 1 = 1 M(p1) + 1 M(p2) + 1 M(p3)

Simulation

- Discrete event simulation
- Same model for simulation and analysis
- Need rules to resolve conflicts
- Useful for validation and visualization

Event Graph (marked graph, decision-free)

» Each place has exactly one input transition and exactly one output transition

Deterministic Timed Petri Nets

» Deterministic time delays with transitions

Stochastic Timed Petri Nets

» Stochastic time delays with transitions

Color Petri Nets

» Tokens with different colors

Hybrid Nets

» Combine object-oriented concept into Petri nets

- Petri nets home page: http://www.daimi.aau.dk/%7Epetrinet/
- Petri nets mailing list: PetriNets@daimi.aau.dk
- Coloured Petri nets: http://www.daimi.aau.dk/designCPN/
- Petri nets standard: http://www.daimi.aau.dk/%7Epetrinet/standard/
- Petri Net Theory and the Modeling of Systems, by J. L. Peterson, Prentice-Hall, 1981.
- Petri Nets: An Introduction, by W. Reisig, Springer-Verlag,1985
- Petri Nets: a Tool for Design and Management of Manufacturing Systems, by J.-M. Proth, X. Xie, Wiley, 1996
- Computer Integrated Laboratory(CIM Lab) page: http://www.isr.umd.edu/Labs/CIM/

Summary

- A graphical and mathematical tool
- Applications
- Constructs
- Properties: Boundedness, Safeness, Deadlock-free, liveness, Reachability
- Analysis Techniques:
 - » Reachability trees
 - » Coverability trees
 - » Linear algebraic techniques
 - » Simulation
- Extensions
- Resources

Edward Lin, University of Maryland