
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 2, APRIL 2004 205

Internet Indirection Infrastructure
Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, Fellow, IEEE, and Sonesh Surana

Abstract—Attempts to generalize the Internet’s point-to-point
communication abstraction to provide services like multicast, any-
cast, and mobility have faced challenging technical problems and
deployment barriers. To ease the deployment of such services, this
paper proposes a general, overlay-based Internet Indirection In-
frastructure (3) that offers a rendezvous-based communication
abstraction. Instead of explicitly sending a packet to a destination,
each packet is associated with an identifier; this identifier is then
used by the receiver to obtain delivery of the packet. This level of
indirection decouples the act of sending from the act of receiving,
and allows 3 to efficiently support a wide variety of fundamental
communication services. To demonstrate the feasibility of this ap-
proach, we have designed and built a prototype based on the Chord
lookup protocol.

Index Terms—Anycast, indirection, mobility, multicast, network
infrastructure, service composition.

I. INTRODUCTION

THE original Internet architecture was designed to provide
unicast point-to-point communication between fixed lo-

cations. In this basic service, the sending host knows the IP ad-
dress of the receiver and the job of IP routing and forwarding is
simply to deliver packets to the (fixed) location of the desired
IP address. The simplicity of this point-to-point communication
abstraction contributed greatly to the scalability and efficiency
of the Internet.

However, many applications would benefit from more gen-
eral communication abstractions, such as multicast, anycast, and
host mobility. In these abstractions, the sending host no longer
knows the identity of the receiving hosts (multicast and anycast)
and the location of the receiving host need not be fixed (mo-
bility). Thus, there is a significant and fundamental mismatch
between the original point-to-point abstraction and these more
general ones. All attempts to implement these more general ab-
stractions have relied on a layer of indirection that decouples
the sending hosts from the receiving hosts; for example, senders
send to a group address (multicast or anycast) or a home agent
(mobility), and the IP layer of the network is responsible for de-
livering the packet to the appropriate location(s).

Although these more general abstractions would undoubtedly
bring significant benefit to end-users, it remains unclear how to

Manuscript received October 3, 2002; revised December 17, 2002; approved
by IEEE TRANSACTIONS ON NETWORKING Editor J. Rexford. This work was
supported by the National Science Foundation under Grants ITR-00225660,
ITR-0205519, ANI-0207399, ITR-0121555, ITR-0081698, ANI-0196514, NSF
Career Award ANI-0133811, and a Hertz Foundation Fellowship.

I. Stoica, D. Adkins, S. Zhuang, and S. Surana are with the Depart-
ment of Electrical Engineering and Computer Science, University of
California, Berkeley, CA 94720 USA (e-mail: istoica@cs.berkeley.edu; dad-
kins@cs.berkeley.edu; shelleyz@cs.berkeley.edu; sonesh@cs.berkeley.edu.)

S. Shenker is with the International Computer Science Institute, Berkeley, CA
94704 USA (e-mail: shenker@icsi.berkeley.edu).

Digital Object Identifier 10.1109/TNET.2004.826279

achieve them. These abstractions have proven difficult to imple-
ment scalably at the IP layer [6], [14], [29]. Moreover, deploying
additional functionality at the IP layer requires a level of com-
munity-wide consensus and commitment that is hard to achieve.
In short, implementing these more general abstractions at the IP
layer poses difficult technical problems and major deployment
barriers.

In response, many researchers have turned to application-
layer solutions (either end-host or overlay mechanisms) to sup-
port these abstractions [6], [17], [26]. Overlay networks con-
sist of logical connections between end-hosts at the application
level. While these proposals achieve the desired functionality,
they do so in a very disjointed fashion in that solutions for one
service are not solutions for other services; e.g., proposals for
application-layer multicast do not address mobility, and vice
versa. As a result, many similar and largely redundant mech-
anisms are required to achieve these various goals. In addition,
if overlay solutions are used, adding a new abstraction requires
the deployment of an entirely new overlay infrastructure.

In this paper, we propose a single new overlay network that
serves as a general-purpose Internet Indirection Infrastructure

. offers a powerful and flexible rendezvous-based com-
munication abstraction; applications can easily implement a va-
riety of communication services, such as multicast, anycast, and
mobility, on top of this communication abstraction. Our ap-
proach provides a general overlay service that avoids both the
technical and deployment challenges inherent in IP-layer solu-
tions and the redundancy and lack of synergy in more traditional
application-layer approaches. We, thus, hope to combine the
generality of IP-layer solutions with the deployability of overlay
solutions.

The paper is organized as follows. In Sections II and III we
provide an overview of the architecture and then a general
discussion on how might be used in applications. Section IV
covers additional aspects of the design such as scalability and
efficient routing. Section V describes some simulation results
on performance along with a discussion on an initial imple-
mentation. Related work is discussed in Section VI, followed
by a discussion on future work Section VII. We conclude with
a summary in Section VIII.

II. OVERVIEW

In this section we present an overview of . We start with
the basic service model and communication abstraction, then
briefly describe the design of .

A. Service Model

The purpose of is to provide indirection; that is, it decou-
ples the act of sending from the act of receiving. The service

1063-6692/04$20.00 © 2004 IEEE

206 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 2, APRIL 2004

Fig. 1. (a) i3’s API. Example illustrating communication between two nodes. (b) The receiver R inserts trigger (id; R). (c) The sender sends packet (id; data).

model is simple: sources send packets to a logical identifier, and
receivers express interest in packets sent to an identifier. De-
livery is best-effort like in today’s Internet, with no guarantees
about packet delivery.

This service model is similar to that of IP multicast. The cru-
cial difference is that the equivalent of an IP multicast join is
more flexible. IP multicast offers a receiver a binary decision of
whether or not to receive packets sent to that group (this can be
indicated on a per-source basis). It is up to the multicast infra-
structure to build efficient delivery trees. The equivalent of a
join is inserting a trigger. This operation is more flexible than
an IP multicast join as it allows receivers to control the routing
of the packet. This provides two advantages. First, it allows
end-hosts to create, at the application level, services such as
mobility, anycast, and service composition out of this basic ser-
vice model. Thus, this one simple service model can be used to
support a wide variety of application-level communication ab-
stractions, alleviating the need for many parallel and redundant
overlay infrastructures. Second, the infrastructure can give re-
sponsibility for efficient tree construction to the end-hosts. This
allows the infrastructure to remain simple, robust, and scalable.

B. Rendezvous-Based Communication

The service model is instantiated as a rendezvous-based com-
munication abstraction. In their simplest form, packets are pairs

where is an -bit identifier and data consists of a
payload (typically a normal IP packet payload). Receivers use
triggers to indicate their interest in packets. In the simplest form,
triggers are pairs , where represents the trigger
identifier, and addr represents a node’s address which consists
of an IP address and a port number. A trigger indi-
cates that all packets with an identifier should be forwarded
(at the IP level) by the infrastructure to the node identified by
addr. More specifically, the rendezvous-based communication
abstraction exports three basic primitives as shown in Fig. 1(a).

Fig. 1(b) illustrates the communication between two nodes,
where receiver wants to receive packets sent to . The re-
ceiver inserts the trigger into the network. When a packet
is sent to identifier , forward the packet via IP to .

Thus, much as in IP multicast, the identifier represents
a logical rendezvous between the sender’s packets and the re-
ceiver’s trigger. This level of indirection decouples the sender
from the receiver. The senders need neither be aware of the
number of receivers nor their location. Similarly, receivers need
not be aware of the number or location of senders.

The above description is the simplest form of the abstraction.
We now describe a generalization that allows inexact matching

between identifiers. (A second generalization that replaces iden-
tifiers with a stack of identifiers is described in Section II-E)
We assume identifiers are bits long and that there is some
exact-match threshold with . We then say that an iden-
tifier in a trigger matches an identifier in a packet if and
only if

1) and have a prefix match of at least bits;
2) there is no trigger with an identifier that has a longer

prefix match with .
In other words, a trigger identifier matches a packet iden-

tifier if and only if is a longest prefix match (among all
other trigger identifiers) and this prefix match is at least as long
as the exact-match threshold . The value is chosen to be large
enough so that the probability that two randomly chosen iden-
tifiers match is negligible.1 This allows end-hosts to choose the
identifiers independently with negligible chance of collision.

C. Overview of the Design

We now briefly describe the infrastructure that supports
this rendezvous communication abstraction; a more in-depth
description follows in Section IV. is an overlay network
which consists of a set of servers that store triggers and forward
packets (using IP) between nodes and end-hosts. Identifiers
and triggers have meaning only in this overlay.

One of the main challenges in implementing is to efficiently
match the identifiers in packets to those in triggers. This is done
by mapping each identifier to a unique node (server); at any
given time there is a single node responsible for a given .
When a trigger is inserted, it is stored on the node
responsible for . When a packet is sent to it is routed by to
the node responsible for ; there it is matched against any trig-
gers for that and forwarded (using IP) to all hosts interested
in packets sent to that identifier. To facilitate inexact matching,
we require that all ’s that agree in the first bits be stored on
the same server. The longest prefix match required for inexact
matching can then be executed at a single node (where it can be
done efficiently).

Note that packets are not stored in ; they are only forwarded.
provides a best-effort service like today’s Internet. im-

plements neither reliability nor ordered delivery on top of IP.
End-hosts use periodic refreshing to maintain their triggers in

. Hosts contact an node when sending packets or in-
serting triggers. This node then forward these packets or trig-
gers to the node responsible for the associated identifiers.
Thus, hosts need only know one node in order to use the
infrastructure.

1In our implementation we choose m = 256 and k = 128.

STOICA et al.: INTERNET INDIRECTION INFRASTRUCTURE 207

Fig. 2. Communication abstractions provided by i3. (a) Mobility: the change of the receiver’s address from R to R is transparent to the sender. (b) Multicast:
every packet (id; data) is forwarded to each receiver R that inserts the trigger (id; R). (c) Anycast: the packet matches the trigger of receiver R2. id jid
denotes an identifier of size m, where id represents the prefix of the k most significant bits, and id represents the suffix of the m� k least significant bits.

D. Communication Primitives Provided by

We now describe how can be used by applications to
achieve the more general communication abstractions of
mobility, multicast, and anycast.

1) Mobility: The form of mobility addressed here is when
a host (e.g., a laptop) is assigned a new address when it moves
from one location to another. A mobile host that changes its ad-
dress from to as a result of moving from one subnet to an-
other can preserve end-to-end connectivity by simply updating
each of its existing triggers from to , as shown
in Fig. 2(a). The sending host needs not be aware of the mo-
bile host’s current location or address. Furthermore, since each
packet is routed based on its identifier to the server that stores
its trigger, no additional operation needs to be invoked when the
sender moves. Thus, can maintain end-to-end connectivity
even when both end-points move simultaneously.

With any scheme that supports mobility, efficiency is a major
concern [27]. With , applications can use two techniques to
achieve efficiency. First, the address of the server storing the
trigger is cached at the sender, and, thus, subsequent packets are
forwarded directly to that server via IP. This way, most packets
are forwarded through only one server in the overlay net-
work. Second, to alleviate the triangle routing problem due to
the trigger being stored at a server far away, end-hosts can use
off-line heuristics to choose triggers that are stored at servers
close to themselves (see Section IV-E for details).

2) Multicast: Creating a multicast group is equivalent to
having all members of the group register triggers with the
same identifier . As a result, any packet that matches is
forwarded to all members of the group as shown in Fig. 2(b).
We discuss how to make this approach scalable in Section III-D.

Note that unlike IP multicast, with there is no difference
between unicast or multicast packets, in either sending or re-
ceiving. Such an interface gives maximum flexibility to the ap-
plication. An application can switch on-the-fly from unicast to
multicast by simply having more hosts maintain triggers with

the same identifier. For example, in a telephony application this
would allow multiple parties to seamlessly join a two-party con-
versation. In contrast, with IP, an application has to at least
change the IP destination address in order to switch from uni-
cast to multicast.

3) Anycast: Anycast ensures that a packet is delivered to ex-
actly one receiver in a group, if any [2], [19], [23]. Anycast en-
ables server selection, a basic building block for many of today’s
applications. To achieve this with , all hosts in an anycast
group maintain triggers which are identical in the most signif-
icant bits. These bits play the role of the anycast group identi-
fier. To send a packet to an anycast group, a sender uses an iden-
tifier whose -bit prefix matches the anycast group identifier.
The packet is then delivered to the member of the group whose
trigger identifier best matches the packet identifier according to
the longest prefix matching rule (see Fig. 2(c)). Section III-C
gives two examples of how end-hosts can use the last bits
of the identifier to encode their preferences.

E. Stack of Identifiers

In this section, we describe a second generalization of
, which replaces identifiers with identifier stacks. An

identifier stack is a list of identifiers that takes the form
where is either an identifier or an

address. Packets and triggers are, thus, of the form:

• packet ;
• trigger .

The generalized form of packets allows a source to send a
packet to a series of identifiers, much as in source routing. The
generalized form of triggers allows a trigger to forward a packet
to another identifier rather than to an address. This extension
allows for a much greater flexibility. To illustrate this point, in
Sections III-A, III-B, and IV-C, we discuss how identifier stacks
can be used to provide service composition, implement hetero-
geneous multicast, and increase ’s robustness, respectively.

208 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 2, APRIL 2004

Fig. 3. Pseudocode of the receiving and forward operations executed by an i3
server.

A packet is always forwarded based on the first identifier
in its identifier stack until it reaches the server who is respon-
sible for storing the matching trigger(s) for . Consider a packet

with an identifier stack . If there is no trigger in
whose identifier matches , is popped from the stack.

The process is repeated until an identifier in ’s identifier stack
matches a trigger . If no such trigger is found, packet is
dropped. If on the other hand, there is a trigger whose iden-
tifier matches , then is replaced by ’s identifier stack. In
particular, if ’s identifier stack is , then ’s identifier stack
becomes . If is an IP address, is sent via IP
to that address, and the rest of ’s identifier stack, i.e.,
is forwarded to the application. The semantics of and are
in general application-specific. However, in this paper we con-
sider only examples in which the application is expected to use
these identifiers to forward the packet after it has processed it.
Thus, an application that receives a packet with identifier stack

is expected to send another packet with the same iden-
tifier stack . As shown in Section III this allows to
provide support for service composition.

Fig. 3 shows the pseudocode of the receiving and forwarding
operations executed by an node. Upon receiving a packet ,
a server first checks whether it is responsible for storing the
trigger matching packet . If not, the server forward the packet
at the level. If yes, the code returns the set of triggers that
match . For each matching trigger , the identifier stack of the
trigger is prepended to ’s identifier stack. The packet is then
forwarded based on the first identifier in its stack.

III. USING

In this section we present a few examples of how can be
used. We discuss service composition, heterogeneous multicast,
server selection, and large scale multicast. In the remainder of

Fig. 4. (a) Service composition: the sender (S) specifies that packets should
be transcoded at server T before being delivered to the destination (R).
(b) Heterogeneous multicast: receiver R1 specifies that wants to receive H.263
data, while R2 specifies that wants to receive MPEG data.

the paper, we say that packet matches trigger if the first
identifier of ’s identifier stack matches ’s identifier.

A. Service Composition

Some applications may require third parties to process the
data before it reaches the destination [11]. An example is a
wireless application protocol (WAP) gateway translating HTML
web pages to WML for wireless devices [34]. WML is a light-
weight version of HTML designed to run on wireless devices
with small screens and limited capabilities. In this case, the
server can forward the web page to a third-party server that
implements the HTML-WML transcoding, which in turn pro-
cesses the data and sends it to the destination via WAP.

In general, data might need to be transformed by a series of
third-party servers before it reaches the destination. In today’s
Internet, the application needs to know the set of servers that
perform transcoding and then explicitly forward data packets
via these servers.

With , this functionality can be easily implemented
by using a stack of identifiers. Fig. 4(a) shows how data
packets containing HTML information can be redirected to the
transcoder, and, thus, arrive at the receiver containing WML
information. The sender associates with each data packet
the stack , where represents the flow
identifier. As a result, the data packet is routed first to the server
which performs the transcoding. Next, the server inserts packet

into , which delivers it to the receiver.

B. Heterogeneous Multicast

Fig. 4(b) shows a more complex scenario in which an MPEG
video stream is played back by one H.263 receiver and one
MPEG receiver.

To provide this functionality, we use the ability of the
receiver, instead of the sender (see Section II-E), to control the
transformations performed on data packets. In particular, the
H.263 receiver inserts trigger ,
and the sender sends packets . Each packet matches

’s trigger, and as a result the packet’s identifier is

STOICA et al.: INTERNET INDIRECTION INFRASTRUCTURE 209

replaced by the trigger’s stack . Next, the
packet is forwarded to the MPEG-H.263 transcoder, and then
directly to receiver . In contrast, an MPEG receiver only
needs to maintain a trigger in . This way, receivers
with different display capabilities can subscribe to the same
multicast group.

Another useful application is to have the receiver insist that
all data go through a firewall first before reaching it.

C. Server Selection

provides good support for basic server selection through
the use of the last bits of the identifiers to encode applica-
tion preferences.2 To illustrate this point consider two examples.

In the first example, assume that there are several web
servers and the goal is to balance the client requests among
these servers. This goal can be achieved by setting the
least significant bits of both trigger and packet identifiers
to random values. If servers have different capacities, then
each server can insert a number of triggers proportional to
its capacity. Finally, one can devise an adaptive algorithm in
which each server varies the number of triggers as a function of
its current load.

In the second example, consider the goal of selecting a server
that is close to the client in terms of latency. To achieve this goal,
each server can use the last bits of its trigger identifiers to
encode its location, and the client can use the last bits in
the packets’ identifier to encode its own location. In the simplest
case, the location of an end-host (i.e., server or client) can be the
zip code of the place where the end-host is located; the longest
prefix matching procedure used by would result then in the
packet being forwarded to a server that is relatively close to the
client.3

D. Large Scale Multicast

The multicast abstraction presented in Section II-D2 assumes
that all members of a multicast group insert triggers with iden-
tical identifiers. Since triggers with identical identifier are stored
at the same server, that server is responsible for forwarding
each multicast packet to every member of the multicast group.
This solution obviously does not scale to large multicast groups.

One approach to address this problem is to build a hierarchy
of triggers, where each member of a multicast group
replaces its trigger by a chain of triggers ,

. This substitution is transparent to the
sender: a packet will still reach via the chain
of triggers. Fig. 5 shows an example of a multicast tree with
seven receivers in which no more than three triggers have the
same identifier. This hierarchy of triggers can be constructed
and maintained either cooperatively by the members of the
multicast group, or by a third party provider. In [20], we present
an efficient distributed algorithm in which the receivers of
the multicast group construct and maintain the hierarchy of
triggers.

2Recall that identifiers are m bits long and that k is the exact-matching
threshold.

3Here we assume that nodes that are geographically close to each other are
also close in terms of network distances, which is not always true. One could
instead use latency based encoding, much as in [22].

Fig. 5. Example of a scalable multicast tree with bounded degree by using
chains of triggers.

IV. ADDITIONAL DESIGN AND PERFORMANCE ISSUES

In this section we discuss some additional design and per-
formance issues. The design was intended to be (among other
properties) robust, self-organizing, efficient, secure, scalable,
incrementally deployable, and compatible with legacy applica-
tions. In this section we discuss these issues and some details of
the design that are relevant to them.

Before addressing these issues, we first review our basic de-
sign. is organized as an overlay network in which every node
(server) stores a subset of triggers. In the basic design, at any
moment of time, a trigger is stored at only one server. Each
end-host knows about one or more servers. When a host wants
to send a packet , it forward the packet to one of the
servers it knows. If the contacted server does not store the trigger
matching , the packet is forwarded via IP to another
server. This process continues until the packet reaches the server
that stores the matching trigger. The packet is then sent to the
destination via IP.

A. Properties of the Overlay

The performance of depends greatly on the nature of the
underlying overlay network. In particular, we need an overlay
network that exhibits the following desirable properties:

• Robustness: With a high probability, the overlay network
remains connected even in the face of massive server and
communication failures.

• Scalability: The overlay network can handle the traffic
generated by millions of end-hosts and applications.

• Efficiency: Routing a packet to the server that stores the
packet’s best matching trigger involves a small number of
servers.

• Stability: The mapping between triggers and servers is
relatively stable over time, that is, it is unlikely to change
during the duration of a flow. This property allows end-
hosts to optimize their performance by choosing triggers
that are stored on nearby servers.

210 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 2, APRIL 2004

Fig. 6. Routing information (finger tables) maintained by the Chord nodes.

To implement we have chosen the Chord lookup protocol
[28], which is known to satisfy the above properties. Chord uses
an -bit circular identifier space where 0 follows . Each
server is associated with a unique identifier in this space. In the
original Chord protocol, each identifier is mapped onto the
server with the closest identifier that follows on the identifier
circle. This server is called the successor of and it is denoted
by . Fig. 6 shows an example in which there are
three nodes, and . Server 2 is responsible for identifiers
0, 1, and 2, server 5 is responsible for 3, 4 and 5, and server 7 is
responsible for 6 and 7.

To implement the routing operation, each server maintains a
routing table of size . The th entry in the routing table of
server contains the first server that follows , i.e.,

. This server is called the th finger of .
Note that the first finger is the same as the successor server.

Upon receiving a packet with identifier , server checks
whether lies between itself and its successor. If yes, the
server forward the packet to its successor, which should store
the packet’s trigger. If not, sends the packet to the closest
server (finger) in its routing table that precedes . In this way,
we are guaranteed that the distance to in the identifier space
is halved at each step. As a result, it takes hops to
route a packet to the server storing the best matching trigger
for the packet, irrespective of the starting point of the packet,
where is the number of servers in the system.

In the current implementation, we assume that all identifiers
that share the same -bit prefix are stored on the same server. A
simple way to achieve this is to set the last bits of every
node identifier to zero. As a result, finding the best matching
trigger reduces to performing a longest prefix matching opera-
tion locally.

While is implemented on top of Chord, in principle can
use any of the recently proposed peer-to-peer lookup systems
such as CAN [24], Pastry [25], and Tapestry [13].

B. Public and Private Triggers

Before discussing ’s properties, we introduce an important
technique that allows applications to use more securely and
efficiently. With this technique applications make a distinction
between two types of triggers: public and private. This distinc-
tion is made only at the application level: itself does not dif-
ferentiate between public and private triggers.

The main use of a public trigger is to allow an end-host to
contact another end-host. The identifier of a public trigger is
known by all end-hosts in the system. An example is a web
server that maintains a public trigger to allow any client to con-
tact it. A public trigger can be defined as a the hash of the host’s
DNS name, of a web address, or of the public key associated
with a web server. Public triggers are long lived, typically days
or months. In contrast, private triggers are chosen by a small
number of end-hosts and are short lived. Typically, private trig-
gers exist only for the duration of a flow.

To illustrate the difference between public and private trig-
gers, consider a client accessing a web server that main-
tains a public trigger . First, client chooses a private
trigger identifier , inserts trigger into , and sends

to the web server via the server’s public trigger .
Once contacted, server selects a private identifier , in-
serts the associated trigger into , and sends its private
trigger identifier to client via ’s private trigger .
The client and the server then use both the private triggers to
communicate. Once the communication terminates, the private
triggers are destroyed. Sections IV-E and IV-J discuss how pri-
vate triggers can be used to increase the routing efficiency and
the communication security.

Next, we discuss ’s properties in more detail.

C. Robustness

inherits much of the robustness properties of the overlay
itself in that routing of packets within is fairly robust against

node failures. In addition, end-hosts use periodic refreshing
to maintain their triggers into . This soft-state approach
allows for a simple and efficient implementation and frees the

infrastructure from having to recover lost state when nodes
fail. If a trigger is lost—for example, as a result of an server
failure—the trigger will be reinserted, possibly at another
server, next time the end-host refreshes it.

One potential problem with this approach is that although
triggers are eventually reinserted, the time during which they
are unavailable due to server failures may be too large for some
applications. There are at least two solutions to address this
problem. The first solution does not require -level changes.
The idea is to have each receiver maintain a backup trigger

in addition to the primary trigger , and have
the sender send packets with the identifier stack .
If the server storing the primary trigger fails, the packet will be
then forwarded via the backup trigger to .4 Note that to ac-
commodate the case when the packet is required to match every
trigger in its identifier stack (see Section III-B), we use a flag in
the packet header, which, if set, causes the packet to be dropped
if the identifier at the head of its stack does not find a match.
The second solution is to have the overlay network itself repli-
cate the triggers and manage the replicas. In the case of Chord,
the natural replication policy is to replicate a trigger on the im-
mediate successor of the server responsible for that trigger [7].
Finally, note that when an end-host fails, its triggers are auto-
matically deleted from after they time out.

4Here we implicitly assume that the primary and backup triggers are stored
on different servers. The receiver can ensure that this is the case with high prob-
ability by choosing id = 2 � id.

STOICA et al.: INTERNET INDIRECTION INFRASTRUCTURE 211

D. Self-Organizing

is an overlay infrastructure that may grow very large. Thus,
it is important that it not require extensive manual configuration
or human intervention. The Chord overlay network is self-con-
figuring, in that nodes joining the infrastructure use a simple
bootstrapping mechanism (see [28]) to find out about at least
one existing node, and then contact that node to join the
infrastructure. Similarly, end-hosts wishing to use can locate
at least one server using a similar bootstrapping technique;
knowledge of a single server is all that is needed to fully uti-
lize the infrastructure.

E. Routing Efficiency

As with any network system, efficient routing is important to
the overall efficiency of . While tries to route each packet
efficiently to the server storing the best matching trigger, the
routing in an overlay network such as is typically far less ef-
ficient than routing the packet directly via IP. To alleviate this
problem, the sender caches the server’s IP address. In par-
ticular, each data and trigger packet carry in their headers a re-
freshing flag . When a packet reaches an server, the server
checks whether it stores the best matching trigger for the packet.
If not, it sets the flag in the packet header before forwarding
it. When a packet reaches the server storing the best matching
trigger, the server checks flag in the packet header, and, if is
set, it returns its IP address back to the original sender. In turn,
the sender caches this address and uses it to send subsequent
packets with the same identifier. The sender can periodically set
the refreshing flag as a keep-alive message with the cached
server responsible for this trigger.

Note that the optimization of caching the server which
stores the receiver’s trigger does not undermine the system
robustness. If the trigger moves to another server (e.g., as
the result of a new server joining the system), will simply
route the subsequent packets from to . When the first packet
reaches , the receiver will replace with in its cache. If the
cached server fails, the client simply uses another known
server to communicate. This is the same fallback mechanism as
in the unoptimized case when the client uses only one server
to communicate with all the other clients. Actually, the fact that
the client caches the server storing the receiver’s trigger can
help reduce the recovery time. When the sender notices that
the server has failed, it can inform the receiver to reinsert the
trigger immediately. Note that this solution assumes that the
sender and receiver can communicate via alternate triggers that
are not stored at the same server.

While caching the server storing the receiver’s trigger reduces
the number of hops, we still need to deal with the triangle
routing problem. That is, if the sender and the receiver are close
by, but the server storing the trigger is far away, the routing can
be inefficient. For example, if the sender and the receiver are
both in Berkeley and the server storing the receiver’s trigger is in
London, each packet will be forwarded to London before being
delivered back to Berkeley!

One solution to this problem is to have the receivers choose
their private triggers such that they are located on nearby
servers. This would ensure that packets will not take a long
detour before reaching their destination. If an end-host knows

the identifiers of the nearby servers, then it can easily choose
triggers with identifiers that map onto these servers. In general,
each end-host can sample the identifier space to find ranges
of identifiers that are stored at nearby servers. To find these
ranges, a node can insert random triggers into ,
and then estimate the RTT to the server that stores the trigger
by simply sending packets, , to itself. Note that
since we assume that the mapping of triggers onto servers is
relatively stable over time, this operation can be done off-line.
We evaluate this approach by simulation in Section V-A.

F. Avoiding Hot Spots

Consider the problem of a large number of clients that try to
contact a popular trigger such as the public trigger(s) of CNN.
This may cause the server storing this trigger to overload.
The classical solution to this problem is to use caching. When
the rate of the packets matching a trigger exceeds a certain
threshold, the server storing the trigger pushes a copy of to
another server. This process can continue recursively until the
load is spread out. The decision of where to push the trigger is
subject to two constraints. First, should push the trigger to
the server most likely to route the packets matching that trigger.
Second, should try to minimize the state it needs to maintain;

at least needs to know the servers to which it has already
pushed triggers in order to forward refresh messages for these
triggers (otherwise the triggers will expire). With Chord, one
simple way to address these problems is to always push the
triggers to the predecessor server.

If there are more triggers that share the same -bit prefix with
a popular trigger , all these triggers need to be cached together
with . Otherwise, if the identifier of a packet matches the iden-
tifier of a cached trigger , we cannot be sure that is indeed the
best matching trigger for the packet.

G. Scalability

Since typically each flow is required to maintain two triggers
(one for each end-point), the number of triggers stored in is of
the order of the number of flows plus the number of end-hosts.
At first sight, this would be equivalent to a network in which
each router maintains per-flow state. Fortunately, this is not the
case. While the state of a flow is maintained by each router along
its path, a trigger is stored at only one node at a time. Thus, if
there are triggers and servers, each server will store
triggers on the average. This also suggests that can be easily
upgraded by simply adding more servers to the network. One
interesting point to note is that these nodes do not need to be
placed at specific locations in the network.

H. Incremental Deployment

Since is designed as an overlay network, is incremen-
tally deployable. At the limit, may consist of only one node
that stores all triggers. Adding more servers to the system does
not require any system configuration. A new server simply joins
the system using the Chord protocol and becomes automat-
ically responsible for an interval in the identifier space. When
triggers with identifiers in that interval are refreshed or inserted
they will be stored at the new server. In this way, the addition of
a new server is also transparent to the end-hosts.

212 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 2, APRIL 2004

Fig. 7. Heterogeneous multicast application. Refer to Fig. 4(b) for data
forwarding in i3.

I. Legacy Applications

The packet delivery service implemented by is best-effort,
which allows existing UDP-based applications to work over
easily. The end-host runs an proxy that translates between the
applications’ UDP packets and packets, and inserts (or re-
freshes) triggers on behalf of the applications. The applications
do not need to be modified, and are unaware of the proxy.
Packets are intercepted and translated by the proxy transpar-
ently. As a proof of concept, we have implemented the heteroge-
neous multicast application presented in Section III-B over .
The sender sends a MPEG stream, and one receiver plays back
with a MPEG player (mpeg_play) and the other with a H.263
player (tmndec), as shown in Fig. 7. In [37], we present a solu-
tion using to provide mobility support for TCP-based legacy
applications.

J. Security

Unlike IP, where an end-host can only send and receive
packets, in end-hosts are also responsible for maintaining
the routing information through triggers. While this allows
flexibility for applications, it also (and unfortunately) creates
new opportunities for malicious users. We briefly present
several security issues and list a set of techniques to address
them. These techniques are discussed in detail in [1].

We deal with several different types of attacks. First, there
are attacks using triggers pointing to end-hosts. Assume a legit-
imate end-host maintains trigger in . An attacker
may eavesdrop by inserting a trigger pointing to it-
self. A minor variant on eavesdropping is impersonation, where
an attacker causes to drop its public trigger. A third attack
of this kind is reflection, where an attacker can sign up for
high-bandwidth streams by inserting .

Another class of attacks abuses the ability to form arbitrary
topologies with triggers. An attacker may form a loop by in-
serting triggers in a cycle. Packets sent to any of the IDs of the
loop would indefinitely cycle around consuming resources. Al-
ternatively, an attacker can construct a confluence. In a conflu-
ence, packets are first replicated as they would be in a multicast
tree and then converge to overwhelm an end-host. Finally, an at-
tacker can construct a chain of triggers that leads to a dead end.
Like loops, dead ends waste resources.

In [1] we outline three techniques to solve these problems:
trigger constraints, pushback, and trigger challenges.

1) Constrained Triggers: We define a constraint for a
trigger such that choosing constrains the choice
of or vice versa. We divide the 256-bit ID into three
fields: a 64-bit prefix, a 128-bit key, and a 64-bit suffix.
servers enforce constraints such that only triggers where

or are allowed. and
are two different one-way functions publically known. As
shown in [1], constrained triggers solve eavesdropping,
impersonation, and undesirable topologies such as loops.

2) Pushback: To remove dead ends, we propose a simple
pushback mechanism. When a data packet reaches a dead
end, the dead end node sends a message to the previous
node asking it to remove the previous trigger in the chain.
This results in a cascading removal of triggers until all
of the useless triggers are removed. Pushback addresses
dead ends to triggers and also gives clients a defense
against confluences and other flooding attacks.

3) Trigger Challenges: We must treat triggers pointing
to end-hosts differently. To avoid abuse of this type
of trigger, nodes challenge trigger insertions. Upon
receiving a trigger insertion request, an node computes
a challenge and sends it back to the end-host. In turn,
the end-host resends the trigger insertion together with
the challenge back to . Finally, accepts the trigger
insertion and proceeds normally. Trigger challenges
solve reflection and dead ends to nonexistent hosts.

These proposed solutions only affect the performance and
functionality of in a limited way. Checking trigger constraints
slows down trigger insertion slightly, while trigger challenges
add an extra round trip of delay to some trigger insertions. How-
ever, note that these techniques affect only the control path per-
formance; the performance on the data path is not affected. The
functionality and flexibility of is preserved with the exception
of service composition. Disallowing insertion of arbitrary trig-
gers still allows sender-driven service composition but weakens
receiver-driven service composition. The workaround to this
problem involves maintaining per-flow triggers. We believe this
limitation is acceptable for most applications.

K. Anonymity

Point-to-point communication networks such as the Internet
provide limited support for anonymity. Packets usually carry the
destination and the source addresses, which makes it relatively
easy for an eavesdropper to learn the sender and receiver iden-
tities. In contrast, with , eavesdropping the traffic of a sender
will not reveal the identity of the receiver, and eavesdropping
the traffic of a receiver will not reveal the sender’s identity. The
level of anonymity can be further enhanced by using a chain of
triggers or a stack of identifiers to route packets.

V. SIMULATION RESULTS

In this section, we evaluate the routing efficiency of by
simulation. One of the main challenges in providing efficient
routing is that end-hosts have little control over the location of
their triggers. However, we show that simple heuristics can sig-
nificantly enhance ’s performance. The metric we use to eval-
uate these heuristics is the ratio of the inter-node latency on the

network to the inter-node latency on the underlying IP net-
work. This is called the latency stretch.

STOICA et al.: INTERNET INDIRECTION INFRASTRUCTURE 213

The simulator is based on the Chord protocol and uses itera-
tive style routing [28]. We assume that node identifiers are ran-
domly distributed. This assumption is consistent with the way
the identifiers are chosen in other lookup systems such as CAN
[24] and Pastry [25]. As discussed in [28], using random node
identifiers increases system robustness and load balancing.5 We
consider the following network topologies in our simulations:

• A power-law random graph topology generated with the
INET topology generator [18] with 5000 nodes, where the
delay of each link is uniformly distributed in the interval

. The servers are randomly assigned to the
network nodes.

• A transit-stub topology generated with the GT-ITM

topology generator [12] with 5000 nodes, where link
latencies are 100 ms for intra-transit domain links, 10 ms
for transit-stub links and 1 ms for intra-stub domain links.

servers are randomly assigned to stub nodes.

A. End-to-End Latency

Consider a source that sends packets to a receiver via
trigger . As discussed in Section IV-E, once the first
packet reaches the server storing the trigger , caches

and sends all subsequent packets directly to . As a result, the
packets will be routed via IP from to and then from to

. The obvious question is how efficient is routing through as
compared to routing directly from to . Section IV-E presents
a simple heuristic in which a receiver samples the identifier
space to find an identifier that is stored at a nearby server.
Then inserts trigger .

Fig. 8 plots the 90th percentile latency stretch versus the
number of samples in a system with 16384 servers. Each
point represents the 90th percentile over 1000 measurements.
For each measurement, we randomly choose a sender and a
receiver. In each case, the receiver generates triggers with
random identifiers. Among these triggers, the receiver retains
the trigger that is stored at the closest server. Then we sum
the shortest path latency from the sender to and from to
the receiver and divide it by the shortest path latency from the
sender to the receiver to obtain the latency stretch. Sampling
the space of identifiers greatly lowers the stretch. While
increasing the number of samples decreases the stretch further,
the improvement appears to saturate rapidly, indicating that
in practice, just 16–32 samples should suffice. The receiver
does not need to search for a close identifier every time a
connection is open; in practice, an end-host can sample the
space periodically and maintain a pool of identifiers which it
can reuse.

B. Proximity Routing in

While Section V-A evaluates the end-to-end latency experi-
enced by data packets after the sender caches the server storing

5We have also experimented with identifiers that have location semantics.
In particular, we have used space filling curves, such as the Hilbert curve, to
map a d-dimensional geometric space—which was shown to approximate the
Internet latency well [22]—onto the one-dimensional Chord identifier space.
However, the preliminary results do not show significant gains as compared to
the heuristics presented in this section, so we omit their presentation here.

Fig. 8. The 90th percentile latency stretch versus number of samples for PLRG
and transit-stub with 5000 nodes.

the receiver’s trigger , in this section, we evaluate the latency
incurred by the sender’s first packet that matches trigger . This
packet is routed through the overlay network until it reaches
the server storing . While Chord ensures that the overlay route
length is only , where is the number of servers,
the routing latency can be quite large. This is because server
identifiers are randomly chosen, and, therefore, servers close
together in the identifier space can be far apart in the underlying
network. To alleviate this problem, we consider two simple
heuristics:

• Closest finger replica: In addition to each finger, a
server maintains immediate successors of that
finger. Thus, each node maintains references to about

other nodes for routing proposes. To route
a packet, a server selects the closest node in terms of
network distance among (1) the finger with the largest
identifier preceding the packet’s identifier and (2) the

immediate successors of that finger. This heuristic
was originally proposed in [7].

• Closest finger set: Each server chooses fingers
as , where and . To
route a packet, server considers only the closest
fingers in terms of network distances among all its
fingers.

Fig. 9 plots the 90th percentile latency stretch as a function
of ’s size for the baseline Chord protocol and the two heuris-
tics. The number of replicas is 10, and is chosen such that

. Thus, with both heuristics, a server con-
siders roughly the same number of routing entries. We vary the
number of servers from to , and in each case we av-
erage routing latencies over 1000 routing queries. In all cases
the server identifiers are randomly generated.

As shown in Fig. 9, both heuristics can reduce the 90th per-
centile latency stretch up to 2–3 times as compared to the de-
fault Chord protocol. In practice, we choose the “closest finger
set” heuristic. While this heuristic achieves comparable latency
stretch with “closest finger replica,” it is easier to implement
and does not require to increase the routing table size. The only
change in the Chord protocol is to sample the identifier space

214 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 2, APRIL 2004

Fig. 9. The 90th percentile latency stretch in the case of (a) a power-law random network topology with 5000 nodes, and (b) a transit-stub topology with 5000
nodes. The i3 servers are randomly assigned to all nodes in case (a), and only to the stub nodes in case (b).

using base instead of 2, and store only the closest fin-
gers among the nodes sampled so far.

C. Implementation and Experiments

We have implemented a bare-bones version of using the
Chord protocol. The control protocol used to maintain the
overlay network is fully asynchronous and is implemented
on top of UDP. The implementation uses 256 bit
identifiers and assumes that the matching procedure requires
exact matching on the 128 most significant bits . This
choice makes it very unlikely that a packet will erroneously
match a trigger, and at the same time gives applications up to
128 bits to encode application specific information such as the
host location (see Section II-D3).

For simplicity, in the current implementation we assume that
all triggers that share the first 128 bits are stored on the same
server. In theory, this allows us to use any of the proposed lookup
algorithms that performs exact matching.

Both insert trigger requests and data packets share a common
header of 48 bytes. In addition, data packets can carry a stack of
up to four triggers (this feature is not used in the experiments).
Triggers need to be updated every 30 s or they will expire.
The control protocol to maintain the overlay network is min-
imal. Each server performs stabilization every 30 s (see [28]).
During every stabilization period all servers generate approxi-
mately control messages. Since in our experiments the
number of servers is in the order of tens, we neglect the over-
head due to the control protocol.

The testbed used for all of our experiments was a cluster of
Pentium III 700-MHz machines running Linux. We ran tests
on systems of up to 32 nodes, with each node running on its
own processor. The nodes communicated over a shared 1-Gb/s
Ethernet. For time measurements, we use the Pentium time-
stamp counter (TSC). This method gives very accurate wall
clock times, but sometime it includes interrupts and context
switches as well. For this reason, the high extremes in the data
are unreliable.

D. Performance

In the section, we present the overhead of the main opera-
tions performed by . Since these results are based on a very
preliminary implementation, they should be seen as a proof of
feasibility and not as a proof of efficiency. Other Chord related
performance metrics such as the route length and system robust-
ness are presented in [7].

Trigger Insertion: We consider the overhead of handling an
insert trigger request locally, as opposed to forwarding a request
to another server. Triggers are maintained in a hash table, so the
time is practically independent of the number of triggers. In-
serting a trigger involves just a hash table lookup and a memory
allocation. The average and the standard deviation of the trigger
insertion operation over 10 000 insertions are 12.5 and 7.12 s,
respectively. This is mostly the time it takes the operating system
to process the packet and to hand it to the application. By com-
parison, memory allocation time is just 0.25 s on the test ma-
chine. Note that since each trigger is updated every 30 s, a server
would be able to maintain up to triggers.

Data Packet Forwarding: Fig. 10 plots the overhead of
forwarding a data packet to its final destination. This involves
looking up the matching triggers and forwarding the packet to
its destination addresses. Since we did not enable multicast, in
our experiments there was never more than one address. Like
trigger insertion, packet forwarding consists of a hash table
lookup. In addition, this measurement includes the time to send
the data packet. Packet forwarding time, in our experiments,
increases roughly linearly with the packet size. This indicates
that as packet size increases, memory copy operations and
pushing the bits through the network dominate processing time.

Routing: Fig. 11 plots the overhead of routing a packet
to another node. This differs from data packet forwarding
in that we route the packet using a node’s finger table rather
than its trigger table. This occurs when a data packet’s trigger is
stored on some other node. The most costly operation here is a
linear finger table lookup, as evidenced by the graph. There are

STOICA et al.: INTERNET INDIRECTION INFRASTRUCTURE 215

Fig. 10. Per packet forwarding overhead as a function of payload packet size.
In this case, the i3 header sizeis 48 bytes.

Fig. 11. Per packet routing overhead as a function of i3 nodes in the system.
The packet payload size is zero.

two reasons for this seemingly poor behavior. First, we augment
the finger table with a cache containing the most recent servers
that have sent control or data packets. Since in our experiments
this cache is large enough to store all servers in the system, the
number of nodes used to route a packet (i.e., the fingers plus
the cached nodes) increases roughly linearly with the number
of nodes in the system. Second, the finger table data structure in
our implementation is a list. In a more polished implementation,
a more efficient data structure is clearly needed to significantly
improve the performance.

Throughput: Finally, we ran some experiments to see the
maximum rate at which a node can process data packets. Ide-
ally, this should be the inverse of overhead. To test throughput,
a single node is bombarded with more packets than it can
reasonably handle. We measure the time it takes for 100 000
packets to emerge from the node to determine throughput.
Not surprisingly, as packet payload increases, throughput in
packets decreases. In addition, we calculate the data throughput

Fig. 12. Throughput of the data packet forwarding.

from the user perspective. Only the payload data is considered;
headers are overhead to users. The user throughput in megabits
per second increases as the packet payload increases because
the overhead for headers and processing is roughly the same
for both small and large payloads.

VI. RELATED WORK

The rendezvous-based communication is similar in spirit to
the tuple space work in distributed systems [4], [16], [36]. A
tuple space is a shared memory that can be accessed by any node
in the system. Nodes communicate by inserting tuples and re-
trieving them from a tuple space, rather than by point-to-point
communication. Tuples are more general than data packets. A
tuple consists of arbitrary typed fields and values, while a packet
consists of just an identifier and a data payload. In addition,
tuples are guaranteed to be stored until they are explicitly re-
moved. Unfortunately, the added expressiveness and stronger
guarantees of tuple spaces make them very hard to efficiently
implement on a large scale. Finally, with tuple spaces, a node
has to explicitly ask for each data packet. This interface is not
effective for high speed communications.

’s communication paradigm is similar to the publish–sub-
scribe–notify (PSN) model. The PSN model itself exists in many
proprietary forms already in commercial systems [30], [32].
While the matching operations employed by these systems are
typically much more powerful than the longest prefix matching
used by , it is not clear how scalable these systems are. In
addition, these systems do not provide support for service com-
position.

Active Networks aim to support rapid development and de-
ployment of new network applications by downloading and ex-
ecuting customized programs in the network [35]. provides
an alternative design that, while not as general and flexible as
Active Networks, is able to realize a variety of basic communi-
cation services without the need for mobile code or any heavy-
weight protocols.

is similar to many naming systems. This should come as
no surprise, as identifiers can be viewed as semantic-free names.
One future research direction is to use as a unifying frame-
work to implement various name systems.

The Domain Name system (DNS) maps hostnames to IP ad-
dresses [21]. A DNS name is mapped to an end-host as a result of
an explicit request at the beginning of a transfer. In , the iden-
tifier-to-address mapping and the packet forwarding are tightly
integrated. DNS resolvers form a static overlay hierarchy, while

servers form a self-organizing overlay.

216 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 2, APRIL 2004

Active Names (AN) map a name to a chain of mobile code
responsible for locating the remote service, and transporting its
response to the destination [31]. The code is executed on names
at resolvers. The goals of AN and are different. In AN, appli-
cations use names to describe what they are looking for, while
in identifiers are used primary as a way to abstract away the
end-host location. Also, while the goal of AN is to support ex-
tensibility for wide-area distributed services, the goal of is to
support basic communication primitives such as multicast and
anycast.

The Intentional Naming System (INS) is a resource discovery
and service location system for mobile hosts [33]. INS uses an
attribute-based language to describe names. Similar to iden-
tifiers, INS names are inserted and refreshed by the application.
INS also implements a late biding mechanism that integrates the
name resolution with message forwarding. differs from INS
in that from the network’s point of view, an identifier does not
carry any semantics. This simplicity allows for a scalable and
efficient implementation. Another difference is that allows
end-hosts to control the application-level path followed by the
packets.

The rendezvous-based abstraction is similar to the IP multi-
cast abstraction [8]. An IP multicast address identifies the re-
ceivers of a multicast group in the same way an identifier
identifies the multicast receivers. However, unlike IP which al-
locates a special range of addresses (i.e., class D) to multicast,

does not put any restrictions on the identifier format. This
gives applications the ability to switch on-the-fly from uni-
cast to multicast. In addition, can support multicast groups
with heterogeneous receivers.

Several solutions to provide the anycast service have been re-
cently proposed. IP Anycast aims to provide this service at the
IP layer [23]. All members of an anycast group share the same
IP address. IP routing forward an anycast packet to the member
of the anycast group that is the closest in terms of routing dis-
tance. Global IP-Anycast (GIA) provides an architecture that
addresses the scalability problems of the original IP Anycast by
differentiating between rarely used and popular anycast groups
[19]. In contrast to these proposals, can use distance met-
rics that are only available at the application level such as server
load, and it supports other basic communication primitives such
as multicast and service composition.

Estrin et al. have proposed an attribute-based data communi-
cation mechanism, called direct diffusion, to disseminate data
in sensor networks [9]. Data sources and sinks use attributes to
identify what information they provide or are interested in. A
user that wants to receive data inserts an interest into the network
in the form of attribute-value pairs. At a high level, attributes are
similar to identifiers, and interests are similar to triggers. How-
ever, in direct diffusion, the attributes have a much richer se-
mantic and the rules can be much more complex than in . At
the implementation level, in direct diffusion, nodes flood the in-
terests to their neighbors, while uses a lookup service to store
the triggers determined based on the trigger identifier.

TRIAD [5] and IPNL [10] have been recently proposed to
solve the IPv4 address scarcity problem. Both schemes use
DNS names rather than addresses for global identification.
However, TRIAD and IPNL make different tradeoffs. While

TRIAD is more general by allowing an unlimited number of
arbitrarily connected IP network realms, IPNL provides more
efficient routing by assuming a hierarchical topology with
a single “middle realm.” Packet forwarding in both TRIAD
and IPNL is similar to packet forwarding based on identifier
stacks in . However, while with TRIAD and IPNL the
realm-to-realm path of a packet is determined during the DNS
name resolution by network specific protocols, with the path
is determined by end-hosts.

Multi-Protocol Label Switching (MPLS) was recently pro-
posed to speed-up the IP route lookup and to perform route
pinning [3]. Similar to , each packet carries a stack of labels
that specifies the packet route. The first label in the stack speci-
fies the next hop. Before forwarding a packet, a router replaces
the label at the head of the stack. There are several key differ-
ences between and MPLS. While identifiers have global
meaning, labels have only local meaning. In addition, MPLS
requires special protocols to choose and distribute the labels. In
contrast, with identifier stacks are chosen and maintained by
end-hosts.

VII. DISCUSSION AND FUTURE WORK

While we firmly believe in the fundamental purpose of
—providing a general-purpose indirection service through

a single overlay infrastructure—the details of our design are
preliminary. Besides exploring the security and efficiency
issues mentioned in the paper further, there are areas that
deserve significant additional attention.

A general question is what range of services and applications
can be synthesized from the fixed abstraction provided by .
Until now we have developed two applications on top of , a
mobility solution [37], and a scalable reliable multicast protocol
[20]. While the initial experience with developing these appli-
cations has been very promising, it is too early to precisely char-
acterize the limitations and the expressiveness of the abstrac-
tion. To answer this question, we need to gain further experience
with using and deploying new applications on top of .

Another question is how scalable is in practice, since
must maintain state for each trigger. The following back of the
envelope calculation suggests that the state in will be manage-
able. Assume there are end-hosts, which is the same order
of magnitude as the number of hosts in the Internet [15], and
that each host maintains 10 triggers on average. An system
with 10000 servers would maintain triggers
per server on average. We believe this is a reasonable amount of
state for one server to manage. Furthermore, trigger refresh mes-
sages should not be overwhelming at this level. With a refresh
period of 30 s, a server can expect about 3300 trigger refreshes
per second.

For inexact matching, we have used longest-prefix match. In-
exact matching occurs locally, on a single node, so one could use
any reasonably efficient matching procedure. The question is
which inexact matching procedure will best allow applications
to choose among several candidate choices. This must work for
choosing based on feature sets (e.g., selecting printers), location

STOICA et al.: INTERNET INDIRECTION INFRASTRUCTURE 217

(e.g., selecting servers), and policy considerations (e.g., auto-
matically directing users to facilities that match their creden-
tials). We chose longest-prefix match mostly for convenience
and familiarity, and it seems to work in the examples we have
investigated, but there may be superior options.

Our initial design decision was to use semantic-free identi-
fiers and routing; that is, identifiers are chosen randomly and
routing is done based on those identifiers. Instead, one could
embed location semantics into the node identifiers. This may
increase the efficiency of routing by allowing routes to take
lower latency -level hops, but at the cost of making the overlay
harder to deploy, manage, and load balance.

Our decision to use Chord [28] to implement was moti-
vated by the protocol simplicity, its provable properties, and by
our familiarity with the protocol. However, one could easily
implement on top of other lookup protocols such as CAN
[24], Pastry [25], and Tapestry [13]. Using these protocols
may present different benefits. For instance, using Pastry and
Tapestry can reduce the latency of the first packets of a flow,
since these protocols find typically routes with lower laten-
cies than Chord. However, note that once the sender caches
the server storing the receiver’s trigger, there will be little
difference between using different lookup protocols, as the
packets will forwarded directly via IP to that server. Studying
the trade-offs involved by using various lookup protocols to
implement is a topic of future research.

While these design decisions are important, they may have
little to do with whether is ever deployed. We do not know
what the economic model of would be and whether its most
likely deployment would be as a single provider for-profit ser-
vice (like content distribution networks), or a multiprovider for-
profit service (like ISPs), or a cooperatively managed nonprofit
infrastructure. While deployment is always hard to achieve,
has the advantage that it can be incrementally deployed (it could
even start as a single, centrally located server!). Moreover, it
does not require the cooperation of ISPs, so third parties can
more easily provide this service. Nonetheless, faces signifi-
cant hurdles before ever being deployed.

VIII. SUMMARY

Indirection plays a fundamental role in providing solutions
for mobility, anycast and multicast in the Internet. In this paper
we propose a new abstraction that unifies these solutions. In
particular, we propose to augment the point-to-point communi-
cation abstraction with a rendezvous-based communication ab-
straction. This level of indirection decouples the sender and re-
ceiver behaviors and allows us to provide natural support for
mobility, anycast and multicast.

To demonstrate the feasibility of this approach, we have built
an overlay network based on the Chord lookup system. Pre-
liminary experience with suggests that the system is highly
flexible and can support relatively sophisticated applications
that require mobility, multicast, and/or anycast. In particular,
we have developed a simple heterogeneous multicast applica-
tion in which MPEG video traffic is transcoded on the fly to
H.263 format. In addition, we have recently developed two other

applications: providing transparent mobility to legacy applica-
tions [37], and a large scale reliable multicast protocol [20].

ACKNOWLEDGMENT

The authors would like to thank S. Ratnasamy, K. Lai,
K. Lakshminarayanan, A. Rao, A. Perrig, and R. Katz for
their insightful comments that helped improve the design.
They also thank H. Zhang, D. Song, V. Roth, L. Subramanian,
S. McCanne, S. Keshav, and the anonymous reviewers for their
useful comments that helped improve the paper.

REFERENCES

[1] D. Adkins, K. Lakshminarayanan, A. Perrig, and I. Stoica, “Toward a
more functional and secure network infrastructure,” Univ. California,
Berkeley, UCB Tech. Rep. UCB/CSD-03-1242, 2003.

[2] S. Bhattacharjee, M. Ammar, E. Zegura, V. Shah, and Z. Fei, “Appli-
cation-layer anycasting,” in Proc. IEEE INFOCOM, Kobe, Japan, Apr.
1997, pp. 1388–1396.

[3] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow, and A.
Viswanathan, “A framework for multiprotocol label switching,” IETF,
Internet Draft, Draft-ietf-mpls-framework-02.txt, Nov. 1997.

[4] N. Carriero, “The implementation of tuple space machines,” Ph.D.
thesis, Yale Univ., New Haven, CT, 1987.

[5] D. R. Cheriton and G. M. Triad. (2000) A new next generation
Internet architecture. Stanford Univ., Stanford, CA. [Online]. Available:
http://www-dsg.stanford.edu/triad/ triad.ps.gz

[6] Y. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,” in
Proc. ACM SIGMETRICS, Santa Clara, CA, June 2000, pp. 1–12.

[7] F. Dabek, F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area
cooperative storage with CFS,” in Proc. ACM SOSP, Banff, Canada,
2001, pp. 202–215.

[8] S. Deering and D. R. Cheriton, “Multicast routing in datagram internet-
works and extended LANS,” ACM Trans. Computer Systems 8, vol. 2,
pp. 85–111, May 1990.

[9] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” in Proc.
ACM/IEEE MOBICOM, Cambridge, MA, Aug. 1999, pp. 263–270.

[10] P. Francis and R. Gummadi, “IPNL: A NAT extended internet architec-
ture,” in Proc. ACM SIGCOMM, San Diego, CA, 2001, pp. 69–80.

[11] S. D. Gribble, M. Welsh, J. R. von Behren, E. A. Brewer, D. E. Culler,
N. Borisov, S. E. Czerwinski, R. Gummadi, J. R. Hill, A. D. Joseph, R.
H. Katz, Z. M. Mao, S. Ross, and B. Y. Zhao, “The ninja architecture
for robust internet-scale systems and services,” Comput. Networks , vol.
35, no. 4, pp. 473–497, 2001.

[12] Georgia Tech Internet Topology Model. Georgia Tech, Atlanta, GA.
[Online]. Available: http://www.cc.gatech.edu/fac/Ellen.Zegura/
graphs.html

[13] K. Hildrum, J. D. Kubatowicz, S. Rao, and B. Y. Zhao, “Distributed ob-
ject location in a dynamic network,” in Proc. 14th ACM Symp. Parallel
Algorithms and Architectures, Aug. 2002, pp. 41–52.

[14] H. Holbrook and D. Cheriton, “IP multicast channels: EXPRESS
support for large-scale single-source applications,” in Proc. ACM
SIGCOMM, Cambridge, MA, Aug. 1999, pp. 65–78.

[15] Internet Domain Survey. [Online]. Available: http://www.isc.org/ds
[16] Java Spaces. [Online]. Available: http://www.javaspaces.homestead.

com/
[17] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. J. W.

O’Toole, “Overcast: Reliable multicasting with an overlay network,” in
Proc. 4th USENIX Symp. Operating Systems Design and Implementation
(OSDI 2000), San Diego, CA, Oct. 2000, pp. 197–212.

[18] C. Jin, Q. Chen, and S. Jamin. (2000) Inet: Internet topology generator.
Dept. Electr. Eng. Comput. Sci., Univ. Michigan, Ann Arbor, MI. [On-
line]. Available: http://topology.eecs.umich.edu/inet

[19] D. Katabi and J. Wroclawski, “A framework for scalable global IP-any-
cast (GIA),” in Proc. ACM SIGCOMM, Stockholm, Sweden, Aug. 2000,
pp. 3–15.

[20] K. Lakshminarayanan, A. Rao, I. Stoica, and S. Shenker, “Flexible and
robust large scale multicast using i3,” Univ. California, Berkeley, Tech.
Rep. CS-02, 2002.

218 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 2, APRIL 2004

[21] P. Mockapetris and K. Dunlap, “Development of the domain name
system,” in Proc. ACM SIGCOMM, Stanford, CA, 1988, pp. 123–133.

[22] T. S. E. Ng and H. Zhang, “Predicting internet network distance with
coordinates-based approaches,” in Proc. IEEE INFOCOM, New York,
June 2002, pp. 170–179.

[23] C. Partridge, T. Mendez, and W. Milliken, “Host anycasting service,”
Network Working Group, RFC 1546, 1993.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proc. ACM SIGCOMM, San
Diego, CA, 2001, pp. 161–172.

[25] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems,” in Proc. 18th
IFIP/ACM Int. Conf. Distributed Systems Platforms (Middleware 2001),
Nov. 2001, pp. 329–350.

[26] A. C. Snoeren and H. Balakrishnan, “An end-to-end approach to host
mobility,” in Proc. ACM/IEEE MOBICOM, Cambridge, MA, Aug.
1999, pp. 155–166.

[27] A. C. Snoeren, H. Balakrishnan, and M. F. Kaashoek, “Reconsidering
internet mobility,” in Proc. 8th IEEE Workshop Hot Topics in Operating
Systems (HotOS-VIII), Elmau/Oberbayern, Germany, May 2001.

[28] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in Proc. ACM SIGCOMM, San Diego, CA, 2001, pp. 149–160.

[29] I. Stoica, T. Ng, and H. Zhang, “REUNITE: A recursive unicast approach
to multicast,” in Proc. IEEE INFOCOM, Tel-Aviv, Israel, Mar. 2000, pp.
1644–1653.

[30] Tibco Software. [Online]. Available: http://www.tibco.com
[31] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal, “Active names:

Flexible location and transport of wide-area resources,” in Proc.
USENIX Symp. Internet Technologies and Systems, Oct. 1999, pp.
151–164.

[32] Vitria. [Online]. Available: http://www.vitria.com
[33] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The de-

sign and implementation of an intentional naming system,” in Proc.
ACM Symp. Operating Systems Principles (SOSP’99), Kiawah Island,
SC, Dec. 1999, pp. 186–201.

[34] (2001) WAP Wireless Markup Language Specification (WML). WAP
Forum. [Online]. Available: http://www.oasis-open.org/cover/wap-
wml.html

[35] D. Wetherall, “Active network vision and reality: Lessons form a cap-
sule-based system,” in Proc. 17th ACM Symp. Operating System Prin-
ciples (SOSP’99), Kiawah Island, SC, Nov. 1999, pp. 64–79.

[36] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford, “T spaces,”
IBM Syst. J., vol. 37, no. 3, pp. 454–474, 1998.

[37] S. Zhuang, K. Lai, I. Stoica, R. Katz, and S. Shenker, “Host mobility
using an Internet indirection infrastructure,” in Proc. ACM MOBISYS,
San Francisco, CA, May 2003, pp. 129–144.

Ion Stoica received the Ph.D. degree from Carnegie
Mellon University, Pittsburgh, PA, in 2000.

He is currently an Assistant Professor with the
Department of Electrical Engineering and Computer
Science, University of California, Berkeley, where
he does research on resource management, scalable
solutions for end-to-end quality of service, and
peer-to-peer network technologies in the Internet.

Dr. Stoica is the recipient of a National Science
Foundation CAREER Award in 2002, and the As-
sociation for Computing Machinery (ACM) Doctoral

Dissertation Award in 2001. He is a member of the ACM.

Daniel Adkins received the B.S. degree in computer
science and mathematics from the Massachusetts
Institute of Technology, Cambridge, in 2001. He is
currently working toward the Ph.D. degree at the
University of California, Berkeley.

His research interests include networking and
security.

Shelley Zhuang received the B.S. degree in com-
puter engineering and computer science from the
University of Missouri, Columbia, in 1999, and is
now working toward the Ph.D. degree in computer
science at the University of California, Berkeley.

She has interned at NASA Goddard Space Flight
Center, Microsoft, and DaimlerChrysler Research
and Technology North America. Her research inter-
ests include overlay networking, content distribution
networks, streaming media, multicast routing, and
wireless communications.

Scott Shenker (M’87–SM’96–F’00) received the
Sc.B. degree from Brown University, Providence,
RI, and the Ph.D. degree from the University of
Chicago, Chicago, IL, both in theoretical physics.

After a postdoctoral year in the Physics Depart-
ment, Cornell University, in 1983, he joined Xerox’s
Palo Alto Research Center (PARC). He left PARC in
1999 to head up a newly established Internet research
group at the International Computer Science Institute
(ICSI), Berkeley. His research over the past 15 years
has spanned the range from computer performance

modeling and computer networks to game theory and economics. Most of his
recent work has focused on the Internet architecture and related issues.

Dr. Shenker received the ACM SIGCOMM Award in 2002.

Sonesh Surana received the B.S. degree in computer
science from Carnegie Mellon University, Pittsburgh,
PA, in May 2001. He is currently working toward the
Ph.D. degree in computer science at the University of
California, Berkeley.

He has interned with the kernel development group
of Akamai Technologies, San Mateo, CA, and with
the Edge Networking Research group, IBM Research
Labs, Hawthorne, NY. His research interests lie in
distributed systems. Currently, he is working on load
balancing in structured peer-to-peer systems.

Mr. Surana has been a student member of the Association for Computing
Machinery (ACM) since 2001.

