
Translation Verification of the OCaml pattern
matching compiler

Francesco Mecca

Abstract

This dissertation presents an algorithm for the translation valida-
tion of the OCaml pattern matching compiler. Given the source rep-
resentation of the target program and the target program compiled
in untyped lambda form, the algoritmhm is capable of modelling the
source program in terms of symbolic constraints on it’s branches and
apply symbolic execution on the untyped lambda representation in or-
der to validate wheter the compilation produced a valid result. In this
context a valid result means that for every input in the domain of the
source program the untyped lambda translation produces the same
output as the source program. The input of the program is modelled
in terms of symbolic constraints closely related to the runtime repre-
sentation of OCaml objects and the output consists of OCaml code
blackboxes that are not evaluated in the context of the verification.

1 Background

1.1 OCaml

Objective Caml (OCaml) is a dialect of the ML (Meta-Language) family of
programming languages. OCaml shares many features with other dialects of
ML, such as SML and Caml Light, The main features of ML languages are the
use of the Hindley-Milner type system that provides many advantages with
respect to static type systems of traditional imperative and object oriented
language such as C, C++ and Java, such as:

• Parametric polymorphism: in certain scenarios a function can accept
more than one type for the input parameters. For example a function
that computes the lenght of a list doesn’t need to inspect the type of
the elements of the list and for this reason a List.length function can
accept list of integers, list of strings and in general list of any type. Such

1

languages offer polymorphic functions through subtyping at runtime
only, while other languages such as C++ offer polymorphism through
compile time templates and function overloading. With the Hindley-
Milner type system each well typed function can have more than one
type but always has a unique best type, called the principal type. For
example the principal type of the List.length function is "For any a,
function from list of a to int" and a is called the type parameter.

• Strong typing: Languages such as C and C++ allow the programmer to
operate on data without considering its type, mainly through pointers.
Other languages such as C# and Go allow type erasure so at runtime
the type of the data can’t be queried. In the case of programming
languages using an Hindley-Milner type system the programmer is not
allowed to operate on data by ignoring or promoting its type.

• Type Inference: the principal type of a well formed term can be inferred
without any annotation or declaration.

• Algebraic data types: types that are modelled by the use of two al-
gebraic operations, sum and product. A sum type is a type that can
hold of many different types of objects, but only one at a time. For
example the sum type defined as A + B can hold at any moment a
value of type A or a value of type B. Sum types are also called tagged
union or variants. A product type is a type constructed as a direct
product of multiple types and contains at any moment one instance
for every type of its operands. Product types are also called tuples or
records. Algebraic data types can be recursive in their definition and
can be combined.

Moreover ML languages are functional, meaning that functions are treated as
first class citizens and variables are immutable, although mutable statements
and imperative constructs are permitted. In addition to that OCaml features
an object system, that provides inheritance, subtyping and dynamic binding,
and modules, that provide a way to encapsulate definitions. Modules are
checked statically and can be reificated through functors.

1. Pattern matching

Pattern matching is a widely adopted mechanism to interact with
ADT. C family languages provide branching on predicates through the
use of if statements and switch statements. Pattern matching on the
other hands express predicates through syntactic templates that also

2

allow to bind on data structures of arbitrary shapes. One common ex-
ample of pattern matching is the use of regular expressions on strings.
OCaml provides pattern matching on ADT and primitive data types.
The result of a pattern matching operation is always one of:

• this value does not match this pattern”

• this value matches this pattern, resulting the following bindings
of names to values and the jump to the expression pointed at the
pattern.

type color = | Red | Blue | Green | Black | White

match color with
| Red -> print "red"
| Blue -> print "red"
| Green -> print "red"
| _ -> print "white or black"

OCaml provides tokens to express data destructoring. For example we
can examine the content of a list with patten matching

begin match list with
| [] -> print "empty list"
| element1 :: [] -> print "one element"
| (element1 :: element2) :: [] -> print "two elements"
| head :: tail-> print "head followed by many elements"

Parenthesized patterns, such as the third one in the previous example,
matches the same value as the pattern without parenthesis.

The same could be done with tuples

begin match tuple with
| (Some _, Some _) -> print "Pair of optional types"
| (Some _, None) | (None, Some _) -> print "Pair of optional types, one of which is null"
| (None, None) -> print "Pair of optional types, both null"

3

The pattern pattern1 | pattern2 represents the logical "or" of the two
patterns pattern1 and pattern2. A value matches pattern1 | pattern2
if it matches pattern1 or pattern2.

Pattern clauses can make the use of guards to test predicates and
variables can captured (binded in scope).

begin match token_list with
| "switch"::var::"{"::rest -> ...
| "case"::":"::var::rest when is_int var -> ...
| "case"::":"::var::rest when is_string var -> ...
| "}"::[] -> ...
| "}"::rest -> error "syntax error: " rest

Moreover, the OCaml pattern matching compiler emits a warning when
a pattern is not exhaustive or some patterns are shadowed by precedent
ones.

In general pattern matching on primitive and algebraic data types takes
the following form.

match variable with
| pattern1 -> expr1
| pattern2 when guard -> expr2
| pattern3 as var -> expr3
...
| pn -> exprn

It can be described more formally through a BNF grammar.

pattern ::= value-name
| _ ;; wildcard pattern
| constant ;; matches a constant value
| pattern as value-name ;; binds to value-name
| (pattern) ;; parenthesized pattern
| pattern | pattern ;; or-pattern
| constr pattern ;; variant pattern

4

| [pattern { ; pattern } [;]] ;; list patterns
| pattern :: pattern ;; lists patterns using cons operator (::)
| [| pattern { ; pattern } [;] |] ;; array pattern
| char-literal .. char-literal ;; match on a range of characters
| { field [: typexpr] [= pattern] { ; field [: typexpr] [= pattern] } \

[; _] [;] } ;; patterns that match on records

2. 1.2.1 Pattern matching compilation to lambda code

During compilation, patterns are in the form

pattern type of pattern
_ wildcard
x variable
c(p1,p2,. . . ,pn) constructor pattern
(p1| p2) or-pattern

Expressions are compiled into lambda code and are referred as lambda
code actions.

The entire pattern matching code can be represented as a clause matrix
that associates rows of patterns (pi,1, pi,2, . . . , pi,n) to lambda code
action li

(P → L) =

p1,1 p1,2 · · · p1,n → l1
p2,1 p2,2 · · · p2,n → l2
...

...
. . .

... →
...

pm,1 pm,2 · · · pm,n → lm

Most native data types in OCaml, such as integers, tuples, lists, records,
can be seen as instances of the following definition

type t = Nil | One of int | Cons of int * t

that is a type t with three constructors that define its complete signa-
ture. Every constructor has an arity. Nil, a constructor of arity 0, is
called a constant constructor.

The pattern p matches a value v, written as p 4 v, when one of the
following rules apply

5

_ 4 v ∀v
x 4 v ∀v
(p1 |\ p2) 4 v iff p1 4 v or p2 4 v
c(p1, p2, . . . , pa) 4 c(v1, v2, . . . , va) iff (p1, p2, . . . , pa) 4 (v1, v2, . . . , va)
(p1, p2, . . . , pa) 4 (v1, v2, . . . , va) iff pi 4 vi ∀i ∈ [1..a]

When a value v matches pattern p we say that v is an instance of p.

Considering the pattern matrix P we say that the value vector ~v = (v1,
v2, . . . , vi) matches the line number i in P if and only if the following
two conditions are satisfied:

• pi,1, pi,2, · · · , pi,n 4 (v1, v2, . . . , vi)
• ∀j < i pj,1, pj,2, · · · , pj,n � (v1, v2, . . . , vi)

We can define the following three relations with respect to patterns:

• Patter p is less precise than pattern q, written p 4 q, when all
instances of q are instances of p

• Pattern p and q are equivalent, written p ≡ q, when their in-
stances are the same

• Patterns p and q are compatible when they share a common in-
stance

(a) Initial state of the compilation
Given a source of the following form:

match variable with
| pattern1 -> e1
| pattern2 -> e2
...
| pm -> em

the initial input of the algorithm C consists of a vector of variables
~x = (x1, x2, . . . , xn) of size n where n is the arity of the type of
x and a clause matrix P → L of width n and height m. That is:

C((~x = (x1, x2, ..., xn),

p1,1 p1,2 · · · p1,n → l1
p2,1 p2,2 · · · p2,n → l2
...

...
. . .

...→
...

pm,1 pm,2 · · · pm,n → lm)

6

The base case C0 of the algorithm is the case in which the ~x is
empty, that is ~x = (), then the result of the compilation C0 is l1

C0((),

→ l1
→ l2

→
...

→ lm

)) = l1

When ~x 6= () then the compilation advances using one of the
following four rules:

i. Variable rule: if all patterns of the first column of P are
wildcard patterns or bind the value to a variable, then

C(~x, P → L) = C((x2, x3, ..., xn), P
′ → L′)

where
p1,2 · · · p1,n → (let y1 x1) l1
p2,2 · · · p2,n → (let y2 x1) l2
...

. . .
... →

...
...

...
...

pm,2 · · · pm,n → (let ym x1) lm

That means in every lambda action li there is a binding of x1
to the variable that appears on the pattern $pi,1. Bindings
are omitted for wildcard patterns and the lambda action li
remains unchanged.

ii. Constructor rule: if all patterns in the first column of P are
constructors patterns of the form k(q1, q2, . . . , qn) we define
a new matrix, the specialized clause matrix S, by applying
the following transformation on every row p:

for every c ∈ Set of constructors
for i ← 1 .. m

let ki ← constructor_of(pi,1)
if ki = c then

p ← qi,1, qi,2, ..., qi,n′ , pi,2, pi,3, ..., pi,n

Patterns of the form qi,j matches on the values of the con-
structor and we define new fresh variables y1, y2, . . . , ya so
that the lambda action li becomes

7

(let (y1 (field 0 x1))
(y2 (field 1 x1))
...
(ya (field (a−1) x1))
li)

and the result of the compilation for the set of constructors {c1,
c2, . . . , ck} is:

switch x1 with
case c1: l1
case c2: l2
...
case ck: lk
default: exit

i. Orpat rule: there are various strategies for dealing with or-
patterns. The most naive one is to split the or-patterns. For
example a row p containing an or-pattern:

(pi,1|qi,1|ri,1), pi,2, ..., pi,m → li

results in three rows added to the clause matrix

pi,1, pi,2, ..., pi,m → li

qi,1, pi,2, ..., pi,m → li

ri,1, pi,2, ..., pi,m → li

ii. Mixture rule: When none of the previous rules apply the
clause matrix P → L is splitted into two clause matrices, the
first P1 → L1 that is the largest prefix matrix for which one
of the three previous rules apply, and P2 → L2 containing the
remaining rows. The algorithm is applied to both matrices.

8

