VERIFICA DEI PROGRAMMI CONCORRENTI
VPC 19-20

Analysis

Prof.ssa Susanna Donatelli
Universita’ di Torino
www.di.unito.it
susi@di.unito.it

http://www.di.unito.it/

: * Reference material books:

Chapter 2

Untimed Petri Nets

Notes of the EU-sponsored Jaca
MATCH school

Prof. Doron A. Peled
(University of Warwick, UK)

!'_ Acknowledgements

Transparencies adapted from the course notes and
trasparencies of

= Prof. Doron A. Peled, University of Warwick (UK) and Bar

Ilan University (Israel)
http://www.dcs.warwick.ac.uk/~doron/srm.html

= Prof. Manuel Silva, Unievrsity of Zaragoza (Spain)

http://www.dcs.warwick.ac.uk/~doron/srm.html

* Second topic: analysis

methods and tools.

Express system
properties.

Apply methods.

Obtain verification
results.

Analyze results.
Identify errors.
Suggest correction.

Analysis

We shall review different analysis methods that apply (partially)
to Petri Nets, Process Algebra, Finite State Automata

Enumerative: analysis of derivation/reachability graph for a set of
significative properties (deadlock/liveness)

Transformation: analysis by reduction (not for FSA)
= kit of reduction rules for PN
= equational laws for PA (e.g. A+A = A)

Structural analysis on incidence matrix (only for PN, extended partially
to PA)

Equivalences (defined for PA, extended to PN)

Enumerative - again: Model checking on the state space (RG for PN,
DG for PA, FSA) of temporal logic properties 5

i Analysis

Different methods have different costs/applicability.

A good analysis of the system requires the use of different
analysis methods on the same system model

(... as done in testing)

i Flowchart of analysis material

Basic properties

RG analysis

Structural analysis (on PN)
Reduction rules (PN)
Equivalences (PA)

o v A

Model checking

= definition of linear logic LTL and its model checking algorithm
= definition of branching logic CTL and its model checking algorithm

Basic properties - boundedness

Given a PN system S=(N,m0) with N=(P,T,FW)

Def. bound of place p in S:
b(p) = max {m[p] | m eRS(S)}

Def. a place p is boundedin S if
b(p) < o

Def: a system S is bounded if
VpeP, b(p) is bounded

Propery: S is bounded iff its RS is finite

* Basic properties - boundedness

Examples of unbounded systems

z A = a.nil + A[|A
Nt Jant I
Boundedness it is

very important for
the system to be

implementable

M3
(1000)

(1001)

Basic properties - deadlock

ce of deadlock iff it does not exist a reachable state that does not
enable at least a transition

Def:S = (N,m0) /s deadlock free if
vmeRS(m0), 3t €T: m[t>

The PN system below has a deadlock

10

* Basic properties - liveness

A transition t is live if it can fire “infinitely often”

Def. t €T is live in <N,m0> if
vmeRS(mO0), 3 o: m[oe>m’" and m[t>

Def: A PN system <N,mO0> is live if
vteT, tis live in <N,m0>

Note: A net with a finite strongly connected RG in which

each transition label appears at least once on an arc is
live

11

* Basic properties - liveness

The PN system below is live, although the RG is not strongly
connected, because in each BSCC of the RG it is possible to
fire all transitions

13

Basic properties - reversibility

Def. @ marking meRS(mO) is a Aome state if

W5
vm’'eRS(m0), 3 o: m'[o>m ¢! (j
Def: a system <N,mO0> is reversible if
M

vmeRS(mO), 3 o: m[e>m0

A PN system is reversible if, for
all reachable states m, it
exists a firing sequence,
firable in m, that leads to the
initial marking

The PN system below is not
reversible (there are two SCC)

14

ﬁ boundedness, liveness, reversability

Boundedness, liveness and reversability are disjoint
properties (B,L,R true or false --> 23 counter-examples)

I HLR 3)HLR

ﬁ boundedness, liveness, reversability

¢ E ¢
41 BLR 51 BLR

f1HLR

Exercise: determine what makes, in each net, a property true or false
16

* Structural properties

Idea: to define properties independently of m0

Def: N is structurally bounded if, ¥ finite m0, <N,m0> is

bounded O =0
\—8 J

Def: N is structurally live if 3 finite m0: <N,M0> is live

BENEEESS=ny

A «é‘/w‘t(W, <N1W0> S Q’{W

]

0

18

A simple PN in matrix form

pl
Structurally bounded, not ﬂi,
structurally live

p2

12;1

Structurally bounded, structurally live.
Make it NOT (structurally bounded)
Make it NOT (structurally live)

Def: N is structurally bounded if, ¥ finite m0, <N,m0> is bounded l

Def: N is structurally live if 3 finite m0: <N,M0> is live

Another example

S OO OoO o

— o OO OO

SO OO —O

SO —O OO

O — O — O O

—_,o O O OO

noooO OO

OO OO —

S OO —O O

SO OO —O

SO —O OO

S — OO OO

Pre=

Post

P4

Y
O
.

20

Summary of properties

(10)

Bound of place p in (N, mg)

b(p) = sup{ml[p]|m € RS(A", mo)}

p is bounded in (N ,myg) iff b(p) < oo

(N,myg) is bounded if all places are bounded

(N ,mg) is deadlock-free iff Ym € RS(N,mg) 3t € T such

that ¢ 1s fireable at m

t is live in (A, mg) iff Ym € RS(AV,mg) o such that m-Z%m’
(N,myg) is live if all transitions are live

m € RS(N,mg) is a home state iff Ym’ € RS(AN,mg) Jo such that

m’'_“ym

(N ,mg) is reversible iff Ym € RS(N, mg) Jo such that m—Zymg o
Mutual exclusion in (A, mg):

pi and p; are in marking mutual exclusion iff Z m € RS(N,mg) such
that (m[p;] > 0) and (m[p;] > 0)

t; and ¢; are in firing mutual exclusion iff 2 m € RS(N,mg) such that
m > Pre[P, t;] + Pre[P, ;]

Structural properties (abstractions of behavioural properties):

N is structurally bounded iff Ymg (finite) (A, mg) is bounded
N is structurally live iff 3mg(finite) making (A, mg) a live system

21

ﬁ Enumeration techniques

Tecniche usate da meta degli anni settanta per la verifica di
protocolli:

= CCITT x.21, X.25, IBM/SNA (System Network
Architecture)- data flow control layer, IBM token ring

= Alternating bit, sliding window ISO-0OSI architecture —
transport e session layer

= Normalmente il linguaggio di specifica € Estelle, SDL

= Riferimento di ricerca: IFIP WG6.1, con conferenze quali
FORTE (Formal description Techniques for distributed
systems and communication protocols) dal 1988 e PSTV
(Protocol Specification, Testing, and Verification) dal 1981

22

* Enumeration techniques

Prove property by state enumeration (only finite
system/discrete/continous?)

Main problem: state space explosion and decidability
Classify properties as:
= Marking invariance

= Liveness invariance

Build RG and define two distinct algorithms for marking and
liveness invariance

23

ﬁ Enumeration techniques

Un problema indecidbile:

Dati due sistemi decidere se i loro grafi di raggiungibilita
sono uguali (o inclusi uno nell’altro) — Hack 1975

Complessita:

Sia data un sistema a reti di Petri limitato (bounded). Il
problema della costruzione del grafo (dell'insieme) di
raggiungibilita) non e ricorsivo primitivo.

24

ﬁ Enumeration techniques

Boundedness € decidibile per reti P/T, ma certo non posso
pensare di controllare questa proprieta sul Reachability
Graph (ovviamente la costruzione non termina se la rete
e unbounded)

La chiave per la decidibilita e la possibilita di costruire un
grafo finito — Coverability Graph -- anche per reti
unbounded, sul quale sia possibile riportare la decisione
di proprieta

Basato sulla nozione di “copertura” fra marking: diciamo
chem < m’(m’ copre m) se Vp € P, m’(p) = m(p)

25

Enumeration techniques

Algorithm 6.1 (Computation of the Reachability Graph)

Input - The net system § = (N, mp)

Output - The directed graph RG(S) = (V, £) for bounded net systems

1. Initialize RG(S) = ({mo}, ?); mo is untagged;
2. while there are untagged nodes in V' do
2.1 Select an untagged node m € V and tag it
2.2 for each enabled transition, ¢, at m do

2.2.1 Compute m’ such that m—ym’:
2.2.2 if there exists m"’ € V such that m”
then the algorithm fails and exits;

a

—

[

Less than or
equal, but with at
least one place for
which the < is
strict

m’ and m”g m’

(the unboundedness condition of & has been detected)
2.2.3 if there is no m" € V such that m” = m’
then V :=V u{m'}; (m’ is an untagged node)

224 FE = FU{{(m,t,m")}

3. The algorithm succeds and RG(S) is the reachability graph

26

Enumeration techniques

Algorithm 6.1 (Computation of the Coverability tree)

Input - The net system § = (N, mp)
Output - The directed graph RG(S) = (V, £) for bounded net systems

1. Initialize RG(S) = ({mo}, ?); mo is untagged; :
2. while there are untagged nodes in V' do Etichettare
2.1 Select an untagged node m € V and tag it m(p) con o

2.2 for each enabled transition, ¢, at m do

2.2.1 Compute m’ such that m—ym’:
2.2.2 1f there exists m’” € V such that m” -Zsm’ and m”i m’

2.2.3
2.2.4 E:=EU{(m,t,m")}

3. The algorithm succeds and RG(S) is the 1 Coverability tree
27

(a) (b) (c)
CUeille BAnane MAnge PEau JEtte

~O——0O ~
& RE /‘Cﬁ % 0
%JJ O s

CHamp REntre TAble LEve JArdin DOrt TA R EgEn
LE ~ RE ~ \CU
(A) (A) (A) / #
Vd y 4 LN
JA TA + .BA CH + 0.BA(¥)
D’O/ / LE/ # \\I\\/I &
0 JA+®BA TA+ ®.BA +®PE

DC))/ LE/ \l\‘/IA

wBA JA+®BA+®0PE TA+®0BA + 0.PE(*)

Y 2

».BA + 0.PE JA + 0.BA + 0.PE(*)

If nis a natural number, then
N<o,N+o=o0o+N =0, ®-N=0

28

* Enumeration techniques

Marking invariance (a property of a single marking that has
to be verified for all markings)

®(m) is a marking invariant property if:
vmeRS(mO0), ¢o(m) is true

Examples:

1) k-boundedness of place p: Ym € RS(S), m|p] < k.

2) Marking mutual exclusion between p and p’: Vm € RS(S), (m[p] = 0) Vv
(m[p'] = 0).
3) Deadlock-freeness: Ym € RS(S), \/,cp(m > Pre[P,{]).

4) ZpEA kpm(p] < k 29

ﬁ Enumeration techniques

Problemi decidibili:
Copertura di un marking m (esiste un marking
raggiungibile m": m < m’)
Insieme di posti “simultaneously unbounded”
Reachable transition (transizione scattabile almeno una
volta in almeno una sequenza che parte dalla marcatura
iniziale)
Liveness
Reachability — non si puo risolvere per ispezione del
coverability graph, problema aperto dal 69 e chiuso da

Kosaraju nel 1982 e Mayr nel 1984. Il problema e EXP-
space hard

30

* Enumeration techniques

Back to
= Marking invariance
s Liveness invariance

Build RG and define two distinct algorithms for marking and
liveness invariance

31

Enumeration techniques—
marking invariance

Algorithm 6.2 (Decision procedure for marking invariance

Input - The reachability set RS(S). The property II.
Output - TRUE if the property is verified.

1. Initialise all elements of RS(S) as untagged.
2. while there is an untagged node m € RS(S) do
2.1 Select an untagged node m € RS(S) and tag it
2.2 if m does not satisfy 11
then return FALSE (the property is not verified).

3. Return TRUE

32

* Enumeration techniques

Liveness invariance (for each reachable marking there is at
least @ marking reachable from it that satisfies the

property)
Vm € RS(S), 3m’ € RS(NV,m), m’ satisfies II

Examples:
1) Liveness of t: Ym € RS(S), 3m’ € RS(N,m) such that m’ > Pre[P,1].
2) mpy is home state: Ym € RS(S), 3m’ € RS(AN, m) such that m’ = my.
3) Reversibility: Ym € RS(S), 3m’ € RS(AN, m) such that m’ = my.

33

liveness invariance

* Enumeration techniques —

Approach: reduce the problem to the Bottom strongly
connected components

Vm € RS(S), 3m’ € RS(N,m), m’ satisfies 11

34

Enumeration techniques —
liveness invariance

Algorithm 6.3 (Decision procedure for liveness invariances)

Input - The reachability graph RG(AN, mg). The property 11
Output - TRUE if the property 1s verified.

1. Decompose RG(N,mg) into its strongly connected components C1, ..., C;
2. Obtain the graph RG¢(S) = (V., E.) by shrinking C,,...,C, to a single
node, i.e. Vo = {C1,...,C.}. (Ci,t,C;) € E, iff there exists (m,t,m’) € F,
such that m is in the SCC C;, m’ is in the SCC C,, and i # j.
3. Compute the set I of terminal strongly connected components from RG(S)
4. while there is a (; € F' do
3.1 if C; it does not contain a m’ satislying 11
then return FALSE
3.2 Remove C; from F
5. Return TRUE

vYm € RS(S), 3m’ € RS(A,m), m’ satisflies 11 35

Enumeration techniques —
liveness invariance

C1 pl+p3+p6+pl0+pl4

2 tl 2 C3
Ijl P p24p3+po+p7+p9+pl4 =:p2+p3+p6+p10+p11+p1§)
7 t7
p4+pS+p6+p7+p9+pld Ht— pA4+pS+p6+p10+pl1+pl3) €—
,t3 4
C_pltphpS+p9+pld D plpa+pl0+pI2+p13
p2+pd+p8+p9+pl1+pl3
(p2+pd+pG+pl0+pl1+4p13) |18 Cp2tpa+patpT+pO+pld > |8
y y
Cp34p3+p8+p9+pll+pl3 > Cp34p5+p7+p9+p12+pl3 D
t8 5 t8 G
A Y A 4

t5

pA+p3+pT+p9+p 124p13 pa+pS+p8+p9+p 1 1+p13

b)

The net has 2 BSCC - the net is
live, but mO is not a home state

ﬁ State of the art

RG is exponential in the sizeof Pand T
Marking invariance is linear in |RS]

Liveness invariance requires the construction of SCC
(IV]|+|E|) plus the check of the property on each BSCC.

Explicit techniques (like the one shown) allows the check of
RG with some millions/tenths of millions state - now more
with symbolic techniques

It also depends on the size of the state

37

implicit/symbolic techniques

ﬁ State of the art -

RG is exponential in the size of Pand T an m0

Time and memory complexity of RG generation may be less
than exponential (less than |[RG| and even |RS|)

Basic ideas:
s Reuse substates for different states

s Fire more than one transition at a time

= Need to be sure that property can be checked without
making the RG explicit

38

Multilevel data structures for RS/RG

Partition P into K subsets (possibly K=|P|) and choose an order.
A reachable marking is a visit of the data structure form an entry in level 1

Submarking 1 I . local state
\‘\F‘\l L1 I pointer
Submarking2 [i [: probability
|

1 ~ —
Submarking K i

Vecorn | | | {11 1 10 11110117171

39

Multilevel data structures for RS/RG

If the states of level 1 and level 2 are independent, how does the data
structure looks like?

Submarking 1 1)

Submarking 2

If the states of level 1 and level 2 are independent, how does the data
structure looks like?

40

Multilevel data structures for RS/RG

Can we do better? May be certain subvector (and subtrees) are actually the
same!

Submarking 1 I . local state
\‘\F‘\l L1 I pointer
Submarking2 [i [: probability
|

| S —
Submarking K |

Vecorn | | | {11 1 10 11110117171

41

State of the art
implicit/symbolic techniques

A reachable marking is a boolean function from S, x S5 xS, xS; --> {0,1}
A marking m is reachable if the visit of the data structure from top to
bottom according to m goes to 1

S =1{0,1,2}
Sy = 10,1}

o 1 1 1 1 1 2 3 3 3
g — 2 0 0 1 1 2 0 2 2 2
- 1 0 1 0 1 1 0 0 1 1
O 0 0 0 O 0 0 2 0 1

b = D L0

Reduction techniques

List of rules with
= Structural and behavioural pre-condition
= Net reduction: <N;, m0,> — <N, m0,,>
= the reduction is “property preserving”

= Thenet<N,,, m0O,, >is “easier” to analyze than <N, mQ, >
(e.g.: a smaller RG, or N ,, is of a subclass for which there are
structural results available)

Rewriting system (with the usual problems of completeness
and confluence)

Can be used both ways (step wise refinement for “well-
behaved” construction or reduction for analysis) 43

ﬁ Reduction techniques

RA1 is a "macroplace” reduction

RA1 is a transition fusion

RB1 and RC1 are cases of implicit place rules

RB2 and RC2 are cases of identical and identity transitions rules

Can be obtained by duality

Preserve liveness, boundedness, existence of home states (but
not reversibility, due to RA1)

44

gt

RA1. Fusion of series places

4
Foon

RA2. Fusion of series transitions

¥
>
¥

RB1. Elimination of identical place

=

RB2. Elimination of identical transition

OB Sy

RC1. Elimination of self-loop place

B

RC2. Elimination of self-loop transition

45

| Example
(o) wait_raw oy ()

load wait_free .
@ (! Rule applied?

Oop| ‘ } é unload
eop —— t3 te eu

: empty o
wait_dep. @ e) wait_with.
"\ :
deposit () O' ()

R

ed L—@ - ew
" object t1o

5

withdrawal

46

| Example
(o) wait_raw oy ()

load wait_free .
@ (! Rule applied?

Oop| ‘ } é unload
eop —— t3 te eu

: empty o
wait_dep. @ e) wait_with.
"\ :
deposit () O' ()

R

ed L—@ - ew
" object t1o

5

withdrawal

47

Reduction
techniques

11 { tg eop,
load . . wait_free
el t7 H2

. unload

eop| eu

o wait_with.

gt

RAL. Fusion of series places

I’
g

RAZ2. Fusion of series transitions

¥
>
¥

RB1. Elimination of identical place

RB2. Elimination of identical transition

SR

RC1. Elimination of self-loop place

~+ s

RC2. Elimination of self-loop transition

ﬁ Example

P12 empty wait_with.

178910

178910

Net is live/has home states and

is 7-bounded

49

Exa

RA1. Fusion of series places

RAZ2. Fusion of series transitions

3

RB1. Elimination of identical place

o

RB2. Elimination of identical transition

SRR

RCI. Elimination of self-loop place

»
-{t)’/®

RC2. Elimination of self-loop transition

d

50

Example

Example: a system with two producers and one

consumer
Producer 1 Producer 2 Consumer
loop loop loop

produce 1 produce 2 P(OC)
P(mutex) P(mutex) get
P(EC) P(EC) V(EC)
deposit 1 deposit 2 consume
V(0C) V(0CQ) endloop
V(mutex) V(mutex)

endloop endloop

51

Example

O O
O O (>
V(mutex) V(mutex)
V(mutex) V(mutex) é} é}
mutex
pro prod 1 prod 2
DC) \
P(mute P(mutgx) I?ILI P(mutex)
ira EC

P(E P(EC)

7Y
sume depli = i il

V(00) QcC @OC) 52

dep

V(O

Example

FO O
V(mutex) V(mutex) [>O O
é} mute AD V(mutek) :\(\mutex)
prod 1 ijl ij‘ prad 2
\szl prog

P(mutgx) P(mutex)

A
P(HC) é/® \ P(EC)

dep 1 = dep 2 mutex
o= GiolliB =40
V(O0) QC @OC)

“.\,
=
f/ﬁoa—ﬂ-—
[I_,
2
=
[\

ﬁ Structural technigues

Analysis technique based only on the structure N of the system
are called “structural”

MO can play a role, but the complexity of the analysis depends
only on the incidence matrix C, and not on the initial marking MO.

Two classes of techniques:

= based on linear programming (convex geometry)
= based on topological properties of the graph

54

Structural techniques —
i convex geometry

The idea behind this type of analysis is to use the State Equation
(SE) to verify the property.

Example: Vm € RS(S) : m[p] =0V m[p] = 0;

can be reduced to the ABSENCE of solution for

{m=me+C-oAmp|>0Amlp] >0}

This approach leads to semi-decidable procedure, since
RS(S) ¢ LRS*F(8)

55

spurious solution

ﬁ Structural techniques —

Example: we cannot conclude that p2 and p4 are in p-mutex

56

Structural techniques

Def: a p-flow is a vector y:P=>Q s.t., yC=0
Def: a t-flow is a vector x:T=>Q s.t, C.x=0
Flows form a vector space, and can be generated from a basis

Def: a non-negative p-flow is a p-semiflow
Def: a non-negative t-flow is a t-semiflow

Def: the support ||y|| of a p-semiflow y is
lyll = {p € Plylp] > 0}

Change p- in t- to get the dual definitions,

Structural techniques

Def: a net is conservative if there exists at least one p-semiflow y such
that ||y||=P

Def: a net is consistent if there exists at least one t-semiflow x such that

|[x[|=T |
The set of canonical

: : o _ semiflow can be infinite
Def: a p-semiflow is canonical if the g.c.d. of its non null elements is 1

Def: a generator set of p-semiflows ¥ = {y;y,...., Y} is the set of the
least number of p-semiflows such that, for any p-semiflow y

Y= 2yeu ki Vi kj € Qandy; €W

and the p-semiflows of ¥ =are said to be “minimal” 58

Structural techniques

Proposition: a semiflow is minimal iff it is canonical and its
support does not contain stricty the support of any other p-
semiflow. Moreover the set of minimal semiflow of a net is finite
and unique

but......minimal p-semiflow can be exponential in C, therefore their
computation cannot be polynomial (although very often this number
is “small”)

Note: GreatSPN computes minimal p- and t-semiflows

Other option: to compute a set of canonicals whose support

“covers” P (or T), as done in the tool INA
59

* Structural techniques

From semiflow we can generate linear invariants.

From p-semiflow we obtain the " token conservation law”
The weighted sum of tokens is

vy €]N’”J y - C=0—= constant for all reachable

markings

Ymo, Ym € RS(N,mp),y -m=1y -mop

From t-semiflows we obtain the "cyclic behaviour law” :
xeIN" C. x=0=
dmg, 3o € L(N,mg) s.t mog—Zsmg and o = x

60

ﬁ Structural technigues

Note. The token conservation law can be proved observing
that if m is a reachable marking, then m=mO0 + C .c, and
premultiplying by y, we get

y.m=y.m0+y.C.c =y. mO)

Similarly, we can observe that, if m is a reachable marking,
and o Is a firing sequence firable in m, of firing vector X,
which is a T-semiflow, then m [c >m

(indeed if x is a T-semiflow, m’=m + C . x=m)

61

Example

P1 Pq
(¢ (¢
2

t, i L

2
O O

P, P2

T-InVv: t1+ 2t2 t1+12

P-inv: pi+p2=2 pL+p2=2

1 Calcolo di P-semiflow

< E, ¢
o~ \ e \-é = O
ﬁ(i Pi \-/.)_ +A /
"‘T/—«x’éz Plea ol TG0
(’LO ‘aj‘ B %‘”ao
s Lo 1
w, = Lo 27
3 m = xa w
JL Mo * a,,”'“ = “éo. o J)/ v
@' Yo =P = |

63

1 Calcolo di P-semiflow

~ @ 9 < __é_’_,él’

J/;l fl-2 +2 Yy, =2
é'—:lj 7 | d+* ¢
Vv K’u@/ ol ‘331“350

= 4 =2
3«:’“143»‘%‘: 0+, \31 92/
T i) = b
A M # fl/ K~y

64

Esercizi
¢, R
e\@? \—_’,":Z 6‘:1/2]‘ J»&J

e
A/ J/ < 0’7, +1 —4
o & \ / ., C =
N P2l+1 ©
Calcolare i P-semiflussi di questa rete P
Calcolare la caratterizzazione lineare dello spazio degli stati delle due reti
m = M’y C -e ST o M "’*wd)w(r

el colone LQ«S‘SL

{ymL:/yy\1+__ _(_g} /ﬁl
Wb:’l“:Jr“‘ W Loa_ﬁotoz] 65

‘ Structural techniques:

examples
(o) wait_raw oy () _
= mwait_raw + mload + mopl +
i o t eop, mwait_dep + mdeposit=1
= mdeposit + mobject+
ot () (Dwictee | muyithdrawal + mempty = 7
el t7 I = mop2 +mwait_free +munload
+mwait_with +mwithdrawal = 1
P CY) (Y) wload 1 g mR +mload + mdeposit +

€D | e tg eu munload + mwithdrawal = 1

empt
wait_dep. é Ip Y é wait_with.

deposit

ed L—@ fae ewW
" object t0

5

£ NOTE: all weights of the semiflows
-Q /’/ are 1
(5 O' é withdrawal

66

Structural techniques:
examples

m|wait_raw+m/[loadHm[op; [+ [wait_dep.[H+m[deposit]|=1
m/[op,Hm[wait_free+m[unloadHm[wait_with.]4m [withdrawal]=1
m [emptyH+m[depositHm[objectHm |[withdrawal]=7
m[RHm[load+m[unloadH+m[deposit]+m[withdrawal]=1

Consequences:

1. Bounds: Vp; € P\{empty,object}, mlp;] < 1; m[empty] < T7;
and mlfobject] < 7.

2. The places in each one of the following sets are in marking mutual exclu-
sion:
a) {wait_raw, load, op,, wait_dep., deposit}
b) {op,, wait_free, unload, wait_with., withdrawal }

c) {R, load, unload, deposit, withdrawal} 67

Structural techniques:
examples

m|wait_raw+m/[loadHm[op; 4+ [wait_dep.Hm[deposit]
m/[op,Hm[wait_free+m[unloadHm[wait_with.]4m [withdrawal]=1
m [emptyH+m[depositHm[objectHm |[withdrawal]=7
m[RHm[load+m[unloadH+m[deposit]+m[withdrawal]=1

Since P-semiflows are non negative, we can use them to get a
decomposed view of the system

68

wait_raw

[
empty 9
deposit . withdrawal
load
ed object 1t ew
I1 [(
()p 1
load .
el 1_12
wait_dep.
unload
&y
eu
deposit
ed
5

deposit . withdrawal

ew

t Lo

t(,’ e()pf}
wait_free
t—/' l_[2
unload
(g eu
wait_with.
tg
withdrawal
ew
Yo

69

Invariants

Absence of deadlock:

for a state to be a deadlock, no token should be
present in the places that are the unique enabling

condition of a transition, therefore
Mioad = Mopl = Mdeposit = Mop2 = Munload = Mwithdrawal = O
and the invariants reduce to:
Mwait_raw + Mwait_dep = 1
Mwait_free + Mwait_with. = 1
Mempty + Mobject = 7
mr=1
since R is marked, for no t to be enabled we must
have that mwait raw = mwait_free = 0, @and therefore
Mwait_dep = 1
Mwait_with. = 1
Mempty + Mobject = 7
mr=1
And to avoid the firing of t4 and t9, it is necessary

that mempty + mobject= 0, which violates the condition
Mempty + Mobject = 7 above

1R8] t tg eop,
load . . wait_free
opq . . unload
eop; eu

m[wait_rawHHm/[loadHm[op; Hm[wait_dep.Hm[deposit]
m/op,-+m[wait free m[unload+m|[wait_with.Hm[withdrawal]

m[emptyHm[depositHm[object Hm[withdrawal]

1
1
7
m|[R+m[load+m[unload+m[deposit Hm|[withdrawal]=1

70

Invariants

Absence of deadlock — more
compat terms:

If Mioad + Mopl + Mdeposit + Mop2 +Munload
+Mwithdrawal > 1

then one of (t2 or t3 or t5 or t6 or t8 or
t10) is firable

if instead Mwait_raw+ Mwait_free > 1
then (t1 or t7) is firable
else (t4 or t9) is firable

m|[wait_raw+m[loadHm[op, Hm[wait_dep.Hm[deposit
m/[op, Hm[wait_freeHm[unload+m|[wait_with.[+m|[withdrawal

]
]

m[emptyHm[depositHm[object[+m[withdrawal]
m[RHm[load[+m[unloadHm[depositHm[withdrawal]=

. unload

cu

ts

1
1
7

71
1

Invariants

Liveness: since
c=t11t2t3 t4 t5 t9 t10 t6 t7 t8

is firable, then the net is reversiblé

empt
wait_dep. . p}

*Q\/»

deposit .
ed @ object

Fairness: since the net has a single right

annuller: x=@111111111)

then, for all possible scheduling IT1 and T12,

all components work

Y0

. unload

eu

. withdrawal

ew

72

* Structural techniques:

If a P/T system is bounded and live, then
rank(C)< | D]

where @ is the set of equivalence classes built on the equal
conflict relation, relation defined as:

t eq t’ iff Pre(t) = Pre(t’)

73

i Linear Programming and Petri Nets

Boundedness can be characterized also as a LP problem, defining
the structural bound sb(p) as:

sb(p) = sup{m(p)jm=me+C -0 > 0,0 >0}

that leads to

sb(p) = max. ep -m
s.1. m=—mo+C -a>0
o>0

Because RS(S) ¢ LRSP(S), in general, we have that sh(p) > b(p)

74

Linear Programming and Petri Nets

the token variation due
Various characterization of boundedness | t© transitions s not positive

voperty 6.5 The following three statements are equivalent:

1. p s structurally bounded, 1.e. p s baunW

2. There exisls y > ep such that y - C < 0. (place-based characterizalion)

3. For all x > 0 such that C-x > 0, C[p,T| -x = 0. (transilion-based
_

characterization)

variation on p due to the
firing of x is null

75

Structural techniques:

Property 6.5 The following three statements are equivalent:
1. p s structurally bounded, 1.e. p 15 bounded for any mg.

2. There exists y > ep such that'y - C < 0. (place-based characterization)
3. For all x > 0 such that C-x > 0, C[p,T] -x = 0. (transition-based

characterization)

Property 6.6 The following three stalements are equivalent:
1. N is structurally bounded, i.e. N is bounded for any myg.
2. There exists y > 1 such that'y - C < 0. (place-based characterization)

3. For allx > 0 such that C-x >0, C -x=10;7e. A x>0s.t C.-xX*0.
(transition-based characterization)
76

ﬂwalysis for super/sub classes of P/T nets

Superclasses: let N be a net with inhibitor arcs and/or priorities
and N’ the corresponding net w/o inhibitors or priority, then

RG(N,m) < RG(N’,m)

indeed the elimination of inh. and priorities allows for more
behaviour

= Safety properties true on N’ are true on N as well (e.qg.
place boundedness)

= liveness properties true on N’ might not be true on N (for
eX., by removing inh. and priorities certain transitions that
were dead may become enabled)

77

‘ ﬁalysis for super/sub classes of P/T nets

78

ﬂwalysis for super/sub classes of P/T nets

Subclasses: by limiting the structure of the net (state machine
and marked graph) we have more powerful analysis
algorithm. We consider the case of ordinary state machines
and marked graphs.

State Machines

Boundedness: a connected state machines is covered by a
single P-semiflow in which all places have weight 1. The net is
conservative and therefore structurally bounded.

Liveness: A state machine N is live if and only if N is strongly
connected and at least one place is marked in the initial

marking
79

ﬂwalysis for super/sub classes of P/T nets

Marked graphs (we use the definition that says that an
ordinary net is @ marked graph if each place as 1! input
transition and 1! output transition)

All elementary circuits of the net are P-semiflows (indeed no
token can enter or leave a circuit).

A marked graph N is live if and only if all elementary circuits
contain at least one place marked in the initial marking.

A marked graph N is structurally bounded if and only if N is

strongly connected %0

ﬂwalysis for super/sub classes of P/T nets

Free choice.
Commoner’s Theorem - 1972

A free choice system (N,m0) is live if and only if all syphons
contains a frap marked in the initial marking

Syphon: P" C P: .P’g Pe (all transitions putting tokens into P’
also remove tokens) - it tends to empty

Trap: P C P: Pe - -P’(aII transitions removing tokens into P’
also put tokens) - it tends to trap tokens in it

81

ﬂwalysis for super/sub classes of P/T nets

Free choice.

Rank theorem — Esparza et al 1992.

Let N be a free choice (equal conflict or DSSP) net. (N,mO) is
live and bounded if and only if

= N is strongly connected and

= N is covered by state machines

= Rank(C)=|d| -1

= All syphons of N are initially marked

82

ﬁ Hierarchy of equivalences

/ Bisimulation \

Simulation Failure

\ /

where and arrow from =; to =, (=1 more refined than ~,) means:
P ~q Q ==>P =) Q

Trace

83

Systems have same finite sequences.

a @,
e ® ¢ O
E=a.(b+0) F=(a.b)+a.(b+0)
Same traces

* Trace equivalence:
™

84

Trace equivalence:
* agents have same finite sequences.

Def: the set T(E) of fraces of the agent E is the set of
all finite sequences that can be produced by the
evolution of E

Def: if E and F are agents, we say that £ /s equivalent
to F according to trace equivalence,

E~,F iff T(E)=T(F)

Note: For agents with a finite number of states
equivalence over finite traces implies equivalence over
infinite ones

85

Failures: comparing also what we
i cannot do after a finite sequence.

a/@
6 & 08

Failure of agent E: (o, X), where after executing
o from E, none of the events in X is enabled.
Agent F has failure (g, {c}), which is not a failure

of E. 86

cannot do after a finite sequence.

* Failures: comparing also what we

A failure for an agent E is a pair (o, X), with

e 0 cT(E)

e X c Act

e E --0--> F and NONE of the actions in X is possible in F

Note: it may 3 F: E --0--> F’ and X is possible in F’

Note: if (o, X) is a failure for E, then (o, Y), Y X, is a
failure for E

87

cannot do after a finite sequence.

* Failures: comparing also what we

Let Fail(E) be the set of all failures of E, then
E~qF iff Fail(E) = Fail(F)

Property: =~ is more refined than =~ , that is to say
ExqF==>E~F

proof: Fail(E) includes also the set (o, 0) of the finite
traces of E

88

i ~q is strictly more refined than =

To prove this it is enough to consider the following
counter-example

a a/@a
5 6 b b \<C>

T(E) = T(F), but FAIL(E) = FAIL(F)

89

i Simulation equivalence

Basic idea:
= Define a simulation relation over agents E R F

s Then E =~y F if there exists two simulation relations R and
Q such that

ERF andF QE

Definition: R=SxS is a simulation relation if
s ERF

= If E'RF and E'—a>E", then there exists F’, F—a>F",
and E" R F”

= and we say F simulates E.
90

i Simulation equivalence

What distinguish E and F?

91

i Simulation equivalence

F simulates E if F “can reply” to the moves of E

E and F are not ~gm, since F simulates E, (E RF), but it

does not exists a Q: E simulates F 92

/| Simulation equivalence

ERF

If EERF and E'—a—>FE"
then 3 F
F—a>F", and E" R F".

If R E"and F—a>F,
then 3 E”,
'—g>E", and F" R E”

R ={(s1,r1), (s2,r2), (s4,r3), (s6,r5), (s3,r2), (s5,r4), (s7,r6)}

Q ={(r1,s1), (r2,s3.........

93

Here, simulation works only in
’ ﬁ one direction. No equivalence!

broblem!!!

= Relation over set of agents S. R&5xS.
= ERF

= If ' RF and E'—a=>FE", then there exists F”,
'—a>F", and E” R F".

24

Simulation equivalent
: i implies trace equivalent

~sim 1S strictly more refined than ~i
(indeed E ~ F, but not E ~gjm, F)

95

Simulation and failure are not
’ * comparable

o 9

b

E =~sim F, but E = a.b6+a has a failure (g,{56}), while F has not
E and F of the previous slide are instead E =f F, but not =gim

96

* Bisimulation between G, and G,

= Arelation R : N x N is a bisimulation if
If (m,n) in R then
1. If m—a=>m’ then In":n—a->n’
and (m’,n)in R
2. If n—a=>n"then IMMm—a—->m’
and (m’,n") in R.
= Other simulation relations are possible, I.e.,
m=a=>m’ when m—t->...—a=>... —t->m.".

97

Bisimulation: same relation
’ i simulates in both directions

Not in this case: different simulation relations and there is
no other simulation of E and F and of F and E.

98

*&Igorithm for bisimulation:

Input. the set of agents S, the set of actions Act
Create the initial partition P = {S}
Repeat until there is no change in P:

find if there are two (not necessarily different) elements T1 and
T2 in P, and an action acAct such that the following holds: T1
can be split into two non empty and disjoint subsets S, and S,,
such that:

« VagentE €S;, 3 E' €T2: E—a->F

= Not(3) E €S,, such that, for some agent E' €T2 it holds

that E—a->FE'
If there are such sets, replace T1 in P with S, and S,

Output. a partition {T1, T2, ... Tn } of the set of agents S: for any

two agents E and E" in Ti, E =pjs E’
99

ﬁCorrectness of algorithm

= Invariant: if (m,n) in relation R (bisimulation
relaton in our case) then m and n remain in
the same partition element throughout the
algorithm.

= Termination: can split only a finite number of
times.

100

A=a.((b.nil)+(c.d.A))
B=(a.(b.nil))+(a.c.d.B)

101

{Soto}:{S1,S,,53,t1, 15,15, spliton b

{Sostoh:{S1,t1}:{S2:83:tpta, 1}

102

{Sosto}:AS 1,11 }1:{S2,83. 10,85, 14} Spliton €
{So:lo}{S1}: At 115253, 0, ta b}

103

* Example:
@ a bc ‘

d

{Sostok{S1h:{ti {82,851, 15,14} spliton ¢

{Sosto}bAS1 1At t4}1S2,S3, 10,15}

104

ﬁ Example:
a a bC @

d

{So:toh{S1h At it 1S,,85,00,15) split on d
{So-tobASeh At {tahASa, tah{Sato}

105

{SO’tO}i{Sl}i{tl}’{t4}’{SZ’tZ}’{S3’t3} Spllt on a
{So}ttoh {Sth At} {ta}{Sss ta}h{S2.10}

106

b @

(Soh{toh{Sih it {ta} 452,55, tuts} split on d
{sob:tto} St At {tahdSsh{ta} {015}

107

State based bisimulation

states are labelled with atomic propositions and actions are
not distinguishable, we can define a state based bisimulation.
How can we modify the algorithm?

Input: the set of agents S, the set of actions Act M p\ VS, s'€ S
Create the initial partition P = {S} —~ FP_ { C - % . S,¢'e C,°
Repeat until there is no change in P: = <GP LH= 4 s

find if there are two (not necessarily different) elements T1 and T2 in P, and an
action aeAct such that the following holds: T1 can be split into two non empty
and disjoint subsets S, and S,, such that:

= VagentE e€S;, 3 E €T2: E=&->F
= Not(3) E €S,, such that, for some agent E' T2 it holds that E—=as>FE'
If there are such sets, replace T1 in P with S; and S,

Output. a partition {T1, T2, ... Tn } of the set of agents S: for any two agents E
and E"in Ti, E ~yis E

108

109

*Esemplo bisimulazione, by Katoen

(1) Initial partition: II = {{so, s, $3}, {S1,54}}
o x
1 2

(2) Successor blocks:

S | | So So S3 | S Sy

Sll((‘ ” {Bl,BQ} {Ble} {Bg}|{BlBg} {Bl,BQ}

(3) Partition refinement: IT = {{so, s2},{s3}, {s1,54}}
N, e’ Ny i Nty

Bj By Bs

(4) Successor blocks:

S || S0 59 | S3 | S1 Sq
Succ(s) | {B2. Bs} {Ba.Bs} | {Ba2} | {B2. Bs. Bi} {Ba,Bs, By}

(5) Partition stable = sy ~ s9 and s; ~ sy

110

ﬁCom plexity

The best known complexity of an algorithm for partition

refinement is O(m /ogn), where m=|E]| is the number of
transitions and n=|V| is the number of states (in practical cases,
m is significantly bigger than n (Paige and Tarjan algorithm).

(per gli studenti di simulazione: note that this is the same
complexity as computing lumpability in Markov chain)

111

ﬁEquations under ~,;s and congruence

* commutative : A+B = B+A and A||B ~pis B||A
e associative: A+(B+C) ~pnis(A+B)+C and A||(B||C) =pis(A]|[B)]|C

e idempotence of non deterministic choice: A+A =5 A

Def.: a congruence is an equivalence relation that also satisfy
replacement under any context, that is to say: if =¢ng IS a
congruence, and B =g C, then

A ~cong A(B/C)

Note: it has been proved (Milner’s book) that ~uis is a congruence

‘*Equivalence relations and congruence

. ~c -

Se

Allora

T

L

-

113

Consequences of =~ being a congruence

It is possible to compute the derivation graph in an incremental
manner, for example if A = B||B, and B s C, and C is easier to
analyze than B, we can substitute C for B in A, and still have a
process algebra term that is bisimilar to the original one.

Another way to take advantage of the partitioning algorithm for
the computation of bisimulation is to observe that if we substitute
each element of the partition with a single node, and we obtain a
derivation graph in which each node represents a set of states,
the states with the same “future evolution”.

We will see more of this on the symbolic reachability graph

construction of Well-formed nets
114

~pis and action refinement

Let
E=allb.c and E'=a.b.c+ b.a.c+b.c.a
Note that E ~s E' (E” are all possible interleaving of E).

We can use process algebra to show that interleaving semantics is not closed
under action refinement, indeed: take F = al|d and F'=a.d + d.a (F »,sE")
and refine d into b.c, then

F=alld a||b.c
1 refinement |
interleaving
interleaving
! a.b.c + b.a.c+b.c.a
F=ad+da — ‘ <" Not bisimilar (not even trace!)
refinement — a.b.c + b.c.a

Action refinement does not maintain any of the four defined equivalences!lL5

iExampIe of ~ubis

Take the two place buffer term and the two buffer term obtained
from the parallel composition of two single buffer terms with
relabelling and restriction:

Are they equivalent? Trace? Failure? Sim? Bis? wbis?

A relation R : N; x N, is a weak bisimulation (=wbis) , if, given
(m,n) in R, then
- If m=a=>m’ then In":n=g=>n’
and (m’,n’)in R
- If n=g=>n"then IM'm=a=>m’
and (m’,n’) in R.
where m=g=>m’ when m—>...—g=2... —t>m’ (itis read "m

goes in m’ with the extended action a) 116

| Exercise

Compare the reachability graphs of the net below with the
following initial marking:

Net A: MO(p1)= 1 and MO(p3)= 1
Net B: MO(p1)= 2
When t1 and t3 have the same label "a" and t2 and t4 have the

same label "b"
t] t3
p2Cg p4Cg

¢ ¢ 117

9] m— 44—

| Exercise

Compute the bisimulation relation over RG(A), and build the
RG(A) bsim in Which each element of the partition is considered as
a single state.

Compute the bisimulation relation over RG(A) U RG(B), and check
if the two initial markings belong to the same equivalence class.

Compare RG,sr, and RG(B) in terms of number of states, arcs and

structure.
R
< 4

9] e /] |

118

-

fZ1{=2 | LO(2)C)L1()

Lo(2)c()rLiq)
_____ a— ot
121¢=2 :LO(I)C(I)LI():

!]
81(11) LLO(IIC(I)LI()" 81(12)

T ~|Lo(1)e()L1(11) [Lo(1)e ()Ll (12)

51 (11) LS'O sﬂl s1(12)
'LO()C (1) L1(11)1/ L0 ()€ (1) L1 (12)! SLiEL)

ﬁc':if):,?/ """ ez 7 e 12)

Me (11 s1(z1)

_ Mc (Z2)
1&d)= LO()C()L1(2 z1ﬂ
1214=2

ﬁ(Lo()C()L1(11, 12))& 1z24=1
[m()cou(zn)

119

ﬁ Our course - recall

Concentrate on distributed systems (as inherently
protocols are)

Learn several formalisms to model system and
properties (automata, process algebras, Petri Nets,
temporal logic, timed automata).

Learn advantages and limitations, in order to choose
the right methods and tools.

Learn how to combine existing formalisms and existing
“solution” methods.

120

