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Second topic: analysis 

Check the kind of 
system to analyze. 

Choose formalisms, 
methods and tools. 

Express system 
properties. 

Model the system. 

Apply methods. 

Obtain verification 
results. 

Analyze results. 

Identify errors. 

Suggest correction. 
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Analysis 

We shall review different analysis methods that apply (partially) 

to Petri Nets, Process Algebra, Finite State Automata 

 Enumerative: analysis of derivation/reachability graph for a set of 

significative properties (deadlock/liveness) 

 Transformation: analysis by reduction (not for FSA) 

 kit of reduction rules for PN 

 equational laws for PA (e.g. A+A = A) 

 Structural analysis on incidence matrix (only for PN, extended partially 

to PA) 

 Equivalences (defined for PA, extended to PN) 

 Enumerative - again: Model checking on the state space (RG for PN, 

DG for PA, FSA) of temporal logic properties  
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Analysis 

Different methods have different costs/applicability. 

 

A good analysis of the system requires the use of different 

analysis methods on the same system model 

    (……… as done in testing)  
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Flowchart of analysis material 

1. Basic properties 

2. RG analysis 

3. Structural analysis (on PN) 

4. Reduction rules (PN) 

5. Equivalences (PA) 

6. Model checking 

 definition of linear logic LTL and its model checking algorithm 

 definition of branching logic CTL and its model checking algorithm 
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Basic properties - boundedness 

Given a PN system S=(N,m0) with N=(P,T,F,W) 

 

Def. bound of place p in S:  

b(p) = max {m[p] | m RS(S)}  

 

Def. a place p is bounded in S if  

b(p) <  

 

Def: a system S is bounded if  

pP, b(p) is bounded 

 

Propery: S is bounded iff its RS is finite 
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Examples of unbounded systems 

 

       A = a.nil + A||A 

     

Basic properties - boundedness 
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implementable  
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Basic properties - deadlock 

Absence of deadlock iff it does not exist a reachable state that does not 
enable at least a transition 

 

Def. S = (N,m0) is deadlock free if  

mRS(m0),  t T: m[t> 

 

The PN system below has a deadlock 
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Basic properties - liveness 

A transition t is live if it can fire “infinitely often” 

 

Def. t T is live in <N,m0> if   

mRS(m0),  s: m[s>m’ and m’[t> 

 

Def: A PN system <N,m0> is live if  

tT, t is live in <N,m0> 

 

Note: A net with a finite strongly connected RG in which 
each transition label appears at least once on an arc is  
live 
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Basic properties - liveness 

The PN system below is live, although the RG is not strongly 
connected, because in each BSCC of the RG it is possible to 
fire all transitions 
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Basic properties - reversibility 

A PN system is reversible if, for 
all  reachable states m, it 
exists a firing sequence, 
firable in m, that leads to the 
initial marking  

The PN system below is not 
reversible (there are two SCC) 
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Def. a marking mRS(m0) is a home state if   

m’RS(m0),  s: m'[s>m 

Def: a system <N,m0> is reversible if  

mRS(m0),  s: m[s>m0 
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boundedness, liveness, reversability  

Boundedness, liveness and reversability are disjoint 
properties (B,L,R true or false --> 23 counter-examples) 
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Exercise: determine what makes, in each net, a property true or false 

boundedness, liveness, reversability  
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Structural properties 

Idea: to define properties independently of m0 

 

Def: N is structurally bounded if,  finite m0, <N,m0> is 
bounded 

 

Def: N is structurally live if   finite m0: <N,M0> is live 



19 

A simple PN in matrix form 

 

p1 

p2 

t2 

t1 Structurally bounded, not 
structurally live 
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Structurally bounded, structurally live.  

Make it NOT (structurally bounded) 

Make it NOT (structurally live)  

Def: N is structurally bounded if,  finite m0, <N,m0> is bounded 

Def: N is structurally live if   finite m0: <N,M0> is live 
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 Another example 

p1

p4
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p2

p6

p5

t5

t1

t6

t2

t3

t4

3
3

 1 0 0 0 1 0 
 0 1 0 0 0 0 

 0 0 1 0 0 0 
 0 1 0 0 0 0 
 0 0 0 1 0 0 
 0 0 0 0 0 3

Pre =

 0 0 0 0 0 3 
 1 0 0 0 0 0 

 0 1 0 0 0 0 
 0 0 0 1 0 0 
 0 0 1 0 0 0 
 0 0 0 0 1 0

Post =

 -1 0 0 0 -1 3 
 1 -1 0 0 0 0 

 0 1 -1 0 0 0 
 0 -1 0 1 0 0 
 0 0 1 -1 0 0 
 0 0 0 0 1 -3

C =
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Summary of properties 

Prove property by  state enumeration (only finite 
system/discrete/continous?) 

 

Classify properties as 

 

Def: N is structurally live if   finite m0: <N,M0> is live 
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Enumeration techniques 

Tecniche usate da metà degli anni settanta per la verifica di 
protocolli: 

  CCITT x.21, X.25, IBM/SNA (System Network 
Architecture)- data flow control layer, IBM token ring 

 Alternating bit, sliding window ISO-OSI architecture – 
transport e session layer 

 Normalmente il linguaggio di specifica è Estelle, SDL 

 Riferimento di ricerca: IFIP WG6.1, con conferenze quali 
FORTE (Formal description Techniques for distributed 
systems and communication protocols) dal 1988 e PSTV 
(Protocol Specification, Testing, and Verification) dal 1981 
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Enumeration techniques 

Prove property by  state enumeration (only finite 
system/discrete/continous?) 

Main problem: state space explosion and decidability 

 

Classify properties as: 

 Marking invariance  

 Liveness invariance  

 

Build RG and define two distinct algorithms for marking and 
liveness invariance 
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Enumeration techniques 

Un problema indecidbile: 

- Dati due sistemi decidere se i loro grafi di raggiungibilità 
sono uguali (o inclusi uno nell’altro) – Hack 1975 

 

Complessità: 

Sia data un sistema a reti di Petri limitato (bounded). Il 
problema della costruzione del grafo (dell’insieme) di 
raggiungibilità) non è ricorsivo primitivo. 
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Enumeration techniques 

Boundedness è decidibile per reti P/T, ma certo non posso 
pensare di controllare questa proprietà sul Reachability 
Graph (ovviamente la costruzione non termina se la rete 
è unbounded) 

 

La chiave per la decidibilità è la possibilità di costruire un 
grafo finito – Coverability Graph -- anche per reti 
unbounded, sul quale sia possibile riportare la decisione 
di proprietà 

Basato sulla nozione di “copertura” fra marking: diciamo 
che m ≤ m’ (m’ copre m) se p ∈ P, m’(p) ≥ m(p) 
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Enumeration techniques 

Less than or 
equal, but with at 
least one place for 
which the ≤ is 
strict  
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Enumeration techniques 

Etichettare 
m(p) con  

Coverability tree 

               

Coverability tree 



28 

If n is a natural number, then 
n < , n+  =  +n = ,  -n =  
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Enumeration techniques 

Marking invariance (a property of a single marking that has 
to be verified for all markings) 

f(m) is a marking invariant property if: 

mRS(m0),  f(m) is true 

 

Examples: 

4) 
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Enumeration techniques 

Problemi decidibili: 

- Copertura di un marking m (esiste un marking 
raggiungibile m’: m ≤ m’) 

- Insieme di posti “simultaneously unbounded” 

- Reachable transition (transizione scattabile almeno una 
volta in almeno una sequenza che parte dalla marcatura 
iniziale) 

- Liveness  

- Reachability – non si può risolvere per ispezione del 
coverability graph, problema aperto dal 69 e chiuso da 
Kosaraju nel 1982 e  Mayr nel 1984.  Il problema è EXP-
space hard 
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Enumeration techniques 

Back to  

 Marking invariance  

 Liveness invariance  

 

Build RG and define two distinct algorithms for marking and 
liveness invariance 
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Enumeration techniques–  
marking invariance 
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Enumeration techniques 

Liveness  invariance (for each reachable marking there is at 
least a marking reachable from it that satisfies the 
property) 

 

 

 

Examples: 
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Enumeration techniques – 
liveness invariance 

Approach: reduce the problem to the Bottom strongly 
connected components 
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Enumeration techniques – 
liveness invariance 
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Enumeration techniques – 
liveness invariance 

The net has 2 BSCC - the net is 
live, but m0 is not a home state 
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State of the art 

RG is exponential in the size of P and T 

Marking invariance is linear in |RS| 

 

Liveness invariance requires the construction of SCC 
(|V|+|E|) plus the check of the property on each BSCC. 

 

Explicit techniques (like the one shown) allows the check of 
RG with some millions/tenths of millions state - now more 
with symbolic techniques 

 

It also depends on the size of the state 
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State of the art  - 
implicit/symbolic techniques 

RG is exponential in the size of P and T an m0 

 

Time and memory complexity of RG generation may be less 
than exponential (less than |RG| and even |RS|) 

 

Basic ideas: 

 Reuse substates for different states 

 Fire more than one transition at a time 

 Need to be sure that property can be checked without 
making the RG explicit 
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i1 

i2 

i

K 
  Ki .1



Submarking 1 

Submarking 2 

   

Submarking K 

Vector  

: local state 

: pointer 

: probability 

Multilevel data structures for RS/RG 

Partition P into K subsets (possibly K=|P|) and choose an order. 

A reachable marking is a visit of the data structure form an entry in level 1 
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i1 

i2 

Submarking 1 

Submarking 2 

Multilevel data structures for RS/RG 

If the states of level 1 and level 2 are independent, how does the data 
structure looks like? 

If the states of level 1 and level 2 are independent, how does the data 
structure looks like? 
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i1 

i2 

i

K 
  Ki .1



Submarking 1 

Submarking 2 

   

Submarking K 

Vector  

: local state 

: pointer 

: probability 

Multilevel data structures for RS/RG 

Can we do better? May be certain subvector (and subtrees) are actually the 
same! 
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State of the art  - 
implicit/symbolic techniques 

A reachable marking is a boolean function from S4 x S3 xS2 xS1 --> {0,1}   
A marking m is reachable if the visit of the data structure from top to 
bottom according to m  goes to 1 
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Reduction  techniques 

List of rules with  

 Structural and behavioural pre-condition 

 Net reduction: < Ni, m0i >      < N i+1, m0i+1 > 

 the reduction is “property preserving” 

 The net < N i+1, m0i+1 > is “easier” to analyze than   < Ni, m0i >   

(e.g.: a smaller RG, or N i+1 is of a subclass for which there are 

structural results available) 

 

Rewriting system (with the usual problems of completeness 
and confluence) 

 

Can be used both ways (step wise refinement for “well-
behaved” construction or reduction for analysis) 
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Reduction  techniques 

RA1 is a “macroplace” reduction 

RA1 is a transition fusion 

RB1 and RC1 are cases of implicit place rules 

RB2 and RC2 are cases of identical and identity transitions rules 

 

Can be obtained by duality   

 

Preserve liveness, boundedness, existence of home states (but 
not reversibility, due to RA1) 
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Reduction  techniques 
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Example 

Rule applied? 
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Example 

Rule applied? 
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Reduction  
techniques 
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Example 

Net is live/has home states and 
is 7-bounded 
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Example 

Net is live/has home states and 
is 7-bounded 
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Example 

Example: a system with two producers and one 
consumer  
 

Producer 1 
 

Producer 2 
 

Consumer 
 

    loop 
 produce 1 
 P(mutex) 
 P(EC) 
 deposit 1 
 V(OC) 
 V(mutex) 
    endloop 
 

    loop 
 produce 2 
 P(mutex) 
 P(EC) 
 deposit 2 
 V(OC) 
 V(mutex) 
  endloop 
 

    loop 
 P(OC) 
 get  
 V(EC) 
 consume 
   endloop 
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Example 

V(EC)

consume

EC

OC

mutex

V(mutex)

prod 1 prod 2

P(mutex)P(mutex)

P(EC) P(EC)

dep 2dep 1

V(OC) V(OC)

retira

P(OC)

V(mutex)

EC

OC

mutex

V(mutex)

prod 1 prod 2

P(mutex)P(mutex)

P(EC) P(EC)

dep 2dep 1

V(OC) V(OC)

V(mutex)

? 
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Example 

? 

EC

OC

mutex

V(mutex)

prod 1 prod 2

P(mutex)P(mutex)

P(EC) P(EC)

dep 2dep 1

V(OC) V(OC)

V(mutex)
 

 

mutex

V(mutex)

prod 1 prod 2

P(mutex)P(mutex)

V(mutex)

mutex

? 
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Structural  techniques 

Analysis technique based only on the structure N of the system 
are called “structural” 

M0 can play a role, but the complexity of the analysis depends 
only on the incidence matrix C, and not on the initial marking M0. 

 

Two classes of techniques: 

 based on linear programming (convex geometry) 

 based on topological properties of the graph 
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The idea behind this type of analysis is to use the State Equation 
(SE) to verify the property. 

Example:  

 

can be reduced to the ABSENCE of solution for  

 

 

 

This approach  leads to semi-decidable procedure, since 

Structural  techniques – 
convex geometry 
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Example: we cannot conclude that p2 and p4 are in p-mutex 

Structural  techniques – 
spurious solution 
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Structural  techniques 

Def: a p-flow is a vector y:PQ s.t.,  y.C = 0 

Def: a t-flow is a vector x:TQ  s.t.,  C.x = 0 

Flows form a vector space, and can be generated from a basis 

 

Def: a non-negative p-flow is a p-semiflow 

Def: a non-negative t-flow is a t-semiflow 

  

Def: the support ||y|| of a p-semiflow y is  

 

 

Change p- in t- to get the dual definitions 
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Def: a net is conservative if there exists at least one p-semiflow y such 
that  ||y||=P 

 

Def: a net is consistent if there exists at least one t-semiflow x such that 
  ||x||=T 

 

Def: a p-semiflow is canonical if the g.c.d. of its non null elements is 1
  

 

Def: a generator set of p-semiflows  Y = {y1,…., yn} is the set of the 
least number of p-semiflows such that, for any p-semiflow y 

 y =    

 and the p-semiflows of Y =are said to be “minimal”  

 

 

 

 

Structural  techniques 

The set of canonical 
semiflow can be infinite 
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Structural  techniques 

 

 
Proposition: a semiflow is minimal iff it is canonical and its 
support does not contain stricty the support of any other p-
semiflow. Moreover the set of minimal semiflow of a net is finite 
and unique 

 

but……minimal  p-semiflow can be exponential in C, therefore their 
computation cannot be polynomial (although very often this number 
is “small”) 

 

Note: GreatSPN computes minimal p- and t-semiflows 

 

Other option: to compute a set of canonicals whose support 
“covers” P (or T), as done in the tool INA 
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Structural  techniques 

 

 
From semiflow  we can generate linear invariants. 

 

From p-semiflow we obtain the “token conservation law”: 

 

 

 

 

From t-semiflows we obtain the “cyclic behaviour law” : 

s.t 

The weighted sum of tokens is 
constant for all reachable 
markings 
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Structural  techniques  

  

Note. The token conservation law can be proved observing 

that if  m is a reachable marking, then m= m0 + C .s, and 
premultiplying by y, we get  

    y. m =  y. m0 + y.C. s  = y. m0) 

 

Similarly, we can observe that, if  m is a reachable marking, 

and s  is a firing sequence firable in m, of firing vector x, 

which is a T-semiflow, then  m [s >m 

(indeed if x  is a T-semiflow, m’= m + C . x= m)  
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Example 

p1 

t1 t2 

p2 

2 

2 

p1 

t1 t2 

p2 

2pp =2+1

2+1 t2tT-inv: 

P-inv: 

2+1 tt

2pp =2+1
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Calcolo di P-semiflow 
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Calcolo di P-semiflow 
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Esercizi 

Calcolare i P-semiflussi di questa rete 

Calcolare la caratterizzazione lineare dello spazio degli stati delle due reti 
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Structural  techniques:  
examples 

 mwait_raw + mload + mop1 + 

mwait_dep + mdeposit = 1 

 mdeposit + mobject+ 

mwithdrawal + mempty = 7  

 mop2 +mwait_free +munload 

+mwait_with +mwithdrawal = 1  

 mR  +mload + mdeposit + 

munload + mwithdrawal = 1   

 

 

NOTE: all weights of the semiflows 
are 1 
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Structural  techniques:  
examples 

Consequences: 
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Structural  techniques:  
examples 

Since P-semiflows are non negative, we can use them to get a 
decomposed view of the system 
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Structural  techniques:  
exemples 
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Invariants 

Absence of deadlock: 
for a state to be a deadlock, no token should be 
present in the places that are the unique enabling 

condition of a transition, therefore  
mload = mop1 = mdeposit = mop2 = munload = mwithdrawal = 0 

and the invariants reduce to: 

mwait_raw + mwait_dep = 1 

mwait_free + mwait_with. = 1 

mempty + mobject = 7 

mR = 1 

since R is marked, for no t to be enabled we must 
have that mwait_raw = mwait_free = 0, and therefore 

mwait_dep = 1 

mwait_with. = 1 

mempty + mobject = 7 

mR = 1 

And to avoid the firing of t4 and t9, it is necessary 
that  mempty + mobject= 0, which violates the condition 

mempty + mobject = 7 above 
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Invariants 

Absence of deadlock – more 
compat terms: 

if mload + mop1 + mdeposit + mop2 +munload 

+mwithdrawal  1 

then one of (t2 or t3 or t5 or t6 or t8 or 

t10) is firable 

 

if instead  mwait_raw+ mwait_free  1 

then (t1 or t7 ) is firable 

else (t4 or t9 )  is firable 
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Invariants 

Liveness:  since   
s = t1 t2 t3  t4  t5  t9  t10  t6  t7 t8   

is firable, then the net is reversible  
 

 

 

Fairness: since the net has a single right 
annuller:  x = (1 1 1 1 1 1 1 1 1 1)  

then, for all possible scheduling P1 and P2, 
all components work 
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Structural  techniques:  
 

If a P/T system is bounded and live, then  
rank(C)<|F| 

 
where F is the set of equivalence classes built on the equal 

conflict relation, relation defined as:  
t eq t’ iff Pre(t) = Pre(t’) 
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Linear Programming and Petri Nets 

Boundedness can be characterized also as a LP problem, defining 
the structural bound sb(p) as: 

  

 

that leads to 



75 

Linear Programming and Petri Nets 

Various characterization of boundedness 

the token variation due 
to transitions  is not positive 

variation on p due to the 
firing of x is null 
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Structural  techniques:  
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Analysis for super/sub classes of P/T nets 

Superclasses: let N be a net with inhibitor arcs and/or priorities 
and N’ the corresponding net w/o inhibitors or priority, then  

RG(N,m)  RG(N’,m) 

 

indeed the elimination of inh. and priorities allows for more 
behaviour  

 safety properties true on N’ are true on N as well (e.g. 
place boundedness) 

 liveness properties true on N’ might not be true on N (for 
ex., by removing inh. and  priorities certain transitions that 
were dead may become enabled)  
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Analysis for super/sub classes of P/T nets 
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Analysis for super/sub classes of P/T nets 

Subclasses: by limiting the structure of the net (state machine 
and marked graph) we have more powerful analysis 
algorithm. We consider the case of ordinary state machines 
and  marked graphs. 

State Machines 

Boundedness: a connected state machines is covered by a 
single P-semiflow in which all places have weight 1. The net is 
conservative and therefore structurally bounded.  

 

Liveness: A state machine N is live if and only if N is strongly 
connected and at least one place is marked in the initial 
marking 
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Analysis for super/sub classes of P/T nets 

Marked graphs (we use the definition that says that an 
ordinary net is a marked graph if each place as 1! input 
transition and 1! output transition) 

 

All elementary circuits of the net are P-semiflows (indeed no 
token can enter or leave a circuit). 

 

A marked graph N is live if and only if all elementary circuits 
contain at least one place marked in the initial marking. 

 

A marked graph N is structurally bounded if and only if N is 
strongly connected 
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Analysis for super/sub classes of P/T nets 

Free choice. 

Commoner’s Theorem - 1972 

A free choice system (N,m0) is live if and only if all syphons 
contains a trap marked in the initial marking 

 

Syphon: P’  P: P  P  (all transitions putting tokens into P’ 

also remove tokens)  it tends to empty 

 

Trap: P’  P: P  P (all transitions removing  tokens into P’ 

also put tokens)  it tends to trap tokens in it 
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Analysis for super/sub classes of P/T nets 

Free choice. 

 

Rank theorem – Esparza et al 1992. 

Let N be a free choice (equal conflict or DSSP) net. (N,m0) is 
live and bounded if and only if 

 N is strongly connected and 

 N is covered by state machines 

 Rank(C)=|F| -1  

 All syphons of N are initially marked 
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Hierarchy of equivalences 

Bisimulation 

Trace 

Failure Simulation 

where and arrow from  1 to  2 (1 more refined than 2) means: 

P 1 Q ==> P 2 Q 
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Trace equivalence: 
Systems have same finite sequences. 

Same traces 

F 

a a 

b b 

E 

a 

b c c 

E=a.(b+c) F=(a.b)+a.(b+c) 
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Trace equivalence: 
agents have same finite sequences. 

Def: the set T(E) of traces of the agent E is the set of 
all finite sequences that can be produced by the 
evolution of E 

Def: if E and F are agents, we say that E is equivalent 
to F according to trace equivalence,  

EtrF      iff     T(E) = T(F) 

Note: For agents with a finite number of states 
equivalence over finite traces implies equivalence over 
infinite ones 
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Failures: comparing also what we 
cannot do after a finite sequence. 

F 
a a 

b b 

E 

a 

b c c 

Failure of agent E: (σ, X), where after executing 
σ from E, none of the events in X is enabled. 
Agent F has failure (a, {c}), which is not a failure 
of E. 
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Failures: comparing also what we 
cannot do after a finite sequence. 

A failure for an agent E is a pair  (σ, X), with 

• σ T(E) 

• X   Act   

• E --σ--> F and NONE of the actions in X is possible in F 

 

Note:  it may   F’: E --σ--> F’ and X is possible in F’ 

Note: if (σ, X) is a failure for E, then (σ, Y), Y X, is a 
failure for E 
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Failures: comparing also what we 
cannot do after a finite sequence. 

Let Fail(E)  be the set of all failures of E, then  

E fl F     iff    Fail(E) = Fail(F) 

 

Property: fl is more refined than tr , that is to say 

E fl F ==> E tr F 

proof: Fail(E) includes also the set  (σ, 0) of the finite 
traces of E 
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fl  is strictly more refined than tr 

F 
a a 

b b 

E 

a 

b c c 

To prove this it is enough to consider the following 
counter-example 

T(E) = T(F), but FAIL(E)  FAIL(F) 
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Simulation equivalence 

Basic idea: 

 Define a simulation relation over agents E R F 

 

 Then E sim F if  there exists two simulation relations R and 
Q such that  

 E R F  and F Q E 

 
Definition: RSS is a simulation relation if 

 E R F 

 If E’ R F’ and E’—aE’’, then there exists F’’,   F’—aF’’, 
and E’’ R F’’ 

 and we say F simulates E. 
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Simulation equivalence 

What distinguish E and F? 

E 

c d 

b b 

a a 
F 

c d 

b b 

a 
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Simulation equivalence 

F simulates E if F “can reply” to the moves of E  

 

E and F are not sim, since F simulates E, (E R F), but it 
does not exists a Q: E simulates F  

E 

c d 

b b 

a a 
F 

c d 

b b 

a 
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Simulation equivalence 

R = {(s1,r1), (s2,r2), (s4,r3), (s6,r5), (s3,r2), (s5,r4), (s7,r6)} 

 

Q = {(r1,s1), (r2,s3……… 

E 

c d 

b b 

a a 
F 

c d 

b b 

a 
r1 

s7 s6 

s5 s4 

s3 s2 

s1 

r3 r4 

r6 r5 

r2 

E R F 

If E’ R F’ and E’—aE’’, 
then   F’’,   
 F’—aF’’, and E’’ R F’’. 

 

F Q E (E simulates F) 

If F’ R E’ and F’—aF’’, 
then   E’’,   
 E’—aE’’, and F’’ R E’’ 
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Here, simulation works only in 
one direction. No equivalence! 

 Relation over set of agents S. RSS. 

 E R F 

 If E’ R F’ and E’—aE’’, then there exists F’’,   
 F’—aF’’, and E’’ R F’’. 

E 

c d 

b b 

a a 
F 

c d 

b b 

a 

want to establish 

symmetrically 

necessarily 

problem!!! 
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Simulation equivalent 
implies trace equivalent 

sim  is strictly more refined than tr  

(indeed E tr F, but not E sim F) 

E 

c d 

b b 

a a 
F 

c d 

b b 

a 
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Simulation and failure are not 
comparable  

E sim F, but E = a.b+a has a failure (a,{b}), while F has not 

E and F of the previous slide are instead E fl F, but not sim  

E 

b 

a a 
F 

b 

a 
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Bisimulation between G1 and G2 

 Let N= N1 U N2 

 A relation R : N x N is a bisimulation if 
If (m,n) in R then 
1. If m—am’ then n’:n—an’ 

                    and  (m’,n’) in R 
2. If n—an’ then   m’:m—am’ 

                    and  (m’,n’) in R. 

 Other simulation relations are possible, I.e., 
m=a=> m’ when m—t…—a... —tm’. 
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Bisimulation: same relation 
simulates in both directions 

Not in this case: different simulation relations and there is 
no other simulation of E and F and of F and E. 

 

E 

b 

a a 
F 

b 

a 
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Algorithm for bisimulation: 

Input: the set of agents S, the set of actions Act 

Create the initial partition P = {S} 

Repeat until there is no change in P: 

 find if there are two (not necessarily different) elements T1 and 
T2 in P, and an action aAct such that the following holds: T1 
can be split into two non empty and disjoint subsets S1 and  S2, 
such that: 

  agent E S1 ,  E' T2: E—a->E' 

 Not()  E S2, such that, for some agent E' T2 it holds 
that E—a->E' 

If there are such sets, replace T1 in P with S1 and  S2 

 

Output: a partition {T1, T2, … Tn } of the set of agents S: for any 
two agents E and E’ in Ti, E bis E’ 
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Correctness of algorithm 

 

 Invariant: if (m,n) in relation R (bisimulation 
relaton in our case) then m and n remain in 
the same partition element  throughout the 
algorithm. 

 Termination: can split only a finite number of 
times. 
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Example: 

A=a.((b.nil)+(c.d.A)) 

B=(a.(b.nil))+(a.c.d.B) 

a b 

c 

d 

s0 

s1 s2 

s3 
a 

d 

b 

a 
c 

t0 

t1 

t4 

t2 

t3 
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Example: 

a b 

c 

d 
s0 

s1 s2 

s3 a 

d 

b 

a 
c 

t0 

t1 

t4 

t2 

t3 
{s0,t0},{s1,s2,s3,t1,t2,t3,t4} split on b 

{s0,t0},{s1,t1},{s2,s3,t2,t3,t4}  
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Example: 

a b 

c 

d 

s0 

s1 s2 

s3 a 

d 

b 

a 
c 

t0 

t1 

t4 

t2 

t3 

{s0,t0},{s1,t1},{s2,s3,t2,t3,t4} split on c 

{s0,t0},{s1},{t1},{s2,s3,t2,t3,t4} 
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Example: 

{s0,t0},{s1},{t1},{s2,s3,t2,t3,t4} split on c 

{s0,t0},{s1},{t1},{t4},{s2,s3,t2,t3} 

a b 

c 

d 

s0 

s1 s2 

s3 a 

d 

b 

a 
c 

t0 

t1 

t4 

t2 

t3 
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Example: 

{s0,t0},{s1},{t1},{t4},{s2,s3,t2,t3} split on d 

{s0,t0},{s1},{t1},{t4},{s3, t3},{s2,t2} 

a b 

c 

d 

s0 

s1 s2 

s3 a 

d 

b 

a 
c 

t0 

t1 

t4 

t2 

t3 
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Example: 

{s0,t0},{s1},{t1},{t4},{s2,t2},{s3,t3} split on a 

{s0},{t0},{s1},{t1},{t4},{s3, t3},{s2,t2} 

a b 

c 

d 

s0 

s1 s2 

s3 a 

d 

b 

a 
c 

t0 

t1 

t4 

t2 

t3 
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Example: 

{s0},{t0},{s1},{t1},{t4},{s2,s3,t2,t3} split on d 

{s0},{t0},{s1},{t1},{t4},{s3},{t3},{s2,t2} 

a b 

c 

d 

s0 

s1 s2 

s3 
a 

d 

b 

a 
c 

t0 

t1 

t4 

t2 

t3 
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State based bisimulation 

When states are labelled with atomic propositions and actions are 
not distinguishable, we can define a state based bisimulation. 
How can we modify the algorithm? 

Input: the set of agents S, the set of actions Act 

Create the initial partition P = {S} 

Repeat until there is no change in P: 

 find if there are two (not necessarily different) elements T1 and T2 in P, and an 
action aAct such that the following holds: T1 can be split into two non empty 
and disjoint subsets S1 and  S2, such that: 

  agent E S1 ,  E' T2: E—a->E' 

 Not()  E S2, such that, for some agent E' T2 it holds that E—a->E' 

If there are such sets, replace T1 in P with S1 and  S2 

 

Output: a partition {T1, T2, … Tn } of the set of agents S: for any two agents E 
and E’ in Ti, E bis E’ 
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Esempio bisimulazione, by Katoen 
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Complexity 

 The best known complexity of an algorithm for partition 

refinement is  O(m logn), where m=|E| is the number of 
transitions and n=|V| is the number of states (in practical cases, 
m is significantly bigger than n (Paige and Tarjan algorithm). 

 

 

(per gli studenti di simulazione: note that this is the same 
complexity as computing lumpability in Markov chain) 
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Equations under bis  and congruence 

• commutative : A+B bis B+A   and A||B bis B||A  

• associative: A+(B+C) bis(A+B)+C and A||(B||C) bis(A||B)||C 

• idempotence of non deterministic choice: A+A bis A 

 

Def.: a congruence is an equivalence relation that also satisfy 
replacement under any context, that is to say: if  cong is a 
congruence, and B cong C, then 

A cong A(B/C)  

 

Note: it has been proved (Milner’s book) that bis is a congruence 
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Equivalence relations and congruence 

Se 

Allora 

c 

c 
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Consequences of  bis being a congruence 

It is possible  to compute the derivation graph in an incremental 
manner, for example if A = B||B, and B bis C, and C is easier to 
analyze than B, we can substitute C for B in A, and still have a 
process algebra term that is bisimilar to the original one. 

 

Another way to take advantage of the partitioning algorithm for 
the computation of bisimulation is to observe that if we substitute 
each element of the partition with a single node, and we obtain a 
derivation graph in which each node represents a set of states, 
the states with the same “future evolution”. 

We will see more of this on the symbolic reachability graph 
construction of  Well-formed nets 
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        bis  and action refinement 

Let 

 E = a||b.c    and    E’= a.b.c + b.a.c+b.c.a 

Note that E bis E’ (E’ are all possible interleaving of E). 

We can use process algebra to show that interleaving semantics is not closed 
under action refinement, indeed: take F = a||d    and   F’= a.d + d.a (F bis E’ ) 
and refine d into b.c, then  

a||b.c 

F’= a.d + d.a 
a.b.c + b.c.a 

F = a||d 

a.b.c + b.a.c+b.c.a 

interleaving 
interleaving 

refinement 

refinement 
Not bisimilar (not even trace!) 

Action refinement does not maintain any of the four defined equivalences!  



116 

Example of  wbis 

Take the two place buffer term and the two buffer term obtained 
from the parallel composition of two single buffer terms with 
relabelling and restriction: 

Are they equivalent? Trace? Failure? Sim? Bis? wbis? 

A relation R : N1 x N2 is a weak bisimulation (wbis ) , if, given  

(m,n) in R, then 
- If m=a=>m’ then n’:n=a=>n’ 
                    and  (m’,n’) in R 
- If n=a=>n’ then   m’:m=a=>m’ 
                    and  (m’,n’) in R. 

where m=a=>m’  when m—t…—a... —tm’  (it is  read “m 

goes in m’ with the extended action a) 
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Exercise 

Compare the reachability graphs of the net below with the 
following initial marking: 

 Net A: M0(p1)= 1 and M0(p3)= 1  

 Net B: M0(p1)= 2 

When t1 and t3 have the same label "a" and t2 and t4 have the 
same label "b"  

 

p1 

p2 

t2 

t1 

 

p3 

p4 

t4 

t3 
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Exercise 

Compute the bisimulation relation over RG(A), and build the 
RG(A)|bsim in which each element of the partition is considered as 
a single state. 

Compute the bisimulation relation over RG(A)  RG(B), and check 
if the two initial markings belong to the same equivalence class. 

 

Compare RG|bsim and RG(B) in terms of number of states, arcs and 
structure. 

 

p1 

p2 

t2 

t1 

 

p3 

p4 

t4 

t3 
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Our course - recall 

Concentrate on distributed systems (as inherently 
protocols are) 

 
Learn several formalisms to model system and 

properties (automata, process algebras, Petri Nets, 
temporal logic, timed automata). 

 
Learn advantages and limitations, in order to choose 

the right methods and tools. 
 
Learn how to combine existing formalisms and existing 

“solution” methods. 


