
1

VERIFICA DEI PROGRAMMI CONCORRENTI
VPC 19-20

Analysis

Prof.ssa Susanna Donatelli

Universita’ di Torino

www.di.unito.it

susi@di.unito.it

http://www.di.unito.it/

2

Reference material books:

Prof. Doron A. Peled

(University of Warwick, UK)

Notes of the EU-sponsored Jaca
MATCH school

3

Acknowledgements

Transparencies adapted from the course notes and
trasparencies of

 Prof. Doron A. Peled, University of Warwick (UK) and Bar
Ilan University (Israel)
http://www.dcs.warwick.ac.uk/~doron/srm.html

 Prof. Manuel Silva, Unievrsity of Zaragoza (Spain)

http://www.dcs.warwick.ac.uk/~doron/srm.html

4

Second topic: analysis

Check the kind of
system to analyze.

Choose formalisms,
methods and tools.

Express system
properties.

Model the system.

Apply methods.

Obtain verification
results.

Analyze results.

Identify errors.

Suggest correction.

5

Analysis

We shall review different analysis methods that apply (partially)

to Petri Nets, Process Algebra, Finite State Automata

 Enumerative: analysis of derivation/reachability graph for a set of

significative properties (deadlock/liveness)

 Transformation: analysis by reduction (not for FSA)

 kit of reduction rules for PN

 equational laws for PA (e.g. A+A = A)

 Structural analysis on incidence matrix (only for PN, extended partially

to PA)

 Equivalences (defined for PA, extended to PN)

 Enumerative - again: Model checking on the state space (RG for PN,

DG for PA, FSA) of temporal logic properties

6

Analysis

Different methods have different costs/applicability.

A good analysis of the system requires the use of different

analysis methods on the same system model

 (……… as done in testing)

7

Flowchart of analysis material

1. Basic properties

2. RG analysis

3. Structural analysis (on PN)

4. Reduction rules (PN)

5. Equivalences (PA)

6. Model checking

 definition of linear logic LTL and its model checking algorithm

 definition of branching logic CTL and its model checking algorithm

8

Basic properties - boundedness

Given a PN system S=(N,m0) with N=(P,T,F,W)

Def. bound of place p in S:

b(p) = max {m[p] | m RS(S)}

Def. a place p is bounded in S if

b(p) < 

Def: a system S is bounded if

pP, b(p) is bounded

Propery: S is bounded iff its RS is finite

9

Examples of unbounded systems

 A = a.nil + A||A

Basic properties - boundedness

1

t

2
t

t t

3 4

t

3

4

2

1

5

0100

0010

1000

0011

1010

0101 0110

M

M
t

t t

t

t t t t

t

0

2

2 3

4

1
t1 1 4

4

5

5

1001

M1

M3

M6

M4

M7

M5

Boundedness it is
very important for
the system to be

implementable

10

Basic properties - deadlock

Absence of deadlock iff it does not exist a reachable state that does not
enable at least a transition

Def. S = (N,m0) is deadlock free if

mRS(m0),  t T: m[t>

The PN system below has a deadlock

1

t

2
t

t t

3 4

3

4

2

1

0100

0010

1000

0011

1010

0110

M

M
t

t t

t

t t

t

0

2

2 3

4

t1

4

4

5

5

1001

M1

M3 M4

M6

M5

11

Basic properties - liveness

A transition t is live if it can fire “infinitely often”

Def. t T is live in <N,m0> if

mRS(m0),  s: m[s>m’ and m’[t>

Def: A PN system <N,m0> is live if

tT, t is live in <N,m0>

Note: A net with a finite strongly connected RG in which
each transition label appears at least once on an arc is
live

13

Basic properties - liveness

The PN system below is live, although the RG is not strongly
connected, because in each BSCC of the RG it is possible to
fire all transitions

p

p

c

b

d

p
p

p

a

1

2

35
4

10103

01102

01013

10012

10101

01100

01011

10010

a

b

d

c

c

a

Cd

C2

1

M
1

M2a

b

c

M
0

14

Basic properties - reversibility

A PN system is reversible if, for
all reachable states m, it
exists a firing sequence,
firable in m, that leads to the
initial marking

The PN system below is not
reversible (there are two SCC)

p

p

c

b

d

p
p

p

a

1

2

35
4

10103

01102

01013

10012

10101

01100

01011

10010

a

b

d

c

c

a

Cd

C2

1

M
1

M2a

b

c

M
0

Def. a marking mRS(m0) is a home state if

m’RS(m0),  s: m'[s>m

Def: a system <N,m0> is reversible if

mRS(m0),  s: m[s>m0

15

boundedness, liveness, reversability

Boundedness, liveness and reversability are disjoint
properties (B,L,R true or false --> 23 counter-examples)

16

Exercise: determine what makes, in each net, a property true or false

boundedness, liveness, reversability

18

Structural properties

Idea: to define properties independently of m0

Def: N is structurally bounded if,  finite m0, <N,m0> is
bounded

Def: N is structurally live if  finite m0: <N,M0> is live

19

A simple PN in matrix form

p1

p2

t2

t1 Structurally bounded, not
structurally live

1

2 4

5 3

d

b c e

f

6

a

Structurally bounded, structurally live.

Make it NOT (structurally bounded)

Make it NOT (structurally live)

Def: N is structurally bounded if,  finite m0, <N,m0> is bounded

Def: N is structurally live if  finite m0: <N,M0> is live

20

 Another example

p1

p4

p3

p2

p6

p5

t5

t1

t6

t2

t3

t4

3
3

 1 0 0 0 1 0
 0 1 0 0 0 0

 0 0 1 0 0 0
 0 1 0 0 0 0
 0 0 0 1 0 0
 0 0 0 0 0 3

Pre =

 0 0 0 0 0 3
 1 0 0 0 0 0

 0 1 0 0 0 0
 0 0 0 1 0 0
 0 0 1 0 0 0
 0 0 0 0 1 0

Post =

 -1 0 0 0 -1 3
 1 -1 0 0 0 0

 0 1 -1 0 0 0
 0 -1 0 1 0 0
 0 0 1 -1 0 0
 0 0 0 0 1 -3

C =

21

Summary of properties

Prove property by state enumeration (only finite
system/discrete/continous?)

Classify properties as

Def: N is structurally live if  finite m0: <N,M0> is live

22

Enumeration techniques

Tecniche usate da metà degli anni settanta per la verifica di
protocolli:

 CCITT x.21, X.25, IBM/SNA (System Network
Architecture)- data flow control layer, IBM token ring

 Alternating bit, sliding window ISO-OSI architecture –
transport e session layer

 Normalmente il linguaggio di specifica è Estelle, SDL

 Riferimento di ricerca: IFIP WG6.1, con conferenze quali
FORTE (Formal description Techniques for distributed
systems and communication protocols) dal 1988 e PSTV
(Protocol Specification, Testing, and Verification) dal 1981

23

Enumeration techniques

Prove property by state enumeration (only finite
system/discrete/continous?)

Main problem: state space explosion and decidability

Classify properties as:

 Marking invariance

 Liveness invariance

Build RG and define two distinct algorithms for marking and
liveness invariance

24

Enumeration techniques

Un problema indecidbile:

- Dati due sistemi decidere se i loro grafi di raggiungibilità
sono uguali (o inclusi uno nell’altro) – Hack 1975

Complessità:

Sia data un sistema a reti di Petri limitato (bounded). Il
problema della costruzione del grafo (dell’insieme) di
raggiungibilità) non è ricorsivo primitivo.

25

Enumeration techniques

Boundedness è decidibile per reti P/T, ma certo non posso
pensare di controllare questa proprietà sul Reachability
Graph (ovviamente la costruzione non termina se la rete
è unbounded)

La chiave per la decidibilità è la possibilità di costruire un
grafo finito – Coverability Graph -- anche per reti
unbounded, sul quale sia possibile riportare la decisione
di proprietà

Basato sulla nozione di “copertura” fra marking: diciamo
che m ≤ m’ (m’ copre m) se p ∈ P, m’(p) ≥ m(p)

26

Enumeration techniques

Less than or
equal, but with at
least one place for
which the ≤ is
strict

27

Enumeration techniques

Etichettare
m(p) con 

Coverability tree

Coverability tree

28

If n is a natural number, then
n < , n+  =  +n = ,  -n = 

29

Enumeration techniques

Marking invariance (a property of a single marking that has
to be verified for all markings)

f(m) is a marking invariant property if:

mRS(m0), f(m) is true

Examples:

4)

30

Enumeration techniques

Problemi decidibili:

- Copertura di un marking m (esiste un marking
raggiungibile m’: m ≤ m’)

- Insieme di posti “simultaneously unbounded”

- Reachable transition (transizione scattabile almeno una
volta in almeno una sequenza che parte dalla marcatura
iniziale)

- Liveness

- Reachability – non si può risolvere per ispezione del
coverability graph, problema aperto dal 69 e chiuso da
Kosaraju nel 1982 e Mayr nel 1984. Il problema è EXP-
space hard

31

Enumeration techniques

Back to

 Marking invariance

 Liveness invariance

Build RG and define two distinct algorithms for marking and
liveness invariance

32

Enumeration techniques–
marking invariance

33

Enumeration techniques

Liveness invariance (for each reachable marking there is at
least a marking reachable from it that satisfies the
property)

Examples:

34

Enumeration techniques –
liveness invariance

Approach: reduce the problem to the Bottom strongly
connected components

35

Enumeration techniques –
liveness invariance

36

Enumeration techniques –
liveness invariance

The net has 2 BSCC - the net is
live, but m0 is not a home state

37

State of the art

RG is exponential in the size of P and T

Marking invariance is linear in |RS|

Liveness invariance requires the construction of SCC
(|V|+|E|) plus the check of the property on each BSCC.

Explicit techniques (like the one shown) allows the check of
RG with some millions/tenths of millions state - now more
with symbolic techniques

It also depends on the size of the state

38

State of the art -
implicit/symbolic techniques

RG is exponential in the size of P and T an m0

Time and memory complexity of RG generation may be less
than exponential (less than |RG| and even |RS|)

Basic ideas:

 Reuse substates for different states

 Fire more than one transition at a time

 Need to be sure that property can be checked without
making the RG explicit

39

i1

i2

i

K
  Ki .1



Submarking 1

Submarking 2

  

Submarking K

Vector 

: local state

: pointer

: probability

Multilevel data structures for RS/RG

Partition P into K subsets (possibly K=|P|) and choose an order.

A reachable marking is a visit of the data structure form an entry in level 1

40

i1

i2

Submarking 1

Submarking 2

Multilevel data structures for RS/RG

If the states of level 1 and level 2 are independent, how does the data
structure looks like?

If the states of level 1 and level 2 are independent, how does the data
structure looks like?

41

i1

i2

i

K
  Ki .1



Submarking 1

Submarking 2

  

Submarking K

Vector 

: local state

: pointer

: probability

Multilevel data structures for RS/RG

Can we do better? May be certain subvector (and subtrees) are actually the
same!

42

State of the art -
implicit/symbolic techniques

A reachable marking is a boolean function from S4 x S3 xS2 xS1 --> {0,1}
A marking m is reachable if the visit of the data structure from top to
bottom according to m goes to 1

43

Reduction techniques

List of rules with

 Structural and behavioural pre-condition

 Net reduction: < Ni, m0i >  < N i+1, m0i+1 >

 the reduction is “property preserving”

 The net < N i+1, m0i+1 > is “easier” to analyze than < Ni, m0i >

(e.g.: a smaller RG, or N i+1 is of a subclass for which there are

structural results available)

Rewriting system (with the usual problems of completeness
and confluence)

Can be used both ways (step wise refinement for “well-
behaved” construction or reduction for analysis)

44

Reduction techniques

RA1 is a “macroplace” reduction

RA1 is a transition fusion

RB1 and RC1 are cases of implicit place rules

RB2 and RC2 are cases of identical and identity transitions rules

Can be obtained by duality

Preserve liveness, boundedness, existence of home states (but
not reversibility, due to RA1)

45

Reduction techniques

46

Example

Rule applied?

47

Example

Rule applied?

48

Reduction
techniques

49

Example

Net is live/has home states and
is 7-bounded

50

Example

Net is live/has home states and
is 7-bounded

51

Example

Example: a system with two producers and one
consumer

Producer 1

Producer 2

Consumer

 loop
 produce 1
 P(mutex)
 P(EC)
 deposit 1
 V(OC)
 V(mutex)
 endloop

 loop
 produce 2
 P(mutex)
 P(EC)
 deposit 2
 V(OC)
 V(mutex)
 endloop

 loop
 P(OC)
 get
 V(EC)
 consume
 endloop

52

Example

V(EC)

consume

EC

OC

mutex

V(mutex)

prod 1 prod 2

P(mutex)P(mutex)

P(EC) P(EC)

dep 2dep 1

V(OC) V(OC)

retira

P(OC)

V(mutex)

EC

OC

mutex

V(mutex)

prod 1 prod 2

P(mutex)P(mutex)

P(EC) P(EC)

dep 2dep 1

V(OC) V(OC)

V(mutex)

?

53

Example

?

EC

OC

mutex

V(mutex)

prod 1 prod 2

P(mutex)P(mutex)

P(EC) P(EC)

dep 2dep 1

V(OC) V(OC)

V(mutex)

mutex

V(mutex)

prod 1 prod 2

P(mutex)P(mutex)

V(mutex)

mutex

?

54

Structural techniques

Analysis technique based only on the structure N of the system
are called “structural”

M0 can play a role, but the complexity of the analysis depends
only on the incidence matrix C, and not on the initial marking M0.

Two classes of techniques:

 based on linear programming (convex geometry)

 based on topological properties of the graph

55

The idea behind this type of analysis is to use the State Equation
(SE) to verify the property.

Example:

can be reduced to the ABSENCE of solution for

This approach leads to semi-decidable procedure, since

Structural techniques –
convex geometry

56

Example: we cannot conclude that p2 and p4 are in p-mutex

Structural techniques –
spurious solution

57

Structural techniques

Def: a p-flow is a vector y:PQ s.t., y.C = 0

Def: a t-flow is a vector x:TQ s.t., C.x = 0

Flows form a vector space, and can be generated from a basis

Def: a non-negative p-flow is a p-semiflow

Def: a non-negative t-flow is a t-semiflow

Def: the support ||y|| of a p-semiflow y is

Change p- in t- to get the dual definitions

58

Def: a net is conservative if there exists at least one p-semiflow y such
that ||y||=P

Def: a net is consistent if there exists at least one t-semiflow x such that
 ||x||=T

Def: a p-semiflow is canonical if the g.c.d. of its non null elements is 1

Def: a generator set of p-semiflows Y = {y1,…., yn} is the set of the
least number of p-semiflows such that, for any p-semiflow y

 y =

 and the p-semiflows of Y =are said to be “minimal”

Structural techniques

The set of canonical
semiflow can be infinite

59

Structural techniques

Proposition: a semiflow is minimal iff it is canonical and its
support does not contain stricty the support of any other p-
semiflow. Moreover the set of minimal semiflow of a net is finite
and unique

but……minimal p-semiflow can be exponential in C, therefore their
computation cannot be polynomial (although very often this number
is “small”)

Note: GreatSPN computes minimal p- and t-semiflows

Other option: to compute a set of canonicals whose support
“covers” P (or T), as done in the tool INA

60

Structural techniques

From semiflow we can generate linear invariants.

From p-semiflow we obtain the “token conservation law”:

From t-semiflows we obtain the “cyclic behaviour law” :

s.t

The weighted sum of tokens is
constant for all reachable
markings

61

Structural techniques

Note. The token conservation law can be proved observing

that if m is a reachable marking, then m= m0 + C .s, and
premultiplying by y, we get

 y. m = y. m0 + y.C. s = y. m0)

Similarly, we can observe that, if m is a reachable marking,

and s is a firing sequence firable in m, of firing vector x,

which is a T-semiflow, then m [s >m

(indeed if x is a T-semiflow, m’= m + C . x= m)

62

Example

p1

t1 t2

p2

2

2

p1

t1 t2

p2

2pp =2+1

2+1 t2tT-inv:

P-inv:

2+1 tt

2pp =2+1

63

Calcolo di P-semiflow

64

Calcolo di P-semiflow

65

Esercizi

Calcolare i P-semiflussi di questa rete

Calcolare la caratterizzazione lineare dello spazio degli stati delle due reti

66

Structural techniques:
examples

 mwait_raw + mload + mop1 +

mwait_dep + mdeposit = 1

 mdeposit + mobject+

mwithdrawal + mempty = 7

 mop2 +mwait_free +munload

+mwait_with +mwithdrawal = 1

 mR +mload + mdeposit +

munload + mwithdrawal = 1

NOTE: all weights of the semiflows
are 1

67

Structural techniques:
examples

Consequences:

68

Structural techniques:
examples

Since P-semiflows are non negative, we can use them to get a
decomposed view of the system

69

Structural techniques:
exemples

70

Invariants

Absence of deadlock:
for a state to be a deadlock, no token should be
present in the places that are the unique enabling

condition of a transition, therefore
mload = mop1 = mdeposit = mop2 = munload = mwithdrawal = 0

and the invariants reduce to:

mwait_raw + mwait_dep = 1

mwait_free + mwait_with. = 1

mempty + mobject = 7

mR = 1

since R is marked, for no t to be enabled we must
have that mwait_raw = mwait_free = 0, and therefore

mwait_dep = 1

mwait_with. = 1

mempty + mobject = 7

mR = 1

And to avoid the firing of t4 and t9, it is necessary
that mempty + mobject= 0, which violates the condition

mempty + mobject = 7 above

71

Invariants

Absence of deadlock – more
compat terms:

if mload + mop1 + mdeposit + mop2 +munload

+mwithdrawal  1

then one of (t2 or t3 or t5 or t6 or t8 or

t10) is firable

if instead mwait_raw+ mwait_free  1

then (t1 or t7) is firable

else (t4 or t9) is firable

72

Invariants

Liveness: since
s = t1 t2 t3 t4 t5 t9 t10 t6 t7 t8

is firable, then the net is reversible

Fairness: since the net has a single right
annuller: x = (1 1 1 1 1 1 1 1 1 1)

then, for all possible scheduling P1 and P2,
all components work

73

Structural techniques:

If a P/T system is bounded and live, then
rank(C)<|F|

where F is the set of equivalence classes built on the equal

conflict relation, relation defined as:
t eq t’ iff Pre(t) = Pre(t’)

74

Linear Programming and Petri Nets

Boundedness can be characterized also as a LP problem, defining
the structural bound sb(p) as:

that leads to

75

Linear Programming and Petri Nets

Various characterization of boundedness

the token variation due
to transitions is not positive

variation on p due to the
firing of x is null

76

Structural techniques:

77

Analysis for super/sub classes of P/T nets

Superclasses: let N be a net with inhibitor arcs and/or priorities
and N’ the corresponding net w/o inhibitors or priority, then

RG(N,m)  RG(N’,m)

indeed the elimination of inh. and priorities allows for more
behaviour

 safety properties true on N’ are true on N as well (e.g.
place boundedness)

 liveness properties true on N’ might not be true on N (for
ex., by removing inh. and priorities certain transitions that
were dead may become enabled)

78

Analysis for super/sub classes of P/T nets

79

Analysis for super/sub classes of P/T nets

Subclasses: by limiting the structure of the net (state machine
and marked graph) we have more powerful analysis
algorithm. We consider the case of ordinary state machines
and marked graphs.

State Machines

Boundedness: a connected state machines is covered by a
single P-semiflow in which all places have weight 1. The net is
conservative and therefore structurally bounded.

Liveness: A state machine N is live if and only if N is strongly
connected and at least one place is marked in the initial
marking

80

Analysis for super/sub classes of P/T nets

Marked graphs (we use the definition that says that an
ordinary net is a marked graph if each place as 1! input
transition and 1! output transition)

All elementary circuits of the net are P-semiflows (indeed no
token can enter or leave a circuit).

A marked graph N is live if and only if all elementary circuits
contain at least one place marked in the initial marking.

A marked graph N is structurally bounded if and only if N is
strongly connected

81

Analysis for super/sub classes of P/T nets

Free choice.

Commoner’s Theorem - 1972

A free choice system (N,m0) is live if and only if all syphons
contains a trap marked in the initial marking

Syphon: P’  P: P  P (all transitions putting tokens into P’

also remove tokens)  it tends to empty

Trap: P’  P: P  P (all transitions removing tokens into P’

also put tokens)  it tends to trap tokens in it

82

Analysis for super/sub classes of P/T nets

Free choice.

Rank theorem – Esparza et al 1992.

Let N be a free choice (equal conflict or DSSP) net. (N,m0) is
live and bounded if and only if

 N is strongly connected and

 N is covered by state machines

 Rank(C)=|F| -1

 All syphons of N are initially marked

83

Hierarchy of equivalences

Bisimulation

Trace

Failure Simulation

where and arrow from 1 to 2 (1 more refined than 2) means:

P 1 Q ==> P 2 Q

84

Trace equivalence:
Systems have same finite sequences.

Same traces

F

a a

b b

E

a

b c c

E=a.(b+c) F=(a.b)+a.(b+c)

85

Trace equivalence:
agents have same finite sequences.

Def: the set T(E) of traces of the agent E is the set of
all finite sequences that can be produced by the
evolution of E

Def: if E and F are agents, we say that E is equivalent
to F according to trace equivalence,

EtrF iff T(E) = T(F)

Note: For agents with a finite number of states
equivalence over finite traces implies equivalence over
infinite ones

86

Failures: comparing also what we
cannot do after a finite sequence.

F
a a

b b

E

a

b c c

Failure of agent E: (σ, X), where after executing
σ from E, none of the events in X is enabled.
Agent F has failure (a, {c}), which is not a failure
of E.

87

Failures: comparing also what we
cannot do after a finite sequence.

A failure for an agent E is a pair (σ, X), with

• σ T(E)

• X  Act

• E --σ--> F and NONE of the actions in X is possible in F

Note: it may  F’: E --σ--> F’ and X is possible in F’

Note: if (σ, X) is a failure for E, then (σ, Y), Y X, is a
failure for E

88

Failures: comparing also what we
cannot do after a finite sequence.

Let Fail(E) be the set of all failures of E, then

E fl F iff Fail(E) = Fail(F)

Property: fl is more refined than tr , that is to say

E fl F ==> E tr F

proof: Fail(E) includes also the set (σ, 0) of the finite
traces of E

89

fl is strictly more refined than tr

F
a a

b b

E

a

b c c

To prove this it is enough to consider the following
counter-example

T(E) = T(F), but FAIL(E)  FAIL(F)

90

Simulation equivalence

Basic idea:

 Define a simulation relation over agents E R F

 Then E sim F if there exists two simulation relations R and
Q such that

 E R F and F Q E

Definition: RSS is a simulation relation if

 E R F

 If E’ R F’ and E’—aE’’, then there exists F’’, F’—aF’’,
and E’’ R F’’

 and we say F simulates E.

91

Simulation equivalence

What distinguish E and F?

E

c d

b b

a a
F

c d

b b

a

92

Simulation equivalence

F simulates E if F “can reply” to the moves of E

E and F are not sim, since F simulates E, (E R F), but it
does not exists a Q: E simulates F

E

c d

b b

a a
F

c d

b b

a

93

Simulation equivalence

R = {(s1,r1), (s2,r2), (s4,r3), (s6,r5), (s3,r2), (s5,r4), (s7,r6)}

Q = {(r1,s1), (r2,s3………

E

c d

b b

a a
F

c d

b b

a
r1

s7 s6

s5 s4

s3 s2

s1

r3 r4

r6 r5

r2

E R F

If E’ R F’ and E’—aE’’,
then  F’’,
 F’—aF’’, and E’’ R F’’.

F Q E (E simulates F)

If F’ R E’ and F’—aF’’,
then  E’’,
 E’—aE’’, and F’’ R E’’

94

Here, simulation works only in
one direction. No equivalence!

 Relation over set of agents S. RSS.

 E R F

 If E’ R F’ and E’—aE’’, then there exists F’’,
 F’—aF’’, and E’’ R F’’.

E

c d

b b

a a
F

c d

b b

a

want to establish

symmetrically

necessarily

problem!!!

95

Simulation equivalent
implies trace equivalent

sim is strictly more refined than tr

(indeed E tr F, but not E sim F)

E

c d

b b

a a
F

c d

b b

a

96

Simulation and failure are not
comparable

E sim F, but E = a.b+a has a failure (a,{b}), while F has not

E and F of the previous slide are instead E fl F, but not sim

E

b

a a
F

b

a

97

Bisimulation between G1 and G2

 Let N= N1 U N2

 A relation R : N x N is a bisimulation if
If (m,n) in R then
1. If m—am’ then n’:n—an’

 and (m’,n’) in R
2. If n—an’ then m’:m—am’

 and (m’,n’) in R.

 Other simulation relations are possible, I.e.,
m=a=> m’ when m—t…—a... —tm’.

98

Bisimulation: same relation
simulates in both directions

Not in this case: different simulation relations and there is
no other simulation of E and F and of F and E.

E

b

a a
F

b

a

99

Algorithm for bisimulation:

Input: the set of agents S, the set of actions Act

Create the initial partition P = {S}

Repeat until there is no change in P:

 find if there are two (not necessarily different) elements T1 and
T2 in P, and an action aAct such that the following holds: T1
can be split into two non empty and disjoint subsets S1 and S2,
such that:

  agent E S1 ,  E' T2: E—a->E'

 Not() E S2, such that, for some agent E' T2 it holds
that E—a->E'

If there are such sets, replace T1 in P with S1 and S2

Output: a partition {T1, T2, … Tn } of the set of agents S: for any
two agents E and E’ in Ti, E bis E’

100

Correctness of algorithm

 Invariant: if (m,n) in relation R (bisimulation
relaton in our case) then m and n remain in
the same partition element throughout the
algorithm.

 Termination: can split only a finite number of
times.

101

Example:

A=a.((b.nil)+(c.d.A))

B=(a.(b.nil))+(a.c.d.B)

a b

c

d

s0

s1 s2

s3
a

d

b

a
c

t0

t1

t4

t2

t3

102

Example:

a b

c

d
s0

s1 s2

s3 a

d

b

a
c

t0

t1

t4

t2

t3
{s0,t0},{s1,s2,s3,t1,t2,t3,t4} split on b

{s0,t0},{s1,t1},{s2,s3,t2,t3,t4}

103

Example:

a b

c

d

s0

s1 s2

s3 a

d

b

a
c

t0

t1

t4

t2

t3

{s0,t0},{s1,t1},{s2,s3,t2,t3,t4} split on c

{s0,t0},{s1},{t1},{s2,s3,t2,t3,t4}

104

Example:

{s0,t0},{s1},{t1},{s2,s3,t2,t3,t4} split on c

{s0,t0},{s1},{t1},{t4},{s2,s3,t2,t3}

a b

c

d

s0

s1 s2

s3 a

d

b

a
c

t0

t1

t4

t2

t3

105

Example:

{s0,t0},{s1},{t1},{t4},{s2,s3,t2,t3} split on d

{s0,t0},{s1},{t1},{t4},{s3, t3},{s2,t2}

a b

c

d

s0

s1 s2

s3 a

d

b

a
c

t0

t1

t4

t2

t3

106

Example:

{s0,t0},{s1},{t1},{t4},{s2,t2},{s3,t3} split on a

{s0},{t0},{s1},{t1},{t4},{s3, t3},{s2,t2}

a b

c

d

s0

s1 s2

s3 a

d

b

a
c

t0

t1

t4

t2

t3

107

Example:

{s0},{t0},{s1},{t1},{t4},{s2,s3,t2,t3} split on d

{s0},{t0},{s1},{t1},{t4},{s3},{t3},{s2,t2}

a b

c

d

s0

s1 s2

s3
a

d

b

a
c

t0

t1

t4

t2

t3

108

State based bisimulation

When states are labelled with atomic propositions and actions are
not distinguishable, we can define a state based bisimulation.
How can we modify the algorithm?

Input: the set of agents S, the set of actions Act

Create the initial partition P = {S}

Repeat until there is no change in P:

 find if there are two (not necessarily different) elements T1 and T2 in P, and an
action aAct such that the following holds: T1 can be split into two non empty
and disjoint subsets S1 and S2, such that:

  agent E S1 ,  E' T2: E—a->E'

 Not() E S2, such that, for some agent E' T2 it holds that E—a->E'

If there are such sets, replace T1 in P with S1 and S2

Output: a partition {T1, T2, … Tn } of the set of agents S: for any two agents E
and E’ in Ti, E bis E’

109

110

Esempio bisimulazione, by Katoen

111

Complexity

 The best known complexity of an algorithm for partition

refinement is O(m logn), where m=|E| is the number of
transitions and n=|V| is the number of states (in practical cases,
m is significantly bigger than n (Paige and Tarjan algorithm).

(per gli studenti di simulazione: note that this is the same
complexity as computing lumpability in Markov chain)

112

Equations under bis and congruence

• commutative : A+B bis B+A and A||B bis B||A

• associative: A+(B+C) bis(A+B)+C and A||(B||C) bis(A||B)||C

• idempotence of non deterministic choice: A+A bis A

Def.: a congruence is an equivalence relation that also satisfy
replacement under any context, that is to say: if cong is a
congruence, and B cong C, then

A cong A(B/C)

Note: it has been proved (Milner’s book) that bis is a congruence

113

Equivalence relations and congruence

Se

Allora

c

c

114

Consequences of bis being a congruence

It is possible to compute the derivation graph in an incremental
manner, for example if A = B||B, and B bis C, and C is easier to
analyze than B, we can substitute C for B in A, and still have a
process algebra term that is bisimilar to the original one.

Another way to take advantage of the partitioning algorithm for
the computation of bisimulation is to observe that if we substitute
each element of the partition with a single node, and we obtain a
derivation graph in which each node represents a set of states,
the states with the same “future evolution”.

We will see more of this on the symbolic reachability graph
construction of Well-formed nets

115

 bis and action refinement

Let

 E = a||b.c and E’= a.b.c + b.a.c+b.c.a

Note that E bis E’ (E’ are all possible interleaving of E).

We can use process algebra to show that interleaving semantics is not closed
under action refinement, indeed: take F = a||d and F’= a.d + d.a (F bis E’)
and refine d into b.c, then

a||b.c

F’= a.d + d.a
a.b.c + b.c.a

F = a||d

a.b.c + b.a.c+b.c.a

interleaving
interleaving

refinement

refinement
Not bisimilar (not even trace!)

Action refinement does not maintain any of the four defined equivalences!

116

Example of wbis

Take the two place buffer term and the two buffer term obtained
from the parallel composition of two single buffer terms with
relabelling and restriction:

Are they equivalent? Trace? Failure? Sim? Bis? wbis?

A relation R : N1 x N2 is a weak bisimulation (wbis) , if, given

(m,n) in R, then
- If m=a=>m’ then n’:n=a=>n’
 and (m’,n’) in R
- If n=a=>n’ then m’:m=a=>m’
 and (m’,n’) in R.

where m=a=>m’ when m—t…—a... —tm’ (it is read “m

goes in m’ with the extended action a)

117

Exercise

Compare the reachability graphs of the net below with the
following initial marking:

 Net A: M0(p1)= 1 and M0(p3)= 1

 Net B: M0(p1)= 2

When t1 and t3 have the same label "a" and t2 and t4 have the
same label "b"

p1

p2

t2

t1

p3

p4

t4

t3

118

Exercise

Compute the bisimulation relation over RG(A), and build the
RG(A)|bsim in which each element of the partition is considered as
a single state.

Compute the bisimulation relation over RG(A)  RG(B), and check
if the two initial markings belong to the same equivalence class.

Compare RG|bsim and RG(B) in terms of number of states, arcs and
structure.

p1

p2

t2

t1

p3

p4

t4

t3

119

120

Our course - recall

Concentrate on distributed systems (as inherently
protocols are)

Learn several formalisms to model system and

properties (automata, process algebras, Petri Nets,
temporal logic, timed automata).

Learn advantages and limitations, in order to choose

the right methods and tools.

Learn how to combine existing formalisms and existing

“solution” methods.

