i0S

Some first elements

Model View Controller

Controller

notification

|
Model <

4 Update Notify
:akkkk\‘,

App structure

@—LD—

Data Objects

ml—i

et o
|
|

»

[View Controller],.

|
!
L
(e L —

|

[

..[[v-ewsmuuonjem;J

Custom Objects
System Objects
Either system or custom objects

ApplicationDelegate

* A single window, where all of our app content is drawn

 “Skeletons” of important methods that allow the

application object to talk to the app delegate
— During runtime events (e.g., app launch, low-memory
warnings, and app termination) the application object calls

the corresponding method in the app delegate, giving it an
opportunity to respond appropriately

* Delegate design pattern

iaport vTKLt AppDelegate.swift

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]l?) —> Bool {

// Override point for customization after application launch.

return true}

func applicationWillResignActive(application: UIApplication) A{
// Sent when the application is about to move from active
// to inactive state}

func applicationDidEnterBackground(application: UIApplication) A{
// Use this method to release shared resources, save user data,
// invalidate timers, and store application state}

func applicationWillEnterForeground(application: UIApplication) {
// Called as part of the transition from the background to the inactive
// state}

func applicationDidBecomeActive(application: UIApplication) A{
// Restart any tasks that were paused while the application was inactive}

func applicationWillTerminate(application: UIApplication) {
// Called when the application is about to terminate}

Views

* Represent user interface elements that display contents
or respond to user events

— (an be nested in a view hierarchy
— (an animate their property values
* Views do not know the role they play

— For example, clicking a button is always the same, it does not
know what it controls

SunNov 22| 4155]

Date Picker
— View
— Text Field
Bar Item Bar Item/Segmented Control
Toolbar
| [

Toolbar (View)

(Bartem) (Bartem) (DaePicker) (TextField

Segmented Control

View Controllers

* Provide the infrastructure for managing content and for
coordinating the showing and hiding of it
— Manage the views used to display content

— Communicate and coordinate with other view controllers
when transitions occur

* Different view controllers can control separate portions
of your user interface

* May also communicate with other controllers, such as
data controllers or document objects

View Controllers

* You use custom subclasses of UlViewController to
present your app’s content
— Content view controllers
UlViewController, UlTableViewController, UlCollectionViewController

— Container view controllers
UINavigationController, UlTabBarController, UISplitViewController

Views and View Controllers

* Every view is controlled by only one view controller

— When a view is assigned to the view controller’s view
property, the view controller owns it

* |f the view is a subview, it might be controlled by the
same view controller or a different view controller

Graphical elements (l)

rootViewController

View Controller Hierarchy (]I

UIWindow

rootViewController

Container
View Controller

childViewControllers

view

View Controller

D

4

View Controller

N

4

view

view

Content View Controllers

* Present content on the screen using a view or a group
of views organized into a view hierarchy

— Each controller is responsible for managing all the views in a
single view hierarchy

— A single controller should never manage multiple screens

———————————

UlTableViewController

* A built-in controller designed for managing tabular data

— Manages a table view and adds support for many standard
table-related behaviors

A table view presents data in a single-column list of multiple rows
and is a means for displaying and editing hierarchical lists of
information

— Has a pointer to the root view of the interface, but it also has
a separate pointer to the table view

UlCollectionViewController

* Represents a view controller whose content consists of
a collection view

— Displays an ordered collection of data

* Similar to a table view displays data using a combination
of cell, layout, and supplementary views

— can display items in a grid or in a custom layout that you
design
— Each cell must be an instance of UlCollectionViewCell

UINavigationController

* Presents data organized hierarchically
* Provides methods for managing a stack-based collection of content view controllers

Groups All Contacts All Contacts Info

All Contacts >
John Appleseed
On My iPhone John Appleseed
All on My iPhone > B iPhone (888) 555-5512
Kate Bell home (888) 555-1212
iCloud
All iCloud > Anna Haro home john-appleseed@mac.com

work 3494 Kuhl Avenue
Atlanta GA 30303
United States

Daniel Higgins Jr.

David Taylor
- home 1224 Laurel Street

Atlanta GA 30303
United States

Hank M. Zakroff

! ! !

(Root view controller } List view controller 1 ‘ Detail view controller
T “ !

O Navigation controller

NSk sSs<da D0 TVOZIMX«-E@n"moOE> O

{ Navigation controller J

D Content controller

UlTabBarController

* Used to divide your app into distinct modes of operation
 The tab bar has multiple tabs, each represented by a child view controller

T

‘ Stopwatch view controller

‘ Clock view controller ‘ Timer view controller

I I f
Other tabs

O Tab bar controller ‘ Tab bar controller 1—>‘ Alarm view controller

O Content controller

UlTabBarController

..... e]
* What if we had more than 4 e
View Controllers?
— A More button appears 0 hours 15 min
* Everything happens
aUtoma‘tically When Timer Ends Bell Tower

Pause

Imer

UISplitViewController

* [t presents a master-detail interface

— Changes in the primary view controller (the master) drive
changes in a secondary view controller (the detalil)

Navigation view

Custom view hierarchy

Assembled views

Window

T

Tab bar view

%} 4

Overall organization (storyboard

Navigation Controller Root View Controller Sighting Details

Bird Name: Label
Bird Sightings

Prototype Cells Location: Label

Title

Subtitle

Date: Label

Navigation Controller

Add Bird Done

Bird Name:

Location:

Unified Storyboards for Universal Apps

* (reate a single interface for your app that works well on
both iPad and iPhone, adjusting to orientation changes
and different screen sizes as needed

* Design apps with a common interface and then
customize them for different size classes

Size Classes

* Size classes are traits that are automatically assigned to
content areas based on their size

* Aview may possess any combination of size classes
— Reqular width, reqular height
— Compact width, compact height

— Reqular width, compact height
— Compact width, regular height

How to start

Choose a template for your new project:

Application
" T
1 #
Single View App Game
[Yo¥ol ‘ * oo
Page-Based App Tabbed App

Framework & Library

=) it |

Cocoa Touch
Static Library

Cocoa Touch
Framework

watchOS tvOS macOS Cross-platform

AR

Augmented
Reality App

B0

Sticker Pack App

N\ |

Metal Library

Document
Based App

O

iMessage App

Master-Detail App

Cancel

Next

Two choices

BN Z2 Q A © = B|H

Choose options for your new project: ®

Product Name: |
Team: Add account...
Organization Name: Luciano Baresi
Organization Identifier: | polimi
Bundle Identifier: polimi.ProductName

Language: Swift

Use Core Data
Include Unit Tests
Include Ul Tests

No Selection

Cancel Previous

[[| /A myApp) @@ iPhone X

myApp: Ready | Today at 18:40

an oo < O O

[

B 2 Q A © = b B
v myApp
¥ | myApp
‘s AppDelegate.swift
. ViewController.swift
%) Main.storyboard
[Assets.xcassets
_+ LaunchScreen.storyboard
= Info.plist
» . Products
+ [@Filter OFE

|\ D myApp) [myApp) B Main.storyboard)) Main.st...rd (Base)) [View Co...r Scene) () View Controller) || View) |B Prova < A > n ® O § 6
v [= View Controller Scene [bl ‘ Button
v @ View Controller 9:41 AM Type System o]
v IZ View State Config Default <
Safe Area -
Title Plain <
|B|Prova
{3 First Responder Button
Exit + Font System 15.0 c
= Storyboard Entry Point Text Color NN Default s
Shadow Color _— Default <
r =
. v
Q_ Objects e
v
Label Label - A variably sized amount of static text. 0s
ht
t
Button - Intercepts touch events and sends an action message to a target "light
Button object when it's tapped. Y
mage
ge
; 1 Segmented Control - Displays multiple segments, each of which functions g <
as a discrete button.
Text Field - Displays editable text and sends an action message to a target
object when Return is tapped. j =]
o
Slider - Displays a continuous range of values and allows the selection of a
single value.
Switch - Displays an element showing the boolean state of a value. Allows
tapping the control to toggle the value.
[~
',/ Activity Indicator View - Provides feedback on the progress of a task or ~
ic Unspecified <
Tag [
Interaction User Interaction Enabled
[Multiple Touch
Alpha 1€
) . o + Background _— Default <
® [l Viewas:iPad Pro10.5" (+«C nR) — 80% SR = tu U | =

iOS Simulator

* FEasy to start and try apps
* Known problems

— Different devices
— Different orientations

* Better positioning of elements

Views (|

-" This is a message.
OK Cancel
Activity indicator B -

Action sheet Alert view

World Clock

Sunnyvale

Cupertino

Cupertino New York

Santa Clara

>dll JOSE

Picker view

Collection view Image view

The volume of the ringer and alerts can be (Settings Sounds
adjusted using the volume buttons.

Navigation bar and items
Label

(Settings Sounds

(] RINGER AND ALERTS
Views (Il) *

Change with Buttons c

The volume of the ringer and alerts can be
adjusted using the volume buttons.

Downloading 30 of 108 Q — R

Text Tone Tri-tone

_ Search bar
Progress view New Mal e

Sent Mail Swoosh
Leggnieq

" Tweet Tweet

Facebook Post Swish

Tab bar Table view

< Inbox 10f9 v

Sent from my iPhone

Text view

Scroll view N < [I]

Tool bar

Web view

Text Field

Text Plain

UlTextView o L —

Font System 20.0
Dynamic Type v Automatically Adjusts Font

Alignment =

Placeholder

* |mplements the behavior of a o
scrollable, multiline text region

Clear Button Never appears

Clear when editing begins

* Supports the display of text using

v Adjust to Fit

custom style information and also

Capitalization None

supports text editing

Smart Dashes Default

Smart Insert Default

* The appearance of the keyboard

itself can be customized using its o

p rO pe r ti eS Auto-enable Return Key i

Secure Text Entry

Control

Alignment D |I| E] =

Horizontal
o B a [

Vertical

Autolayout

* Determines where objects should
go and how big they should be
based on constraints we set on
them

— This allows interfaces to adapt to
being rotated between portrait and
landscape, and to handle differing
screen sizes

* (onstraints allow us to express

what matters to us and to let
other factors vary as needed

— We can specify the size of
components, their alignment with or
distance from other components,
etc.

Left or
Leading

Top

— Width

— = Baseline =— |- —_—— —

!

b—4— - CenterY = 4 = = =—

|
I
Center X

Hei

ght

—|}—y Right or

Trailing

i

Bottom

Auto Layout
Attributes

Height
Width

Top
Bottom
B Baseline

Leading
Trailing

Left
Right

B Center X
i Center Y

nn

G

Value

The size of the view.

The values increase as you move
down the screen.

The values increase as you move
towards the trailing edge. For a
left-to-right layout directions, the
values increase as you move to the
right. For a right-to-left layout
direction, the values increase as
you move left.

The values increase as you move to
the right.

The interpretation is based on the
other attribute in the equation.

Notes

These attributes can be assigned
constant values or combined with
other Height and Width attributes.
These values cannot be negative.

These attributes can be combined only
with Center Y, Top, Bottom, and
Baseline attributes.

These attributes can be combined only
with Leading, Trailing, or Center X
attributes.

These attributes can be combined only
with Left, Right, and Center X
attributes.

Avoid using Left and Right attributes.
Use Leading and Trailing instead. This
allows the layout to adapt to the view's
reading direction.

By default the reading direction is
determined based on the current
language set by the user. However,
you can override this where necessary.
In iOS, set the
semanticContentAttribute property
on the view holding the constraint (the
nearest common ancestor of all views
affected by the constraint) to specify
whether the content’s layout should be
flipped when switching between
left-to-right and right-to-left languages.

Center X can be combined with Center
X, Leading, Trailing, Right, and Left
attributes.

Center Y can be combined with Center
Y, Top, Bottom, and Baseline
attributes.

00)
BR

v

Ps

View Controller Scene

v View Controller
v View
0 Safe Area
B | Prova
v [Constraints
[& Prova.centerY = centerY
[# Prova.centerX = centerX
{f) First Responder
Exit

—> Storyboard Entry Point

Example

/A myApp) @@ iPhone XR myApp: Ready | Today at 22:27

| myApp) myApp> h Main.storyboard > . Main.storyboard (Base) > No Selection

Button

] View as: iPhone Xs («C R)

00000000000 0=

Device

e Bl <« 0O O O

Add New Alignment Constraints

[@ Horizontally in Container

& vertically in Container

M & o A

Vary for Traits

i]

Different devices

N/

[l View as:iPhone Xs (WC nR) — 50% -+ M = 0] 1Af

‘ ’ ‘ ’ Vary for Traits

Device Orientation

App content

* Xcode provides a library of objects

— Some of these are user interface elements that belong to a
view, such as buttons and text fields

— Others define the behavior of our app, such as view
controllers and gesture recognizers

* A view controller manages a corresponding view and its
sub-views

Interface Builder and code

* An [BOutlet connects a variable or property in code to
an object in a storyboard

— This lets us read and write objects’ properties, like reading

the value of a slider or setting the initial contents of a text
field

* An [BAction connects an event generated by a
storyboard object to a method in the code

— This lets us respond to a button being tapped or a slider’s
value changing

enerated code

() o) /N myApp) @@ iPhone X = myApp: Ready | Today at 18:57 1 {} = m = 0 =2 [
oa < B mypappy iR B ..> @ View Controller >[] view < A > | B8 < @) Automatic) B ViewController.swift) [& ViewController + X
//
- // ViewController.swift
N1 L // myApp
//

// Created by Luciano Baresi on 27/11/2018.
// Copyright e 2018 Luciano Baresi. All rights reserved.
//

import UIKit

class ViewController: UIViewController {
12
® override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view,
typically from a nib.

Button

9

] Viewas:iPhone Xs («C hR) — 100% —+ M &t A

|:‘ d [’ v Vary for Traits

Device Orientation

>

B myApp)

/A myApp) @ iPhone XR

YR -

Control-click, drag

YR Y)E Vv.e)Ov.r)

Connection
Object

Name

oo
___€>AAAAAAAAAAAAE?E6Ek4444444< Type

Event

Arguments

Cancel

] View as: iPhone Xs («C nR) —

J

Device

J

Orientation

55% +

myApp: Ready | Today at 22:30

View) B Prova 22

Action

View Controller

sendMessage]
Any
Touch Up Inside

Sender

Connect

M & tof taf

Vary for Traits

12

®

@) Automatic) |a| ViewController.swift > [§ ViewController

//

// ViewController.swift
// myApp

//

// Created by Luciano Baresi on 27/11/2018.
// Copyright e 2018 Luciano Baresi. All rights reserved.
//

import UIKit
class ViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view,
typically from a nib.

EY- 0O o O

+ X

®

... and the result is

import UIKit
class ViewController: UIViewController {

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view,

typically from a nib.

@IBAction func sendMessage(_ sender: Any) {

}

Sent Events

Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Primary Action Triggered
Touch Cancel
Touch Down

Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag Outside

(' Touch Up Inside

Touch Up Outside
Value Changed

1

% View Controller
sendMessage:

OO0L®@OOO0OO0O0OOOO0O0O0O

Logging

* Oni0S, we can use function print() to write a string out
to the system’s log file

— For example, we can implement our action to just log a
message every time the button is tapped

@IBAction func sendMessage(_ sender: UIButton) {
print ("Button pressed")

}

A first complete e

@IBAction func press(_ sender: Any) A
let alert = UIAlertController(title:
message: "First App Done
preferredStyle: UIAlertC

Sent
First App Done

alert.addAction(UIAlertAction(title:
style: UIAlertAction.Sty
handler: nil))

self.present(alert, animated: true,

}

Continue

iPhone XR - 12.1

Outlets

* Preceding a property with the @IBOutlet modifier tells
Interface Builder that a property can serve as an outlet

* A stored property implies a variable to store the value
* A computed property does not imply a backing variable

——————— = e

// Copyright © 2018 Luciano Baresi. All rights reserved.

e

6
7 //
8
Connection (Outlet CJ 7 import UIKit
] 0
Obloct V'ew Conieeet ‘1 class ViewController: UIViewController {
Name |
Type | UlTextField d var counter = 0
/A
St Weak) | . . .
2 (J 5 override func viewDidLoad() {
Connect | |6 super.viewDidLoad()
T 17 // Do any additional setup after loading the view,
U from a nib.
18 }
19
20}
21
Increment

Final result

import UIKit

class ViewController: UIViewController { S)

@IBOutlet weak var counterlabel: UIText increment
var counter = 0

override func viewDidLoad() {
super.viewDidLoad ()
// Do any additional setup after
// loading the view, typically fro

@IBAction func increment(_ sender: Any
counter += 1
counterlabel.text = "\ (counter)"

iPhone XR - 12.1

Weak attribute

Automatic Reference Counting (ARC) solves almost all memory
problems, but it cannot solve retain cycles

Our ViewController knows about the UlLabel, so ARC cannot free
the label from memory as long as the view controller exists

But if the UlLabel also requires the ViewController, then neither
can ever be freed from memory (cycle)

The way to break this is to declare one side of the arrangement as
weak
The rule of thumb is that

— Only “top-level” objects in a storyboard scene (like the view) need
strong references, and everything else can be weak

— Xcode defaults to this behavior when we made the connection

More scenes

® B Custom List View Controller
- ‘
lay's List
Segue
o o object
o Button .]
o o , Tatle View Controder
L__N8
Image Name

Table View

Prototype Content

Segue types

Interface Builder
Symbol

Description

Show

Present the content in the detail or master area depending on the content of the screen. If the app is displaying a master and detail view, the content is pushed onto the
detail area. If the app is only displaying the master or the detail, the content is pushed on top of the current view controller stack.

Show Detail

Present the content in the detail area. If the app is displaying a master and detail view, the new content replaces the current detail. If the app is only displaying the master
or the detail, the content replaces the top of the current view controller stack.

Present Modally

Present the content modally. There are opticns to choose a presentation style (UIModalPresentationStyle) and a transition style (UIModalTransitionStyle).

® 6 0 0 e

Present as Present the content as a popover anchored to an existing view. There is an opticn to specify the possible directions of the arrow shown on one edge of the popover view
Popover (UrropoverArrowDirection). There is also an option to specify the anchor view.
Custom A custom segue enabling you to write your own behaviors.
Push Pi t th tent b hing it onto th t stack of vi troll
resent the conten ushing it onto the current stack of view controllers.

(Deprecated) Ve 9
Modal .

Present the content modally on top of the existing screen. The options are the same as Present Modally.
(Deprecated)
Popover .

Present the content as a popover. The options are the same as Present as Popover.
(Deprecated)
Replace

(Deprecated)

Replace the top view controller on the screen with the new content.

= SplitviewControllerDemo » SplitViewControllerDemo) [§) Main.storyboard > [§) Main.storyboard (Base) » [Select Color Scene) Select Color

Navigation Controlier Select Color

Select Color

Navigation Gontroller

SplitV

Split View Controller

|
master

White Color

White Color

Navigation Controller

detail

= ol tad

Tab Bar Controller

8]
View Controller - Item 1
-
.

hue: 0

ello World View Controller -

View Controller - Item 2

Second View Controller -

(B[e @] (@

Q |

Unwind Seque

* (an be used to “unwind” the navigation stack and
specify a destination to go back to

* Unwind seques always seque from the source or current
view controller to an existing view controller, a view
controller that is already present in the navigation
hierarchy

UlGestureRecognizer

* We can get notified of the raw touch events or we can react to
certain, predefined “gestures”

* (estures are recognized by class UlGestureRecognizer (abstract)

— TapGestureRecognizer, UIPinchGestureRecognizer,
UlIRotationGestureRecognizer, UlSwipeGestureRecognizer,

UIPanGestureRecognizer, UIScreenEdgePanGestureRecognizer,
UlLongPressGestureRecognizer

* There are two sides to using a gesture recognizer

— Adding a gesture recognizer to a UlView to ask it to recognize that
gesture

— Providing the implementation of a method to “handle” that gesture
when it happens

Internationalization

* The ability of code to adapt to local conventions in
different parts of the world

— This includes things like language, time and date formatting,
and currency symbols and separators

* We must create a localization for each locale we want to
support

— Alocalization is a collection of strings, currency formats,
graphics, sounds, and other resources that are specific to
one locale

— We declare supported localizations at the project level

00 » B A test) g iPhone XR

test | Build test: Succeeded | Today at 22:54

=9 O

1 Il = KRR

BHE QAN

v [test

s AppDelegate.swift
s ViewController.swift
_*. Main.storyboard
|55 Assets.xcassets
. LaunchScreen.storyboard
| Info.plist
» . Products

+ |® Filter

D 838 < Qtest

O

O

B test ¢

V¥ Deployment Target

iOS Deployment Target 12.1

V¥ Configurations

Name

» Debug
» Release

+

Use Release

V Localizations

Language

Based on Configuration File
No Configurations Set

No Configurations Set

for command-line builds

Resources

English — Development Language

+

@ use

English (United Kingdom) (en-GB)
English (Australia) (en-AU)
English (India) (en-IN)

Chinese (Simplified) (zh-Hans)
Chinese (Traditional) (zh-Hant)
Chinese (Hong Kong [China]) (zh-HK)
Japanese (ja)

Spanish (es)

Spanish (Latin America) (es-419)
French (fr)

French (Canada) (fr-CA)

German (de)

Russian (ru)

Portuguese (Brazil) (pt-BR)
Portuguese (Portugal) (pt-PT)
Italian (it)

Korean (ko)

Turkish (tr)

Dutch (nl)

Arabic (ar)

Info Build Settings

Resource File Reference Language File Types

v Main.storyboard Base C Localizable Strings ¢

LaunchScreen.storyboard Base C Localizable Strings ¢

Data Management

Three options

* File System
— Based on the UNIX file system

* SQLite
— Embedded DBMS (like in Android)

* Core Data
— Object-oriented database

— Powerful framework in i0S

File system

* Interactions with the file system
are limited to the directories
inside the app’s sandbox

— Exception: when an app uses
public system interfaces to access
things such as the user’s contacts
Or music

* During installation of a new app,
the installer creates a number of

containers for the app
— Each container has a specific role

MyApp

Sandbox

'A\‘I

Bundle Container

MyApp.app

Data Container

Ve
\/
(.

Documents

Library

Temp

iCloud Container

(
Ve
.
.
.
.
\

Directory Description

This is the app's bundle. This directory contains the app and all of its resources.

You cannot write to this directory. To prevent tampering, the bundle directory is signed at installation time. Writing to this directory changes the
AppName. app signature and prevents your app from launching. You can, however, gain read-only access to any resources stored in the apps bundle. For more
information, see the Resource Programming Guide

The contents of this directory are not backed up by iTunes. However, iTunes does perform an initial sync of any apps purchased from the App Store.

Use this directory to store user-generated content. The contents of this directory can be made available to the user through file sharing; therefore,
Documents/ his directory should only contain files that you may wish to expose to the user.

The contents of this directory are backed up by iTunes.

Use this directory to access files that your app was asked to open by outside entities. Specifically, the Mail pregram places email attachments
associated with your app in this directory. Document interaction controllers may also place files in it.

Documents/Inbox | Your app can read and delete files in this directory but cannot create new files or write to existing files. If the user tries to edit a file in this directory,
your app must silently move it out of the directory before making any changes.

The contents of this directory are backed up by iTunes.

This is the top-level directory for any files that are not user data files. You typically put files in one of several standard subdirectories. iOS apps
commenly use the Application Support and Caches subdirectories; however, you can create custom subdirectories.

Library/ Use the Library subdirectories for any files you don’t want exposed to the user. Your app should not use these directories for user data files.
The contents of the Library directory (with the exception of the Caches subdirectory) are backed up by iTunes.
For additional information about the Library directory and its commonly used subdirectories, see The Library Directory Stores App-Specific Files.

Use this directory to write temporary files that do not need to persist between launches of your app. Your app should remove files from this directory
tmp/ when they are no lenger needed; however, the system may purge this directory when your app is not running.

The contents of this directory are not backed up by iTunes.

Files and directories

* Directories

— You must use the methods of FileManager

— A process can create directories anywhere it has permission to do so
* Files

— When specifying the location of files, you can use either NSURL or
NSString objects

The use of the URL class is generally preferred

— Two parts: creation of a record for the file in the file system and filling
the file with content

* To copy items around the file system, you use class FileManager

— The file manager asks its delegate whether the operation should begin
at all and whether it should proceed when an error occurs

iCloud Storage API

* Manage files and key-value data that are automatically
synchronized among a user's iCloud devices

How it works

* A document is not moved to iCloud immediately

— First, it is moved from its current location in the file system to a local
system-managed directory where it can be monitored by the iCloud
service

— After that transfer, the file is transferred to iCloud and to the user’s
other devices as soon as possible

* Apps are expected to use file coordinator objects to perform all
changes

— File coordinators mediate changes between your app and the daemon
that facilitates the transfer of the document to and from iCloud

— The file coordinator acts like a locking mechanism for the document
* (lass Document helps manage documents in iCloud

File Coordinators and File Presenters

* NSFileCoordinator coordinates the reads and writes performed by
our app and the sync daemon on the same document
— We use presenters in conjunction with a file coordinator to coordinate

access to a file or directory among the objects of our application and
between our application and other processes

— Instances of NSFileCoordinator are meant to be used on a per-file-
operation basis

* The FilePresenter protocol should be implemented by objects that
allow the user to view or edit the content of files or directories
— The job of a file presenter is to protect the integrity of its own data
structures

— (lass Document is an example of a file presenter that tracks changes
to its underlying file or file package

What apps should do to work with iCloud?

* Manage each document in iCloud using a file presenter

— After creating a file presenter, register it

— Before deleting a file presenter, unregister it
All file-related operations must be performed through a file
coordinator object

— Create an instance of class NSFileCoordinator and initialize it with the
file presenter object that is about to perform the file operation

— Use the methods of the NSFileCoordinator object to read/write the file

— When we are done with the operations, release the file coordinator
object

SQLite

Different wrappers available (on GitHub)

SQLite.swift

* Swift interface to SQLLite

* (lass Connection helps establish Database connections

— We can create a writable database in our app’s Documents
directory

— |f we omit the path, SQLite.swift will provision an in-memory
database

— SQLite will attempt to create the database file if it does not
already exist

— We can also bundle a database with our app, and then we can
establish a read-only connection to it

Core Data

Core Data

* |s a framework that we use to manage the objects in the
model layer of our applications

* Provides generalized and automated solutions to
common tasks associated with lifecycle and graph
management of objects, including persistence

* Core Data can only do its magic because it keeps the
object graph it manages in memory

Key characteristics

Change tracking and built-in management of undo and redo beyond basic text editing

Maintenance of change propagation, including maintaining the consistency of relationships among
objects

Lazy loading of objects, partially materialized futures (faulting), and copy-on-write data sharing to
reduce overhead

Automatic validation of property values. Managed objects extend the standard key-value coding
validation methods to ensure that individual values lie within acceptable ranges, so that
combinations of values make sense

Schema migration tools that simplify schema changes and allow you to perform efficient in-place
schema migration

Optional integration with the application’s controller layer to support user interface synchronization
Grouping, filtering, and organizing of data in memory and in the user interface
Automatic support for storing objects in external data repositories

Sophisticated query compilation. Instead of writing SQL, you can create complex queries by
associating an NSPredicate object with a fetch request

Version tracking and optimistic locking to support automatic multiwriter conflict resolution

Let’s start
* AppDelegate.swift file

— quite a significant amount of new code (Core Data stack)

— Most of these methods are setting up the Core Data stack and the
defaults are fine for now

| Choose options for your new project:

B XX & Q A © = o &

v @ CoreDataTest
v CoreDataTest
s AppDelegate.swift

Product Name: CoreDataTesd ViewControIIer SWIft
- .

Main.storyboard

Organization Identifier: polimi ‘g‘ Assets.xcassets
Bundle Identifier: polimi.CoreDataTest |_ hs t b d
auncnscreen.storypoar
Language: ~ Swift y
Use Core Data |nf0p|ISt
Include Unit Tests]
Include Ul Tests 17| CoreDataTest.xcdatamodeld

» . Products

lazy var persistentContainer: NSPersistentContainer = {
/%
The persistent container for the application. This implementation
creates and returns a container, having loaded the store for the
application to it. This property is optional since there are legitimate
error conditions that could cause the creation of the store to fail.

*/

import UIKit
import CoreData

class ViewController: UIViewController {

func getContext () —> NSManagedObjectContext {
let appDelegate = UIApplication.shared.delegate as! AppDelegate

return appDelegate.persistentContainer.viewContext

}

override func viewDidLoad() {

super.viewDidLoad ()
// Do any additional setup after loading the view

// Print it to the console
print(getContext())

Entities

* An Entity in the code becomes an NSManagedObject

ENTITIES Vv Attributes
(3 user
Attribute A Type
FETCH REQUESTS [:] email String A
CONFIGURATIONS 8 password String
username String
|.> Default ng
+
¥ Relationships
Relationship ~ Destination Inverse
+
V¥ Fetched Properties
Fetched Property A Predicate

Entities

* All attributes are objects

* Attributes can be accessed easily
— NSManagedObiject offers valueForKey and setValue

func createData(){
//As we know that container is set up in the AppDelegates so we need to refer that container.

guard let appDelegate = UIApplication.shared.delegate as? AppDelegate else { return }

//We need to create a context from this container
let managedContext = appDelegate.persistentContainer.viewContext

//Now let’s create an entity and new user records.
let userEntity = NSEntityDescription.entity(forEntityName: "User", in: managedContext)!

//final, we need to add some data to our newly created record for each keys using
//here adding 5 data with loop

for i in 1...5 {
let user = NSManagedObject(entity: userEntity, insertInto: managedContext)
user.setValue("luciano\(i)", forKeyPath: "username")
user.setValue("luciano\(i)@test.com", forKey: "email")
user.setValue("milano\(i)", forKey: "password")

¥

//Now we have set all the values. The next step is to save them inside the Core Data

do {
try managedContext.save()
} catch let error as NSError {
print("Could not save. \(error), \(error.userInfo)")

}

func retrieveData() {

//As we know that container is set up in the AppDelegates so we need to refer that container.
guard let appDelegate = UIApplication.shared.delegate as? AppDelegate else { return }

//We need to create a context from this container
let managedContext = appDelegate.persistentContainer.viewContext

//Prepare the request of type NSFetchRequest for the entity
let fetchRequest = NSFetchRequest<NSFetchRequestResult>(entityName: "User")

do {
let result = try managedContext.fetch(fetchRequest)
for data in result as! [NSManagedObject] {
print(data.value(forKey: "username") as! String)

by

} catch {
print("Failed")
}

func updateData(){
//As we know that container is set up in the AppDelegates so we need to refer that container.
guard let appDelegate = UIApplication.shared.delegate as? AppDelegate else { return }

//We need to create a context from this container
let managedContext = appDelegate.persistentContainer.viewContext

let fetchRequest:NSFetchRequest<NSFetchRequestResult> = NSFetchRequest.init(entityName: "User")
fetchRequest.predicate = NSPredicate(format: "username = %@", "lucianol")

do {
let test = try managedContext.fetch(fetchRequest)

let objectUpdate = test[@] as! NSManagedObject
objectUpdate.setValue("newName", forKey: "username')
objectUpdate.setValue("newmail", forKey: "email")
objectUpdate.setValue("newpassword", forKey: "password")
do {

try managedContext.save()

catch {
print(error)

¥

¥

catch {
print(error)

¥

I

func deleteData(){
//As we know that container is set up in the AppDelegates so we need to refer that container.
guard let appDelegate = UIApplication.shared.delegate as? AppDelegate else { return }

//We need to create a context from this container
let managedContext = appDelegate.persistentContainer.viewContext

let fetchRequest = NSFetchRequest<NSFetchRequestResult>(entityName: "User")
fetchRequest.predicate = NSPredicate(format: "username = %@", "luciano3")

do {
let test = try managedContext.fetch(fetchRequest)

let objectToDelete = test[@] as! NSManagedObject
managedContext.delete(objectToDelete)

do {
try managedContext.save()

¥
catch {
print(error)

¥

¥

catch {
print(error)

¥

I

Relationships

* The type of relationships can be either toOne or to
Many

Student
¥ Attributes
id
name

¥ Relationships
courses <<

Course
¥ Attributes
name
¥ Relationships
> students

.' Developer Discover Design Develop

Documentation

developer.apple.com

ERNak

Support Account

Apple Developer Documentation

Browse the latest developer documentation including

3

App Frameworks

&

Graphics and Games

APl reference, articles, and sample code.

AppKit
Foundation
Swift
TVML

TVMLKit

AGL

ARKit
ColorSync
Core Animation
Core Graphics
Core Image

Game Controller

GameKit

TVMLKit JS

TVUIKit

UIKit

WatchKit

Metal

Metal Performance Shaders

MetalKit

Model I/0

OpenGL ES

PDFKit

Quartz

ReplayKit

