Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 5 punti nel primo esercizio (quesiti a risposta multipla).

Cognome	nome	Δ	matricola:	
Cognome,	1101116	C	matricula.	

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

- (a) Si considerino gli insiemi $C = \{\frac{1}{n+1} \mid n \in \mathbb{N}\}, D = \{h \in \mathbb{N}^{\mathbb{N}} \mid \forall n (h(n) = h(2))\}$ e $A = \{h \in \mathbb{N}^{\mathbb{N}} \mid \forall n (h(n) \neq 2)\}$. Quali delle seguenti affermazioni sono corrette?
 - $\square |D| = |A|$
 - □ Tutti e tre gli insiemi sono numerabili.
 - \blacksquare |C| < |A|
 - $\blacksquare |C| = |D|$
- (b) Sia φ la formula $R(a,a) \to (\exists z \, R(z,z) \land R(z,a))$. Quali delle seguenti affermazioni sono corrette?
- 2 punti

2 punti

- \blacksquare Ogni variabile che occorre in φ ha almeno un'occorrenza vincolata.
- $\hfill\Box$ La formula ϕ è un enunciato.
- \blacksquare Vi sono variabili che occorrono sia libere che vincolate in φ .
- $\blacksquare FV(\varphi) = \{z\}$
- (c) Siamo R e S formule proposizionali arbitrarie. Quali delle seguenti affermazioni sono corrette?

2 punti

- \square Se S è soddisfacibile e R \models S allora anche R deve essere soddisfacibile.
- \blacksquare R \vee (R \rightarrow S) è una tautologia.
- \blacksquare Se R è soddisfacibile e R \models S allora anche S deve essere soddisfacibile.
- \Box Se R e S sono soddisfacibili allora anche R \land S lo è certamente.
- (d) La relazione binaria "essere vicini di casa" è

2 punti

- \Box transitiva.
- □ una relazione di equivalenza.
- □ riflessiva.
- simmetrica.

Punteggio totale primo esercizio: 8 punti

Esercizio 2 6 punti

Siano

 $R_1: (D \wedge A) \vee B$

 $R_2: C \leftrightarrow D$

 $R_3: (C \wedge B) \vee (C \wedge A).$

Determinare, giustificando la risposta, quali delle seguenti affermazioni sono vere:

- $R_1, R_2 \models R_3$
- $R_3, R_1 \models R_2$
- $R_2, R_3 \models R_1$.

Soluzione: Innanzi tutto calcoliamo la tavola di verità:

\mathbf{C}	D	A	В	R_1	R_2	R_3
F	F	F	F	F	V	F
F	F	F	V	V	V	F
F	F	V	F	F	V	F
\overline{F}	F	V	V	V	V	F
F	V	F	F	F	F	F
F	V	F	V	V	F	F
F	V	V	F	V	F	F
F	V	V	V	V	F	F
V	F	F	F	F	F	F
V	F	F	V	V	F	V
V	F	V	F	F	F	V
V	F	V	V	V	F	V
V	V	F	F	F	V	F
V	V	F	V	V	V	V
V	V	V	F	V	V	V
V	V	V	V	V	V	V

 $R_1, R_2 \not\models R_3$, come testimoniato dalla seconda riga in cui C, D, A sono false e B è vera.

 $R_3, R_1 \not\models R_2$, come testimoniato dalla decima riga in cui C, B sono vere e D, A sono false.

 $R_2, R_3 \models R_1$, come testimoniato dalle ultime tre righe.

Esercizio 3 6 punti

Formalizzare in $\mathbb N$ le frasi seguenti nel linguaggio avente come simboli 1, <, + e |, tutti interpretati nella maniera usuale:

- 1. x è primo.
- 2. Ogni numero pari sufficientemente grande è somma di tre primi.

Soluzione: (i) Una possibile formalizzazione è data dalla formula $\varphi(x)$ seguente:

$$1 < x \land \forall y (y \mid x \rightarrow y = 1 \lor y = x).$$

(ii) Una possibile formalizzazione è

$$\exists y \forall z \left[y < z \land \exists w \left(w + w = z \right) \rightarrow \exists x_1 \exists x_2 \exists x_3 \left(\phi(x_1) \land \phi(x_2) \land \phi(x_3) \land z = x_1 + x_2 + x_3 \right) \right].$$

Esercizio 4 6 punti

Sia $L = \{h, k\}$ con h e k simboli di funzione binari e si consideri la L-struttura $\mathcal{C} = \langle \mathbb{N}, \cdot, + \rangle$. Siano $\varphi(z)$ e $\psi(z)$ le formule

$$\forall w \forall x (h(w, x) = z \rightarrow w = z \lor x = z)$$
 e $\exists w (\neg (w = z) \land k(w, w) = z).$

- 1. Si determini $\varphi(\mathcal{C})$.
- 2. Si determini $\psi(\mathcal{C})$.
- 3. L'enunciato $\exists z (\varphi(z) \land \psi(z))$ è soddisfacibile?

Giustificare le proprie risposte.

Soluzione:

1. Per ogni $n \in \mathbb{N}$ si ha che $\mathcal{C} \models \varphi[z/n]$ se e solo se n non è un numero composto (ovvero non è il prodotto di due numeri entrambi diversi da esso). Quindi

$$\varphi(\mathcal{C}) = \{0, 1\} \cup \{p \in \mathbb{N} \mid p \text{ è un numero primo}\}.$$

2. Per ogni $n \in \mathbb{N}$ si ha che $\mathcal{C} \models \psi[z/n]$ se e solo se n è un numero pari diverso da 0, ovvero

$$\psi(\mathcal{C}) = \{2m \mid 0 \neq m \in \mathbb{N}\}.$$

3. L'enunciato proposto è soddisfacibile, come testimoniato da \mathcal{C} stessa. Infatti si ha che $\mathcal{C} \models \exists z \, (\varphi(z) \land \psi(z))$ se e solo se esiste $n \in \mathbb{N}$ tale che, simultaneamente, $\mathcal{C} \models \varphi[z/n]$ e $\mathcal{C} \models \psi[z/n]$ (equivalentemente: se e solo se $\varphi(\mathcal{C}) \cap \psi(\mathcal{C}) \neq \emptyset$). Poiché 2 è sia un numero primo che un numero pari diverso da 0, si ha che l'enunciato è soddisfatto in \mathcal{C} .

Esercizio 5 6 punti

Dimostrare per induzione su $k \ge 1$ che

$$\sum_{i=1}^{k} (3i - 1) = \frac{3k^2 + k}{2}.$$

Soluzione:

Per induzione su $n \geq 1$.

Passo base (k=1). $\sum_{i=1}^{1} (3i-1) = 3 \cdot 1 - 1 = 2 = \frac{4}{2} = \frac{(3 \cdot 1^2 + 1)}{2}$.

Passo induttivo.

Ipotesi induttiva: $\sum_{i=1}^{k} (3i-1) = \frac{3k^2+k}{2}$

Tesi induttiva: $\sum_{i=1}^{k+1} (3i-1) = \frac{3(k+1)^2 + (k+1)}{2}$

$$\sum_{i=1}^{k+1} (3i-1) = \left(\sum_{i=1}^{k} (3i-1)\right) + (3(k+1)-1)$$

$$= \frac{3k^2 + k}{2} + 3k + 2$$

$$= \frac{3k^2 + k + 6k + 4}{2}$$

$$= \frac{3k^2 + 7k + 4}{2}$$
(Ip. ind.)

e $\frac{3(k+1)^2 + (k+1)}{2} = \frac{3(k^2 + 2k + 1) + k + 1}{2} = \frac{3k^2 + 7k + 4}{2}.$