GPU Teaching Kit

Accelerated Computing

Module 17 — Computational Thinking

Lecture 17.1 — Introduction to Computational Thinking

Objective

— To provide you with a framework for further studies on
— Thinking about the problems of parallel programming
— Discussing your work with others
— Approaching complex parallel programming problems
— Using or building useful tools and environments

Anvoia [|

Fundamentals of Parallel Computing

— Parallel computing requires that

— The problem can be decomposed into sub-problems that can be safely solved at the
same time

— The programmer structures the code and data to solve these sub-problems
concurrently

— The goals of parallel computing are
— To solve problems in less time (strong scaling), and/or
— To solve bigger problems (weak scaling), and/or
— To achieve better solutions (advancing science)

The problems must be large enough to justify parallel
computing and to exhibit exploitable concurrency.

Anvoia [|

Shared Memory vs. Message Passing

— We have focused on shared memory parallel programming
— This is what CUDA (and OpenMP, OpenCL) is based on

— Future massively parallel microprocessors are expected to support shared memory
at the chip level

— The programming considerations of message passing model is quite
different!
— However, you will find parallels for almost every technique you learned in this course
— Need to be aware of space-time constraints

SAnvoia [/ @iuos

Data Sharing

— Data sharing can be a double-edged sword
— Excessive data sharing drastically reduces advantage of parallel execution
— Localized sharing can improve memory bandwidth efficiency
— Efficient memory bandwidth usage can be achieved by synchronizing
the execution of task groups and coordinating their usage of memory
data
— Efficient use of on-chip, shared storage and datapaths
— Read-only sharing can usually be done at much higher efficiency
than read-write sharing, which often requires more synchronization

— Many:Many, , One:One

SAnvoia [/ @iuos

Synchronization

— Synchronization == Control Sharing
— Barriers make threads wait until all threads catch up
— Waiting is lost opportunity for work

— Atomic operations may reduce waiting
— Waitch out for serialization

— Important: be aware of which items of work are truly independent

SAnvoia [/ @iuos

Shared Data

Master/Worker

Shared Queue

Loop Parallelism
Distributed Array

Fork/Join

These are not necessarily
mutually exclusive.

Program Models

— SPMD (Single Program, Multiple Data)

— All PE’s (Processor Elements) execute the same program in parallel, but
has its own data

— Each PE uses a unique ID to access its portion of data
— Different PE can follow different paths through the same code
— This is essentially the CUDA Grid model (also OpenCL, MPI)
— SIMD is a special case — WARP used for efficiency

— Master/Worker

— Loop Parallelism

— Fork/Join

Program Models

— SPMD (Single Program, Multiple Data)
— Master/Worker (OpenMP, OpenACC, TBB)

— A Master thread sets up a pool of worker threads and a bag of tasks
— Workers execute concurrently, removing tasks until done

— Loop Parallelism (OpenMP, OpenACC, C++AMP)

— Loop iterations execute in parallel
— FORTRAN do-all (truly parallel), do-across (with dependence)

— Fork/Join (Posix p-threads)

— Most general, generic way of creation of threads

s

[Organize J {Organize by {Organize by J
by Task Data Data Flow
Linear Recurswe 1 Linear Recurswe 1 Regular Irregular
4 ¥ N 4 ¥ N 4 ¥ N 4 ¥ N ¥ N 4 ¥ N
Task Divide and Geometric Recursive Pineline Event Driven
Parallelism Conquer Decomposition Data P
- J - J - J - AN J - J

Mattson, Sanders, Massingill, Patterns for Parallel Programming

More on SPMD

— Dominant coding style of scalable parallel computing
— MPI code is mostly developed in SPMD style
— Many OpenMP code is also in SPMD (next to loop parallelism)

— Particularly suitable for algorithms based on task parallelism and geometric
decomposition.

— Main advantage

— Tasks and their interactions visible in one piece of source code, no need to
correlated multiple sources

SPMD is by far the most commonly used pattern for
structuring massively parallel programs.

SAnvoia [/ @iuos

Typical SPMD Program Phases

— Initialize
— Establish localized data structure and communication channels

— Obtain a unique identifier

— Each thread acquires a unique identifier, typically range from 0 to N-1, where N is
the number of threads.

— Both OpenMP and CUDA have built-in support for this.
— Distribute Data

— Decompose global data into chunks and localize them, or

— Sharing/replicating major data structure using thread ID to associate subset of the
data to threads

— Run the core computation
— More details in next slide...

— Finalize
— Reconcile global data structure, prepare for the next major iteration

SAnvoia [/ @iuos

Core Computation Phase

— Thread IDs are used to differentiate behavior of threads
— Use thread ID in loop index calculations to split loop iterations among threads
— Potential for memory/data divergence
— Use thread ID or conditions based on thread ID to branch to their specific actions
— Potential for instruction/execution divergence

Both can have very different performance results and code
complexity depending on the way they are done.

SAnvoia [/ @iuos

Making Science Better, not just Faster

or... In other words:
There will be no Nobel Prizes or Turing

Awards awarded for “just recompile” or
using more threads

A Revolution - Sodium Map of the Brain

— Images of sodium in the brain
— Sodium is one of the most regulated substance in human tissues
— Any significant shift in sodium concentration signals cell death
— Much less abundant than water in human tissues, about 1/2000
— Very large number of samples are needed for good SNR

— Requires high-quality reconstruction, currently considered
Impractical
Courtesy of Keith Thulborn and lan Atkinson, Center for MR Research, University of lllinois at Chicago

SAnvoia [/ @iuos

16
A Revolution - Sodium Map of the Brain

— Enables study of brain-cell viability before anatomic
changes occur in stroke and cancer treatment.
— Drastic improvement of timeliness of treatment decision
— Minutes for stroke and days for oncology.

Courtesy of Keith Thulborn and lan Atkinson, Center for MR Research, University of lllinois at Chicago

Cartesian Scan Data Spiral Scan Data

phy
Gridding® - |
A ky L » kX
T s
/ -—> kX
FFT LS

Spiral scan data + Gridding + FFT:
Fast scan, fast reconstruction, good images
Can become realtime with about 10X speedup.

Cartesian Scan Data

Gridding

FFT Least-Squares (LS)
Spiral scan data + LS
Superior images at expense of significantly more computation;
several hundred times slower than gridding.
Traditionally considered impractical!

High-Throughput Computing = Futuristic Biology

— In-silico screening of drugs
— mastering diseases
— personalized medicine

Thanks: Lorena Barba

In-silico Drug Screening
— Weed out inactive compounds P-rotel N Agg regathn

— Rank “drug candidates” for given

targets L
- J o — a process critical in
— EXample: | | — some degenerative diseases (e.g.,
— CERN grid — 300,000 potential Parkinson’s): aggregates abnormal
drugs agdalnst avian flu — drug production: aggregates
screene undesirable

— 2000 computers, 4 weeks!

. — time scale of the process:
— 4 years cpu-time

— invitro: up to days!
— impossible for molecular dynamics

SAnvoia [/ @iuos

Electrostatic Interactions Play a Crucial Role

— Classical molecular dynamics:

— very detailed ... but too expensive at large scale!
— Alternative: continuum model of surrounding water

— don’t care what the H20 molecules do

— model as a continuum dielectric

— leads to a boundary integral equation (BIE) problem
— Fast algorithm, well-suited for GPU:

— fast multipole method, solves BIE in O(N) ops

SAnvioia [/ HELLxos

=NRCIN X

a': | W hitp://en.wikipedia.org/wiki/Fast_multipole_method P~ B X || wrast multipole method - Wi.. 1, *‘fh

c
[

e,

WIKIPEDIA
The Free Encyclopedia
Main page

Contents

Featured content
Current events
Random article

Donate to Wikipedia
Wikimedia Shop

= |nteraction
Help
About Wikipedia
Community portal
Recent changes
Contact Wikipedia

¢ Toolbox
¢ Print/export

- |anguages e 3
Francais
*Edit links

Create account & Login

il
1
[

Article Talk Read Edit View history Ses Q

Fast multipole method

From Wikipedia, the free encyclopedia

The fast multipole method (FMM]) is a mathematical technique that was developed to speed up the calculation of long-ranged forces
in the n-body problem. It does this by expanding the system Green's function using a multipole expansion, which allows one to group
sources that lie close together and treat them as if they are a single source.!"!

The FMM has also been applied in accelerating the iterative solver in the method of moments (MOM) as applied to computational
electromagnetics problems. ! The FMM was first introduced in this manner by Greengard and Rokhlin™ and is based on the multipole
expansion of the vector Helmholtz equation. By treating the interactions between far-away basis functions using the FMM, the
corresponding matrix elements do not need to be explicitly stored, resulting in a significant reduction in reguired memory. If the FMM is
then appliad in a hierarchical manner, it can improve the complexity of matrix-vector products in an iterative solver from O(N?) to O(N).
This has expanded the area of applicability of the MOM to far greater problems than were previously possibla.

The FMM, introduced by Rokhlin and Greengard, has been acclaimed as one of the top ten algorithms of the 20th century ™ The FMM
algorithm dramatically reduces the complexity of matrix-vector multiplication involving a certain type of dense matrix which can arise
out of many physical systems.

The FMM has also been applied for efficiently treating the Coulomb interaction in Hartree—Fock and density functional theory
calculations in quantum chemistry.

See also [edif]

Portals
Aeccess related topics

— ~ == .
#"x Mathematics portal :*-%-:I Physics portal A Astronomy portal

References [edif

1. * Rokhlin, Viadimir {1985). "Rapid Solution of Integral Equations of Classic Potential Theory.” J. Computational Physics Vol. 60, pp. 187-207.

2. Mader Engheta, William D. Murphy, Vadimir Rokhlin, and Marius Vassiliou (1992), “The Fast Multipole Method for Electromagnetic
Sratterinn Coammatatinn " IFEE Trancactinns an Anfannas and Pronanation AD 534-541

) http://www bu.edu/pasi/courses/12-steps-to-having-a-fast-multipole-method-on-gpus/

o~ BeX|

Boston Universit chanical Engineerir e
v : = = This Site

Pan-American Advanced Studies Institute

ABOUT COURSES PROGRAM PLE MATERIALS

12 Steps to a Fast Multipole Method on GPUs

by Dr Rio Yokota

Boston University

Why would | want to learn FMM?

The combination of algorithmic acceleration and hardware
acceleration can have tremendous impact. The FMM is a fast
algorithm for calculating matrix vector multiplications in O(N) fime,
and it runs very fast on GPUs. Its combination of high degree of
parallelism and O(N) complexity make it an attractive solver for the
Peta-scale and Exa-scale era. It has a wide range of applications,
e.g. guantum mechanics, molecular dynamics, electrostatics,
acoustics, structural mechanics, fluid mechanics, and astrophysics.

What are the prerequisites?

® Basic understanding of linear algebra and calculus

= Some experience with C or C++

The aim of this course _
Fast mulfipole methods are used for

This course will provide a hands-on tutorial with simple exercises that G TR T T RS

will lead to a full FMM code that runs on GPUs. Each step is carefully

planned so that there is no sudden jump in the difficulty. During the tutorial each attendee will have remote access to
the GPU cluster in Magasaki Japan. There will be Teaching Assistants walking around to assist you, so that no one is
left behind.

The 12 steps

® step 1 direct N-body

= step 2 : multipole expansion

12 Steps to a Fast Multipole...

-)

ABOUT

COURSES

GPU computing and programming
Building robust scientific codes

Parallel performance and parallel
algorithms

Python for parallel scientific
computing

GPU programming with
PyOpenCL and PyCUDA

Infroduction to numerical linear
algebra in parallel

Quarks, GPUs and Multigrid

Advanced algorithmic techniques
for GPUs

Iterative methods for sparse linear
systems on GPU

Building & maintaining a cluster of
GPUs

12 Steps to a Fast Multipole
Method on GPUs

Advanced computing in solid-earth
dynamics

Boundary-Integral methods in
molecular science and
engineering

Computational methods for oil
recovery

ILLINOI

As In Many Computation-hungry Applications

— Three-step approach:
— Restructure the mathematical formulation
— Innovate at the algorithm level
— Tune core software for hardware architecture

<A nvIDIA [[LLINOIS

Conclusion: Three Options

— Good: “Accelerate” Legacy Codes
— Recompile/Run
— Call CUBLAS/CUFFT/thrust/matlab/PGI pragmas/etc.
— => good work for domain scientists (minimal CS required)

— : Rewrite / Create new codes

— Opportunity for clever algorithmic thinking

— => good work for computer scientists (minimal domain knowledge required)
— . Rethink Numerical Methods & Algorithms

— Potential for biggest performance advantage
— => Interdisciplinary: requires CS and domain insight
— => Exciting time to be a computational scientist

SAnvoia [/ @iuos

Think, Understand... then, Program

— Think about the problem you are trying to solve
— Understand the structure of the problem

— Apply mathematical techniques to find solution
— Map the problem to an algorithmic approach

— Plan the structure of computation
— Be aware of in/dependence, interactions, bottlenecks

— Plan the organization of data
— Be explicitly aware of locality, and minimize global data

— Finally, write some code! (this is the easy part ©)

SAnvoia [/ @iuos

Future Studies

— More complex data structures
— More scalable algorithms and building blocks
— More scalable math models

— Thread-aware approaches
— More available parallelism

— Locality-aware approaches
— Computing is becoming bigger, and everything is further away

SAnvoia [/ @iuos

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

'0
(=
‘N

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 17 – Computational Thinking
	Objective
	Fundamentals of Parallel Computing
	Shared Memory vs. Message Passing
	Data Sharing
	Synchronization
	Parallel Programming Coding Styles – �Program and Data Models
	Program Models
	Program Models
	Algorithm Structure
	More on SPMD
	Typical SPMD Program Phases
	Core Computation Phase
	Making Science Better, not just Faster��or… in other words:�There will be no Nobel Prizes or Turing Awards awarded for “just recompile” or using more threads
	A Revolution - Sodium Map of the Brain
	A Revolution - Sodium Map of the Brain
	Reconstructing MR Images
	Reconstructing MR Images
	High-Throughput Computing = Futuristic Biology
	In-silico Drug Screening
	Electrostatic Interactions Play a Crucial Role
	Slide Number 22
	Slide Number 23
	As in Many Computation-hungry Applications
	Conclusion: Three Options
	Think, Understand… then, Program
	Future Studies
	Slide Number 28

