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Our course - recall 

Concentrate on distributed systems (as inherently 
protocols are) 

 
Learn several formalisms to model system and 

properties (automata, process algebras, Petri Nets, 
temporal logic, timed automata). 

 
Learn advantages and limitations, in order to choose 

the right methods and tools. 
 
Learn how to combine existing formalisms and existing 

“solution” methods. 
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Flowchart of analysis material 

1. Basic properties 

2. RG analysis 

3. Structural analysis (on PN) 

4. Reduction rules (PN) 

5. Equivalences (PA) 

6. Model checking 

 definition of linear logic LTL and its model checking algorithm 

 definition of branching logic CTL and its model checking algorithm 
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Some important points 

 Reachable states: obtained from an initial state 
through a sequence of enabled transitions. 

 Executions: the set of maximal paths (finite or 
terminating in a node where nothing is 
enabled). 

 Nondeterministic choice: when more than a 
single transition is enabled at a given state. We 
have a nondeterministic choice when at least 
one node at the state graph has more than one 
successor. 
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useful:The interleaving model 

 An execution is a finite or infinite sequence of states s0, s1, 
s2, … 

 The initial state satisfies the initial condition, I.e., I (s0). 

 Moving from one state si to si+1 is by executing a transition 
et: 

 e(si), I.e., si satisfies e. 

 si+1 is obtained by applying t to si. 

 Lets assume all sequences are infinite by extending finite 
ones by “stuttering” the last state. 
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Useful: A transition 
system 

 A (finite) set of variables V. 

 A set of states . 

 A (finite) set of transitions T, each transition et  

has 

 an enabling condition e and a transformation t. 

 An initial condition I. 

 Denote by R(s, s’) the fact that s’ is a successor of s. 
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Linear temporal logic (LTL) 

 LTL has been introduced by Pnueli in 1977 

 

 It is a logic to describe systems in terms of 
linear executions: total order between events 

 

 Interpretation: over an execution, later over 
all executions. 

 

 LTL is very popular in industry mainly thanks 
to the LTL model checker SPIN (by Holzmann 
et al. in the 90’s) 
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LTL: Syntax 

 ::= () | ¬ | /\  \/ U
 |O  | p 

(or G)--“box”, “always”, “forever”

(or F) --“diamond”, “eventually”,sometimes”

O (or X)--“nexttime”

U--“until” 

Propositions p, q, r, … Each represents some state 
property (x>y+1, z=t, at_CR, etc.) 
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Semantics over suffixes of execution 

G



F



X  



U



    









holds 
and 

not relevant 
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Can discard some operators 

 Instead of Fp, write true U p. 

 Instead of Gp, we can write ¬(F¬p), 
or ¬(true U ¬p). 
Because Gp=¬¬Gp. 
¬Gp means it is not true that p holds 
forever, or at some point ¬p holds or 
F¬p. 
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Combinations 

 GFp  “p will happen infinitely often” 

 

 FGp  “p will happen from some point forever”. 

 

 (GFp)  (GFq)  “If p happens infinitely often, then 

q also happens infinitely often”. 
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Formal semantic definition - 
Peled’s book 

 Let  be a sequence s0 s1 s2 … 

 Let i be a suffix of : si si+1 si+2 … (0 = ) 

 i |= p, where p is a proposition, if si|=p. 

 i |= /\ if i |=  and i |= . 

 i |= \/ if i |=  or i |= . 

 i |= ¬ if it is not the case that i |= . 

 i |= X if  i+1 |= .  

 i |= F if for some ji, j |= .  

 i |= G if for each ji, j |= . 

 i |= U  if for some ji, j|=. 
        and for each ik<j, k |=. 
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Some relations: 

 G(/\)=(G)/\(G) 

 But F(/\)(F)/\(F) 

 

 

 

 F(\/)=(F)\/(F) 

 But G(\/)(G)\/(G) 













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What about 

 (GF)/\(GF)=GF(/\)? 

 (GF)\/(GF)=GF(\/)? 

 (FG)/\(FG)=FG(/\)? 

 (FG)\/(FG)=FG(\/)? 

No, just  

Yes!!! 

Yes!!!     

No, just  
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Formal semantic definition - 
Peled’s book 

LTL formulas are interpreted over a linear model: infinite 
sequences over S 

 

Given a sequence   and a formula ,we define the satisfaction 
relation |=, as  ( ,) |=,and we write  |=.
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Formal semantic definition - 
Peled’s book 

 Let  be a sequence s0 s1 s2 … 

 Let i be a suffix of : si si+1 si+2 … (0 = ) 

 i |= p, where p is a proposition, if si|=p. 

 i |= /\ if i |=  and i |= . 

 i |= \/ if i |=  or i |= . 

 i |= ¬ if it is not the case that i |= . 

 i |= X if  i+1 |= .  

 i |= F if for some ji, j |= .  

 i |= G if for each ji, j |= . 

 i |= U  if for some ji, j|=. 
        and for each ik<j, k |=. 
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Formal semantic definition - 
Katoen’s book 

LTL formulas are interpreted over a linear model  

M(S, R, L) 

where  

S is a set of states   

R:S-->S is a successor function (total function), assigning to s 
its unique successor R(s) 

L:S-->2AP, is a labelling function 

M can be seen as an infinite sequence over S 

 

Given a model M and a formula ,we define the satisfaction 
relation as  (M,s,)  |=,and we write (M,s) |=.
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Formal semantic definition - 
Katoen’s book 

Let R0(s) = s and Rn+1(s) = R(Rn(s)), for any n > 0  
 
 s |= p, where p a proposition, if p  L(s). 
 s |= /\ if s |=  and s |= . 
 s |= \/ if s |=  or s |= . 
 s |= ¬ if ¬(s |= ).
 s |= F if   j0: Rj(s) |= .  
 s |= X if R(s) |= .  
 s |= G if for each j0, Rj(s) |= . 
 s |= U  if for some j0, Rj(s)|=. 

        and for each 0k<j, Rk(s) |=. 
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Spring Example 

s1 s3 s2 

pull 

release 

release 

extended 
malfunction} 

{extended, 

r0 = s1 s2 s1 s2 s1 s2 s1 … 

r1 = s1 s2 s3 s3 s3 s3 s3 … 

r2 = s1 s2 s1 s2 s3 s3 s3 … 

… 
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Esempi dal testo di Katoen 
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Esempi dal testo di Katoen 
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LTL satisfaction by a  
single sequence 

malfunction 

s1 s3 s2 pull 

release 

release 

extended extended 

r2 = s1 s2 s1 s2 s3 s3 s3 … 

r2 |= extended  ?? 

r2 |= X extended ?? 

r2 |= X X extended ?? 

r2 |= F extended ?? 

r2 |= G extended ?? 

 

r2 |= FG extended ?? 

r2 |= ¬ FG extended ?? 

r2 |= (¬extended) U malfunction ?? 

r2 |= G(¬extended->X extended)  

 G(extended \/ X extended) 
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LTL satisfaction by a system 

malfunction 

s1 s3 s2 pull 

release 

release 

extended extended 

P |= extended  ?? 

P |= X extended ?? 

P |= X X extended ?? 

P |= F extended ?? 

P|= G extended ?? 

 

P |= FG extended ?? 

P |= ¬ FG extended ?? 

P |= (¬extended) U malfunction ?? 

P |= G(¬extended->Xextended) ?? 
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Exercise 

Try at home over Dekker’s algorithm: 
- The processes alternate in entering their 
critical sections. 
- Each process  that tries to enter the critical 
section will eventually be allowed to enter it 
(responsiveness). 

 - Each process enters its critical section 
infinitely often. 

 - When a process enters its trying section, it 
will remain there, unless it progresses to its 
critical section 
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Traffic light example 

     Green  Yellow  Red  

Always has exactly one light: 

G(¬(gr/\ye) /\ ¬(ye/\re) /\ ¬(re/\gr) /\ (gr\/ye\/re)) 

Correct change of color: 

G((grU ye)\/(yeU re)\/(reU gr)) 

G(gr\/ye\/re) Correct specification? 

Correct specification? 

What if colour does not change? 
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Another kind of traffic light 

       GreenYellowRedYellow 

First attempt: 

G(((gr\/re) U ye)\/(ye U (gr\/re))) 

Correct specification: 

G(  (gr(gr U (ye /\ ( ye U re )))) 

   /\(re(re U (ye /\ ( ye U gr )))) 

   /\(ye(ye U (gr \/ re)))) 
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LTL properties and PN 

We can specify the traffic light as a (very) simple PN, and 
then check the previous properties. 

What is needed: a language for the definition of AP 

La specifica del semaforo è equivalente a: 

G(  (gr /\ X ye )  \/ (ye /\ X re ) \/ (re /\ X gr)  ) ? 
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Properties of sequential 
programs 

 init-when the program starts and satisfies the 
initial condition. 

 finish-when the program terminates and nothing is 
enabled. 

 q: the correct function has been computed 

 Partial correctness: init/\G(finishq) 

 Termination: init/\F finish 

 Total correctness: init/\F(finish/\ q) 

 Invariant: init/\Gp 
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The communication channel 

 Sender S, output buffer S.out, input buffer R.in, Receiver R 

 

 prop1: a message cannot be in both buffers at the same 
time 

 

 

 prop2: the channel does not loose messages (whatever is 
in S.out will be in R.in) 
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The communication channel 
 

 Prop 2, cont.: since m can’t be in both,  

 

 

 prop3: the channel is order preserving 

 

 
 

 prop4: the channel does not spontaneously generate 
messages 

Correct 
specification? 
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Model-Checking LTL 

The model-checking problem is: 

given a (finite) model M, a state s, and a property 

, do we have s|=? 

 

It is different from satisfiability: given a formula , 
does it exists a model and a state s, such that: 
(M,s)|=? 

 
Satisfiability is decidable for LTL 
 --> model-checking is decidable  
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Model-Checking LTL 

The validity problem is: 

given a property , do we have for all models  M, 
and for all states s in these models,that (M,s)|=? 

 
 
Logically this is equivalent to the satisfiability of ¬ 
 
 
Note: Valid formula are the basis for re-writing rules 
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Model-Checking LTL 

Validity can be based on the semantics, or we can 
use the syntax and a set of proof rules that allows 
the re-writing, at a syntactical level, of LTL formulas 
into semantically equivalent LTL formula 

 

Rewriting rules are of the form =, and they need 
to be valid (sound)  
 (for all M and s (M,s)|= iff (M,s)|=? 
 
Ex: GG = G, or FGF =GF 
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Some sound rules for LTL 

 Used for recursive 
model checking 
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Model-Checking LTL 

Commonly used formulas: 

Unless operator: 

 W  == G \/ U 
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Practical properties in LTL 

 Reachability 
 Negated reachability     F ¬  

 in tutti i cammini non riesco a raggiungere q (quindi q non e' mai 
raggiungibile) 

 Conditional reachability   U   
 Reachability (exists a path, as for home states)   

      not expressible 
 posso solo dire che phi e' raggiungibile in tutte le esecuzioni 

 Safety 
 Simple safety    G ¬  

 Conditional safety   U  \/ F   

 Liveness     G (F ) and others 

 

 Fairness     GF  and others 
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Model checking LTL 

 We want to find a correctness condition for a model 
to satisfy a specification. 

 

 Language of a model: L(Model) 

 

 Language of a specification: L(Spec). 

 

 We need: L(Model)  L(Spec). 
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Correctness 

All sequences 

Sequences satisfying Spec 

Program executions 
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Incorrectness 

All sequences 

Sequences satisfying Spec 

Program executions 

Counter 

examples 
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How to prove correctness? 

 Show that L(Model)  L(Spec). 

 

 Equivalently:              ______ 
Show that L(Model)  L(Spec) = Ø. 

 

 Model is specified as a Buchi automata, Spec 
can be specified as a Buchi automata 
automatically translated from LTL 
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Model checking schema 



45 

Automata over finite words 

  A=<, S, , I, F> 

   (finite) - the alphabet. 
  S (finite) - the states. 
    S x  x S - the transition relation. 
  I  S - the starting states. 
  F  S - the accepting states. 

a 

a 

b 

b s0 s1 
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A run over a word 

 A word over , e.g., abaab. 
 A sequence of states, e.g. s0 s0 s1 s0 s0 s1. 
 Starts with an initial state. 
 Follows the transition relation (si, ci , si+1). 

 
 Accepting if ends at accepting state. 

a 

a 

b 

b s0 s1 
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The language of an automaton 

 The words that are accepted by the automaton. 
 Includes aabbba, abbbba. 
 Does not include abab, abbb. 

 
 What is the language? 

a 

a 

b 

b s0 s1 
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Automata over infinite words 

 Similar definition. 

 Runs on infinite words over . 

 

 Accepts when an accepting state occurs infinitely 
often in a run. 

a 

a 

b 

b s0 s1 
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Automata over infinite words 

 Consider the word  abababab… 

 There is a run    s0s0s1s0s1s0s1 … 

 For the word  bbbbb… the run is s0 s1 s1 s1 s1… and is not 

accepting. 

 For the word   aaabbbbb …, the run is s0 s0 s0 s0 s1 s1 s1 s1 

… 

 What is the run for ababbabbb …? 

 

a 

a 

b 

b s0 s1 
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Specification using Automata 

 Let each letter correspond to some propositional 
property. 

 Example:     a -- P0 enters critical section, 
                  b -- P0 does not enter section. 

 

a 

a 

b 

b s0 s1 
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Generalized Büchi automata 

 Acceptance condition F  is a set 
F={f1 , f2 , … , fn } where each fi  is a set of states. 

 To accept, a run needs to pass infinitely often through a 
state from every set fi . 
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Finding accepting runs 

If there is an accepting run, then at least one accepting state 
repeats on it forever.  

Look at a suffix of this run where all the states appear infinitely 
often. 

These states form a strongly connected component on the 
automaton graph, including an accepting state. 

Find a component like that and form an accepting cycle including 
the accepting state. 
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Model checking LTL  
on an example 

Consider the traffic light example, we want to model check an LTL 
formula against the implementation of a traffic light specified as a 
Buchi automata. Also the formula is specified as a Buchi automata 

Formula: G(ye->Xre):  
always move from ye to re  

not G(ye->Xre) =  

not G (not ye or Xre) =  

F (ye and not Xre)  = 

F (ye and X not re)   

 

(2 initial states, 1 acc.) 

  

  

 

System 
(all states 
accepting) 
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Model checking LTL on an 
example - intersection 

Intersection is 
not empty, and 
red path is a 
counter example 

Not reachable 
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Model checking LTL -  
complexity (from JPK) 

The automata of the formula  has a size that depends on the number 
of subsets of the formula O(2||) 

 

The worst state space complexity of the product is O(|Sys| * 2||) 

 

Checking emptiness is linear in number of states and transitions 

 

We finally get that: 

 

The worst case time complexity of checking 

 whether Sys satisfies the LTL formula  is  

O(|Sys|2 * 2||) 

 



56 

Fairness 

Fairness is used generically to refer to  semantics contraints 
imposed on interleaved executions of concurrent systems.   

E.g. P1 and P2, independent programs, that execute forever. 
On a real cpu they alternate into cpu, depending on the 
scheduler policy. We do not want to insert the scheduler policy 
in the model (too detailed), but we want to rule out 
interleaved executions that ignore enabled transitions of one 
process forever, since they do not correspond to any realistic 
scheduler. 
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Fair executions: motivations 

Consider the following piece of code: 

 

 

where .. means “atomic execution”. 

 

Does the program satisfies “F terminates”? No, since there is 
an execution in which only Inc is executed. 

This situation is not possible if the OS schedule is fair, and we 
would like to rule-out from the model checking whose 
executions that are not fair 
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Fair executions: solutions 

We want to consider  only execution with fair behaviour. 

Can be done:  

• enforcing fairness in the formula: instead of verifying that 
the program satisfies , verify it satisfies fair-constraint    

        

OR 

• modifying the MC algorithm as to consider only fair 
executions 

 
Fair  

executions 

Executions 
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Some fairness definitions (JPK) 

 Si tratta della definizione della parte di fairness constraint in  

fair-constraint    
 

 

 Vogliamo che il fair constraint sia abbastanza ampio (nel senso che deve 
essere soddisfatto in molte esecuzioni).  

 Esempi di casi limite per la determinazione delle esecuzioni fair in una 
proprieta’ di terminazione, del tipo 

 fair-constraint  F terminate 

 
 fair-constraint = true : il programma deve terminare su tutte le esecuzioni 

 fair-constraint =  false: anche se il programma non termina la proprieta’  e’  soddisfatta 
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Some definitions (JPK) for 
fairness-constraint 

 Unconditional fairness: 

a path is unconditionally fair with respect to , if it satisfies:  

GF       also  stated as      true  GF   
  

 Weak fairness (justice):  
 a path is weakly  fair with respect to , and a fairness constraint  if it 
satisfies  

FG   GF  

 as in: FG enabled(a)  GF executed(a) 

   
 Strong fairness: 

a path is strongly  fair with respect to , and a fairness constraint  if 
it satisfies  

GF   GF  
 

If, from a certain point 
on,  you keep asking, 
you get it infinitely often 

If you ask infinitely often, you 
get it infinitely often 
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If MC is so good, why deductive 
verification methods exists? 

 Model checking works only for finite 
state systems. Would not work with 

 Unconstrained integers. 

 Unbounded message queues. 

 General data structures: 

 queues 

 trees 

 stacks 

 parametric algorithms and systems. 
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The state space explosion 

 Need to represent the state space of a 
program in the computer memory. 

 Each state can be as big as the entire 
memory! 

 Many states: 

 Each integer variable has 2^32 possibilities. 
Two such variables have 2^64 possibilities. 

 In concurrent protocols, the number of states 
usually grows exponentially with the number of 
processes. 



65 

If MC is so constrained,  
is it of any use? 

 Many protocols are finite state. 

 Many programs or procedure are finite state 
in nature. Can use abstraction techniques. 

 Sometimes it is possible to decompose a 
program, and prove part of it by model 
checking and part by theorem proving. 

 Many techniques to reduce the state space 
explosion. 


