
1

VERIFICA DI PROCESSI CONCORRENTI
17-18

Analysis: model checking LTL

Prof.ssa Susanna Donatelli

Universita’ di Torino

www.di.unito.it

susi@di.unito.it

http://www.di.unito.it/

2

Reference material books:

Prof. Doron A. Peled

(University of Warwick, UK) Prof. Jost-Pieter Katoen

(University of Aachen, D)

3

Acknowledgements

Transparencies adapted from the course notes and
trasparencies of

 Prof. Doron A. Peled, University of Warwick (UK) and Bar
Ilan University (Israel)
http://www.dcs.warwick.ac.uk/~doron/srm.html

 Prof. Jost-Pieter Katoen, University of Aachen (Germany)

 Dr. Jeremy Sproston, Universita’ di Torino (Italy)

http://www.dcs.warwick.ac.uk/~doron/srm.html

4

Our course - recall

Concentrate on distributed systems (as inherently
protocols are)

Learn several formalisms to model system and

properties (automata, process algebras, Petri Nets,
temporal logic, timed automata).

Learn advantages and limitations, in order to choose

the right methods and tools.

Learn how to combine existing formalisms and existing

“solution” methods.

5

Flowchart of analysis material

1. Basic properties

2. RG analysis

3. Structural analysis (on PN)

4. Reduction rules (PN)

5. Equivalences (PA)

6. Model checking

 definition of linear logic LTL and its model checking algorithm

 definition of branching logic CTL and its model checking algorithm

6

Some important points

 Reachable states: obtained from an initial state
through a sequence of enabled transitions.

 Executions: the set of maximal paths (finite or
terminating in a node where nothing is
enabled).

 Nondeterministic choice: when more than a
single transition is enabled at a given state. We
have a nondeterministic choice when at least
one node at the state graph has more than one
successor.

7

useful:The interleaving model

 An execution is a finite or infinite sequence of states s0, s1,
s2, …

 The initial state satisfies the initial condition, I.e., I (s0).

 Moving from one state si to si+1 is by executing a transition
et:

 e(si), I.e., si satisfies e.

 si+1 is obtained by applying t to si.

 Lets assume all sequences are infinite by extending finite
ones by “stuttering” the last state.

8

Useful: A transition
system

 A (finite) set of variables V.

 A set of states .

 A (finite) set of transitions T, each transition et

has

 an enabling condition e and a transformation t.

 An initial condition I.

 Denote by R(s, s’) the fact that s’ is a successor of s.

9

Linear temporal logic (LTL)

 LTL has been introduced by Pnueli in 1977

 It is a logic to describe systems in terms of
linear executions: total order between events

 Interpretation: over an execution, later over
all executions.

 LTL is very popular in industry mainly thanks
to the LTL model checker SPIN (by Holzmann
et al. in the 90’s)

10

LTL: Syntax

 ::= () | ¬ | /\  \/ U
 |O  | p

(or G)--“box”, “always”, “forever”

(or F) --“diamond”, “eventually”,sometimes”

O (or X)--“nexttime”

U--“until”

Propositions p, q, r, … Each represents some state
property (x>y+1, z=t, at_CR, etc.)

11

Semantics over suffixes of execution

G



F



X 



U



    









holds
and

not relevant

12

Can discard some operators

 Instead of Fp, write true U p.

 Instead of Gp, we can write ¬(F¬p),
or ¬(true U ¬p).
Because Gp=¬¬Gp.
¬Gp means it is not true that p holds
forever, or at some point ¬p holds or
F¬p.

13

Combinations

 GFp “p will happen infinitely often”

 FGp “p will happen from some point forever”.

 (GFp)  (GFq) “If p happens infinitely often, then

q also happens infinitely often”.

14

Formal semantic definition -
Peled’s book

 Let  be a sequence s0 s1 s2 …

 Let i be a suffix of : si si+1 si+2 … (0 =)

 i |= p, where p is a proposition, if si|=p.

 i |= /\ if i |=  and i |= .

 i |= \/ if i |=  or i |= .

 i |= ¬ if it is not the case that i |= .

 i |= X if i+1 |= .

 i |= F if for some ji, j |= .

 i |= G if for each ji, j |= .

 i |= U  if for some ji, j|=.
 and for each ik<j, k |=.

15

Some relations:

 G(/\)=(G)/\(G)

 But F(/\)(F)/\(F)

 F(\/)=(F)\/(F)

 But G(\/)(G)\/(G)














16

What about

 (GF)/\(GF)=GF(/\)?

 (GF)\/(GF)=GF(\/)?

 (FG)/\(FG)=FG(/\)?

 (FG)\/(FG)=FG(\/)?

No, just 

Yes!!!

Yes!!!

No, just 

17

Formal semantic definition -
Peled’s book

LTL formulas are interpreted over a linear model: infinite
sequences over S

Given a sequence  and a formula ,we define the satisfaction
relation |=, as ( ,) |=,and we write  |=.

18

Formal semantic definition -
Peled’s book

 Let  be a sequence s0 s1 s2 …

 Let i be a suffix of : si si+1 si+2 … (0 =)

 i |= p, where p is a proposition, if si|=p.

 i |= /\ if i |=  and i |= .

 i |= \/ if i |=  or i |= .

 i |= ¬ if it is not the case that i |= .

 i |= X if i+1 |= .

 i |= F if for some ji, j |= .

 i |= G if for each ji, j |= .

 i |= U  if for some ji, j|=.
 and for each ik<j, k |=.

19

Formal semantic definition -
Katoen’s book

LTL formulas are interpreted over a linear model

M(S, R, L)

where

S is a set of states

R:S-->S is a successor function (total function), assigning to s
its unique successor R(s)

L:S-->2AP, is a labelling function

M can be seen as an infinite sequence over S

Given a model M and a formula ,we define the satisfaction
relation as (M,s,)  |=,and we write (M,s) |=.

20

Formal semantic definition -
Katoen’s book

Let R0(s) = s and Rn+1(s) = R(Rn(s)), for any n > 0

 s |= p, where p a proposition, if p  L(s).
 s |= /\ if s |=  and s |= .
 s |= \/ if s |=  or s |= .
 s |= ¬ if ¬(s |= ).
 s |= F if  j0: Rj(s) |= .
 s |= X if R(s) |= .
 s |= G if for each j0, Rj(s) |= .
 s |= U  if for some j0, Rj(s)|=.

 and for each 0k<j, Rk(s) |=.

21

Spring Example

s1 s3 s2

pull

release

release

extended
malfunction}

{extended,

r0 = s1 s2 s1 s2 s1 s2 s1 …

r1 = s1 s2 s3 s3 s3 s3 s3 …

r2 = s1 s2 s1 s2 s3 s3 s3 …

…

22

Esempi dal testo di Katoen

23

Esempi dal testo di Katoen

24

LTL satisfaction by a
single sequence

malfunction

s1 s3 s2 pull

release

release

extended extended

r2 = s1 s2 s1 s2 s3 s3 s3 …

r2 |= extended ??

r2 |= X extended ??

r2 |= X X extended ??

r2 |= F extended ??

r2 |= G extended ??

r2 |= FG extended ??

r2 |= ¬ FG extended ??

r2 |= (¬extended) U malfunction ??

r2 |= G(¬extended->X extended)

 G(extended \/ X extended)

25

LTL satisfaction by a system

malfunction

s1 s3 s2 pull

release

release

extended extended

P |= extended ??

P |= X extended ??

P |= X X extended ??

P |= F extended ??

P|= G extended ??

P |= FG extended ??

P |= ¬ FG extended ??

P |= (¬extended) U malfunction ??

P |= G(¬extended->Xextended) ??

26

Exercise

Try at home over Dekker’s algorithm:
- The processes alternate in entering their
critical sections.
- Each process that tries to enter the critical
section will eventually be allowed to enter it
(responsiveness).

 - Each process enters its critical section
infinitely often.

 - When a process enters its trying section, it
will remain there, unless it progresses to its
critical section

27

Traffic light example

 Green  Yellow  Red

Always has exactly one light:

G(¬(gr/\ye) /\ ¬(ye/\re) /\ ¬(re/\gr) /\ (gr\/ye\/re))

Correct change of color:

G((grU ye)\/(yeU re)\/(reU gr))

G(gr\/ye\/re) Correct specification?

Correct specification?

What if colour does not change?

28

Another kind of traffic light

 GreenYellowRedYellow

First attempt:

G(((gr\/re) U ye)\/(ye U (gr\/re)))

Correct specification:

G((gr(gr U (ye /\ (ye U re))))

 /\(re(re U (ye /\ (ye U gr))))

 /\(ye(ye U (gr \/ re))))

29

LTL properties and PN

We can specify the traffic light as a (very) simple PN, and
then check the previous properties.

What is needed: a language for the definition of AP

La specifica del semaforo è equivalente a:

G((gr /\ X ye) \/ (ye /\ X re) \/ (re /\ X gr)) ?

30

Properties of sequential
programs

 init-when the program starts and satisfies the
initial condition.

 finish-when the program terminates and nothing is
enabled.

 q: the correct function has been computed

 Partial correctness: init/\G(finishq)

 Termination: init/\F finish

 Total correctness: init/\F(finish/\ q)

 Invariant: init/\Gp

31

The communication channel

 Sender S, output buffer S.out, input buffer R.in, Receiver R

 prop1: a message cannot be in both buffers at the same
time

 prop2: the channel does not loose messages (whatever is
in S.out will be in R.in)

32

The communication channel

 Prop 2, cont.: since m can’t be in both,

 prop3: the channel is order preserving

 prop4: the channel does not spontaneously generate
messages

Correct
specification?

33

Model-Checking LTL

The model-checking problem is:

given a (finite) model M, a state s, and a property

, do we have s|=?

It is different from satisfiability: given a formula ,
does it exists a model and a state s, such that:
(M,s)|=?

Satisfiability is decidable for LTL
 --> model-checking is decidable

34

Model-Checking LTL

The validity problem is:

given a property , do we have for all models M,
and for all states s in these models,that (M,s)|=?

Logically this is equivalent to the satisfiability of ¬

Note: Valid formula are the basis for re-writing rules

35

Model-Checking LTL

Validity can be based on the semantics, or we can
use the syntax and a set of proof rules that allows
the re-writing, at a syntactical level, of LTL formulas
into semantically equivalent LTL formula

Rewriting rules are of the form =, and they need
to be valid (sound)
 (for all M and s (M,s)|= iff (M,s)|=?

Ex: GG = G, or FGF =GF

36

Some sound rules for LTL

 Used for recursive
model checking

37

Model-Checking LTL

Commonly used formulas:

Unless operator:

 W  == G \/ U

38

Practical properties in LTL

 Reachability
 Negated reachability F ¬

 in tutti i cammini non riesco a raggiungere q (quindi q non e' mai
raggiungibile)

 Conditional reachability U 
 Reachability (exists a path, as for home states)

 not expressible
 posso solo dire che phi e' raggiungibile in tutte le esecuzioni

 Safety
 Simple safety G ¬

 Conditional safety U  \/ F 

 Liveness G (F ) and others

 Fairness GF  and others

39

40

Model checking LTL

 We want to find a correctness condition for a model
to satisfy a specification.

 Language of a model: L(Model)

 Language of a specification: L(Spec).

 We need: L(Model)  L(Spec).

41

Correctness

All sequences

Sequences satisfying Spec

Program executions

42

Incorrectness

All sequences

Sequences satisfying Spec

Program executions

Counter

examples

43

How to prove correctness?

 Show that L(Model)  L(Spec).

 Equivalently: ______
Show that L(Model)  L(Spec) = Ø.

 Model is specified as a Buchi automata, Spec
can be specified as a Buchi automata
automatically translated from LTL

44

Model checking schema

45

Automata over finite words

 A=<, S, , I, F>

  (finite) - the alphabet.
 S (finite) - the states.
   S x  x S - the transition relation.
 I  S - the starting states.
 F  S - the accepting states.

a

a

b

b s0 s1

46

A run over a word

 A word over , e.g., abaab.
 A sequence of states, e.g. s0 s0 s1 s0 s0 s1.
 Starts with an initial state.
 Follows the transition relation (si, ci , si+1).

 Accepting if ends at accepting state.

a

a

b

b s0 s1

47

The language of an automaton

 The words that are accepted by the automaton.
 Includes aabbba, abbbba.
 Does not include abab, abbb.

 What is the language?

a

a

b

b s0 s1

48

Automata over infinite words

 Similar definition.

 Runs on infinite words over .

 Accepts when an accepting state occurs infinitely
often in a run.

a

a

b

b s0 s1

49

Automata over infinite words

 Consider the word abababab…

 There is a run s0s0s1s0s1s0s1 …

 For the word bbbbb… the run is s0 s1 s1 s1 s1… and is not

accepting.

 For the word aaabbbbb …, the run is s0 s0 s0 s0 s1 s1 s1 s1

…

 What is the run for ababbabbb …?

a

a

b

b s0 s1

50

Specification using Automata

 Let each letter correspond to some propositional
property.

 Example: a -- P0 enters critical section,
 b -- P0 does not enter section.

a

a

b

b s0 s1

51

Generalized Büchi automata

 Acceptance condition F is a set
F={f1 , f2 , … , fn } where each fi is a set of states.

 To accept, a run needs to pass infinitely often through a
state from every set fi .

52

Finding accepting runs

If there is an accepting run, then at least one accepting state
repeats on it forever.

Look at a suffix of this run where all the states appear infinitely
often.

These states form a strongly connected component on the
automaton graph, including an accepting state.

Find a component like that and form an accepting cycle including
the accepting state.

53

Model checking LTL
on an example

Consider the traffic light example, we want to model check an LTL
formula against the implementation of a traffic light specified as a
Buchi automata. Also the formula is specified as a Buchi automata

Formula: G(ye->Xre):
always move from ye to re

not G(ye->Xre) =

not G (not ye or Xre) =

F (ye and not Xre) =

F (ye and X not re)

(2 initial states, 1 acc.)

System
(all states
accepting)

54

Model checking LTL on an
example - intersection

Intersection is
not empty, and
red path is a
counter example

Not reachable

55

Model checking LTL -
complexity (from JPK)

The automata of the formula  has a size that depends on the number
of subsets of the formula O(2||)

The worst state space complexity of the product is O(|Sys| * 2||)

Checking emptiness is linear in number of states and transitions

We finally get that:

The worst case time complexity of checking

 whether Sys satisfies the LTL formula  is

O(|Sys|2 * 2||)

56

Fairness

Fairness is used generically to refer to semantics contraints
imposed on interleaved executions of concurrent systems.

E.g. P1 and P2, independent programs, that execute forever.
On a real cpu they alternate into cpu, depending on the
scheduler policy. We do not want to insert the scheduler policy
in the model (too detailed), but we want to rule out
interleaved executions that ignore enabled transitions of one
process forever, since they do not correspond to any realistic
scheduler.

57

Fair executions: motivations

Consider the following piece of code:

where .. means “atomic execution”.

Does the program satisfies “F terminates”? No, since there is
an execution in which only Inc is executed.

This situation is not possible if the OS schedule is fair, and we
would like to rule-out from the model checking whose
executions that are not fair

58

Fair executions: solutions

We want to consider only execution with fair behaviour.

Can be done:

• enforcing fairness in the formula: instead of verifying that
the program satisfies , verify it satisfies fair-constraint  

OR

• modifying the MC algorithm as to consider only fair
executions

Fair

executions

Executions

59

Some fairness definitions (JPK)

 Si tratta della definizione della parte di fairness constraint in

fair-constraint  

 Vogliamo che il fair constraint sia abbastanza ampio (nel senso che deve
essere soddisfatto in molte esecuzioni).

 Esempi di casi limite per la determinazione delle esecuzioni fair in una
proprieta’ di terminazione, del tipo

 fair-constraint  F terminate

 fair-constraint = true : il programma deve terminare su tutte le esecuzioni

 fair-constraint = false: anche se il programma non termina la proprieta’ e’ soddisfatta

60

Some definitions (JPK) for
fairness-constraint

 Unconditional fairness:

a path is unconditionally fair with respect to , if it satisfies:

GF  also stated as true  GF 

 Weak fairness (justice):
 a path is weakly fair with respect to , and a fairness constraint  if it
satisfies

FG   GF 

 as in: FG enabled(a)  GF executed(a)

 Strong fairness:

a path is strongly fair with respect to , and a fairness constraint  if
it satisfies

GF   GF 

If, from a certain point
on, you keep asking,
you get it infinitely often

If you ask infinitely often, you
get it infinitely often

61

63

If MC is so good, why deductive
verification methods exists?

 Model checking works only for finite
state systems. Would not work with

 Unconstrained integers.

 Unbounded message queues.

 General data structures:

 queues

 trees

 stacks

 parametric algorithms and systems.

64

The state space explosion

 Need to represent the state space of a
program in the computer memory.

 Each state can be as big as the entire
memory!

 Many states:

 Each integer variable has 2^32 possibilities.
Two such variables have 2^64 possibilities.

 In concurrent protocols, the number of states
usually grows exponentially with the number of
processes.

65

If MC is so constrained,
is it of any use?

 Many protocols are finite state.

 Many programs or procedure are finite state
in nature. Can use abstraction techniques.

 Sometimes it is possible to decompose a
program, and prove part of it by model
checking and part by theorem proving.

 Many techniques to reduce the state space
explosion.

