
F. Bergadano 5.1.1

HTTP

• Hypertext Transfer Protocol, in use with the
World Wide Web since 1990

• Client request / Server reply

• Client may transmit content

• Server provides public information, but
simple forms of access control are possible

F. Bergadano 5.1.2

Above
a reliable
transport
protocol

HTTP server

TCP
IP
Data Link
Physical

 Physical

 Physical

 Physical

 Physical

D
T
E

D
C
E

D
T
E

D
C
E

TCP
IP
Data Link
Physical

HTTP client

F. Bergadano 5.1.3

Intermediate steps

HTTP requests may not be direct and may not
really reach their intended, final server.
There are three possibilities:

• Proxies

• Gateways

• Tunnels

F. Bergadano 5.1.4

Proxies

HTTP requests intented for a particular server
are first received by a proxy server. The
proxy may either service the request
immediately, based on chached information,
or forward it to the final server. On the way,
back, the information will be passed from
the proxy to the client.

F. Bergadano 5.1.5

Proxies

HTTP client --- Proxy --- HTTP server

F. Bergadano 5.1.6

Gateways

A non-HTTP service may be required: in this
case an HTTP request is sent to a gateway,
that will translate it to the required protocol
and forward it to the corresponding server.

Again, the response will be relayed back to
the client under HTTP by the gateway.

F. Bergadano 5.1.7

Gateways

HTTP client --- Gateway ---

--- server (non-HTTP)

F. Bergadano 5.1.8

Tunnels

Tunnels receive and inspect the HTTP
message, but forward it unchanged to the
server. Tunnels may be used for logging or
for access control, e.g. in a firewall.

F. Bergadano 5.1.9

Tunnel

HTTP client --- Tunnel --- HTTP server

F. Bergadano 5.1.10

More than one proxy, tunnel or
gateway may be used

HTTP client --- A --- B --- C --- HTTP server

F. Bergadano 5.1.11

HTTP requests

Requests refer to a server resource as an
Uniform Resource Identifier (URI):

http://host:port/path?query_string

host: server name or IP number
port: service access point (e.g. TCP port)
path: a path to a resource on the server
query: additional client information

F. Bergadano 5.1.12

HTTP formats

Request:
Method URI Version CRLF
GeneralHdr RequestHdr EntityHdr CRLF
EntityBody

Response:
Version Status-Code Reason-Phrase CRLF
GeneralHdr ResponseHdr EntityHdr CRLF
EntityBody

F. Bergadano 5.1.13

Request

Method URI Version CRLF
GeneralHdr RequestHdr EntityHdr CRLF
EntityBody

Main methods are GetGet and PostPost
EntityBody is optional, used for PostPost
Headers are optional, and provide extra info
Current Version is HTTP/1.1HTTP/1.1

F. Bergadano 5.1.14

Request - Get example

GET http://www.di.unito.it:8887/index.html HTTP/1.0GET http://www.di.unito.it:8887/index.html HTTP/1.0

This will request the information contained in the referenced
URI. This will be returned in the server’s response HTTP
message. A port number of 8887 is used, and “index.html”
is the path to a server file.

F. Bergadano 5.1.15

Request - Post example

POST http://www.di.unito.it/cgi/test HTTP/1.0POST http://www.di.unito.it/cgi/test HTTP/1.0
Content-Length:33Content-Length:33
name=user21&phone+number=2123198name=user21&phone+number=2123198

This will send the entity information (3rd line) to the
“test” program on the server, as indicated in the
URI. The EntityHdr must be present and must
contain the length of the EntityBody in bytes.

F. Bergadano 5.1.16

Response

Version Status-Code Reason-Phrase CRLF
GeneralHdr ResponseHdr EntityHdr CRLF
EntityBody

Current Version is HTTP/1.1HTTP/1.1
Status-Code is 3 digits
Reason-Phrase is a comment to Status-Code

F. Bergadano 5.1.17

Response Status-Code

Success Redirection
200200 okok 301301 moved permanentlymoved permanently
201201 createdcreated 302302 moved temporarilymoved temporarily
202202 acceptedaccepted 304304 not modifiednot modified
204204 no contentno content

Client error Server error
400400 bad requestbad request 500500 internal server errorinternal server error
401401 unauthorizedunauthorized 501501 not implementednot implemented
403403 forbiddenforbidden 502502 bad gatewaybad gateway
404404 not foundnot found 503503 service unavailableservice unavailable

F. Bergadano 5.1.18

Response example

HTTP/1.0 200HTTP/1.0 200
Content-Length:232 Content-Length:232
Content-Type:text/htmlContent-Type:text/html
<HTML> … </HTML><HTML> … </HTML>

An HTML page is returned from the
server in this HTTP response message

F. Bergadano 5.1.19

Headers

First-line CRLF
GeneralHdr RHdr EntityHdr CRLF
Body

General Header
Response Header

 Request Header
 Entity Header

F. Bergadano 5.1.20

General Header

Date:weekday, day-month-year time GMTDate:weekday, day-month-year time GMT
(e.g. Date:Mon, 24 Nov 1997 12:22:59 GMT)

Pragma:no-cache Pragma:no-cache
(proxies must forward the request, even when

chached information is available)

F. Bergadano 5.1.21

Request Header

Authorization:credentials Authorization:credentials (retry after a 401 status)

If-Modified-Since:date If-Modified-Since:date (just return a 304 status if not)

Referer:URI Referer:URI (“previous” URI)

User-Agent:client-software User-Agent:client-software (e.g., Netscape, Lynx)

F. Bergadano 5.1.22

Response Header

Location:absolute-URI Location:absolute-URI (for redirection)

Server:server-software Server:server-software (e.g., Apache, NCSA, etc.)

WWW-Authenticate:challengesWWW-Authenticate:challenges
must be included in a response with a 401 (unauthorized)
status-code, the challenges select possible authentication
schemes.

F. Bergadano 5.1.23

Entity Header

Content-Encoding:coding Content-Encoding:coding (e.g. x-gzip, x-compress)

Content-Type:type/subtypeContent-Type:type/subtype (e.g. text/html)

Content-Length:NContent-Length:N number of bytes in the Body

Expires: date Expires: date (do not cache when expired)

Last-Modified: dateLast-Modified: date

F. Bergadano 5.1.24

MIME

Multipurpose Internet Mail ExtensionsMultipurpose Internet Mail Extensions

Tipo/SottotipoTipo/Sottotipo

es.es.
text/html, text/plain, image/gif, text/html, text/plain, image/gif,

application/mswordapplication/msword

F. Bergadano 5.1.25

Basic Authentication - I

The server may require authentication by
sending a response with

• an empty Entity

• a 401 (unauthorized) satus-code

• a response header of the type

 WWW-Authenticate: Basic realm=“token”WWW-Authenticate: Basic realm=“token”

F. Bergadano 5.1.26

Basic Authentication - II

Either as a consequence of a 401 status, or by
its own initiative, the client may provide
authentication by including the header

Authorization: Basic basic-cookieAuthorization: Basic basic-cookie

where basic-cookie is a base64 encoding of a
userid:password pair.

F. Bergadano 5.1.27

Basic Authentication - III

If the userid-password is valid for the realm
requested in the WWW-Authenticate
header, the server will respond with the
entity body.

If not, an empty body and a 403 (forbidden)
status code is returned.

F. Bergadano 5.1.28

Basic Authentication - IV

On Unix servers, authentication is requested
for all resources in server directories
containing a file named “.htaccess”, where
access restricions for specific userids are
listed.

Passwords are encrypted and saved in a
separate file.

F. Bergadano 5.1.29

Basic Authentication - V

The basic authentication scheme is insecure
on normal HTTP servers, because the
userid-password basic cookie may be read
while in transit and re-used later.

The scheme is valid when a secure transport
layer is in place, as it is the case with SSL
servers, because HTTP traffic is encrypted.

F. Bergadano 5.1.30

The common gateway interface (CGI)

An HTTP server may behave as a gateway
under the common CGI scheme:

The client request is first processed by the server;
Then the request entity body and some header

information is passed to an executable program,
corresponding to the request URI;

This program’s output is returned to the client
as an HTTP response.

F. Bergadano 5.1.31

CGIs with a method of “GET”

The request must be of the type

GET http://host/cgi/program?query HTTP/1.0GET http://host/cgi/program?query HTTP/1.0

where “program” is executable, and query is additional
information from the client, a string of characters.

HTTP servers will normally pass queryquery to programprogram in a
null-terminated environment variable called
QUERY_STRINGQUERY_STRING. The program’s output will be
returned to the client “as is”, preceded by a normal
response status-line.

F. Bergadano 5.1.32

CGIs with a method of “POST”
The request must be of the type
POST http://host/cgi/program HTTP/1.0POST http://host/cgi/program HTTP/1.0
Content-Length:NContent-Length:N
Entity-BodyEntity-Body

HTTP servers will normally pass Entity-BodyEntity-Body to programprogram
in its standard input, and NN in an environment variable
called CONTENT-LENGTHCONTENT-LENGTH. The program’s output
will be returned to the client “as is”, preceded by a
normal response status-line.

F. Bergadano 5.1.33

Using CGIs from a Browser

• A normal request, with the CGI program in
the URI’s path, and additional information
in the URI’s query (server-side information
may be computed at the time of the request -
see cgip.c)

• A request (either POST or GET) prepared
by the Browser on the basis of FORM input.

F. Bergadano 5.1.34

CGIs and WWW forms (General)

User input to WWW forms comes as a list of
name/value pairs (see formtut.html).

The Browser will “URL-encode” such information:
spaces are changed to ++, special characters are
turned to the three characters %xx%xx with xx being
the hexadecimal ASCII codes

The name/value pairs are turned into a string such as
name1=value1&name2=value2&…&nameN=valueNname1=value1&name2=value2&…&nameN=valueN

F. Bergadano 5.1.35

CGIs and WWW forms (GET)

If the FORM is used with a method of GET, the
obtained string is sent as a URI query, following
the host and the path to the CGI program, in an
HTTP request also using a method of GET

The CGI program will obtain the string with the
URL-encoded name/value pairs in the QUERY-
STRING environment variable. The last character
in the string is a 0, content length is not needed.

F. Bergadano 5.1.36

CGIs and WWW forms (POST)

If the FORM is used with a method of POST, the
obtained string is sent as the request’s entity body,
with a corresponding Content-Length header.

The CGI program will obtain the string with the
URL-encoded name/value pairs in its standard
input. A null-character is not appended to the
string, and content length is needed.

F. Bergadano 5.1.37

CGIs and WWW forms (decoding)

The CGI programs will then need to URL-decode the
user input, and, in the case of forms, split it into
separate name/value pairs.

The output must include possible content-type headers,
and an entity body that will be returned in the
server’s response.

See post_query.c, query.c, util.c

F. Bergadano 5.1.38

Keep-alive / HTTP/1.1

 one TCP/connection for many HTTP requests

-> performance

F. Bergadano 5.1.39

Cookies

HTTP/1.1 302 Object moved
Location: /redazione/default.asp
Content-Type: text/html
Set-Cookie:
ASPSESSIONIDGGQQGHFF=GIIJAMHCHKAPAFPDKIPBMOJD;
path=/

<head><title>Object moved</title></head>
<body><h1>Object Moved</h1>
</body>

F. Bergadano 5.1.40

LOG dei server HTTP

213.140.17.110 - -
[02/Dec/2004:17:42:56 +0100]
"GET /favicon.ico HTTP/1.1" 200 3262

Referer
Date
Indirizzi IP
Cookies

-> Web analytics / Web mining: tracciare l’utente, capire qual è
la entry page, la exit page, durata delle visite, contare il numero
di visitatori.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

