
Accelerated Computing

GPU Teaching Kit

Privatization Technique for Improved Throughput
Module 7.5 – Parallel Computation Patterns (Histogram)

2

Objective
– Learn to write a high performance kernel by privatizing outputs

– Privatization as a technique for reducing latency, increasing
throughput, and reducing serialization

– A high performance privatized histogram kernel
– Practical example of using shared memory and L2 cache atomic

operations

2

3

Privatization

Final
Copy

…Block 0 Block 1 Block N

Atomic Updates

Copy 0 Copy 1

Final
Copy

Copy N…

Block 0 Block 1 Block N…

Heavy contention and
serialization

4

Privatization (cont.)

Final
Copy

…Block 0 Block 1 Block N

Atomic Updates

Copy 0 Copy 1

Final
Copy

Copy N…

Block 0 Block 1 Block N…

Much less contention and
serialization

5

Privatization (cont.)

Final
Copy

…Block 0 Block 1 Block N

Atomic Updates

Copy 0 Copy 1

Final
Copy

Copy N…

Block 0 Block 1 Block N…

Much less contention
and serialization

6

Cost and Benefit of Privatization
– Cost

– Overhead for creating and initializing private copies
– Overhead for accumulating the contents of private copies into the final copy

– Benefit
– Much less contention and serialization in accessing both the private copies and the

final copy
– The overall performance can often be improved more than 10x

7

Shared Memory Atomics for Histogram
– Each subset of threads are in the same block
– Much higher throughput than DRAM (100x) or L2 (10x) atomics
– Less contention – only threads in the same block can access a

shared memory variable
– This is a very important use case for shared memory!

8

Shared Memory Atomics Requires Privatization

– Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,
long size, unsigned int *histo)

{
__shared__ unsigned int histo_private[7];

8

9

Shared Memory Atomics Requires Privatization

– Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,
long size, unsigned int *histo)

{
__shared__ unsigned int histo_private[7];

if (threadIdx.x < 7) histo_private[threadidx.x] = 0;
__syncthreads();

9

Initialize the bin counters in
the private copies of histo[]

10

Build Private Histogram

int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads

int stride = blockDim.x * gridDim.x;
while (i < size) {

atomicAdd(&(private_histo[buffer[i]/4), 1);
i += stride;

}

10

11

Build Final Histogram
// wait for all other threads in the block to finish
__syncthreads();

if (threadIdx.x < 7) {
atomicAdd(&(histo[threadIdx.x]), private_histo[threadIdx.x]);

}

}

11

12

More on Privatization
– Privatization is a powerful and frequently used technique for

parallelizing applications

– The operation needs to be associative and commutative
– Histogram add operation is associative and commutative
– No privatization if the operation does not fit the requirement

– The private histogram size needs to be small
– Fits into shared memory

– What if the histogram is too large to privatize?
– Sometimes one can partially privatize an output histogram and use range

testing to go to either global memory or shared memory

12

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 7.5 – Parallel Computation Patterns (Histogram)
	Objective
	Privatization
	Privatization (cont.)
	Privatization (cont.)
	Cost and Benefit of Privatization
	Shared Memory Atomics for Histogram
	Shared Memory Atomics Requires Privatization
	Shared Memory Atomics Requires Privatization
	Build Private Histogram
	Build Final Histogram
	More on Privatization
	Slide Number 13

