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Objective
– Learn to write a high performance kernel by privatizing outputs

– Privatization as a technique for reducing latency, increasing 
throughput, and reducing serialization

– A high performance privatized histogram kernel 
– Practical example of using shared memory and L2 cache atomic 

operations

2



3

Privatization

Final 
Copy

…Block 0 Block 1 Block N

Atomic Updates

Copy 0 Copy 1

Final 
Copy

Copy N…

Block 0 Block 1 Block N…

Heavy contention and 
serialization



4

Privatization (cont.)
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Privatization (cont.)
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Cost and Benefit of Privatization
– Cost

– Overhead for creating and initializing private copies
– Overhead for accumulating the contents of private copies into the final copy

– Benefit
– Much less contention and serialization in accessing both the private copies and the 

final copy
– The overall performance can often be improved more than 10x
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Shared Memory Atomics for Histogram 
– Each subset of threads are in the same block
– Much higher throughput than DRAM (100x) or L2 (10x) atomics
– Less contention – only threads in the same block can access a 

shared memory variable
– This is a very important use case for shared memory!



8

Shared Memory Atomics Requires Privatization

– Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,
long size, unsigned int *histo) 

{
__shared__ unsigned int histo_private[7];
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Shared Memory Atomics Requires Privatization

– Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,
long size, unsigned int *histo) 

{
__shared__ unsigned int histo_private[7];

if (threadIdx.x < 7) histo_private[threadidx.x] = 0;
__syncthreads();
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Initialize the bin counters in 
the private copies of histo[] 
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Build Private Histogram

int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads

int stride = blockDim.x * gridDim.x;
while (i < size) {

atomicAdd( &(private_histo[buffer[i]/4), 1);
i += stride;

}
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Build Final Histogram
// wait for all other threads in the block to finish
__syncthreads();

if (threadIdx.x < 7) {
atomicAdd(&(histo[threadIdx.x]), private_histo[threadIdx.x] );

}

}
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More on Privatization
– Privatization is a powerful and frequently used technique for 

parallelizing applications

– The operation needs to be associative and commutative
– Histogram add operation is associative and commutative
– No privatization if the operation does not fit the requirement

– The private histogram size needs to be small
– Fits into shared memory

– What if the histogram is too large to privatize?
– Sometimes one can partially privatize an output histogram and use range 

testing to go to either global memory or shared memory
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