
Translation Verification of the pattern matching
compiler

Francesco Mecca

1 Introduction

This dissertation presents an algorithm for the translation validation of the
OCaml pattern matching compiler. Given a source program and its compiled
version the algorithm checks whether the two are equivalent or produce a
counter example in case of a mismatch. For the prototype of this algorithm
we have chosen a subset of the OCaml language and implemented a prototype
equivalence checker along with a formal statement of correctness and its
proof. The prototype is to be included in the OCaml compiler infrastructure
and will aid the development.

Our equivalence algorithm works with decision trees. Source patterns
are converted into a decision tree using a matrix decomposition algorithm.
Target programs, described in the Lambda intermediate representation lan-
guage of the OCaml compiler, are turned into decision trees by applying
symbolic execution.

A pattern matching compiler turns a series of pattern matching clauses
into simple control flow structures such as if, switch, for example:

match x with
| [] -> (0, None)
| x::[] -> (1, Some x)
| _::y::_ -> (2, Some y)

(if scrutinee
(let (field_1 =a (field 1 scrutinee))

(if field_1
(let

(field_1_1 =a (field 1 field_1)
x =a (field 0 field_1))
(makeblock 0 2 (makeblock 0 x)))

(let (y =a (field 0 scrutinee))

1



(makeblock 0 1 (makeblock 0 y)))))
[0: 0 0a])

The code on the right is in the Lambda intermediate representation of the
OCaml compiler. The Lambda representation of a program is shown by
calling the ocamlc compiler with -drawlambda flag.

The OCaml pattern matching compiler is a critical part of the OCaml
compiler in terms of correctness because bugs typically would result in wrong
code production rather than triggering compilation failures. Such bugs also
are hard to catch by testing because they arise in corner cases of complex
patterns which are typically not in the compiler test suite or most user
programs.

The OCaml core developers group considered evolving the pattern match-
ing compiler, either by using a new algorithm or by incremental refactoring of
its code base. For this reason we want to verify that new implementations of
the compiler avoid the introduction of new bugs and that such modifications
don’t result in a different behavior than the current one.

One possible approach is to formally verify the pattern matching com-
piler implementation using a machine checked proof. Another possibility,
albeit with a weaker result, is to verify that each source program and tar-
get program pair are semantically correct. We chose the latter technique,
translation validation because is easier to adopt in the case of a production
compiler and to integrate with an existing code base. The compiler is treated
as a black-box and proof only depends on our equivalence algorithm.

1.1 Our approach

%% replace common TODO Our algorithm translates both source and target
programs into a common representation, decision trees. Decision trees where
chosen because they model the space of possible values at a given branch of
execution. Here are the decision trees for the source and target example
program.

2



Switch(Root)
/ \

(= []) (= ::)
/ \

Leaf Switch(Root.1)
(0, None) / \

(= []) (= ::)
/ \

Leaf Leaf
[x = Root.0] [y = Root.1.0]
(1, Some x) (2, Some y)

Switch(Root)
/ \

(= int 0) (!= int 0)
/ \

Leaf Switch(Root.1)
(makeblock 0 / \

0 0a) / \
(= int 0) (!= int 0)
/ \

Leaf Leaf
[x = Root.0] [y = Root.1.0]
(makeblock 0 (makeblock 0

1 (makeblock 0 x)) 2 (makeblock 0 y))
(Root.0) is called an accessor, that represents the access path to a value

that can be reached by deconstructing the scrutinee. In this example Root.0
is the first subvalue of the scrutinee.

Target decision trees have a similar shape but the tests on the branches
are related to the low level representation of values in Lambda code. For
example, cons cells x::xs or tuples (x,y) are blocks with tag 0.

To check the equivalence of a source and a target decision tree, we proceed
by case analysis. If we have two terminals, such as leaves in the previous
example, we check that the two right-hand-sides are equivalent. If we have a
node N and another tree T we check equivalence for each child of N , which
is a pair of a branch condition πi and a subtree Ci. For every child (πi, Ci)
we reduce T by killing all the branches that are incompatible with πi and
check that the reduced tree is equivalent to Ci.

1.2 From source programs to decision trees

Our source language supports integers, lists, tuples and all algebraic datatypes.
Patterns support wildcards, constructors and literals, or-patterns (p1|p2) and
pattern variables. We also support when guards, which are interesting as they
introduce the evaluation of expressions during matching. Decision trees have
nodes of the form:

type decision_tree =
| Unreachable
| Failure
| Leaf of source_expr
| Guard of source_expr * decision_tree * decision_tree
| Switch of accessor * (constructor * decision_tree) list * decision_tree

3



In the Switch node we have one subtree for every head constructor that
appears in the pattern matching clauses and a fallback case for other values.
The branch condition πi expresses that the value at the switch accessor starts
with the given constructor. Failure nodes express match failures for values
that are not matched by the source clauses. Unreachable is used when we
statically know that no value can flow to that subtree.

We write JtSKS for the decision tree of the source program tS , computed
by a matrix decomposition algorithm (each column decomposition step gives
a Switch node). It satisfies the following correctness statement:

∀tS ,∀vS , tS(vS) = JtSKS(vS)

Running any source value vS against the source program gives the same
result as running it against the decision tree.

1.3 From target programs to decision trees

The target programs include the following Lambda constructs: let, if,
switch, Match_failure, catch, exit, field and various comparison op-
erations, guards. The symbolic execution engine traverses the target program
and builds an environment that maps variables to accessors. It branches at
every control flow statement and emits a Switch node. The branch condition
πi is expressed as an interval set of possible values at that point. In compar-
ison with the source decision trees, Unreachable nodes are never emitted.
Guards result in branching. In comparison with the source decision trees,
Unreachable nodes are never emitted.

We write JtT KT for the decision tree of the target program tT , satisfying
the following correctness statement:

∀tT , ∀vT , tT (vT ) = JtT KT (vT )

1.4 Equivalence checking

The equivalence checking algorithm takes as input a domain of possible val-
ues S and a pair of source and target decision trees and in case the two trees
are not equivalent it returns a counter example. The algorithm respects the
following correctness statement:

equiv(S,CS , CT ) = Yes ∧ CT covers S =⇒ ∀vS ≈ vT ∈ S, CS(vS) = CT (vT )

equiv(S,CS , CT ) = No(vS , vT ) ∧ CT covers S =⇒ vS ≈ vT ∈ S ∧ CS(vS) 6= CT (vT )

4



The algorithm proceeds by case analysis. Inference rules are shown. If S
is empty the results is Yes.

equiv(∅, CS , CT )G

If the two decision trees are both terminal nodes the algorithm checks
for content equality.

equiv(S,Failure,Failure)[]

tS ≈term tT

equiv(S, Leaf(tS), Leaf(tT ))[]

If the source decision tree (left hand side) is a terminal while the target
decistion tree (right hand side) is not, the algorithm proceeds by explosion
of the right hand side. Explosion means that every child of the right hand
side is tested for equality against the left hand side.

CS ∈ Leaf(t),Failure

∀i, equiv((S ∧ a ∈ Di), CS , Ci)G equiv((S ∧ a /∈ (Di)
i), CS , Cfb)G

equiv(S,CS ,Switch(a, (Di)
iCi, Cfb))G

When the left hand side is not a terminal, the algorithm explodes the
left hand side while trimming every right hand side subtree. Trimming a left
hand side tree on an interval set domS computed from the right hand side
tree constructor means mapping every branch condition domT (interval set
of possible values) on the left to the intersection of domT and domS when the
accessors on both side are equal, and removing the branches that result in
an empty intersection. If the accessors are different, domT is left unchanged.

∀i, equiv((S ∧ a = Ki), Ci, trim(CT , a = Ki))G

equiv((S ∧ a /∈ (Ki)
i), Cfb, trim(CT , a /∈ (Ki)

i))G

equiv(S, Switch(a, (Ki, Ci)
i, Cfb), CT )G

The equivalence checking algorithm deals with guards by storing a queue.
A guard blackbox is pushed to the queue whenever the algorithm encounters
a Guard node on the right, while it pops a blackbox from the queue whenever
a Guard node appears on the left hand side. The algorithm stops with failure

5



if the popped blackbox and the and blackbox on the left hand Guard node
are different, otherwise in continues by exploding to two subtrees, one in
which the guard condition evaluates to true, the other when it evaluates to
false. Termination of the algorithm is successful only when the guards queue
is empty.

equiv(S,C0, CT )G, (tS = 0) equiv(S,C1, CT )G, (tS = 1)

equiv(S,Guard(tS , C0, C1), CT )G

tS ≈term tT equiv(S,CS , Cb)G

equiv(S,CS ,Guard(tT , C0, C1))(tS = b), G

2 Background

2.1 OCaml

Objective Caml (OCaml) is a dialect of the ML (Meta-Language) family
of programming that features with other dialects of ML, such as SML and
Caml Light. The main features of ML languages are the use of the Hindley-
Milner type system that provides many advantages with respect to static
type systems of traditional imperative and object oriented language such as
C, C++ and Java, such as:

• Polymorphism: in certain scenarios a function can accept more than
one type for the input parameters. For example a function that com-
putes the length of a list doesn’t need to inspect the type of the ele-
ments of the list and for this reason a List.length function can accept
lists of integers, lists of strings and in general lists of any type. Such
languages offer polymorphic functions through subtyping at runtime
only, while other languages such as C++ offer polymorphism through
compile time templates and function overloading. With the Hindley-
Milner type system each well typed function can have more than one
type but always has a unique best type, called the principal type. For
example the principal type of the List.length function is "For any a,
function from list of a to int" and a is called the type parameter.

• Strong typing: Languages such as C and C++ allow the programmer to
operate on data without considering its type, mainly through pointers.
Other languages such as C# and Go allow type erasure so at runtime
the type of the data can’t be queried. In the case of programming

6



languages using an Hindley-Milner type system the programmer is not
allowed to operate on data by ignoring or promoting its type.

• Type Inference: the principal type of a well formed term can be inferred
without any annotation or declaration.

• Algebraic data types: types that are modeled by the use of two alge-
braic operations, sum and product. A sum type is a type that can hold
of many different types of objects, but only one at a time. For example
the sum type defined as A + B can hold at any moment a value of
type A or a value of type B. Sum types are also called tagged union
or variants. A product type is a type constructed as a direct product
of multiple types and contains at any moment one instance for every
type of its operands. Product types are also called tuples or records.
Algebraic data types can be recursive in their definition and can be
combined.

Moreover ML languages are functional, meaning that functions are treated as
first class citizens and variables are immutable, although mutable statements
and imperative constructs are permitted. In addition to that features an
object system, that provides inheritance, subtyping and dynamic binding,
and modules, that provide a way to encapsulate definitions. Modules are
checked statically and can be reifycated through functors.

2.2 Compiling OCaml code

The OCaml compiler provides compilation of source files in form of a byte-
code executable with an optionally embeddable interpreter or as a native
executable that could be statically linked to provide a single file executable.
Every source file is treated as a separate compilation unit that is advanced
through different states. The first stage of compilation is the parsing of the
input code that is trasformed into an untyped syntax tree. Code with syntax
errors is rejected at this stage. After that the AST is processed by the type
checker that performs three steps at once:

• type inference, using the classical Algorithm W

• perform subtyping and gathers type information from the module sys-
tem

• ensures that the code obeys the rule of the OCaml type system

7



At this stage, incorrectly typed code is rejected. In case of success, the
untyped AST in trasformed into a Typed Tree. After the typechecker has
proven that the program is type safe, the compiler lower the code to Lambda,
an s-expression based language that assumes that its input has already been
proved safe. After the Lambda pass, the Lambda code is either translated
into bytecode or goes through a series of optimization steps performed by
the Flambda optimizer before being translated into assembly.

This is an overview of the different compiler steps.

8



9



2.3 Memory representation of OCaml values

An usual OCaml source program contains few to none explicit type signa-
tures. This is possible because of type inference that allows to annotate the
AST with type informations. However, since the OCaml typechecker guar-
antes that a program is well typed before being transformed into Lambda
code, values at runtime contains only a minimal subset of type informations
needed to distinguish polymorphic values. For runtime values, OCaml uses
a uniform memory representation in which every variable is stored as a value
in a contiguous block of memory. Every value is a single word that is either
a concrete integer or a pointer to another block of memory, that is called cell
or box. We can abstract the type of OCaml runtime values as the following:

type t = Constant | Cell of int * t

where a one bit tag is used to distinguish between Constant or Cell. In
particular this bit of metadata is stored as the lowest bit of a memory block.

Given that all the OCaml target architectures guarantee that all pointers
are divisible by four and that means that two lowest bits are always 00 storing
this bit of metadata at the lowest bit allows an optimization. Constant
values in OCaml, such as integers, empty lists, Unit values and constructors
of arity zero (constant constructors) are unboxed at runtime while pointers
are recognized by the lowest bit set to 0.

2.4 Lambda form compilation

A Lambda code target file is produced by the compiler and consists of a
single s-expression. Every s-expression consist of (, a sequence of elements
separated by a whitespace and a closing ). Elements of s-expressions are:

• Atoms: sequences of ascii letters, digits or symbols

• Variables

• Strings: enclosed in double quotes and possibly escaped

• S-expressions: allowing arbitrary nesting

The Lambda form is a key stage where the compiler discards type infor-
mations and maps the original source code to the runtime memory model
described. In this stage of the compiler pipeline pattern match statements
are analyzed and compiled into an automata.

10



type t = | Foo | Bar | Baz | Fred

let test = function
| Foo -> "foo"
| Bar -> "bar"
| Baz -> "baz"
| Fred -> "fred"

The Lambda output for this code can be obtained by running the compiler
with the -dlambda flag:

(setglobal Prova!
(let

(test/85 =
(function param/86

(switch* param/86
case int 0: "foo"
case int 1: "bar"
case int 2: "baz"
case int 3: "fred")))

(makeblock 0 test/85)))

As outlined by the example, themakeblock directive is responsible for allocat-
ing low level OCaml values and every constant constructor ot the algebraic
type t is stored in memory as an integer. The setglobal directives declares
a new binding in the global scope: Every concept of modules is lost at this
stage of compilation. The pattern matching compiler uses a jump table to
map every pattern matching clauses to its target expression. Values are
addressed by a unique name.

type t = | English of p | French of q
type p = | Foo | Bar
type q = | Tata| Titi
type t = | English of p | French of q

let test = function
| English Foo -> "foo"
| English Bar -> "bar"
| French Tata -> "baz"
| French Titi -> "fred"

In the case of types with a smaller number of variants, the pattern matching
compiler may avoid the overhead of computing a jump table. This example

11



also highlights the fact that non constant constructor are mapped to cons
cell that are accessed using the tag directive.

(setglobal Prova!
(let

(test/89 =
(function param/90

(switch* param/90
case tag 0: (if (!= (field 0 param/90) 0) "bar" "foo")
case tag 1: (if (!= (field 0 param/90) 0) "fred" "baz"))))

(makeblock 0 test/89)))

In the Lambda language are several numeric types:

• integers: that us either 31 or 63 bit two’s complement arithmetic de-
pending on system word size, and also wrapping on overflow

• 32 bit and 64 bit integers: that use 32-bit and 64-bit two’s complement
arithmetic with wrap on overflow

• big integers: offer integers with arbitrary precision

• floats: that use IEEE754 double-precision (64-bit) arithmetic with the
addition of the literals infinity, neg_infinity and nan.

The are various numeric operations defined:

• Arithmetic operations: +, -, *, /, % (modulo), neg (unary negation)

• Bitwise operations: &, |, ˆ, «, » (zero-shifting), a» (sign extending)

• Numeric comparisons: <, >, <=, >=, ==

1. Functions

Functions are defined using the following syntax, and close over all
bindings in scope: (lambda (arg1 arg2 arg3) BODY) and are applied
using the following syntax: (apply FUNC ARG ARG ARG) Evaluation
is eager.

2. Other atoms The atom let introduces a sequence of bindings at a
smaller scope than the global one: (let BINDING BINDING BINDING
. . . BODY)

The Lambda form supports many other directives such as strinswitch
that is constructs aspecialized jump tables for string, integer range

12



comparisons and so on. These construct are explicitely undocumented
because the Lambda code intermediate language can change across
compiler releases.

2.5 Pattern matching

Pattern matching is a widely adopted mechanism to interact with ADT.
C family languages provide branching on predicates through the use of if
statements and switch statements. Pattern matching on the other hands ex-
press predicates through syntactic templates that also allow to bind on data
structures of arbitrary shapes. One common example of pattern matching
is the use of regular expressions on strings. provides pattern matching on
ADT and primitive data types. The result of a pattern matching operation
is always one of:

• this value does not match this pattern”

• this value matches this pattern, resulting the following bindings of
names to values and the jump to the expression pointed at the pattern.

type color = | Red | Blue | Green | Black | White

match color with
| Red -> print "red"
| Blue -> print "red"
| Green -> print "red"
| _ -> print "white or black"

provides tokens to express data destructoring. For example we can ex-
amine the content of a list with pattern matching

begin match list with
| [ ] -> print "empty list"
| element1 :: [ ] -> print "one element"
| (element1 :: element2) :: [ ] -> print "two elements"
| head :: tail-> print "head followed by many elements"

Parenthesized patterns, such as the third one in the previous example,
matches the same value as the pattern without parenthesis.

The same could be done with tuples

13


	Introduction
	Our approach
	From source programs to decision trees
	From target programs to decision trees
	Equivalence checking


