import array import errno import io import socket import sys from struct import Struct from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union from ..constants import MESSAGE_FLAG_MAP, MESSAGE_TYPE_MAP, MessageFlag from ..errors import InvalidMessageError from ..message import Message from ..signature import SignatureType, Variant, get_signature_tree from .constants import BIG_ENDIAN, LITTLE_ENDIAN, PROTOCOL_VERSION MESSAGE_FLAG_INTENUM = MessageFlag MAX_UNIX_FDS = 16 MAX_UNIX_FDS_SIZE = array.array("i").itemsize UNIX_FDS_CMSG_LENGTH = socket.CMSG_LEN(MAX_UNIX_FDS_SIZE) UNPACK_SYMBOL = {LITTLE_ENDIAN: "<", BIG_ENDIAN: ">"} UINT32_CAST = "I" UINT32_SIZE = 4 UINT32_DBUS_TYPE = "u" INT16_CAST = "h" INT16_SIZE = 2 INT16_DBUS_TYPE = "n" UINT16_CAST = "H" UINT16_SIZE = 2 UINT16_DBUS_TYPE = "q" SYS_IS_LITTLE_ENDIAN = sys.byteorder == "little" SYS_IS_BIG_ENDIAN = sys.byteorder == "big" DBUS_TO_CTYPE = { "y": ("B", 1), # byte INT16_DBUS_TYPE: (INT16_CAST, INT16_SIZE), # int16 UINT16_DBUS_TYPE: (UINT16_CAST, UINT16_SIZE), # uint16 "i": ("i", 4), # int32 UINT32_DBUS_TYPE: (UINT32_CAST, UINT32_SIZE), # uint32 "x": ("q", 8), # int64 "t": ("Q", 8), # uint64 "d": ("d", 8), # double "h": (UINT32_CAST, UINT32_SIZE), # uint32 } UNPACK_HEADER_LITTLE_ENDIAN = Struct("III").unpack_from UINT32_UNPACK_LITTLE_ENDIAN = Struct(f"<{UINT32_CAST}").unpack_from UINT32_UNPACK_BIG_ENDIAN = Struct(f">{UINT32_CAST}").unpack_from INT16_UNPACK_LITTLE_ENDIAN = Struct(f"<{INT16_CAST}").unpack_from INT16_UNPACK_BIG_ENDIAN = Struct(f">{INT16_CAST}").unpack_from UINT16_UNPACK_LITTLE_ENDIAN = Struct(f"<{UINT16_CAST}").unpack_from UINT16_UNPACK_BIG_ENDIAN = Struct(f">{UINT16_CAST}").unpack_from HEADER_SIGNATURE_SIZE = 16 HEADER_ARRAY_OF_STRUCT_SIGNATURE_POSITION = 12 SIGNATURE_TREE_EMPTY = get_signature_tree("") SIGNATURE_TREE_B = get_signature_tree("b") SIGNATURE_TREE_N = get_signature_tree("n") SIGNATURE_TREE_S = get_signature_tree("s") SIGNATURE_TREE_O = get_signature_tree("o") SIGNATURE_TREE_U = get_signature_tree("u") SIGNATURE_TREE_Y = get_signature_tree("y") SIGNATURE_TREE_AY = get_signature_tree("ay") SIGNATURE_TREE_AS = get_signature_tree("as") SIGNATURE_TREE_AS_TYPES_0 = SIGNATURE_TREE_AS.types[0] SIGNATURE_TREE_A_SV = get_signature_tree("a{sv}") SIGNATURE_TREE_A_SV_TYPES_0 = SIGNATURE_TREE_A_SV.types[0] SIGNATURE_TREE_AO = get_signature_tree("ao") SIGNATURE_TREE_AO_TYPES_0 = SIGNATURE_TREE_AO.types[0] SIGNATURE_TREE_OAS = get_signature_tree("oas") SIGNATURE_TREE_OAS_TYPES_1 = SIGNATURE_TREE_OAS.types[1] SIGNATURE_TREE_AY_TYPES_0 = SIGNATURE_TREE_AY.types[0] SIGNATURE_TREE_A_QV = get_signature_tree("a{qv}") SIGNATURE_TREE_A_QV_TYPES_0 = SIGNATURE_TREE_A_QV.types[0] SIGNATURE_TREE_SA_SV_AS = get_signature_tree("sa{sv}as") SIGNATURE_TREE_SA_SV_AS_TYPES_1 = SIGNATURE_TREE_SA_SV_AS.types[1] SIGNATURE_TREE_SA_SV_AS_TYPES_2 = SIGNATURE_TREE_SA_SV_AS.types[2] SIGNATURE_TREE_OA_SA_SV = get_signature_tree("oa{sa{sv}}") SIGNATURE_TREE_OA_SA_SV_TYPES_1 = SIGNATURE_TREE_OA_SA_SV.types[1] SIGNATURE_TREE_A_OA_SA_SV = get_signature_tree("a{oa{sa{sv}}}") SIGNATURE_TREE_A_OA_SA_SV_TYPES_0 = SIGNATURE_TREE_A_OA_SA_SV.types[0] TOKEN_B_AS_INT = ord("b") TOKEN_U_AS_INT = ord("u") TOKEN_Y_AS_INT = ord("y") TOKEN_A_AS_INT = ord("a") TOKEN_O_AS_INT = ord("o") TOKEN_S_AS_INT = ord("s") TOKEN_G_AS_INT = ord("g") TOKEN_N_AS_INT = ord("n") TOKEN_X_AS_INT = ord("x") TOKEN_T_AS_INT = ord("t") TOKEN_D_AS_INT = ord("d") TOKEN_Q_AS_INT = ord("q") TOKEN_V_AS_INT = ord("v") TOKEN_LEFT_CURLY_AS_INT = ord("{") TOKEN_LEFT_PAREN_AS_INT = ord("(") ARRAY = array.array SOL_SOCKET = socket.SOL_SOCKET SCM_RIGHTS = socket.SCM_RIGHTS EAGAIN = errno.EAGAIN EWOULDBLOCK = errno.EWOULDBLOCK HEADER_IDX_TO_ARG_NAME = [ "", "path", "interface", "member", "error_name", "reply_serial", "destination", "sender", "signature", "unix_fds", ] HEADER_UNIX_FDS_IDX = HEADER_IDX_TO_ARG_NAME.index("unix_fds") _SignatureType = SignatureType _int = int READER_TYPE = Callable[["Unmarshaller", SignatureType], Any] MARSHALL_STREAM_END_ERROR = BlockingIOError DEFAULT_BUFFER_SIZE = io.DEFAULT_BUFFER_SIZE def unpack_parser_factory(unpack_from: Callable, size: int) -> READER_TYPE: """Build a parser that unpacks the bytes using the given unpack_from function.""" def _unpack_from_parser(self: "Unmarshaller", signature: SignatureType) -> Any: self._pos += size + (-self._pos & (size - 1)) # align return unpack_from(self._buf, self._pos - size)[0] return _unpack_from_parser def build_simple_parsers( endian: int, ) -> Dict[str, Callable[["Unmarshaller", SignatureType], Any]]: """Build a dict of parsers for simple types.""" parsers: Dict[str, READER_TYPE] = {} for dbus_type, ctype_size in DBUS_TO_CTYPE.items(): ctype, size = ctype_size size = ctype_size[1] parsers[dbus_type] = unpack_parser_factory( Struct(f"{UNPACK_SYMBOL[endian]}{ctype}").unpack_from, size ) return parsers try: import cython except ImportError: from ._cython_compat import FAKE_CYTHON as cython # # Alignment padding is handled with the following formula below # # For any align value, the correct padding formula is: # # (align - (pos % align)) % align # # However, if align is a power of 2 (always the case here), the slow MOD # operator can be replaced by a bitwise AND: # # (align - (pos & (align - 1))) & (align - 1) # # Which can be simplified to: # # (-pos) & (align - 1) # # class Unmarshaller: """Unmarshall messages from a stream. When calling with sock and _negotiate_unix_fd False, the unmashaller must be called continuously for each new message as it will buffer the data until a complete message is available. """ __slots__ = ( "_unix_fds", "_buf", "_pos", "_stream", "_sock", "_message", "_readers", "_body_len", "_serial", "_header_len", "_message_type", "_flag", "_msg_len", "_uint32_unpack", "_int16_unpack", "_uint16_unpack", "_is_native", "_stream_reader", "_sock_reader", "_negotiate_unix_fd", "_read_complete", "_endian", ) def __init__( self, stream: Optional[io.BufferedRWPair] = None, sock: Optional[socket.socket] = None, negotiate_unix_fd: bool = True, ) -> None: self._unix_fds: List[int] = [] self._buf = bytearray() # Actual buffer self._stream = stream self._sock = sock self._message: Optional[Message] = None self._readers: Dict[str, READER_TYPE] = {} self._pos = 0 self._body_len = 0 self._serial = 0 self._header_len = 0 self._message_type = 0 self._flag = 0 self._msg_len = 0 self._is_native = 0 self._uint32_unpack: Optional[Callable] = None self._int16_unpack: Optional[Callable] = None self._uint16_unpack: Optional[Callable] = None self._stream_reader: Optional[Callable] = None self._negotiate_unix_fd = negotiate_unix_fd self._read_complete = False if stream: if isinstance(stream, io.BufferedRWPair) and hasattr(stream, "reader"): self._stream_reader = stream.reader.read # type: ignore[attr-defined] self._stream_reader = stream.read elif self._negotiate_unix_fd: self._sock_reader = self._sock.recvmsg else: self._sock_reader = self._sock.recv self._endian = 0 def _next_message(self) -> None: """Reset the unmarshaller to its initial state. Call this before processing a new message. """ self._unix_fds = [] to_clear = HEADER_SIGNATURE_SIZE + self._msg_len if len(self._buf) == to_clear: self._buf = bytearray() else: del self._buf[:to_clear] self._msg_len = 0 # used to check if we have ready the header self._read_complete = False # used to check if we have ready the message # No need to reset the unpack functions, they are set in _read_header # every time a new message is processed. @property def message(self) -> Optional[Message]: """Return the message that has been unmarshalled.""" if self._read_complete: return self._message return None def _has_another_message_in_buffer(self) -> bool: """Check if there is another message in the buffer.""" return len(self._buf) > HEADER_SIGNATURE_SIZE + self._msg_len def _read_sock_with_fds(self, pos: _int, missing_bytes: _int) -> None: """reads from the socket, storing any fds sent and handling errors from the read itself. This function is greedy and will read as much data as possible from the underlying socket. """ # This will raise BlockingIOError if there is no data to read # which we store in the MARSHALL_STREAM_END_ERROR object try: recv = self._sock_reader(missing_bytes, UNIX_FDS_CMSG_LENGTH) # type: ignore[union-attr] except OSError as e: errno = e.errno if errno == EAGAIN or errno == EWOULDBLOCK: raise MARSHALL_STREAM_END_ERROR raise msg = recv[0] ancdata = recv[1] if ancdata: for level, type_, data in ancdata: if not (level == SOL_SOCKET and type_ == SCM_RIGHTS): continue self._unix_fds.extend( ARRAY("i", data[: len(data) - (len(data) % MAX_UNIX_FDS_SIZE)]) ) if not msg: raise EOFError() self._buf += msg if len(self._buf) < pos: raise MARSHALL_STREAM_END_ERROR def _read_sock_without_fds(self, pos: _int) -> None: """reads from the socket and handling errors from the read itself. This function is greedy and will read as much data as possible from the underlying socket. """ # This will raise BlockingIOError if there is no data to read # which we store in the MARSHALL_STREAM_END_ERROR object while True: try: data = self._sock_reader(DEFAULT_BUFFER_SIZE) # type: ignore[union-attr] except OSError as e: errno = e.errno if errno == EAGAIN or errno == EWOULDBLOCK: raise MARSHALL_STREAM_END_ERROR raise if not data: raise EOFError() self._buf += data if len(self._buf) >= pos: return def _read_stream(self, pos: _int, missing_bytes: _int) -> bytes: """Read from the stream.""" data = self._stream_reader(missing_bytes) # type: ignore[misc] if data is None: raise MARSHALL_STREAM_END_ERROR if not data: raise EOFError() self._buf += data if len(self._buf) < pos: raise MARSHALL_STREAM_END_ERROR def _read_to_pos(self, pos: _int) -> None: """ Read from underlying socket into buffer. Raises BlockingIOError if there is not enough data to be read. :arg pos: The pos to read to. If not enough bytes are available in the buffer, read more from it. :returns: None """ missing_bytes = pos - len(self._buf) if missing_bytes <= 0: return if self._sock is None: self._read_stream(pos, missing_bytes) elif self._negotiate_unix_fd: self._read_sock_with_fds(pos, missing_bytes) else: self._read_sock_without_fds(pos) def read_uint32_unpack(self, type_: _SignatureType) -> int: return self._read_uint32_unpack() def _read_uint32_unpack(self) -> int: self._pos += UINT32_SIZE + (-self._pos & (UINT32_SIZE - 1)) # align if self._is_native and cython.compiled: return _cast_uint32_native( # type: ignore[name-defined] # pragma: no cover self._buf, self._pos - UINT32_SIZE ) return self._uint32_unpack(self._buf, self._pos - UINT32_SIZE)[0] # type: ignore[misc] def read_uint16_unpack(self, type_: _SignatureType) -> int: return self._read_uint16_unpack() def _read_uint16_unpack(self) -> int: self._pos += UINT16_SIZE + (-self._pos & (UINT16_SIZE - 1)) # align if self._is_native and cython.compiled: return _cast_uint16_native( # type: ignore[name-defined] # pragma: no cover self._buf, self._pos - UINT16_SIZE ) return self._uint16_unpack(self._buf, self._pos - UINT16_SIZE)[0] # type: ignore[misc] def read_int16_unpack(self, type_: _SignatureType) -> int: return self._read_int16_unpack() def _read_int16_unpack(self) -> int: self._pos += INT16_SIZE + (-self._pos & (INT16_SIZE - 1)) # align if self._is_native and cython.compiled: return _cast_int16_native( # type: ignore[name-defined] # pragma: no cover self._buf, self._pos - INT16_SIZE ) return self._int16_unpack(self._buf, self._pos - INT16_SIZE)[0] # type: ignore[misc] def read_boolean(self, type_: _SignatureType) -> bool: return self._read_boolean() def _read_boolean(self) -> bool: return bool(self._read_uint32_unpack()) def read_string_unpack(self, type_: _SignatureType) -> str: return self._read_string_unpack() def _read_string_unpack(self) -> str: """Read a string using unpack.""" self._pos += UINT32_SIZE + (-self._pos & (UINT32_SIZE - 1)) # align str_start = self._pos # read terminating '\0' byte as well (str_length + 1) if self._is_native and cython.compiled: self._pos += ( # pragma: no cover _cast_uint32_native(self._buf, str_start - UINT32_SIZE) + 1 # type: ignore[name-defined] ) else: self._pos += self._uint32_unpack(self._buf, str_start - UINT32_SIZE)[0] + 1 # type: ignore[misc] return self._buf[str_start : self._pos - 1].decode() def read_signature(self, type_: _SignatureType) -> str: return self._read_signature() def _read_signature(self) -> str: signature_len = self._buf[self._pos] # byte o = self._pos + 1 # read terminating '\0' byte as well (str_length + 1) self._pos = o + signature_len + 1 return self._buf[o : o + signature_len].decode() def read_variant(self, type_: _SignatureType) -> Variant: return self._read_variant() def _read_variant(self) -> Variant: signature = self._read_signature() token_as_int = ord(signature[0]) # verify in Variant is only useful on construction not unmarshalling if len(signature) == 1: if token_as_int == TOKEN_N_AS_INT: return Variant(SIGNATURE_TREE_N, self._read_int16_unpack(), False) if token_as_int == TOKEN_S_AS_INT: return Variant(SIGNATURE_TREE_S, self._read_string_unpack(), False) if token_as_int == TOKEN_B_AS_INT: return Variant(SIGNATURE_TREE_B, self._read_boolean(), False) if token_as_int == TOKEN_O_AS_INT: return Variant(SIGNATURE_TREE_O, self._read_string_unpack(), False) if token_as_int == TOKEN_U_AS_INT: return Variant(SIGNATURE_TREE_U, self._read_uint32_unpack(), False) if token_as_int == TOKEN_Y_AS_INT: self._pos += 1 return Variant(SIGNATURE_TREE_Y, self._buf[self._pos - 1], False) elif token_as_int == TOKEN_A_AS_INT: if signature == "ay": return Variant( SIGNATURE_TREE_AY, self.read_array(SIGNATURE_TREE_AY_TYPES_0), False ) if signature == "a{qv}": return Variant( SIGNATURE_TREE_A_QV, self.read_array(SIGNATURE_TREE_A_QV_TYPES_0), False, ) if signature == "as": return Variant( SIGNATURE_TREE_AS, self.read_array(SIGNATURE_TREE_AS_TYPES_0), False ) if signature == "a{sv}": return Variant( SIGNATURE_TREE_A_SV, self.read_array(SIGNATURE_TREE_A_SV_TYPES_0), False, ) if signature == "ao": return Variant( SIGNATURE_TREE_AO, self.read_array(SIGNATURE_TREE_AO_TYPES_0), False ) tree = get_signature_tree(signature) signature_type = tree.types[0] return Variant( tree, self._readers[signature_type.token](self, signature_type), False, ) def read_struct(self, type_: _SignatureType) -> List[Any]: self._pos += -self._pos & 7 # align 8 readers = self._readers return [ readers[child_type.token](self, child_type) for child_type in type_.children ] def read_dict_entry(self, type_: _SignatureType) -> Tuple[Any, Any]: self._pos += -self._pos & 7 # align 8 return self._readers[type_.children[0].token]( self, type_.children[0] ), self._readers[type_.children[1].token](self, type_.children[1]) def read_array(self, type_: _SignatureType) -> Iterable[Any]: self._pos += -self._pos & 3 # align 4 for the array self._pos += ( -self._pos & (UINT32_SIZE - 1) ) + UINT32_SIZE # align for the uint32 if self._is_native and cython.compiled: array_length = _cast_uint32_native( # type: ignore[name-defined] # pragma: no cover self._buf, self._pos - UINT32_SIZE ) else: array_length = self._uint32_unpack(self._buf, self._pos - UINT32_SIZE)[0] # type: ignore[misc] child_type: SignatureType = type_.children[0] token_as_int = ord(child_type.token[0]) if ( token_as_int == TOKEN_X_AS_INT or token_as_int == TOKEN_T_AS_INT or token_as_int == TOKEN_D_AS_INT or token_as_int == TOKEN_LEFT_CURLY_AS_INT or token_as_int == TOKEN_LEFT_PAREN_AS_INT ): # the first alignment is not included in the array size self._pos += -self._pos & 7 # align 8 if token_as_int == TOKEN_Y_AS_INT: self._pos += array_length return self._buf[self._pos - array_length : self._pos] if token_as_int == TOKEN_LEFT_CURLY_AS_INT: result_dict: Dict[Any, Any] = {} beginning_pos = self._pos children = child_type.children child_0 = children[0] child_1 = children[1] child_0_token_as_int = ord(child_0.token[0]) child_1_token_as_int = ord(child_1.token[0]) # Strings with variant values are the most common case # so we optimize for that by inlining the string reading # and the variant reading here if ( child_0_token_as_int == TOKEN_O_AS_INT or child_0_token_as_int == TOKEN_S_AS_INT ) and child_1_token_as_int == TOKEN_V_AS_INT: while self._pos - beginning_pos < array_length: self._pos += -self._pos & 7 # align 8 key: Union[str, int] = self._read_string_unpack() result_dict[key] = self._read_variant() elif ( child_0_token_as_int == TOKEN_Q_AS_INT and child_1_token_as_int == TOKEN_V_AS_INT ): while self._pos - beginning_pos < array_length: self._pos += -self._pos & 7 # align 8 key = self._read_uint16_unpack() result_dict[key] = self._read_variant() if ( child_0_token_as_int == TOKEN_O_AS_INT or child_0_token_as_int == TOKEN_S_AS_INT ) and child_1_token_as_int == TOKEN_A_AS_INT: while self._pos - beginning_pos < array_length: self._pos += -self._pos & 7 # align 8 key = self._read_string_unpack() result_dict[key] = self.read_array(child_1) else: reader_1 = self._readers[child_1.token] reader_0 = self._readers[child_0.token] while self._pos - beginning_pos < array_length: self._pos += -self._pos & 7 # align 8 key = reader_0(self, child_0) result_dict[key] = reader_1(self, child_1) return result_dict if array_length == 0: return [] result_list = [] beginning_pos = self._pos if token_as_int == TOKEN_O_AS_INT or token_as_int == TOKEN_S_AS_INT: while self._pos - beginning_pos < array_length: result_list.append(self._read_string_unpack()) return result_list reader = self._readers[child_type.token] while self._pos - beginning_pos < array_length: result_list.append(reader(self, child_type)) return result_list def _header_fields(self, header_length: _int) -> Dict[str, Any]: """Header fields are always a(yv).""" beginning_pos = self._pos headers = {} buf = self._buf readers = self._readers while self._pos - beginning_pos < header_length: # Now read the y (byte) of struct (yv) self._pos += (-self._pos & 7) + 1 # align 8 + 1 for 'y' byte field_0 = buf[self._pos - 1] # Now read the v (variant) of struct (yv) # first we read the signature signature_len = buf[self._pos] # byte o = self._pos + 1 self._pos += signature_len + 2 # one for the byte, one for the '\0' if field_0 == HEADER_UNIX_FDS_IDX: # defined by self._unix_fds continue token_as_int = buf[o] # Now that we have the token we can read the variant value key = HEADER_IDX_TO_ARG_NAME[field_0] # Strings and signatures are the most common types # so we inline them for performance if token_as_int == TOKEN_O_AS_INT or token_as_int == TOKEN_S_AS_INT: headers[key] = self._read_string_unpack() elif token_as_int == TOKEN_G_AS_INT: headers[key] = self._read_signature() else: token = buf[o : o + signature_len].decode() # There shouldn't be any other types in the header # but just in case, we'll read it using the slow path headers[key] = readers[token](self, get_signature_tree(token).types[0]) return headers def _read_header(self) -> None: """Read the header of the message.""" # Signature is of the header is # BYTE, BYTE, BYTE, BYTE, UINT32, UINT32, ARRAY of STRUCT of (BYTE,VARIANT) self._read_to_pos(HEADER_SIGNATURE_SIZE) buffer = self._buf endian = buffer[0] self._message_type = buffer[1] self._flag = buffer[2] protocol_version = buffer[3] if protocol_version != PROTOCOL_VERSION: raise InvalidMessageError( f"got unknown protocol version: {protocol_version}" ) if cython.compiled and ( (endian == LITTLE_ENDIAN and SYS_IS_LITTLE_ENDIAN) or (endian == BIG_ENDIAN and SYS_IS_BIG_ENDIAN) ): self._is_native = 1 # pragma: no cover self._body_len = _cast_uint32_native( # type: ignore[name-defined] # pragma: no cover buffer, 4 ) self._serial = _cast_uint32_native( # type: ignore[name-defined] # pragma: no cover buffer, 8 ) self._header_len = _cast_uint32_native( # type: ignore[name-defined] # pragma: no cover buffer, 12 ) elif endian == LITTLE_ENDIAN: ( self._body_len, self._serial, self._header_len, ) = UNPACK_HEADER_LITTLE_ENDIAN(buffer, 4) self._uint32_unpack = UINT32_UNPACK_LITTLE_ENDIAN self._int16_unpack = INT16_UNPACK_LITTLE_ENDIAN self._uint16_unpack = UINT16_UNPACK_LITTLE_ENDIAN elif endian == BIG_ENDIAN: self._body_len, self._serial, self._header_len = UNPACK_HEADER_BIG_ENDIAN( buffer, 4 ) self._uint32_unpack = UINT32_UNPACK_BIG_ENDIAN self._int16_unpack = INT16_UNPACK_BIG_ENDIAN self._uint16_unpack = UINT16_UNPACK_BIG_ENDIAN else: raise InvalidMessageError( f"Expecting endianness as the first byte, got {endian} from {buffer}" ) self._msg_len = ( self._header_len + (-self._header_len & 7) + self._body_len ) # align 8 if self._endian != endian: self._readers = self._readers_by_type[endian] self._endian = endian def _read_body(self) -> None: """Read the body of the message.""" self._read_to_pos(HEADER_SIGNATURE_SIZE + self._msg_len) self._pos = HEADER_ARRAY_OF_STRUCT_SIGNATURE_POSITION header_fields = self._header_fields(self._header_len) self._pos += -self._pos & 7 # align 8 signature = header_fields.pop("signature", "") if not self._body_len: tree = SIGNATURE_TREE_EMPTY body: List[Any] = [] else: token_as_int = ord(signature[0]) if len(signature) == 1: if token_as_int == TOKEN_O_AS_INT: tree = SIGNATURE_TREE_O body = [self._read_string_unpack()] elif token_as_int == TOKEN_S_AS_INT: tree = SIGNATURE_TREE_S body = [self._read_string_unpack()] else: tree = get_signature_tree(signature) body = [self._readers[t.token](self, t) for t in tree.types] elif token_as_int == TOKEN_S_AS_INT and signature == "sa{sv}as": tree = SIGNATURE_TREE_SA_SV_AS body = [ self._read_string_unpack(), self.read_array(SIGNATURE_TREE_SA_SV_AS_TYPES_1), self.read_array(SIGNATURE_TREE_SA_SV_AS_TYPES_2), ] elif token_as_int == TOKEN_O_AS_INT and signature == "oa{sa{sv}}": tree = SIGNATURE_TREE_OA_SA_SV body = [ self._read_string_unpack(), self.read_array(SIGNATURE_TREE_OA_SA_SV_TYPES_1), ] elif token_as_int == TOKEN_O_AS_INT and signature == "oas": tree = SIGNATURE_TREE_OAS body = [ self._read_string_unpack(), self.read_array(SIGNATURE_TREE_OAS_TYPES_1), ] elif token_as_int == TOKEN_A_AS_INT and signature == "a{oa{sa{sv}}}": tree = SIGNATURE_TREE_A_OA_SA_SV body = [self.read_array(SIGNATURE_TREE_A_OA_SA_SV_TYPES_0)] else: tree = get_signature_tree(signature) body = [self._readers[t.token](self, t) for t in tree.types] flags = MESSAGE_FLAG_MAP.get(self._flag) if flags is None: flags = MESSAGE_FLAG_INTENUM(self._flag) self._message = Message( message_type=MESSAGE_TYPE_MAP[self._message_type], flags=flags, unix_fds=self._unix_fds, signature=tree, body=body, serial=self._serial, # The D-Bus implementation already validates the message, # so we don't need to do it again. validate=False, **header_fields, ) self._read_complete = True def unmarshall(self) -> Optional[Message]: """Unmarshall the message. The underlying read function will raise BlockingIOError if the if there are not enough bytes in the buffer. This allows unmarshall to be resumed when more data comes in over the wire. """ return self._unmarshall() def _unmarshall(self) -> Optional[Message]: """Unmarshall the message. The underlying read function will raise BlockingIOError if the if there are not enough bytes in the buffer. This allows unmarshall to be resumed when more data comes in over the wire. """ if self._read_complete: self._next_message() try: if not self._msg_len: self._read_header() self._read_body() except MARSHALL_STREAM_END_ERROR: return None return self._message _complex_parsers_unpack: Dict[ str, Callable[["Unmarshaller", SignatureType], Any] ] = { "b": read_boolean, "o": read_string_unpack, "s": read_string_unpack, "g": read_signature, "a": read_array, "(": read_struct, "{": read_dict_entry, "v": read_variant, "h": read_uint32_unpack, UINT32_DBUS_TYPE: read_uint32_unpack, INT16_DBUS_TYPE: read_int16_unpack, UINT16_DBUS_TYPE: read_uint16_unpack, } _ctype_by_endian: Dict[int, Dict[str, READER_TYPE]] = { endian: build_simple_parsers(endian) for endian in (LITTLE_ENDIAN, BIG_ENDIAN) } _readers_by_type: Dict[int, Dict[str, READER_TYPE]] = { LITTLE_ENDIAN: { **_ctype_by_endian[LITTLE_ENDIAN], **_complex_parsers_unpack, }, BIG_ENDIAN: { **_ctype_by_endian[BIG_ENDIAN], **_complex_parsers_unpack, }, }