# fmt: off from __future__ import annotations import collections import inspect import itertools import re import sys import typing from collections.abc import Generator from contextlib import contextmanager from functools import cache, wraps from voluptuous import error as er from voluptuous.error import Error # fmt: on # options for extra keys PREVENT_EXTRA = 0 # any extra key not in schema will raise an error ALLOW_EXTRA = 1 # extra keys not in schema will be included in output REMOVE_EXTRA = 2 # extra keys not in schema will be excluded from output def _isnamedtuple(obj): return isinstance(obj, tuple) and hasattr(obj, '_fields') class Undefined(object): def __nonzero__(self): return False def __repr__(self): return '...' UNDEFINED = Undefined() def Self() -> None: raise er.SchemaError('"Self" should never be called') DefaultFactory = typing.Union[Undefined, typing.Callable[[], typing.Any]] def default_factory(value) -> DefaultFactory: if value is UNDEFINED or callable(value): return value return lambda: value @contextmanager def raises( exc, msg: typing.Optional[str] = None, regex: typing.Optional[re.Pattern] = None ) -> Generator[None, None, None]: try: yield except exc as e: if msg is not None: assert str(e) == msg, '%r != %r' % (str(e), msg) if regex is not None: assert re.search(regex, str(e)), '%r does not match %r' % (str(e), regex) else: raise AssertionError(f"Did not raise exception {exc.__name__}") def Extra(_) -> None: """Allow keys in the data that are not present in the schema.""" raise er.SchemaError('"Extra" should never be called') # As extra() is never called there's no way to catch references to the # deprecated object, so we just leave an alias here instead. extra = Extra primitive_types = (bool, bytes, int, str, float, complex) # fmt: off Schemable = typing.Union[ 'Schema', 'Object', collections.abc.Mapping, list, tuple, frozenset, set, bool, bytes, int, str, float, complex, type, object, dict, None, typing.Callable ] # fmt: on class Schema(object): """A validation schema. The schema is a Python tree-like structure where nodes are pattern matched against corresponding trees of values. Nodes can be values, in which case a direct comparison is used, types, in which case an isinstance() check is performed, or callables, which will validate and optionally convert the value. We can equate schemas also. For Example: >>> v = Schema({Required('a'): str}) >>> v1 = Schema({Required('a'): str}) >>> v2 = Schema({Required('b'): str}) >>> assert v == v1 >>> assert v != v2 """ _extra_to_name = { REMOVE_EXTRA: 'REMOVE_EXTRA', ALLOW_EXTRA: 'ALLOW_EXTRA', PREVENT_EXTRA: 'PREVENT_EXTRA', } def __init__( self, schema: Schemable, required: bool = False, extra: int = PREVENT_EXTRA ) -> None: """Create a new Schema. :param schema: Validation schema. See :module:`voluptuous` for details. :param required: Keys defined in the schema must be in the data. :param extra: Specify how extra keys in the data are treated: - :const:`~voluptuous.PREVENT_EXTRA`: to disallow any undefined extra keys (raise ``Invalid``). - :const:`~voluptuous.ALLOW_EXTRA`: to include undefined extra keys in the output. - :const:`~voluptuous.REMOVE_EXTRA`: to exclude undefined extra keys from the output. - Any value other than the above defaults to :const:`~voluptuous.PREVENT_EXTRA` """ self.schema: typing.Any = schema self.required = required self.extra = int(extra) # ensure the value is an integer self._compiled = self._compile(schema) @classmethod def infer(cls, data, **kwargs) -> Schema: """Create a Schema from concrete data (e.g. an API response). For example, this will take a dict like: { 'foo': 1, 'bar': { 'a': True, 'b': False }, 'baz': ['purple', 'monkey', 'dishwasher'] } And return a Schema: { 'foo': int, 'bar': { 'a': bool, 'b': bool }, 'baz': [str] } Note: only very basic inference is supported. """ def value_to_schema_type(value): if isinstance(value, dict): if len(value) == 0: return dict return {k: value_to_schema_type(v) for k, v in value.items()} if isinstance(value, list): if len(value) == 0: return list else: return [value_to_schema_type(v) for v in value] return type(value) return cls(value_to_schema_type(data), **kwargs) def __eq__(self, other): if not isinstance(other, Schema): return False return other.schema == self.schema def __ne__(self, other): return not (self == other) def __str__(self): return str(self.schema) def __repr__(self): return "" % ( self.schema, self._extra_to_name.get(self.extra, '??'), self.required, id(self), ) def __call__(self, data): """Validate data against this schema.""" try: return self._compiled([], data) except er.MultipleInvalid: raise except er.Invalid as e: raise er.MultipleInvalid([e]) # return self.validate([], self.schema, data) def _compile(self, schema): if schema is Extra: return lambda _, v: v if schema is Self: return lambda p, v: self._compiled(p, v) elif hasattr(schema, "__voluptuous_compile__"): return schema.__voluptuous_compile__(self) if isinstance(schema, Object): return self._compile_object(schema) if isinstance(schema, collections.abc.Mapping): return self._compile_dict(schema) elif isinstance(schema, list): return self._compile_list(schema) elif isinstance(schema, tuple): return self._compile_tuple(schema) elif isinstance(schema, (frozenset, set)): return self._compile_set(schema) type_ = type(schema) if inspect.isclass(schema): type_ = schema if type_ in (*primitive_types, object, type(None)) or callable(schema): return _compile_scalar(schema) raise er.SchemaError('unsupported schema data type %r' % type(schema).__name__) def _compile_mapping(self, schema, invalid_msg=None): """Create validator for given mapping.""" invalid_msg = invalid_msg or 'mapping value' # Keys that may be required all_required_keys = set( key for key in schema if key is not Extra and ( (self.required and not isinstance(key, (Optional, Remove))) or isinstance(key, Required) ) ) # Keys that may have defaults all_default_keys = set( key for key in schema if isinstance(key, Required) or isinstance(key, Optional) ) _compiled_schema = {} for skey, svalue in schema.items(): new_key = self._compile(skey) new_value = self._compile(svalue) _compiled_schema[skey] = (new_key, new_value) candidates = list(_iterate_mapping_candidates(_compiled_schema)) # After we have the list of candidates in the correct order, we want to apply some optimization so that each # key in the data being validated will be matched against the relevant schema keys only. # No point in matching against different keys additional_candidates = [] candidates_by_key = {} for skey, (ckey, cvalue) in candidates: if type(skey) in primitive_types: candidates_by_key.setdefault(skey, []).append((skey, (ckey, cvalue))) elif isinstance(skey, Marker) and type(skey.schema) in primitive_types: candidates_by_key.setdefault(skey.schema, []).append( (skey, (ckey, cvalue)) ) else: # These are wildcards such as 'int', 'str', 'Remove' and others which should be applied to all keys additional_candidates.append((skey, (ckey, cvalue))) def validate_mapping(path, iterable, out): required_keys = all_required_keys.copy() # Build a map of all provided key-value pairs. # The type(out) is used to retain ordering in case a ordered # map type is provided as input. key_value_map = type(out)() for key, value in iterable: key_value_map[key] = value # Insert default values for non-existing keys. for key in all_default_keys: if ( not isinstance(key.default, Undefined) and key.schema not in key_value_map ): # A default value has been specified for this missing # key, insert it. key_value_map[key.schema] = key.default() errors = [] for key, value in key_value_map.items(): key_path = path + [key] remove_key = False # Optimization. Validate against the matching key first, then fallback to the rest relevant_candidates = itertools.chain( candidates_by_key.get(key, []), additional_candidates ) # compare each given key/value against all compiled key/values # schema key, (compiled key, compiled value) error = None for skey, (ckey, cvalue) in relevant_candidates: try: new_key = ckey(key_path, key) except er.Invalid as e: if len(e.path) > len(key_path): raise if not error or len(e.path) > len(error.path): error = e continue # Backtracking is not performed once a key is selected, so if # the value is invalid we immediately throw an exception. exception_errors = [] # check if the key is marked for removal is_remove = new_key is Remove try: cval = cvalue(key_path, value) # include if it's not marked for removal if not is_remove: out[new_key] = cval else: remove_key = True continue except er.MultipleInvalid as e: exception_errors.extend(e.errors) except er.Invalid as e: exception_errors.append(e) if exception_errors: if is_remove or remove_key: continue for err in exception_errors: if len(err.path) <= len(key_path): err.error_type = invalid_msg errors.append(err) # If there is a validation error for a required # key, this means that the key was provided. # Discard the required key so it does not # create an additional, noisy exception. required_keys.discard(skey) break # Key and value okay, mark as found in case it was # a Required() field. required_keys.discard(skey) break else: if remove_key: # remove key continue elif self.extra == ALLOW_EXTRA: out[key] = value elif error: errors.append(error) elif self.extra != REMOVE_EXTRA: errors.append(er.Invalid('extra keys not allowed', key_path)) # else REMOVE_EXTRA: ignore the key so it's removed from output # for any required keys left that weren't found and don't have defaults: for key in required_keys: msg = ( key.msg if hasattr(key, 'msg') and key.msg else 'required key not provided' ) errors.append(er.RequiredFieldInvalid(msg, path + [key])) if errors: raise er.MultipleInvalid(errors) return out return validate_mapping def _compile_object(self, schema): """Validate an object. Has the same behavior as dictionary validator but work with object attributes. For example: >>> class Structure(object): ... def __init__(self, one=None, three=None): ... self.one = one ... self.three = three ... >>> validate = Schema(Object({'one': 'two', 'three': 'four'}, cls=Structure)) >>> with raises(er.MultipleInvalid, "not a valid value for object value @ data['one']"): ... validate(Structure(one='three')) """ base_validate = self._compile_mapping(schema, invalid_msg='object value') def validate_object(path, data): if schema.cls is not UNDEFINED and not isinstance(data, schema.cls): raise er.ObjectInvalid('expected a {0!r}'.format(schema.cls), path) iterable = _iterate_object(data) iterable = filter(lambda item: item[1] is not None, iterable) out = base_validate(path, iterable, {}) return type(data)(**out) return validate_object def _compile_dict(self, schema): """Validate a dictionary. A dictionary schema can contain a set of values, or at most one validator function/type. A dictionary schema will only validate a dictionary: >>> validate = Schema({}) >>> with raises(er.MultipleInvalid, 'expected a dictionary'): ... validate([]) An invalid dictionary value: >>> validate = Schema({'one': 'two', 'three': 'four'}) >>> with raises(er.MultipleInvalid, "not a valid value for dictionary value @ data['one']"): ... validate({'one': 'three'}) An invalid key: >>> with raises(er.MultipleInvalid, "extra keys not allowed @ data['two']"): ... validate({'two': 'three'}) Validation function, in this case the "int" type: >>> validate = Schema({'one': 'two', 'three': 'four', int: str}) Valid integer input: >>> validate({10: 'twenty'}) {10: 'twenty'} By default, a "type" in the schema (in this case "int") will be used purely to validate that the corresponding value is of that type. It will not Coerce the value: >>> with raises(er.MultipleInvalid, "extra keys not allowed @ data['10']"): ... validate({'10': 'twenty'}) Wrap them in the Coerce() function to achieve this: >>> from voluptuous import Coerce >>> validate = Schema({'one': 'two', 'three': 'four', ... Coerce(int): str}) >>> validate({'10': 'twenty'}) {10: 'twenty'} Custom message for required key >>> validate = Schema({Required('one', 'required'): 'two'}) >>> with raises(er.MultipleInvalid, "required @ data['one']"): ... validate({}) (This is to avoid unexpected surprises.) Multiple errors for nested field in a dict: >>> validate = Schema({ ... 'adict': { ... 'strfield': str, ... 'intfield': int ... } ... }) >>> try: ... validate({ ... 'adict': { ... 'strfield': 123, ... 'intfield': 'one' ... } ... }) ... except er.MultipleInvalid as e: ... print(sorted(str(i) for i in e.errors)) # doctest: +NORMALIZE_WHITESPACE ["expected int for dictionary value @ data['adict']['intfield']", "expected str for dictionary value @ data['adict']['strfield']"] """ base_validate = self._compile_mapping(schema, invalid_msg='dictionary value') groups_of_exclusion = {} groups_of_inclusion = {} for node in schema: if isinstance(node, Exclusive): g = groups_of_exclusion.setdefault(node.group_of_exclusion, []) g.append(node) elif isinstance(node, Inclusive): g = groups_of_inclusion.setdefault(node.group_of_inclusion, []) g.append(node) def validate_dict(path, data): if not isinstance(data, dict): raise er.DictInvalid('expected a dictionary', path) errors = [] for label, group in groups_of_exclusion.items(): exists = False for exclusive in group: if exclusive.schema in data: if exists: msg = ( exclusive.msg if hasattr(exclusive, 'msg') and exclusive.msg else "two or more values in the same group of exclusion '%s'" % label ) next_path = path + [VirtualPathComponent(label)] errors.append(er.ExclusiveInvalid(msg, next_path)) break exists = True if errors: raise er.MultipleInvalid(errors) for label, group in groups_of_inclusion.items(): included = [node.schema in data for node in group] if any(included) and not all(included): msg = ( "some but not all values in the same group of inclusion '%s'" % label ) for g in group: if hasattr(g, 'msg') and g.msg: msg = g.msg break next_path = path + [VirtualPathComponent(label)] errors.append(er.InclusiveInvalid(msg, next_path)) break if errors: raise er.MultipleInvalid(errors) out = data.__class__() return base_validate(path, data.items(), out) return validate_dict def _compile_sequence(self, schema, seq_type): """Validate a sequence type. This is a sequence of valid values or validators tried in order. >>> validator = Schema(['one', 'two', int]) >>> validator(['one']) ['one'] >>> with raises(er.MultipleInvalid, 'expected int @ data[0]'): ... validator([3.5]) >>> validator([1]) [1] """ _compiled = [self._compile(s) for s in schema] seq_type_name = seq_type.__name__ def validate_sequence(path, data): if not isinstance(data, seq_type): raise er.SequenceTypeInvalid('expected a %s' % seq_type_name, path) # Empty seq schema, reject any data. if not schema: if data: raise er.MultipleInvalid( [er.ValueInvalid('not a valid value', path if path else data)] ) return data out = [] invalid = None errors = [] index_path = UNDEFINED for i, value in enumerate(data): index_path = path + [i] invalid = None for validate in _compiled: try: cval = validate(index_path, value) if cval is not Remove: # do not include Remove values out.append(cval) break except er.Invalid as e: if len(e.path) > len(index_path): raise invalid = e else: errors.append(invalid) if errors: raise er.MultipleInvalid(errors) if _isnamedtuple(data): return type(data)(*out) else: return type(data)(out) return validate_sequence def _compile_tuple(self, schema): """Validate a tuple. A tuple is a sequence of valid values or validators tried in order. >>> validator = Schema(('one', 'two', int)) >>> validator(('one',)) ('one',) >>> with raises(er.MultipleInvalid, 'expected int @ data[0]'): ... validator((3.5,)) >>> validator((1,)) (1,) """ return self._compile_sequence(schema, tuple) def _compile_list(self, schema): """Validate a list. A list is a sequence of valid values or validators tried in order. >>> validator = Schema(['one', 'two', int]) >>> validator(['one']) ['one'] >>> with raises(er.MultipleInvalid, 'expected int @ data[0]'): ... validator([3.5]) >>> validator([1]) [1] """ return self._compile_sequence(schema, list) def _compile_set(self, schema): """Validate a set. A set is an unordered collection of unique elements. >>> validator = Schema({int}) >>> validator(set([42])) == set([42]) True >>> with raises(er.Invalid, 'expected a set'): ... validator(42) >>> with raises(er.MultipleInvalid, 'invalid value in set'): ... validator(set(['a'])) """ type_ = type(schema) type_name = type_.__name__ def validate_set(path, data): if not isinstance(data, type_): raise er.Invalid('expected a %s' % type_name, path) _compiled = [self._compile(s) for s in schema] errors = [] for value in data: for validate in _compiled: try: validate(path, value) break except er.Invalid: pass else: invalid = er.Invalid('invalid value in %s' % type_name, path) errors.append(invalid) if errors: raise er.MultipleInvalid(errors) return data return validate_set def extend( self, schema: Schemable, required: typing.Optional[bool] = None, extra: typing.Optional[int] = None, ) -> Schema: """Create a new `Schema` by merging this and the provided `schema`. Neither this `Schema` nor the provided `schema` are modified. The resulting `Schema` inherits the `required` and `extra` parameters of this, unless overridden. Both schemas must be dictionary-based. :param schema: dictionary to extend this `Schema` with :param required: if set, overrides `required` of this `Schema` :param extra: if set, overrides `extra` of this `Schema` """ assert isinstance(self.schema, dict) and isinstance( schema, dict ), 'Both schemas must be dictionary-based' result = self.schema.copy() # returns the key that may have been passed as an argument to Marker constructor def key_literal(key): return key.schema if isinstance(key, Marker) else key # build a map that takes the key literals to the needed objects # literal -> Required|Optional|literal result_key_map = dict((key_literal(key), key) for key in result) # for each item in the extension schema, replace duplicates # or add new keys for key, value in schema.items(): # if the key is already in the dictionary, we need to replace it # transform key to literal before checking presence if key_literal(key) in result_key_map: result_key = result_key_map[key_literal(key)] result_value = result[result_key] # if both are dictionaries, we need to extend recursively # create the new extended sub schema, then remove the old key and add the new one if isinstance(result_value, dict) and isinstance(value, dict): new_value = Schema(result_value).extend(value).schema del result[result_key] result[key] = new_value # one or the other or both are not sub-schemas, simple replacement is fine # remove old key and add new one else: del result[result_key] result[key] = value # key is new and can simply be added else: result[key] = value # recompile and send old object result_cls = type(self) result_required = required if required is not None else self.required result_extra = extra if extra is not None else self.extra return result_cls(result, required=result_required, extra=result_extra) def _compile_scalar(schema): """A scalar value. The schema can either be a value or a type. >>> _compile_scalar(int)([], 1) 1 >>> with raises(er.Invalid, 'expected float'): ... _compile_scalar(float)([], '1') Callables have >>> _compile_scalar(lambda v: float(v))([], '1') 1.0 As a convenience, ValueError's are trapped: >>> with raises(er.Invalid, 'not a valid value'): ... _compile_scalar(lambda v: float(v))([], 'a') """ if inspect.isclass(schema): def validate_instance(path, data): if isinstance(data, schema): return data else: msg = 'expected %s' % schema.__name__ raise er.TypeInvalid(msg, path) return validate_instance if callable(schema): def validate_callable(path, data): try: return schema(data) except ValueError: raise er.ValueInvalid('not a valid value', path) except er.Invalid as e: e.prepend(path) raise return validate_callable def validate_value(path, data): if data != schema: raise er.ScalarInvalid('not a valid value', path) return data return validate_value def _compile_itemsort(): '''return sort function of mappings''' def is_extra(key_): return key_ is Extra def is_remove(key_): return isinstance(key_, Remove) def is_marker(key_): return isinstance(key_, Marker) def is_type(key_): return inspect.isclass(key_) def is_callable(key_): return callable(key_) # priority list for map sorting (in order of checking) # We want Extra to match last, because it's a catch-all. On the other hand, # Remove markers should match first (since invalid values will not # raise an Error, instead the validator will check if other schemas match # the same value). priority = [ (1, is_remove), # Remove highest priority after values (2, is_marker), # then other Markers (4, is_type), # types/classes lowest before Extra (3, is_callable), # callables after markers (5, is_extra), # Extra lowest priority ] def item_priority(item_): key_ = item_[0] for i, check_ in priority: if check_(key_): return i # values have highest priorities return 0 return item_priority _sort_item = _compile_itemsort() def _iterate_mapping_candidates(schema): """Iterate over schema in a meaningful order.""" # Without this, Extra might appear first in the iterator, and fail to # validate a key even though it's a Required that has its own validation, # generating a false positive. return sorted(schema.items(), key=_sort_item) def _iterate_object(obj): """Return iterator over object attributes. Respect objects with defined __slots__. """ d = {} try: d = vars(obj) except TypeError: # maybe we have named tuple here? if hasattr(obj, '_asdict'): d = obj._asdict() for item in d.items(): yield item try: slots = obj.__slots__ except AttributeError: pass else: for key in slots: if key != '__dict__': yield (key, getattr(obj, key)) class Msg(object): """Report a user-friendly message if a schema fails to validate. >>> validate = Schema( ... Msg(['one', 'two', int], ... 'should be one of "one", "two" or an integer')) >>> with raises(er.MultipleInvalid, 'should be one of "one", "two" or an integer'): ... validate(['three']) Messages are only applied to invalid direct descendants of the schema: >>> validate = Schema(Msg([['one', 'two', int]], 'not okay!')) >>> with raises(er.MultipleInvalid, 'expected int @ data[0][0]'): ... validate([['three']]) The type which is thrown can be overridden but needs to be a subclass of Invalid >>> with raises(er.SchemaError, 'Msg can only use subclases of Invalid as custom class'): ... validate = Schema(Msg([int], 'should be int', cls=KeyError)) If you do use a subclass of Invalid, that error will be thrown (wrapped in a MultipleInvalid) >>> validate = Schema(Msg([['one', 'two', int]], 'not okay!', cls=er.RangeInvalid)) >>> try: ... validate(['three']) ... except er.MultipleInvalid as e: ... assert isinstance(e.errors[0], er.RangeInvalid) """ def __init__( self, schema: Schemable, msg: str, cls: typing.Optional[typing.Type[Error]] = None, ) -> None: if cls and not issubclass(cls, er.Invalid): raise er.SchemaError( "Msg can only use subclases of Invalid as custom class" ) self._schema = schema self.schema = Schema(schema) self.msg = msg self.cls = cls def __call__(self, v): try: return self.schema(v) except er.Invalid as e: if len(e.path) > 1: raise e else: raise (self.cls or er.Invalid)(self.msg) def __repr__(self): return 'Msg(%s, %s, cls=%s)' % (self._schema, self.msg, self.cls) class Object(dict): """Indicate that we should work with attributes, not keys.""" def __init__(self, schema: typing.Any, cls: object = UNDEFINED) -> None: self.cls = cls super(Object, self).__init__(schema) class VirtualPathComponent(str): def __str__(self): return '<' + self + '>' def __repr__(self): return self.__str__() class Marker(object): """Mark nodes for special treatment. `description` is an optional field, unused by Voluptuous itself, but can be introspected by any external tool, for example to generate schema documentation. """ __slots__ = ('schema', '_schema', 'msg', 'description', '__hash__') def __init__( self, schema_: Schemable, msg: typing.Optional[str] = None, description: typing.Any | None = None, ) -> None: self.schema: typing.Any = schema_ self._schema = Schema(schema_) self.msg = msg self.description = description self.__hash__ = cache(lambda: hash(schema_)) # type: ignore[method-assign] def __call__(self, v): try: return self._schema(v) except er.Invalid as e: if not self.msg or len(e.path) > 1: raise raise er.Invalid(self.msg) def __str__(self): return str(self.schema) def __repr__(self): return repr(self.schema) def __lt__(self, other): if isinstance(other, Marker): return self.schema < other.schema return self.schema < other def __eq__(self, other): return self.schema == other def __ne__(self, other): return not (self.schema == other) class Optional(Marker): """Mark a node in the schema as optional, and optionally provide a default >>> schema = Schema({Optional('key'): str}) >>> schema({}) {} >>> schema = Schema({Optional('key', default='value'): str}) >>> schema({}) {'key': 'value'} >>> schema = Schema({Optional('key', default=list): list}) >>> schema({}) {'key': []} If 'required' flag is set for an entire schema, optional keys aren't required >>> schema = Schema({ ... Optional('key'): str, ... 'key2': str ... }, required=True) >>> schema({'key2':'value'}) {'key2': 'value'} """ def __init__( self, schema: Schemable, msg: typing.Optional[str] = None, default: typing.Any = UNDEFINED, description: typing.Any | None = None, ) -> None: super(Optional, self).__init__(schema, msg=msg, description=description) self.default = default_factory(default) class Exclusive(Optional): """Mark a node in the schema as exclusive. Exclusive keys inherited from Optional: >>> schema = Schema({Exclusive('alpha', 'angles'): int, Exclusive('beta', 'angles'): int}) >>> schema({'alpha': 30}) {'alpha': 30} Keys inside a same group of exclusion cannot be together, it only makes sense for dictionaries: >>> with raises(er.MultipleInvalid, "two or more values in the same group of exclusion 'angles' @ data[]"): ... schema({'alpha': 30, 'beta': 45}) For example, API can provides multiple types of authentication, but only one works in the same time: >>> msg = 'Please, use only one type of authentication at the same time.' >>> schema = Schema({ ... Exclusive('classic', 'auth', msg=msg):{ ... Required('email'): str, ... Required('password'): str ... }, ... Exclusive('internal', 'auth', msg=msg):{ ... Required('secret_key'): str ... }, ... Exclusive('social', 'auth', msg=msg):{ ... Required('social_network'): str, ... Required('token'): str ... } ... }) >>> with raises(er.MultipleInvalid, "Please, use only one type of authentication at the same time. @ data[]"): ... schema({'classic': {'email': 'foo@example.com', 'password': 'bar'}, ... 'social': {'social_network': 'barfoo', 'token': 'tEMp'}}) """ def __init__( self, schema: Schemable, group_of_exclusion: str, msg: typing.Optional[str] = None, description: typing.Any | None = None, ) -> None: super(Exclusive, self).__init__(schema, msg=msg, description=description) self.group_of_exclusion = group_of_exclusion class Inclusive(Optional): """Mark a node in the schema as inclusive. Inclusive keys inherited from Optional: >>> schema = Schema({ ... Inclusive('filename', 'file'): str, ... Inclusive('mimetype', 'file'): str ... }) >>> data = {'filename': 'dog.jpg', 'mimetype': 'image/jpeg'} >>> data == schema(data) True Keys inside a same group of inclusive must exist together, it only makes sense for dictionaries: >>> with raises(er.MultipleInvalid, "some but not all values in the same group of inclusion 'file' @ data[]"): ... schema({'filename': 'dog.jpg'}) If none of the keys in the group are present, it is accepted: >>> schema({}) {} For example, API can return 'height' and 'width' together, but not separately. >>> msg = "Height and width must exist together" >>> schema = Schema({ ... Inclusive('height', 'size', msg=msg): int, ... Inclusive('width', 'size', msg=msg): int ... }) >>> with raises(er.MultipleInvalid, msg + " @ data[]"): ... schema({'height': 100}) >>> with raises(er.MultipleInvalid, msg + " @ data[]"): ... schema({'width': 100}) >>> data = {'height': 100, 'width': 100} >>> data == schema(data) True """ def __init__( self, schema: Schemable, group_of_inclusion: str, msg: typing.Optional[str] = None, description: typing.Any | None = None, default: typing.Any = UNDEFINED, ) -> None: super(Inclusive, self).__init__( schema, msg=msg, default=default, description=description ) self.group_of_inclusion = group_of_inclusion class Required(Marker): """Mark a node in the schema as being required, and optionally provide a default value. >>> schema = Schema({Required('key'): str}) >>> with raises(er.MultipleInvalid, "required key not provided @ data['key']"): ... schema({}) >>> schema = Schema({Required('key', default='value'): str}) >>> schema({}) {'key': 'value'} >>> schema = Schema({Required('key', default=list): list}) >>> schema({}) {'key': []} """ def __init__( self, schema: Schemable, msg: typing.Optional[str] = None, default: typing.Any = UNDEFINED, description: typing.Any | None = None, ) -> None: super(Required, self).__init__(schema, msg=msg, description=description) self.default = default_factory(default) class Remove(Marker): """Mark a node in the schema to be removed and excluded from the validated output. Keys that fail validation will not raise ``Invalid``. Instead, these keys will be treated as extras. >>> schema = Schema({str: int, Remove(int): str}) >>> with raises(er.MultipleInvalid, "extra keys not allowed @ data[1]"): ... schema({'keep': 1, 1: 1.0}) >>> schema({1: 'red', 'red': 1, 2: 'green'}) {'red': 1} >>> schema = Schema([int, Remove(float), Extra]) >>> schema([1, 2, 3, 4.0, 5, 6.0, '7']) [1, 2, 3, 5, '7'] """ def __init__( self, schema_: Schemable, msg: typing.Optional[str] = None, description: typing.Any | None = None, ) -> None: super().__init__(schema_, msg, description) self.__hash__ = cache(lambda: object.__hash__(self)) # type: ignore[method-assign] def __call__(self, schema: Schemable): super(Remove, self).__call__(schema) return self.__class__ def __repr__(self): return "Remove(%r)" % (self.schema,) def message( default: typing.Optional[str] = None, cls: typing.Optional[typing.Type[Error]] = None, ) -> typing.Callable: """Convenience decorator to allow functions to provide a message. Set a default message: >>> @message('not an integer') ... def isint(v): ... return int(v) >>> validate = Schema(isint()) >>> with raises(er.MultipleInvalid, 'not an integer'): ... validate('a') The message can be overridden on a per validator basis: >>> validate = Schema(isint('bad')) >>> with raises(er.MultipleInvalid, 'bad'): ... validate('a') The class thrown too: >>> class IntegerInvalid(er.Invalid): pass >>> validate = Schema(isint('bad', clsoverride=IntegerInvalid)) >>> try: ... validate('a') ... except er.MultipleInvalid as e: ... assert isinstance(e.errors[0], IntegerInvalid) """ if cls and not issubclass(cls, er.Invalid): raise er.SchemaError( "message can only use subclases of Invalid as custom class" ) def decorator(f): @wraps(f) def check(msg=None, clsoverride=None): @wraps(f) def wrapper(*args, **kwargs): try: return f(*args, **kwargs) except ValueError: raise (clsoverride or cls or er.ValueInvalid)( msg or default or 'invalid value' ) return wrapper return check return decorator def _args_to_dict(func, args): """Returns argument names as values as key-value pairs.""" if sys.version_info >= (3, 0): arg_count = func.__code__.co_argcount arg_names = func.__code__.co_varnames[:arg_count] else: arg_count = func.func_code.co_argcount arg_names = func.func_code.co_varnames[:arg_count] arg_value_list = list(args) arguments = dict( (arg_name, arg_value_list[i]) for i, arg_name in enumerate(arg_names) if i < len(arg_value_list) ) return arguments def _merge_args_with_kwargs(args_dict, kwargs_dict): """Merge args with kwargs.""" ret = args_dict.copy() ret.update(kwargs_dict) return ret def validate(*a, **kw) -> typing.Callable: """Decorator for validating arguments of a function against a given schema. Set restrictions for arguments: >>> @validate(arg1=int, arg2=int) ... def foo(arg1, arg2): ... return arg1 * arg2 Set restriction for returned value: >>> @validate(arg=int, __return__=int) ... def bar(arg1): ... return arg1 * 2 """ RETURNS_KEY = '__return__' def validate_schema_decorator(func): returns_defined = False returns = None schema_args_dict = _args_to_dict(func, a) schema_arguments = _merge_args_with_kwargs(schema_args_dict, kw) if RETURNS_KEY in schema_arguments: returns_defined = True returns = schema_arguments[RETURNS_KEY] del schema_arguments[RETURNS_KEY] input_schema = ( Schema(schema_arguments, extra=ALLOW_EXTRA) if len(schema_arguments) != 0 else lambda x: x ) output_schema = Schema(returns) if returns_defined else lambda x: x @wraps(func) def func_wrapper(*args, **kwargs): args_dict = _args_to_dict(func, args) arguments = _merge_args_with_kwargs(args_dict, kwargs) validated_arguments = input_schema(arguments) output = func(**validated_arguments) return output_schema(output) return func_wrapper return validate_schema_decorator