USB_Host_Shield_2.0/Usb.cpp

641 lines
20 KiB
C++
Raw Normal View History

2011-06-22 19:41:22 +02:00
/* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Circuits At Home, LTD
Web : http://www.circuitsathome.com
e-mail : support@circuitsathome.com
*/
2011-01-19 07:27:20 +01:00
/* USB functions */
#include "avrpins.h"
#include "max3421e.h"
#include "usbhost.h"
#include "Usb.h"
2012-01-10 20:49:42 +01:00
#if defined(ARDUINO) && ARDUINO >=100
#include "Arduino.h"
#else
#include <WProgram.h>
#endif
2011-01-19 07:27:20 +01:00
static uint8_t usb_error = 0;
static uint8_t usb_task_state;
/* constructor */
2011-04-16 07:24:10 +02:00
USB::USB () : bmHubPre(0)
2011-01-19 07:27:20 +01:00
{
usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE; //set up state machine
init();
}
2011-03-01 19:26:31 +01:00
2011-01-19 07:27:20 +01:00
/* Initialize data structures */
void USB::init()
{
2011-04-16 07:24:10 +02:00
devConfigIndex = 0;
bmHubPre = 0;
2011-01-19 07:27:20 +01:00
}
2011-03-01 19:26:31 +01:00
2011-01-19 07:27:20 +01:00
uint8_t USB::getUsbTaskState( void )
{
return( usb_task_state );
}
2011-04-16 07:24:10 +02:00
2011-01-19 07:27:20 +01:00
void USB::setUsbTaskState( uint8_t state )
{
usb_task_state = state;
}
2011-04-16 07:24:10 +02:00
EpInfo* USB::getEpInfoEntry( uint8_t addr, uint8_t ep )
2011-01-19 07:27:20 +01:00
{
2011-03-01 19:26:31 +01:00
UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
2011-04-16 07:24:10 +02:00
if (!p || !p->epinfo)
return NULL;
EpInfo *pep = p->epinfo;
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
for (uint8_t i=0; i<p->epcount; i++)
{
if ((pep)->epAddr == ep)
return pep;
pep ++;
}
2011-03-01 19:26:31 +01:00
return NULL;
2011-01-19 07:27:20 +01:00
}
2011-04-16 07:24:10 +02:00
2011-01-19 07:27:20 +01:00
/* set device table entry */
/* each device is different and has different number of endpoints. This function plugs endpoint record structure, defined in application, to devtable */
2011-04-16 07:24:10 +02:00
uint8_t USB::setEpInfoEntry( uint8_t addr, uint8_t epcount, EpInfo* eprecord_ptr )
2011-01-19 07:27:20 +01:00
{
2011-03-01 19:26:31 +01:00
if (!eprecord_ptr)
return USB_ERROR_INVALID_ARGUMENT;
UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
if (!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->address = addr;
p->epinfo = eprecord_ptr;
2011-04-16 07:24:10 +02:00
p->epcount = epcount;
2011-03-01 19:26:31 +01:00
return 0;
2011-01-19 07:27:20 +01:00
}
2011-04-16 07:24:10 +02:00
uint8_t USB::SetAddress(uint8_t addr, uint8_t ep, EpInfo **ppep, uint16_t &nak_limit)
{
UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
if (!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if (!p->epinfo)
return USB_ERROR_EPINFO_IS_NULL;
*ppep = getEpInfoEntry(addr, ep);
if (!*ppep)
return USB_ERROR_EP_NOT_FOUND_IN_TBL;
2012-01-10 20:49:42 +01:00
nak_limit = (0x0001UL << ( ( (*ppep)->bmNakPower > USB_NAK_MAX_POWER ) ? USB_NAK_MAX_POWER : (*ppep)->bmNakPower) );
nak_limit--;
/*
USBTRACE2("\r\nAddress: ", addr);
USBTRACE2(" EP: ", ep);
USBTRACE2(" NAK Power: ",(*ppep)->bmNakPower);
USBTRACE2(" NAK Limit: ", nak_limit);
USBTRACE("\r\n");
*/
2011-04-16 07:24:10 +02:00
regWr( rPERADDR, addr ); //set peripheral address
uint8_t mode = regRd( rMODE );
// Set bmLOWSPEED and bmHUBPRE in case of low-speed device, reset them otherwise
regWr( rMODE, (p->lowspeed) ? mode | bmLOWSPEED | bmHubPre : mode & ~(bmHUBPRE | bmLOWSPEED));
return 0;
}
2011-01-19 07:27:20 +01:00
/* Control transfer. Sets address, endpoint, fills control packet with necessary data, dispatches control packet, and initiates bulk IN transfer, */
/* depending on request. Actual requests are defined as inlines */
/* return codes: */
/* 00 = success */
/* 01-0f = non-zero HRSLT */
2011-04-16 07:24:10 +02:00
uint8_t USB::ctrlReq( uint8_t addr, uint8_t ep, uint8_t bmReqType, uint8_t bRequest, uint8_t wValLo, uint8_t wValHi,
2011-05-19 04:24:13 +02:00
uint16_t wInd, uint16_t total, uint16_t nbytes, uint8_t* dataptr, USBReadParser *p)
2011-01-19 07:27:20 +01:00
{
2011-03-01 19:26:31 +01:00
boolean direction = false; //request direction, IN or OUT
uint8_t rcode;
SETUP_PKT setup_pkt;
2011-04-16 07:24:10 +02:00
EpInfo *pep = NULL;
uint16_t nak_limit;
rcode = SetAddress(addr, ep, &pep, nak_limit);
if (rcode)
return rcode;
direction = (( bmReqType & 0x80 ) > 0);
2011-01-19 07:27:20 +01:00
/* fill in setup packet */
2011-04-16 07:24:10 +02:00
setup_pkt.ReqType_u.bmRequestType = bmReqType;
setup_pkt.bRequest = bRequest;
setup_pkt.wVal_u.wValueLo = wValLo;
setup_pkt.wVal_u.wValueHi = wValHi;
setup_pkt.wIndex = wInd;
setup_pkt.wLength = total;
bytesWr( rSUDFIFO, 8, (uint8_t*)&setup_pkt ); //transfer to setup packet FIFO
rcode = dispatchPkt( tokSETUP, ep, nak_limit ); //dispatch packet
if( rcode ) //return HRSLT if not zero
2011-01-19 07:27:20 +01:00
return( rcode );
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
if( dataptr != NULL ) //data stage, if present
{
if( direction ) //IN transfer
{
uint16_t left = total;
2011-03-01 19:26:31 +01:00
2011-05-19 04:24:13 +02:00
pep->bmRcvToggle = 1; //bmRCVTOG1;
2011-04-16 07:24:10 +02:00
while (left)
{
// Bytes read into buffer
2011-05-19 04:24:13 +02:00
uint16_t read = nbytes;
//uint16_t read = (left<nbytes) ? left : nbytes;
rcode = InTransfer( pep, nak_limit, &read, dataptr );
2011-06-06 15:18:31 +02:00
if (rcode)
2011-05-19 04:24:13 +02:00
return rcode;
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
// Invoke callback function if inTransfer completed successfuly and callback function pointer is specified
if (!rcode && p)
2011-05-19 04:24:13 +02:00
((USBReadParser*)p)->Parse( read, dataptr, total - left );
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
left -= read;
2011-06-06 15:18:31 +02:00
if (read < nbytes)
break;
2011-04-16 07:24:10 +02:00
}
}
else //OUT transfer
{
pep->bmSndToggle = 1; //bmSNDTOG1;
rcode = OutTransfer( pep, nak_limit, nbytes, dataptr );
}
if( rcode ) //return error
return( rcode );
2011-03-01 19:26:31 +01:00
}
2011-04-16 07:24:10 +02:00
// Status stage
return dispatchPkt( (direction) ? tokOUTHS : tokINHS, ep, nak_limit ); //GET if direction
2011-01-19 07:27:20 +01:00
}
2011-04-16 07:24:10 +02:00
2011-01-19 07:27:20 +01:00
/* IN transfer to arbitrary endpoint. Assumes PERADDR is set. Handles multiple packets if necessary. Transfers 'nbytes' bytes. */
/* Keep sending INs and writes data to memory area pointed by 'data' */
/* rcode 0 if no errors. rcode 01-0f is relayed from dispatchPkt(). Rcode f0 means RCVDAVIRQ error,
fe USB xfer timeout */
2011-05-19 04:24:13 +02:00
uint8_t USB::inTransfer( uint8_t addr, uint8_t ep, uint16_t *nbytesptr, uint8_t* data)
2011-01-19 07:27:20 +01:00
{
2011-04-16 07:24:10 +02:00
EpInfo *pep = NULL;
uint16_t nak_limit = 0;
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
uint8_t rcode = SetAddress(addr, ep, &pep, nak_limit);
2011-03-05 08:33:02 +01:00
2011-04-16 07:24:10 +02:00
if (rcode)
return rcode;
2011-03-05 08:33:02 +01:00
2011-05-19 04:24:13 +02:00
return InTransfer(pep, nak_limit, nbytesptr, data);
2011-04-16 07:24:10 +02:00
}
2011-03-05 08:33:02 +01:00
2011-05-19 04:24:13 +02:00
uint8_t USB::InTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t *nbytesptr, uint8_t* data)
2011-04-16 07:24:10 +02:00
{
2011-06-06 05:22:39 +02:00
uint8_t rcode = 0;
2011-04-16 07:24:10 +02:00
uint8_t pktsize;
2011-03-05 08:33:02 +01:00
2011-05-19 04:24:13 +02:00
uint16_t nbytes = *nbytesptr;
uint8_t maxpktsize = pep->maxPktSize;
2011-03-01 19:26:31 +01:00
2011-05-19 04:24:13 +02:00
*nbytesptr = 0;
2011-04-16 07:24:10 +02:00
regWr( rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0 ); //set toggle value
2011-03-01 19:26:31 +01:00
while( 1 ) // use a 'return' to exit this loop
{
2011-04-16 07:24:10 +02:00
rcode = dispatchPkt( tokIN, pep->epAddr, nak_limit ); //IN packet to EP-'endpoint'. Function takes care of NAKS.
2011-07-07 03:48:43 +02:00
2011-03-01 19:26:31 +01:00
if( rcode )
2011-01-19 07:27:20 +01:00
return( rcode ); //should be 0, indicating ACK. Else return error code.
2011-03-01 19:26:31 +01:00
2011-01-19 07:27:20 +01:00
/* check for RCVDAVIRQ and generate error if not present */
/* the only case when absense of RCVDAVIRQ makes sense is when toggle error occured. Need to add handling for that */
2011-06-06 05:22:39 +02:00
if(( regRd( rHIRQ ) & bmRCVDAVIRQ ) == 0 )
2011-01-19 07:27:20 +01:00
return ( 0xf0 ); //receive error
2011-06-06 05:22:39 +02:00
2011-07-01 07:09:46 +02:00
pktsize = regRd( rRCVBC ); //number of received bytes
assert(pktsize <= nbytes);
2011-06-22 19:41:22 +02:00
2011-05-19 04:24:13 +02:00
int16_t mem_left = (int16_t)nbytes - *((int16_t*)nbytesptr);
if (mem_left < 0)
mem_left = 0;
2011-06-06 15:18:31 +02:00
data = bytesRd( rRCVFIFO, ((pktsize > mem_left) ? mem_left : pktsize), data );
2011-05-19 04:24:13 +02:00
2011-01-19 07:27:20 +01:00
regWr( rHIRQ, bmRCVDAVIRQ ); // Clear the IRQ & free the buffer
2011-05-19 04:24:13 +02:00
*nbytesptr += pktsize; // add this packet's byte count to total transfer length
2011-06-06 15:18:31 +02:00
2011-01-19 07:27:20 +01:00
/* The transfer is complete under two conditions: */
/* 1. The device sent a short packet (L.T. maxPacketSize) */
/* 2. 'nbytes' have been transferred. */
2011-07-01 07:09:46 +02:00
if (( pktsize < maxpktsize ) || (*nbytesptr >= nbytes )) // have we transferred 'nbytes' bytes?
2011-06-06 15:18:31 +02:00
{
2011-04-16 07:24:10 +02:00
// Save toggle value
2011-07-01 07:09:46 +02:00
pep->bmRcvToggle = (( regRd( rHRSL ) & bmRCVTOGRD )) ? 1 : 0;
2011-03-01 19:26:31 +01:00
return( 0 );
} // if
} //while( 1 )
2011-01-19 07:27:20 +01:00
}
2011-04-16 07:24:10 +02:00
2011-06-22 19:41:22 +02:00
/* OUT transfer to arbitrary endpoint. Handles multiple packets if necessary. Transfers 'nbytes' bytes. */
2011-01-19 07:27:20 +01:00
/* Handles NAK bug per Maxim Application Note 4000 for single buffer transfer */
/* rcode 0 if no errors. rcode 01-0f is relayed from HRSL */
2011-05-19 04:24:13 +02:00
uint8_t USB::outTransfer( uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* data )
2011-01-19 07:27:20 +01:00
{
2011-04-16 07:24:10 +02:00
EpInfo *pep = NULL;
uint16_t nak_limit;
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
uint8_t rcode = SetAddress(addr, ep, &pep, nak_limit);
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
if (rcode)
return rcode;
2011-03-05 08:33:02 +01:00
2011-04-16 07:24:10 +02:00
return OutTransfer(pep, nak_limit, nbytes, data);
}
2011-03-05 08:33:02 +01:00
2011-05-19 04:24:13 +02:00
uint8_t USB::OutTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t nbytes, uint8_t *data)
2011-04-16 07:24:10 +02:00
{
uint8_t rcode, retry_count;
uint8_t *data_p = data; //local copy of the data pointer
uint16_t bytes_tosend, nak_count;
uint16_t bytes_left = nbytes;
2011-03-05 08:33:02 +01:00
2011-04-16 07:24:10 +02:00
uint8_t maxpktsize = pep->maxPktSize;
2011-01-19 07:27:20 +01:00
2011-04-16 07:24:10 +02:00
if (maxpktsize < 1 || maxpktsize > 64)
return USB_ERROR_INVALID_MAX_PKT_SIZE;
2011-01-19 07:27:20 +01:00
2011-04-16 07:24:10 +02:00
unsigned long timeout = millis() + USB_XFER_TIMEOUT;
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
regWr( rHCTL, (pep->bmSndToggle) ? bmSNDTOG1 : bmSNDTOG0 ); //set toggle value
2011-03-01 19:26:31 +01:00
while( bytes_left )
{
retry_count = 0;
nak_count = 0;
bytes_tosend = ( bytes_left >= maxpktsize ) ? maxpktsize : bytes_left;
bytesWr( rSNDFIFO, bytes_tosend, data_p ); //filling output FIFO
regWr( rSNDBC, bytes_tosend ); //set number of bytes
2011-04-16 07:24:10 +02:00
regWr( rHXFR, ( tokOUT | pep->epAddr )); //dispatch packet
2011-03-01 19:26:31 +01:00
while(!(regRd( rHIRQ ) & bmHXFRDNIRQ )); //wait for the completion IRQ
regWr( rHIRQ, bmHXFRDNIRQ ); //clear IRQ
rcode = ( regRd( rHRSL ) & 0x0f );
while( rcode && ( timeout > millis()))
{
switch( rcode )
{
case hrNAK:
2011-04-16 07:24:10 +02:00
nak_count ++;
if( nak_limit && ( nak_count == nak_limit ))
return( rcode );
2011-03-01 19:26:31 +01:00
break;
case hrTIMEOUT:
2011-04-16 07:24:10 +02:00
retry_count ++;
if( retry_count == USB_RETRY_LIMIT )
return( rcode );
2011-03-01 19:26:31 +01:00
break;
2011-04-16 07:24:10 +02:00
default:
2011-03-01 19:26:31 +01:00
return( rcode );
2011-04-16 07:24:10 +02:00
}//switch( rcode
2011-03-01 19:26:31 +01:00
/* process NAK according to Host out NAK bug */
regWr( rSNDBC, 0 );
regWr( rSNDFIFO, *data_p );
regWr( rSNDBC, bytes_tosend );
2011-04-16 07:24:10 +02:00
regWr( rHXFR, ( tokOUT | pep->epAddr )); //dispatch packet
2011-03-01 19:26:31 +01:00
while(!(regRd( rHIRQ ) & bmHXFRDNIRQ )); //wait for the completion IRQ
regWr( rHIRQ, bmHXFRDNIRQ ); //clear IRQ
rcode = ( regRd( rHRSL ) & 0x0f );
}//while( rcode && ....
bytes_left -= bytes_tosend;
data_p += bytes_tosend;
}//while( bytes_left...
2011-04-16 07:24:10 +02:00
pep->bmSndToggle = ( regRd( rHRSL ) & bmSNDTOGRD ) ? 1 : 0; //bmSNDTOG1 : bmSNDTOG0; //update toggle
2011-03-01 19:26:31 +01:00
return( rcode ); //should be 0 in all cases
2011-01-19 07:27:20 +01:00
}
/* dispatch usb packet. Assumes peripheral address is set and relevant buffer is loaded/empty */
/* If NAK, tries to re-send up to nak_limit times */
/* If nak_limit == 0, do not count NAKs, exit after timeout */
/* If bus timeout, re-sends up to USB_RETRY_LIMIT times */
/* return codes 0x00-0x0f are HRSLT( 0x00 being success ), 0xff means timeout */
2011-04-16 07:24:10 +02:00
uint8_t USB::dispatchPkt( uint8_t token, uint8_t ep, uint16_t nak_limit )
2011-01-19 07:27:20 +01:00
{
2011-04-16 07:24:10 +02:00
unsigned long timeout = millis() + USB_XFER_TIMEOUT;
uint8_t tmpdata;
uint8_t rcode;
uint8_t retry_count = 0;
uint16_t nak_count = 0;
while( timeout > millis() )
{
regWr( rHXFR, ( token|ep )); //launch the transfer
2012-01-10 20:49:42 +01:00
rcode = USB_ERROR_TRANSFER_TIMEOUT;
2011-04-16 07:24:10 +02:00
while( millis() < timeout ) //wait for transfer completion
{
tmpdata = regRd( rHIRQ );
if( tmpdata & bmHXFRDNIRQ )
{
regWr( rHIRQ, bmHXFRDNIRQ ); //clear the interrupt
rcode = 0x00;
break;
}//if( tmpdata & bmHXFRDNIRQ
}//while ( millis() < timeout
if( rcode != 0x00 ) //exit if timeout
return( rcode );
rcode = ( regRd( rHRSL ) & 0x0f ); //analyze transfer result
switch( rcode )
{
case hrNAK:
nak_count ++;
if( nak_limit && ( nak_count == nak_limit ))
return( rcode );
break;
case hrTIMEOUT:
retry_count ++;
if( retry_count == USB_RETRY_LIMIT )
return( rcode );
break;
default:
return( rcode );
}//switch( rcode
}//while( timeout > millis()
return( rcode );
2011-01-19 07:27:20 +01:00
}
2011-04-16 07:24:10 +02:00
2011-01-19 07:27:20 +01:00
/* USB main task. Performs enumeration/cleanup */
void USB::Task( void ) //USB state machine
{
2011-04-16 07:24:10 +02:00
uint8_t rcode;
uint8_t tmpdata;
static unsigned long delay = 0;
USB_DEVICE_DESCRIPTOR buf;
bool lowspeed = false;
2011-01-19 07:27:20 +01:00
2011-04-16 07:24:10 +02:00
MAX3421E::Task();
2011-01-19 07:27:20 +01:00
tmpdata = getVbusState();
2011-04-16 07:24:10 +02:00
/* modify USB task state if Vbus changed */
2011-03-01 19:26:31 +01:00
switch( tmpdata )
{
2011-01-19 07:27:20 +01:00
case SE1: //illegal state
usb_task_state = USB_DETACHED_SUBSTATE_ILLEGAL;
2011-04-16 07:24:10 +02:00
lowspeed = false;
2011-01-19 07:27:20 +01:00
break;
case SE0: //disconnected
2011-04-16 07:24:10 +02:00
if(( usb_task_state & USB_STATE_MASK ) != USB_STATE_DETACHED )
2011-01-19 07:27:20 +01:00
usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE;
2011-04-16 07:24:10 +02:00
lowspeed = false;
2011-01-19 07:27:20 +01:00
break;
case LSHOST:
2011-04-16 07:24:10 +02:00
lowspeed = true;
case FSHOST: //attached
if(( usb_task_state & USB_STATE_MASK ) == USB_STATE_DETACHED )
{
2011-01-19 07:27:20 +01:00
delay = millis() + USB_SETTLE_DELAY;
usb_task_state = USB_ATTACHED_SUBSTATE_SETTLE;
}
break;
2011-03-01 19:26:31 +01:00
}// switch( tmpdata
for (uint8_t i=0; i<USB_NUMDEVICES; i++)
if (devConfig[i])
rcode = devConfig[i]->Poll();
2011-01-19 07:27:20 +01:00
switch( usb_task_state ) {
case USB_DETACHED_SUBSTATE_INITIALIZE:
init();
2011-04-16 07:24:10 +02:00
2011-03-05 08:33:02 +01:00
for (uint8_t i=0; i<USB_NUMDEVICES; i++)
if (devConfig[i])
rcode = devConfig[i]->Release();
2011-04-16 07:24:10 +02:00
usb_task_state = USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE;
2011-01-19 07:27:20 +01:00
break;
case USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE: //just sit here
break;
case USB_DETACHED_SUBSTATE_ILLEGAL: //just sit here
break;
case USB_ATTACHED_SUBSTATE_SETTLE: //setlle time for just attached device
2011-04-16 07:24:10 +02:00
if( delay < millis() )
2011-01-19 07:27:20 +01:00
usb_task_state = USB_ATTACHED_SUBSTATE_RESET_DEVICE;
break;
case USB_ATTACHED_SUBSTATE_RESET_DEVICE:
2011-03-01 19:26:31 +01:00
regWr( rHCTL, bmBUSRST ); //issue bus reset
2011-01-19 07:27:20 +01:00
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE;
break;
case USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE:
2011-03-01 19:26:31 +01:00
if(( regRd( rHCTL ) & bmBUSRST ) == 0 )
{
2011-01-19 07:27:20 +01:00
tmpdata = regRd( rMODE ) | bmSOFKAENAB; //start SOF generation
regWr( rMODE, tmpdata );
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_SOF;
delay = millis() + 20; //20ms wait after reset per USB spec
}
break;
case USB_ATTACHED_SUBSTATE_WAIT_SOF: //todo: change check order
2011-04-16 07:24:10 +02:00
if( regRd( rHIRQ ) & bmFRAMEIRQ ) //when first SOF received we can continue
{
if( delay < millis() ) //20ms passed
usb_task_state = USB_STATE_CONFIGURING;
2011-01-19 07:27:20 +01:00
}
break;
case USB_STATE_CONFIGURING:
2011-04-16 07:24:10 +02:00
rcode = Configuring(0, 0, lowspeed);
2011-03-01 19:26:31 +01:00
if (rcode)
{
if (rcode != USB_DEV_CONFIG_ERROR_DEVICE_INIT_INCOMPLETE)
{
usb_error = rcode;
usb_task_state = USB_STATE_ERROR;
}
}
else
usb_task_state = USB_STATE_RUNNING;
2011-01-19 07:27:20 +01:00
break;
case USB_STATE_RUNNING:
break;
case USB_STATE_ERROR:
break;
2011-03-01 19:26:31 +01:00
} // switch( usb_task_state )
2011-01-19 07:27:20 +01:00
}
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
uint8_t USB::DefaultAddressing(uint8_t parent, uint8_t port, bool lowspeed)
2011-03-01 19:26:31 +01:00
{
2011-03-05 08:33:02 +01:00
uint8_t buf[12];
uint8_t rcode;
2011-04-16 07:24:10 +02:00
UsbDevice *p0 = NULL, *p = NULL;
2011-03-01 19:26:31 +01:00
2011-03-05 08:33:02 +01:00
// Get pointer to pseudo device with address 0 assigned
2011-04-16 07:24:10 +02:00
p0 = addrPool.GetUsbDevicePtr(0);
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
if (!p0)
2011-03-05 08:33:02 +01:00
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
if (!p0->epinfo)
2011-03-01 19:26:31 +01:00
return USB_ERROR_EPINFO_IS_NULL;
2011-04-16 07:24:10 +02:00
p0->lowspeed = (lowspeed) ? true : false;
2011-03-01 19:26:31 +01:00
2011-03-05 08:33:02 +01:00
// Allocate new address according to device class
2011-04-16 07:24:10 +02:00
uint8_t bAddress = addrPool.AllocAddress(parent, false, port);
2011-03-01 19:26:31 +01:00
2011-03-05 08:33:02 +01:00
if (!bAddress)
2011-03-01 19:26:31 +01:00
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
2011-04-16 07:24:10 +02:00
p = addrPool.GetUsbDevicePtr(bAddress);
if (!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed;
2011-03-05 08:33:02 +01:00
// Assign new address to the device
rcode = setAddr( 0, 0, bAddress );
2011-03-01 19:26:31 +01:00
2011-03-05 08:33:02 +01:00
if (rcode)
2011-03-01 19:26:31 +01:00
{
2011-03-05 08:33:02 +01:00
addrPool.FreeAddress(bAddress);
bAddress = 0;
2011-03-01 19:26:31 +01:00
return rcode;
}
2011-03-05 08:33:02 +01:00
return 0;
};
2011-04-16 07:24:10 +02:00
uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed)
2011-03-01 19:26:31 +01:00
{
static uint8_t dev_index = 0;
2011-03-05 08:33:02 +01:00
uint8_t rcode = 0;
2011-03-01 19:26:31 +01:00
for (; devConfigIndex<USB_NUMDEVICES; devConfigIndex++)
{
2011-03-05 08:33:02 +01:00
if (!devConfig[devConfigIndex])
continue;
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
rcode = devConfig[devConfigIndex]->Init(parent, port, lowspeed);
2011-03-01 19:26:31 +01:00
2011-03-05 08:33:02 +01:00
if (!rcode)
{
devConfigIndex = 0;
return 0;
}
if (!(rcode == USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED || rcode == USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE))
2011-03-01 19:26:31 +01:00
{
// in case of an error dev_index should be reset to 0
// in order to start from the very beginning the
// next time the program gets here
if (rcode != USB_DEV_CONFIG_ERROR_DEVICE_INIT_INCOMPLETE)
devConfigIndex = 0;
return rcode;
}
}
// if we get here that means that the device class is not supported by any of registered classes
devConfigIndex = 0;
2011-03-05 08:33:02 +01:00
2011-04-16 07:24:10 +02:00
rcode = DefaultAddressing(parent, port, lowspeed);
2011-03-05 08:33:02 +01:00
return rcode;
2011-03-01 19:26:31 +01:00
}
2011-04-16 07:24:10 +02:00
uint8_t USB::ReleaseDevice(uint8_t addr)
{
if (!addr)
return 0;
2011-03-01 19:26:31 +01:00
2011-04-16 07:24:10 +02:00
for (uint8_t i=0; i<USB_NUMDEVICES; i++)
if (devConfig[i]->GetAddress() == addr)
return devConfig[i]->Release();
}
2011-03-01 19:26:31 +01:00
2011-05-19 04:24:13 +02:00
#if 1 //!defined(USB_METHODS_INLINE)
//get device descriptor
uint8_t USB::getDevDescr( uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* dataptr )
{
return( ctrlReq( addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, 0x00, USB_DESCRIPTOR_DEVICE, 0x0000, nbytes, nbytes, dataptr, NULL ));
}
//get configuration descriptor
uint8_t USB::getConfDescr( uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t conf, uint8_t* dataptr )
{
return( ctrlReq( addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, nbytes, nbytes, dataptr, NULL ));
}
uint8_t USB::getConfDescr( uint8_t addr, uint8_t ep, uint8_t conf, USBReadParser *p )
{
const uint8_t bufSize = 64;
uint8_t buf[bufSize];
uint8_t ret = getConfDescr( addr, ep, 8, conf, buf );
if (ret)
return ret;
uint16_t total = ((USB_CONFIGURATION_DESCRIPTOR*)buf)->wTotalLength;
2011-07-07 03:48:43 +02:00
//USBTRACE2("\r\ntotal conf.size:", total);
2011-05-19 04:24:13 +02:00
return( ctrlReq( addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, total, bufSize, buf, p ));
}
//get string descriptor
uint8_t USB::getStrDescr( uint8_t addr, uint8_t ep, uint16_t ns, uint8_t index, uint16_t langid, uint8_t* dataptr )
{
return( ctrlReq( addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, index, USB_DESCRIPTOR_STRING, langid, ns, ns, dataptr, NULL ));
}
//set address
uint8_t USB::setAddr( uint8_t oldaddr, uint8_t ep, uint8_t newaddr )
{
return( ctrlReq( oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL ));
}
//set configuration
uint8_t USB::setConf( uint8_t addr, uint8_t ep, uint8_t conf_value )
{
return( ctrlReq( addr, ep, bmREQ_SET, USB_REQUEST_SET_CONFIGURATION, conf_value, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL ));
}
#endif // defined(USB_METHODS_INLINE)
2011-03-05 08:33:02 +01:00