USB_Host_Shield_2.0/SPP.cpp

837 lines
36 KiB
C++
Raw Normal View History

2012-08-04 12:20:47 +02:00
/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#include "SPP.h"
#define DEBUG // Uncomment to print data for debugging
//#define EXTRADEBUG // Uncomment to get even more debugging data
//#define PRINTREPORT // Uncomment to print the report sent to the Arduino
/*
* CRC (reversed crc) lookup table as calculated by the table generator in ETSI TS 101 369 V6.3.0.
*/
const uint8_t rfcomm_crc_table[256] PROGMEM = { /* reversed, 8-bit, poly=0x07 */
0x00, 0x91, 0xE3, 0x72, 0x07, 0x96, 0xE4, 0x75, 0x0E, 0x9F, 0xED, 0x7C, 0x09, 0x98, 0xEA, 0x7B,
0x1C, 0x8D, 0xFF, 0x6E, 0x1B, 0x8A, 0xF8, 0x69, 0x12, 0x83, 0xF1, 0x60, 0x15, 0x84, 0xF6, 0x67,
0x38, 0xA9, 0xDB, 0x4A, 0x3F, 0xAE, 0xDC, 0x4D, 0x36, 0xA7, 0xD5, 0x44, 0x31, 0xA0, 0xD2, 0x43,
0x24, 0xB5, 0xC7, 0x56, 0x23, 0xB2, 0xC0, 0x51, 0x2A, 0xBB, 0xC9, 0x58, 0x2D, 0xBC, 0xCE, 0x5F,
0x70, 0xE1, 0x93, 0x02, 0x77, 0xE6, 0x94, 0x05, 0x7E, 0xEF, 0x9D, 0x0C, 0x79, 0xE8, 0x9A, 0x0B,
0x6C, 0xFD, 0x8F, 0x1E, 0x6B, 0xFA, 0x88, 0x19, 0x62, 0xF3, 0x81, 0x10, 0x65, 0xF4, 0x86, 0x17,
0x48, 0xD9, 0xAB, 0x3A, 0x4F, 0xDE, 0xAC, 0x3D, 0x46, 0xD7, 0xA5, 0x34, 0x41, 0xD0, 0xA2, 0x33,
0x54, 0xC5, 0xB7, 0x26, 0x53, 0xC2, 0xB0, 0x21, 0x5A, 0xCB, 0xB9, 0x28, 0x5D, 0xCC, 0xBE, 0x2F,
0xE0, 0x71, 0x03, 0x92, 0xE7, 0x76, 0x04, 0x95, 0xEE, 0x7F, 0x0D, 0x9C, 0xE9, 0x78, 0x0A, 0x9B,
0xFC, 0x6D, 0x1F, 0x8E, 0xFB, 0x6A, 0x18, 0x89, 0xF2, 0x63, 0x11, 0x80, 0xF5, 0x64, 0x16, 0x87,
0xD8, 0x49, 0x3B, 0xAA, 0xDF, 0x4E, 0x3C, 0xAD, 0xD6, 0x47, 0x35, 0xA4, 0xD1, 0x40, 0x32, 0xA3,
0xC4, 0x55, 0x27, 0xB6, 0xC3, 0x52, 0x20, 0xB1, 0xCA, 0x5B, 0x29, 0xB8, 0xCD, 0x5C, 0x2E, 0xBF,
0x90, 0x01, 0x73, 0xE2, 0x97, 0x06, 0x74, 0xE5, 0x9E, 0x0F, 0x7D, 0xEC, 0x99, 0x08, 0x7A, 0xEB,
0x8C, 0x1D, 0x6F, 0xFE, 0x8B, 0x1A, 0x68, 0xF9, 0x82, 0x13, 0x61, 0xF0, 0x85, 0x14, 0x66, 0xF7,
0xA8, 0x39, 0x4B, 0xDA, 0xAF, 0x3E, 0x4C, 0xDD, 0xA6, 0x37, 0x45, 0xD4, 0xA1, 0x30, 0x42, 0xD3,
0xB4, 0x25, 0x57, 0xC6, 0xB3, 0x22, 0x50, 0xC1, 0xBA, 0x2B, 0x59, 0xC8, 0xBD, 0x2C, 0x5E, 0xCF
};
SPP::SPP(BTD *p, const char* name, const char* pin):
pBtd(p) // Pointer to BTD class instance - mandatory
{
if (pBtd)
pBtd->registerServiceClass(this); // Register it as a Bluetooth service
pBtd->btdName = name;
pBtd->btdPin = pin;
/* Set device cid for the SDP and RFCOMM channelse */
sdp_dcid[0] = 0x50; // 0x0050
sdp_dcid[1] = 0x00;
rfcomm_dcid[0] = 0x51; // 0x0051
rfcomm_dcid[1] = 0x00;
2012-08-08 05:40:53 +02:00
Reset();
2012-08-04 12:20:47 +02:00
}
2012-08-08 05:40:53 +02:00
void SPP::Reset() {
2012-08-04 12:20:47 +02:00
connected = false;
RFCOMMConnected = false;
SDPConnected = false;
l2cap_sdp_state = L2CAP_SDP_WAIT;
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
2012-08-04 19:46:32 +02:00
l2cap_event_flag = 0;
2012-08-04 12:20:47 +02:00
}
void SPP::disconnect(){
connected = false;
// First the two L2CAP channels has to be disconencted and then the HCI connection
if(RFCOMMConnected)
pBtd->l2cap_disconnection_request(hci_handle,0x0A, rfcomm_scid, rfcomm_dcid);
if(SDPConnected)
pBtd->l2cap_disconnection_request(hci_handle,0x0B, sdp_scid, sdp_dcid);
l2cap_event_flag = 0; // Reset flags
l2cap_sdp_state = L2CAP_DISCONNECT_RESPONSE;
}
2012-08-08 05:40:53 +02:00
void SPP::ACLData(uint8_t* ACLData) {
if(!pBtd->l2capConnectionClaimed && !connected && !RFCOMMConnected && !SDPConnected) {
if (ACLData[8] == L2CAP_CMD_CONNECTION_REQUEST) {
if(((ACLData[12] | (ACLData[13] << 8)) == SDP_PSM) || ((ACLData[12] | (ACLData[13] << 8)) == RFCOMM_PSM)) {
2012-08-04 12:20:47 +02:00
pBtd->claimConnection(); // Claim that the incoming connection belongs to this service
hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection
}
}
}
2012-08-08 05:40:53 +02:00
if (((ACLData[0] | (ACLData[1] << 8)) == (hci_handle | 0x2000))) { // acl_handle_ok
for(uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
l2capinbuf[i] = ACLData[i];
2012-08-04 12:20:47 +02:00
if ((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001) { //l2cap_control - Channel ID for ACL-U
if (l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) {
#ifdef DEBUG
Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "));
PrintHex<uint8_t>(l2capinbuf[13]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[12]);
Notify(PSTR(" Data: "));
PrintHex<uint8_t>(l2capinbuf[17]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[16]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[15]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[14]);
#endif
} else if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nL2CAP Connection Request - PSM: "));
PrintHex<uint8_t>(l2capinbuf[13]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[12]);
Notify(PSTR(" SCID: "));
PrintHex<uint8_t>(l2capinbuf[15]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[14]);
Notify(PSTR(" Identifier: "));
PrintHex<uint8_t>(l2capinbuf[9]);
#endif
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM) { // It doesn't matter if it receives another reqeust, since it waits for the channel to disconnect in the L2CAP_SDP_DONE state, and the l2cap_event_flag will be cleared if so
identifier = l2capinbuf[9];
sdp_scid[0] = l2capinbuf[14];
sdp_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_SDP_REQUEST;
} else if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM) { // ----- || -----
identifier = l2capinbuf[9];
rfcomm_scid[0] = l2capinbuf[14];
rfcomm_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST;
}
} else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success
//Serial.print("\r\nSDP Configuration Complete");
l2cap_event_flag |= L2CAP_FLAG_CONFIG_SDP_SUCCESS;
}
}
else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success
//Serial.print("\r\nRFCOMM Configuration Complete");
l2cap_event_flag |= L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS;
}
}
} else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
//Serial.print("\r\nSDP Configuration Request");
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_CONFIG_SDP_REQUEST;
}
else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
//Serial.print("\r\nRFCOMM Configuration Request");
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_CONFIG_RFCOMM_REQUEST;
}
} else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
//Notify(PSTR("\r\nDisconnect Request: SDP Channel"));
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_SDP_REQUEST;
} else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
//Notify(PSTR("\r\nDisconnect Request: RFCOMM Channel"));
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST;
}
} else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) {
if (l2capinbuf[12] == sdp_scid[0] && l2capinbuf[13] == sdp_scid[1]) {
//Serial.print("\r\nDisconnect Response: SDP Channel");
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RESPONSE;
} else if (l2capinbuf[12] == rfcomm_scid[0] && l2capinbuf[13] == rfcomm_scid[1]) {
//Serial.print("\r\nDisconnect Response: RFCOMM Channel");
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RESPONSE;
}
} else if (l2capinbuf[8] == L2CAP_CMD_INFORMATION_REQUEST) {
#ifdef DEBUG
Notify(PSTR("\r\nInformation request"));
#endif
identifier = l2capinbuf[9];
pBtd->l2cap_information_response(hci_handle,identifier,l2capinbuf[12],l2capinbuf[13]);
}
#ifdef EXTRADEBUG
else {
Notify(PSTR("\r\nL2CAP Unknown Signaling Command: "));
PrintHex<uint8_t>(l2capinbuf[8]);
}
#endif
} else if (l2capinbuf[6] == sdp_dcid[0] && l2capinbuf[7] == sdp_dcid[1]) { // SDP
if(l2capinbuf[8] == SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST_PDU) {
/*
Serial.print("\r\nUUID: 0x");
Serial.print(l2capinbuf[16],HEX);
Serial.print(" ");
Serial.print(l2capinbuf[17],HEX);
*/
if ((l2capinbuf[16] << 8 | l2capinbuf[17]) == SERIALPORT_UUID) {
if(firstMessage) {
serialPortResponse1(l2capinbuf[9],l2capinbuf[10]);
firstMessage = false;
} else {
serialPortResponse2(l2capinbuf[9],l2capinbuf[10]); // Serialport continuation state
firstMessage = true;
}
} else if ((l2capinbuf[16] << 8 | l2capinbuf[17]) == L2CAP_UUID) {
if(firstMessage) {
l2capResponse1(l2capinbuf[9],l2capinbuf[10]);
firstMessage = false;
} else {
l2capResponse2(l2capinbuf[9],l2capinbuf[10]); // L2CAP continuation state
firstMessage = true;
}
} else
serviceNotSupported(l2capinbuf[9],l2capinbuf[10]); // The service is not supported
}
} else if (l2capinbuf[6] == rfcomm_dcid[0] && l2capinbuf[7] == rfcomm_dcid[1]) { // RFCOMM
rfcommChannel = l2capinbuf[8] & 0xF8;
rfcommDirection = l2capinbuf[8] & 0x04;
rfcommCommandResponse = l2capinbuf[8] & 0x02;
rfcommChannelType = l2capinbuf[9] & 0xEF;
rfcommPfBit = l2capinbuf[9] & 0x10;
if(rfcommChannel>>3 != 0x00)
rfcommChannelConnection = rfcommChannel;
#ifdef EXTRADEBUG
Notify(PSTR("\r\nRFCOMM Channel: "));
Serial.print(rfcommChannel>>3,HEX);
Notify(PSTR(" Direction: "));
Serial.print(rfcommDirection>>2,HEX);
Notify(PSTR(" CommandResponse: "));
Serial.print(rfcommCommandResponse>>1,HEX);
Notify(PSTR(" ChannelType: "));
Serial.print(rfcommChannelType,HEX);
Notify(PSTR(" PF_BIT: "));
Serial.print(rfcommPfBit,HEX);
#endif
if (rfcommChannelType == RFCOMM_DISC) {
#ifdef DEBUG
Notify(PSTR("\r\nReceived Disconnect RFCOMM Command on channel: "));
Serial.print(rfcommChannel>>3,HEX);
#endif
connected = false;
sendRfcomm(rfcommChannel,rfcommDirection,rfcommCommandResponse,RFCOMM_UA,rfcommPfBit,rfcommbuf,0x00); // UA Command
}
if(connected) {
/* Read the incoming message */
if(rfcommChannelType != RFCOMM_UIH || rfcommChannel != rfcommChannelConnection)
return;
uint8_t length = l2capinbuf[10] >> 1; // Get length
if(rfcommAvailable + length > 256)
return; // Return if the buffer would be full
uint8_t offset = l2capinbuf[4]-length-4; // See if there is credit
for(uint8_t i = 0; i < length; i++)
rfcommDataBuffer[rfcommAvailable+i] = l2capinbuf[11+i+offset];
rfcommAvailable += length;
#ifdef EXTRADEBUG
Notify(PSTR("\r\nRFCOMM Data Available: "));
Serial.print(rfcommAvailable);
if (offset) {
Notify(PSTR(" - Credit: 0x"));
Serial.print(l2capinbuf[11],HEX);
}
#endif
#ifdef PRINTREPORT // Uncomment "#define PRINTREPORT" to print the report send to the Arduino via Bluetooth
if(rfcommChannelType != RFCOMM_UIH || rfcommChannel != rfcommChannelConnection)
return;
uint8_t length = l2capinbuf[10] >> 1; // Get length
uint8_t offset = l2capinbuf[4]-length-4; // See if there is credit
for(uint8_t i = 0; i < length; i++)
Serial.write(l2capinbuf[i+11+offset]);
#endif
} else {
if(rfcommChannelType == RFCOMM_SABM) { // SABM Command - this is sent twice: once for channel 0 and then for the channel to establish
#ifdef DEBUG
Notify(PSTR("\r\nReceived SABM Command"));
#endif
sendRfcomm(rfcommChannel,rfcommDirection,rfcommCommandResponse,RFCOMM_UA,rfcommPfBit,rfcommbuf,0x00); // UA Command
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_PN_CMD) { // UIH Parameter Negotiation Command
#ifdef DEBUG
Notify(PSTR("\r\nReceived UIH Parameter Negotiation Command"));
#endif
rfcommbuf[0] = BT_RFCOMM_PN_RSP; // UIH Parameter Negotiation Response
rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1
rfcommbuf[3] = 0xE0; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
rfcommbuf[4] = 0x00; // Priority
rfcommbuf[5] = 0x00; // Timer
rfcommbuf[6] = 0x40; // Max Fram Size LSB - we will just set this to 64
rfcommbuf[7] = 0x00; // Max Fram Size MSB
rfcommbuf[8] = 0x00; // MaxRatransm.
rfcommbuf[9] = 0x00; // Number of Frames
sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x0A);
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command
#ifdef DEBUG
Notify(PSTR("\r\nSend UIH Modem Status Response"));
#endif
rfcommbuf[0] = BT_RFCOMM_MSC_RSP; // UIH Modem Status Response
rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3)
rfcommbuf[3] = l2capinbuf[14];
sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x04);
delay(1);
#ifdef DEBUG
Notify(PSTR("\r\nSend UIH Modem Status Command"));
#endif
rfcommbuf[0] = BT_RFCOMM_MSC_CMD; // UIH Modem Status Command
rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3)
rfcommbuf[3] = 0x8D; // Can receive frames (YES), Ready to Communicate (YES), Ready to Receive (YES), Incomig Call (NO), Data is Value (YES)
sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x04);
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_RSP) { // UIH Modem Status Response
if(!creditSent) {
#ifdef DEBUG
Notify(PSTR("\r\nSend UIH Command with credit"));
#endif
sendRfcommCredit(rfcommChannelConnection,rfcommDirection,0,RFCOMM_UIH,0x10,0xFF); // 255 credit
creditSent = true;
timer = millis();
waitForLastCommand = true;
}
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[10] == 0x01) { // UIH Command with credit
#ifdef DEBUG
Notify(PSTR("\r\nReceived UIH Command with credit"));
#endif
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command
#ifdef DEBUG
Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command"));
#endif
rfcommbuf[0] = BT_RFCOMM_RPN_RSP; // Command
rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1
rfcommbuf[3] = l2capinbuf[14]; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
rfcommbuf[4] = l2capinbuf[15]; // Priority
rfcommbuf[5] = l2capinbuf[16]; // Timer
rfcommbuf[6] = l2capinbuf[17]; // Max Fram Size LSB
rfcommbuf[7] = l2capinbuf[18]; // Max Fram Size MSB
rfcommbuf[8] = l2capinbuf[19]; // MaxRatransm.
rfcommbuf[9] = l2capinbuf[20]; // Number of Frames
sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x0A); // UIH Remote Port Negotiation Response
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Connection is now established\r\n"));
#endif
waitForLastCommand = false;
creditSent = false;
connected = true; // The RFCOMM channel is now established
} else if(rfcommChannelType != RFCOMM_DISC) {
#ifdef DEBUG
Notify(PSTR("\r\nUnsupported RFCOMM Data - ChannelType: "));
PrintHex<uint8_t>(rfcommChannelType);
Notify(PSTR(" Command: "));
PrintHex<uint8_t>(l2capinbuf[11]);
#endif
}
}
} else {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nUnsupported L2CAP Data - Channel ID: "));
PrintHex<uint8_t>(l2capinbuf[7]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[6]);
#endif
}
2012-08-08 05:40:53 +02:00
SDP_task();
RFCOMM_task();
2012-08-04 12:20:47 +02:00
}
}
2012-08-08 05:40:53 +02:00
void SPP::Run() {
if(waitForLastCommand && (millis() - timer) > 100) { // We will only wait 100ms and see if the UIH Remote Port Negotiation Command is send, as some deviced don't send it
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Connection is now established - Automatic\r\n"));
#endif
creditSent = false;
waitForLastCommand = false;
connected = true; // The RFCOMM channel is now established
2012-08-08 05:40:53 +02:00
}
2012-08-04 12:20:47 +02:00
}
void SPP::SDP_task() {
switch (l2cap_sdp_state)
{
case L2CAP_SDP_WAIT:
if (l2cap_connection_request_sdp_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nSDP Incoming Connection Request"));
#endif
pBtd->l2cap_connection_response(hci_handle,identifier, sdp_dcid, sdp_scid, PENDING);
delay(1);
pBtd->l2cap_connection_response(hci_handle,identifier, sdp_dcid, sdp_scid, SUCCESSFUL);
identifier++;
delay(1);
pBtd->l2cap_config_request(hci_handle,identifier, sdp_scid);
l2cap_sdp_state = L2CAP_SDP_REQUEST;
}
break;
case L2CAP_SDP_REQUEST:
if (l2cap_config_request_sdp_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nSDP Configuration Request"));
#endif
pBtd->l2cap_config_response(hci_handle,identifier, sdp_scid);
l2cap_sdp_state = L2CAP_SDP_SUCCESS;
}
break;
case L2CAP_SDP_SUCCESS:
if (l2cap_config_success_sdp_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nSDP Successfully Configured"));
#endif
firstMessage = true; // Reset bool
SDPConnected = true;
l2cap_sdp_state = L2CAP_SDP_DONE;
}
break;
case L2CAP_SDP_DONE:
if(l2cap_disconnect_request_sdp_flag) {
SDPConnected = false;
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected SDP Channel"));
#endif
pBtd->l2cap_disconnection_response(hci_handle,identifier,sdp_dcid,sdp_scid);
l2cap_event_flag = 0; // Reset flags
l2cap_sdp_state = L2CAP_SDP_WAIT;
}
break;
case L2CAP_DISCONNECT_RESPONSE: // This is for both disconnection response from the RFCOMM and SDP channel if they were connected
if (l2cap_disconnect_response_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected L2CAP Connection"));
#endif
RFCOMMConnected = false;
SDPConnected = false;
pBtd->hci_disconnect(hci_handle);
l2cap_sdp_state = L2CAP_SDP_WAIT;
l2cap_sdp_state = L2CAP_RFCOMM_WAIT;
}
break;
}
}
void SPP::RFCOMM_task()
{
switch (l2cap_rfcomm_state)
{
case L2CAP_RFCOMM_WAIT:
if(l2cap_connection_request_rfcomm_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Incoming Connection Request"));
#endif
pBtd->l2cap_connection_response(hci_handle,identifier, rfcomm_dcid, rfcomm_scid, PENDING);
delay(1);
pBtd->l2cap_connection_response(hci_handle,identifier, rfcomm_dcid, rfcomm_scid, SUCCESSFUL);
identifier++;
delay(1);
pBtd->l2cap_config_request(hci_handle,identifier, rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_REQUEST;
}
break;
case L2CAP_RFCOMM_REQUEST:
if (l2cap_config_request_rfcomm_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Configuration Request"));
#endif
pBtd->l2cap_config_response(hci_handle,identifier, rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_SUCCESS;
}
break;
case L2CAP_RFCOMM_SUCCESS:
if (l2cap_config_success_rfcomm_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Successfully Configured"));
#endif
rfcommAvailable = 0; // Reset number of bytes available
bytesRead = 0; // Reset number of bytes received
RFCOMMConnected = true;
l2cap_rfcomm_state = L2CAP_RFCOMM_DONE;
}
break;
case L2CAP_RFCOMM_DONE:
if(l2cap_disconnect_request_rfcomm_flag) {
RFCOMMConnected = false;
connected = false;
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected RFCOMM Channel"));
#endif
pBtd->l2cap_disconnection_response(hci_handle,identifier,rfcomm_dcid,rfcomm_scid);
l2cap_event_flag = 0; // Reset flags
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
}
break;
}
}
/************************************************************/
/* SDP Commands */
/************************************************************/
void SPP::SDP_Command(uint8_t* data, uint8_t nbytes) { // See page 223 in the Bluetooth specs
pBtd->L2CAP_Command(hci_handle,data,nbytes,sdp_scid[0],sdp_scid[1]);
}
void SPP::serviceNotSupported(uint8_t transactionIDHigh, uint8_t transactionIDLow) { // See page 235 in the Bluetooth specs
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length
l2capoutbuf[4] = 0x05; // Parameter Length
l2capoutbuf[5] = 0x00; // AttributeListsByteCount
l2capoutbuf[6] = 0x02; // AttributeListsByteCount
/* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x35;
l2capoutbuf[8] = 0x00;
l2capoutbuf[9] = 0x00;
SDP_Command(l2capoutbuf,10);
}
void SPP::serialPortResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length
l2capoutbuf[4] = 0x2B; // Parameter Length
l2capoutbuf[5] = 0x00; // AttributeListsByteCount
l2capoutbuf[6] = 0x26; // AttributeListsByteCount
/* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x36;
l2capoutbuf[8] = 0x00;
l2capoutbuf[9] = 0x3C;
l2capoutbuf[10] = 0x36;
l2capoutbuf[11] = 0x00;
l2capoutbuf[12] = 0x39;
l2capoutbuf[13] = 0x09;
l2capoutbuf[14] = 0x00;
l2capoutbuf[15] = 0x00;
l2capoutbuf[16] = 0x0A;
l2capoutbuf[17] = 0x00;
l2capoutbuf[18] = 0x01;
l2capoutbuf[19] = 0x00;
l2capoutbuf[20] = 0x06;
l2capoutbuf[21] = 0x09;
l2capoutbuf[22] = 0x00;
l2capoutbuf[23] = 0x01;
l2capoutbuf[24] = 0x35;
l2capoutbuf[25] = 0x03;
l2capoutbuf[26] = 0x19;
l2capoutbuf[27] = 0x11;
l2capoutbuf[28] = 0x01;
l2capoutbuf[29] = 0x09;
l2capoutbuf[30] = 0x00;
l2capoutbuf[31] = 0x04;
l2capoutbuf[32] = 0x35;
l2capoutbuf[33] = 0x0C;
l2capoutbuf[34] = 0x35;
l2capoutbuf[35] = 0x03;
l2capoutbuf[36] = 0x19;
l2capoutbuf[37] = 0x01;
l2capoutbuf[38] = 0x00;
l2capoutbuf[39] = 0x35;
l2capoutbuf[40] = 0x05;
l2capoutbuf[41] = 0x19;
l2capoutbuf[42] = 0x00;
l2capoutbuf[43] = 0x03;
l2capoutbuf[44] = 0x08;
l2capoutbuf[45] = 0x02; // Two more bytes?
l2capoutbuf[46] = 0x00; // 19 more bytes to come
l2capoutbuf[47] = 0x19;
SDP_Command(l2capoutbuf,48);
}
void SPP::serialPortResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length
l2capoutbuf[4] = 0x1C; // Parameter Length
l2capoutbuf[5] = 0x00; // AttributeListsByteCount
l2capoutbuf[6] = 0x19; // AttributeListsByteCount
/* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x01;
l2capoutbuf[8] = 0x09;
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x06;
l2capoutbuf[11] = 0x35;
l2capoutbuf[12] = 0x09;
l2capoutbuf[13] = 0x09;
l2capoutbuf[14] = 0x65;
l2capoutbuf[15] = 0x6E;
l2capoutbuf[16] = 0x09;
l2capoutbuf[17] = 0x00;
l2capoutbuf[18] = 0x6A;
l2capoutbuf[19] = 0x09;
l2capoutbuf[20] = 0x01;
l2capoutbuf[21] = 0x00;
l2capoutbuf[22] = 0x09;
l2capoutbuf[23] = 0x01;
l2capoutbuf[24] = 0x00;
l2capoutbuf[25] = 0x25;
l2capoutbuf[26] = 0x05; // Name length
l2capoutbuf[27] = 'T';
l2capoutbuf[28] = 'K';
l2capoutbuf[29] = 'J';
l2capoutbuf[30] = 'S';
l2capoutbuf[31] = 'P';
l2capoutbuf[32] = 0x00;
SDP_Command(l2capoutbuf,33);
}
void SPP::l2capResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
serialPortResponse1(transactionIDHigh,transactionIDLow); // These has to send all the supported functions, since it only supports virtual serialport it just sends the message again
}
void SPP::l2capResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
serialPortResponse2(transactionIDHigh,transactionIDLow); // Same data as serialPortResponse2
}
/************************************************************/
/* RFCOMM Commands */
/************************************************************/
void SPP::RFCOMM_Command(uint8_t* data, uint8_t nbytes) {
if ((millis() - printTimer) < 10)// Check if is has been more than 10ms since last command
delay((uint32_t)(10 - (millis() - printTimer))); // There have to be a delay between commands
2012-08-04 12:20:47 +02:00
pBtd->L2CAP_Command(hci_handle,data,nbytes,rfcomm_scid[0],rfcomm_scid[1]);
printTimer = millis();
2012-08-04 12:20:47 +02:00
}
void SPP::sendRfcomm(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t* data, uint8_t length) {
l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address
l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control
l2capoutbuf[2] = length << 1 | 0x01; // Length and format (allways 0x01 bytes format)
uint8_t i = 0;
for(; i < length; i++)
l2capoutbuf[i+3] = data[i];
l2capoutbuf[i+3] = calcFcs(l2capoutbuf);
#ifdef EXTRADEBUG
Notify(PSTR(" - RFCOMM Data: "));
for(i = 0; i < length+4; i++) {
Serial.print(l2capoutbuf[i],HEX);
Notify(PSTR(" "));
}
#endif
RFCOMM_Command(l2capoutbuf,length+4);
}
void SPP::sendRfcommCredit(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t credit) {
l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address
l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control
l2capoutbuf[2] = 0x01; // Length = 0
l2capoutbuf[3] = credit; // Credit
l2capoutbuf[4] = calcFcs(l2capoutbuf);
#ifdef EXTRADEBUG
Notify(PSTR(" - RFCOMM Credit Data: "));
for(uint8_t i = 0; i < 5; i++) {
Serial.print(l2capoutbuf[i],HEX);
Notify(PSTR(" "));
}
#endif
RFCOMM_Command(l2capoutbuf,5);
}
/* CRC on 2 bytes */
uint8_t SPP::__crc(uint8_t* data) {
return(pgm_read_byte(&rfcomm_crc_table[pgm_read_byte(&rfcomm_crc_table[0xff ^ data[0]]) ^ data[1]]));
}
/* Calculate FCS - we never actually check if the host sends correct FCS to the Arduino */
uint8_t SPP::calcFcs(uint8_t *data) {
if((data[1] & 0xEF) == RFCOMM_UIH)
return (0xff - __crc(data)); // FCS on 2 bytes
else
return (0xff - pgm_read_byte(&rfcomm_crc_table[__crc(data) ^ data[2]])); // FCS on 3 bytes
}
/* Serial commands */
2012-08-04 20:57:37 +02:00
void SPP::print(const String &str) {
2012-08-05 01:52:00 +02:00
uint8_t length = str.length();
if(length > (sizeof(l2capoutbuf)-4))
length = sizeof(l2capoutbuf)-4;
2012-08-04 20:57:37 +02:00
l2capoutbuf[0] = rfcommChannelConnection | 0 | 0 | extendAddress;; // RFCOMM Address
l2capoutbuf[1] = RFCOMM_UIH; // RFCOMM Control
2012-08-05 01:52:00 +02:00
l2capoutbuf[2] = length << 1 | 1; // Length
uint8_t i = 0;
for(; i < length; i++)
2012-08-04 20:57:37 +02:00
l2capoutbuf[i+3] = str[i];
l2capoutbuf[i+3] = calcFcs(l2capoutbuf);
2012-08-05 01:52:00 +02:00
RFCOMM_Command(l2capoutbuf,length+4);
2012-08-04 20:57:37 +02:00
}
2012-08-04 12:20:47 +02:00
void SPP::print(const char* data) {
2012-08-05 01:52:00 +02:00
uint8_t length = strlen(data);
if(length > (sizeof(l2capoutbuf)-4))
length = sizeof(l2capoutbuf)-4;
2012-08-04 12:20:47 +02:00
l2capoutbuf[0] = rfcommChannelConnection | 0 | 0 | extendAddress;; // RFCOMM Address
l2capoutbuf[1] = RFCOMM_UIH; // RFCOMM Control
2012-08-05 01:52:00 +02:00
l2capoutbuf[2] = length << 1 | 1; // Length
2012-08-04 12:20:47 +02:00
uint8_t i = 0;
2012-08-05 01:52:00 +02:00
for(; i < length; i++)
2012-08-04 12:20:47 +02:00
l2capoutbuf[i+3] = data[i];
l2capoutbuf[i+3] = calcFcs(l2capoutbuf);
2012-08-05 01:52:00 +02:00
RFCOMM_Command(l2capoutbuf,length+4);
2012-08-04 12:20:47 +02:00
}
void SPP::print(uint8_t data) {
print(&data,1);
}
void SPP::print(uint8_t* array, uint8_t length) {
2012-08-05 01:52:00 +02:00
if(length > (sizeof(l2capoutbuf)-4))
length = sizeof(l2capoutbuf)-4;
2012-08-04 12:20:47 +02:00
l2capoutbuf[0] = rfcommChannelConnection | 0 | 0 | extendAddress;; // RFCOMM Address
l2capoutbuf[1] = RFCOMM_UIH; // RFCOMM Control
l2capoutbuf[2] = length << 1 | 1; // Length
uint8_t i = 0;
for(; i < length; i++)
l2capoutbuf[i+3] = array[i];
l2capoutbuf[i+3] = calcFcs(l2capoutbuf);
RFCOMM_Command(l2capoutbuf,length+4);
}
void SPP::print(const __FlashStringHelper *ifsh) {
const char PROGMEM *p = (const char PROGMEM *)ifsh;
size_t size = 0;
while (1) { // Calculate the size of the string
uint8_t c = pgm_read_byte(p+size);
if (c == 0)
break;
size++;
}
uint8_t buf[size];
for(uint8_t i = 0; i < size; i++)
buf[i] = pgm_read_byte(p++);
print(buf,size);
}
2012-08-04 20:57:37 +02:00
void SPP::println(const String &str) {
2012-08-08 19:22:07 +02:00
String output = str + "\r\n";
print(output);
2012-08-04 20:57:37 +02:00
}
2012-08-04 12:20:47 +02:00
void SPP::println(const char* data) {
char output[strlen(data)+2];
strcpy(output,data);
strcat(output,"\r\n");
print(output);
}
void SPP::println(uint8_t data) {
uint8_t buf[3] = {data, '\r', '\n'};
print(buf,3);
}
void SPP::println(uint8_t* array, uint8_t length) {
uint8_t buf[length+2];
memcpy(buf,array,length);
buf[length] = '\r';
buf[length+1] = '\n';
print(buf,length+2);
}
void SPP::println(const __FlashStringHelper *ifsh) {
const char PROGMEM *p = (const char PROGMEM *)ifsh;
size_t size = 0;
while (1) { // Calculate the size of the string
uint8_t c = pgm_read_byte(p+size);
if (c == 0)
break;
size++;
}
uint8_t buf[size+2];
for(uint8_t i = 0; i < size; i++)
buf[i] = pgm_read_byte(p++);
buf[size] = '\r';
buf[size+1] = '\n';
print(buf,size+2);
}
void SPP::println(void) {
2012-08-08 05:40:53 +02:00
uint8_t buf[2] = {'\r','\n'};
print(buf,2);
}
/* These must be used to print numbers */
void SPP::printNumber(uint16_t n) {
uint16_t temp = n;
uint8_t digits = 0;
while (temp) {
temp /= 10;
digits++;
}
if(digits == 0)
print("0");
else {
uint8_t buf[digits];
for(uint8_t i = 1; i < digits+1; i++) {
buf[digits-i] = n%10; // Get number and convert to ASCII Character
buf[digits-i] += 48;
n /= 10;
}
print(buf,digits);
}
}
void SPP::printNumberln(uint16_t n) {
uint16_t temp = n;
uint8_t digits = 0;
while (temp) {
temp /= 10;
digits++;
}
if(digits == 0)
print("0\r\n");
else {
uint8_t buf[digits+2];
for(uint8_t i = 1; i < digits+1; i++) {
buf[digits-i] = n%10; // Get number and convert to ASCII Character
buf[digits-i] += 48;
n /= 10;
}
buf[digits] = '\r';
buf[digits+1] = '\n';
print(buf,digits+2);
}
}
2012-08-04 12:20:47 +02:00
uint8_t SPP::read() {
uint8_t output = rfcommDataBuffer[0];
for(uint8_t i = 1; i < rfcommAvailable; i++)
rfcommDataBuffer[i-1] = rfcommDataBuffer[i]; // Shift the buffer one left
rfcommAvailable--;
bytesRead++;
if(bytesRead > 250) {
bytesRead = 0;
sendRfcommCredit(rfcommChannelConnection,rfcommDirection,0,RFCOMM_UIH,0x10,0xFF); // Send 255 more credit
#ifdef EXTRADEBUG
Notify(PSTR("\r\nSent 255 more credit"));
#endif
}
return output;
}