USB_Host_Shield_2.0/BTD.cpp

941 lines
34 KiB
C++
Raw Normal View History

2012-08-04 12:20:47 +02:00
/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#include "BTD.h"
#define DEBUG // Uncomment to print data for debugging
//#define EXTRADEBUG // Uncomment to get even more debugging data
const uint8_t BTD::BTD_EVENT_PIPE = 1;
const uint8_t BTD::BTD_DATAIN_PIPE = 2;
const uint8_t BTD::BTD_DATAOUT_PIPE = 3;
BTD::BTD(USB *p):
pUsb(p), // Pointer to USB class instance - mandatory
bAddress(0), // Device address - mandatory
bNumEP(1), // If config descriptor needs to be parsed
qNextPollTime(0), // Reset NextPollTime
bPollEnable(false) // Don't start polling before dongle is connected
{
for(uint8_t i=0; i<BTD_MAX_ENDPOINTS; i++) {
epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0;
epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER;
}
if (pUsb) // register in USB subsystem
pUsb->RegisterDeviceClass(this); //set devConfig[] entry
}
uint8_t BTD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
uint8_t buf[sizeof(USB_DEVICE_DESCRIPTOR)];
uint8_t rcode;
UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL;
uint8_t num_of_conf; // number of configurations
uint16_t PID;
uint16_t VID;
// get memory address of USB device address pool
AddressPool &addrPool = pUsb->GetAddressPool();
#ifdef EXTRADEBUG
Notify(PSTR("\r\nBTD Init"));
#endif
// check if address has already been assigned to an instance
if (bAddress) {
#ifdef DEBUG
Notify(PSTR("\r\nAddress in use"));
#endif
return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;
}
// Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0);
if (!p) {
#ifdef DEBUG
Notify(PSTR("\r\nAddress not found"));
#endif
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
}
if (!p->epinfo) {
#ifdef DEBUG
Notify(PSTR("\r\nepinfo is null"));
#endif
return USB_ERROR_EPINFO_IS_NULL;
}
// Save old pointer to EP_RECORD of address 0
oldep_ptr = p->epinfo;
// Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence
p->epinfo = epInfo;
p->lowspeed = lowspeed;
// Get device descriptor
rcode = pUsb->getDevDescr(0, 0, sizeof(USB_DEVICE_DESCRIPTOR), (uint8_t*)buf);// Get device descriptor - addr, ep, nbytes, data
// Restore p->epinfo
p->epinfo = oldep_ptr;
if(rcode)
goto FailGetDevDescr;
// Allocate new address according to device class
bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0;
// Assign new address to the device
rcode = pUsb->setAddr( 0, 0, bAddress );
2012-08-04 19:46:32 +02:00
if (rcode) {
2012-08-04 12:20:47 +02:00
p->lowspeed = false;
addrPool.FreeAddress(bAddress);
bAddress = 0;
#ifdef DEBUG
Notify(PSTR("\r\nsetAddr: "));
#endif
PrintHex<uint8_t>(rcode);
return rcode;
}
#ifdef EXTRADEBUG
Notify(PSTR("\r\nAddr: "));
PrintHex<uint8_t>(bAddress);
#endif
p->lowspeed = false;
//get pointer to assigned address record
p = addrPool.GetUsbDevicePtr(bAddress);
if (!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed;
// Assign epInfo to epinfo pointer - only EP0 is known
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode)
goto FailSetDevTblEntry;
VID = ((USB_DEVICE_DESCRIPTOR*)buf)->idVendor;
PID = ((USB_DEVICE_DESCRIPTOR*)buf)->idProduct;
if(VID == PS3_VID && (PID == PS3_PID || PID == PS3NAVIGATION_PID || PID == PS3MOVE_PID)) {
2012-08-04 19:46:32 +02:00
/* We only need the Control endpoint, so we don't have to initialize the other endpoints of device */
2012-08-04 12:20:47 +02:00
rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, 1);
if( rcode )
goto FailSetConf;
if(PID == PS3_PID || PID == PS3NAVIGATION_PID) {
#ifdef DEBUG
2012-08-04 19:46:32 +02:00
if(PID == PS3_PID)
2012-08-04 12:20:47 +02:00
Notify(PSTR("\r\nDualshock 3 Controller Connected"));
2012-08-04 19:46:32 +02:00
else // must be a navigation controller
2012-08-04 12:20:47 +02:00
Notify(PSTR("\r\nNavigation Controller Connected"));
#endif
/* Set internal bluetooth address */
setBdaddr(my_bdaddr);
}
else { // must be a Motion controller
#ifdef DEBUG
Notify(PSTR("\r\nMotion Controller Connected"));
#endif
setMoveBdaddr(my_bdaddr);
}
}
else {
num_of_conf = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations;
// check if attached device is a Bluetooth dongle and fill endpoint data structure
// first interface in the configuration must have Bluetooth assigned Class/Subclass/Protocol
// and 3 endpoints - interrupt-IN, bulk-IN, bulk-OUT,
// not necessarily in this order
for (uint8_t i=0; i<num_of_conf; i++) {
ConfigDescParser<USB_CLASS_WIRELESS_CTRL, WI_SUBCLASS_RF, WI_PROTOCOL_BT, CP_MASK_COMPARE_ALL> confDescrParser(this);
rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
if(rcode)
goto FailGetConfDescr;
if(bNumEP >= BTD_MAX_ENDPOINTS) // All endpoints extracted
break;
}
if (bNumEP < BTD_MAX_ENDPOINTS)
goto FailUnknownDevice;
// Assign epInfo to epinfo pointer - this time all 3 endpoins
rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo);
if(rcode)
goto FailSetDevTblEntry;
delay(200); // Give time for address change
// Set Configuration Value
rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bConfNum);
if(rcode)
goto FailSetConf;
hci_num_reset_loops = 100; // only loop 100 times before trying to send the hci reset command
hci_counter = 0;
hci_state = HCI_INIT_STATE;
watingForConnection = false;
bPollEnable = true;
#ifdef DEBUG
Notify(PSTR("\r\nBluetooth Dongle Initialized"));
#endif
}
return 0; // Successful configuration
/* diagnostic messages */
FailGetDevDescr:
#ifdef DEBUG
Notify(PSTR("\r\ngetDevDescr"));
#endif
goto Fail;
FailSetDevTblEntry:
#ifdef DEBUG
Notify(PSTR("\r\nsetDevTblEn"));
#endif
2012-08-04 19:46:32 +02:00
goto Fail;
2012-08-04 12:20:47 +02:00
FailGetConfDescr:
#ifdef DEBUG
Notify(PSTR("\r\ngetConf"));
#endif
goto Fail;
FailSetConf:
#ifdef DEBUG
Notify(PSTR("\r\nsetConf"));
#endif
goto Fail;
FailUnknownDevice:
#ifdef DEBUG
Notify(PSTR("\r\nUnknown Device Connected - VID: "));
PrintHex<uint16_t>(VID);
Notify(PSTR(" PID: "));
PrintHex<uint16_t>(PID);
#endif
rcode = -1;
goto Fail;
Fail:
#ifdef DEBUG
Notify(PSTR("\r\nBTD Init Failed, error code: "));
Serial.print(rcode);
#endif
Release();
return rcode;
}
/* Extracts interrupt-IN, bulk-IN, bulk-OUT endpoint information from config descriptor */
void BTD::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *pep) {
//ErrorMessage<uint8_t>(PSTR("Conf.Val"),conf);
//ErrorMessage<uint8_t>(PSTR("Iface Num"),iface);
//ErrorMessage<uint8_t>(PSTR("Alt.Set"),alt);
if(alt) // wrong interface - by BT spec, no alt setting
return;
bConfNum = conf;
uint8_t index;
if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) // Interrupt In endpoint found
index = BTD_EVENT_PIPE;
else {
if ((pep->bmAttributes & 0x02) == 2) // bulk endpoint found
index = ((pep->bEndpointAddress & 0x80) == 0x80) ? BTD_DATAIN_PIPE : BTD_DATAOUT_PIPE;
else
return;
}
// Fill the rest of endpoint data structure
epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F);
epInfo[index].maxPktSize = (uint8_t)pep->wMaxPacketSize;
#ifdef EXTRADEBUG
PrintEndpointDescriptor(pep);
#endif
if(pollInterval < pep->bInterval) // Set the polling interval as the largest polling interval obtained from endpoints
pollInterval = pep->bInterval;
bNumEP++;
return;
}
void BTD::PrintEndpointDescriptor(const USB_ENDPOINT_DESCRIPTOR* ep_ptr) {
Notify(PSTR("\r\nEndpoint descriptor:"));
Notify(PSTR("\r\nLength:\t\t"));
PrintHex<uint8_t>(ep_ptr->bLength);
Notify(PSTR("\r\nType:\t\t"));
PrintHex<uint8_t>(ep_ptr->bDescriptorType);
Notify(PSTR("\r\nAddress:\t"));
PrintHex<uint8_t>(ep_ptr->bEndpointAddress);
Notify(PSTR("\r\nAttributes:\t"));
PrintHex<uint8_t>(ep_ptr->bmAttributes);
Notify(PSTR("\r\nMaxPktSize:\t"));
PrintHex<uint16_t>(ep_ptr->wMaxPacketSize);
Notify(PSTR("\r\nPoll Intrv:\t"));
PrintHex<uint8_t>(ep_ptr->bInterval);
}
/* Performs a cleanup after failed Init() attempt */
uint8_t BTD::Release() {
for (uint8_t i=0; i<BTD_NUMDEVICES; i++)
if (btService[i])
btService[i]->Release(); // Reset both the L2CAP Channel and the HCI Connection
pUsb->GetAddressPool().FreeAddress(bAddress);
bAddress = 0;
bPollEnable = false;
bNumEP = 1; // must have to be reset to 1
return 0;
}
uint8_t BTD::Poll() {
if (!bPollEnable)
return 0;
if (qNextPollTime <= millis()) { // Don't poll if shorter than polling interval
qNextPollTime = millis() + pollInterval; // Set new poll time
HCI_event_task(); // poll the HCI event pipe
ACL_event_task(); // start polling the ACL input pipe too, though discard data until connected
}
return 0;
}
void BTD::HCI_event_task() {
/* check the event pipe*/
uint16_t MAX_BUFFER_SIZE = BULK_MAXPKTSIZE; // Request more than 16 bytes anyway, the inTransfer routine will take care of this
uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_EVENT_PIPE ].epAddr, &MAX_BUFFER_SIZE, hcibuf); // input on endpoint 1
if(!rcode || rcode == hrNAK) // Check for errors
{
switch (hcibuf[0]) //switch on event type
{
case EV_COMMAND_COMPLETE:
hci_event_flag |= HCI_FLAG_CMD_COMPLETE; // set command complete flag
if (!hcibuf[5]) { // Check if command succeeded
if((hcibuf[3] == 0x01) && (hcibuf[4] == 0x10)) { // parameters from read local version information
hci_version = hcibuf[6]; // Used to check if it supports 2.0+EDR - see http://www.bluetooth.org/Technical/AssignedNumbers/hci.htm
hci_event_flag |= HCI_FLAG_READ_VERSION;
} else if((hcibuf[3] == 0x09) && (hcibuf[4] == 0x10)) { // parameters from read local bluetooth address
for (uint8_t i = 0; i < 6; i++)
my_bdaddr[i] = hcibuf[6 + i];
hci_event_flag |= HCI_FLAG_READ_BDADDR;
}
}
break;
case EV_COMMAND_STATUS:
if(hcibuf[2]) { // show status on serial if not OK
#ifdef DEBUG
Notify(PSTR("\r\nHCI Command Failed: "));
PrintHex<uint8_t>(hcibuf[2]);
Notify(PSTR(" "));
PrintHex<uint8_t>(hcibuf[4]);
Notify(PSTR(" "));
PrintHex<uint8_t>(hcibuf[5]);
#endif
}
break;
case EV_CONNECT_COMPLETE:
if (!hcibuf[2]) { // check if connected OK
hci_handle = hcibuf[3] | hcibuf[4] << 8; //store the handle for the ACL connection
hci_event_flag |= HCI_FLAG_CONN_COMPLETE; // set connection complete flag
}
break;
case EV_DISCONNECT_COMPLETE:
if (!hcibuf[2]) { // check if disconnected OK
hci_event_flag |= HCI_FLAG_DISCONN_COMPLETE; //set disconnect commend complete flag
hci_event_flag &= ~HCI_FLAG_CONN_COMPLETE; // clear connection complete flag
}
break;
case EV_REMOTE_NAME_COMPLETE:
if (!hcibuf[2]) { // check if reading is OK
for (uint8_t i = 0; i < 30; i++)
remote_name[i] = hcibuf[9 + i]; //store first 30 bytes
hci_event_flag |= HCI_FLAG_REMOTE_NAME_COMPLETE;
}
break;
case EV_INCOMING_CONNECT:
disc_bdaddr[0] = hcibuf[2];
disc_bdaddr[1] = hcibuf[3];
disc_bdaddr[2] = hcibuf[4];
disc_bdaddr[3] = hcibuf[5];
disc_bdaddr[4] = hcibuf[6];
disc_bdaddr[5] = hcibuf[7];
hci_event_flag |= HCI_FLAG_INCOMING_REQUEST;
break;
case EV_PIN_CODE_REQUEST:
if(btdPin != NULL) {
#ifdef DEBUG
Notify(PSTR("\r\nBluetooth pin is set too: "));
Serial.print(btdPin);
#endif
hci_pin_code_request_reply(btdPin);
}
else
hci_pin_code_negative_request_reply();
break;
case EV_LINK_KEY_REQUEST:
#ifdef DEBUG
Notify(PSTR("\r\nReceived Key Request"));
#endif
hci_link_key_request_negative_reply();
break;
/* We will just ignore the following events */
case EV_NUM_COMPLETE_PKT:
case EV_ROLE_CHANGED:
case EV_PAGE_SCAN_REP_MODE:
case EV_LOOPBACK_COMMAND:
case EV_DATA_BUFFER_OVERFLOW:
case EV_CHANGE_CONNECTION_LINK:
case EV_AUTHENTICATION_COMPLETE:
case EV_MAX_SLOTS_CHANGE:
case EV_QOS_SETUP_COMPLETE:
case EV_LINK_KEY_NOTIFICATION:
case EV_ENCRYPTION_CHANGE:
case EV_READ_REMOTE_VERSION_INFORMATION_COMPLETE:
break;
default:
#ifdef EXTRADEBUG
if(hcibuf[0] != 0x00) {
Notify(PSTR("\r\nUnmanaged HCI Event: "));
PrintHex<uint8_t>(hcibuf[0]);
}
#endif
break;
} // switch
HCI_task();
}
else {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nHCI event error: "));
PrintHex<uint8_t>(rcode);
#endif
}
}
/* Poll Bluetooth and print result */
void BTD::HCI_task() {
switch (hci_state){
case HCI_INIT_STATE:
hci_counter++;
if (hci_counter > hci_num_reset_loops) { // wait until we have looped x times to clear any old events
hci_reset();
hci_state = HCI_RESET_STATE;
hci_counter = 0;
}
break;
case HCI_RESET_STATE:
hci_counter++;
if (hci_cmd_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nHCI Reset complete"));
#endif
hci_state = HCI_BDADDR_STATE;
hci_read_bdaddr();
}
else if (hci_counter > hci_num_reset_loops) {
hci_num_reset_loops *= 10;
if(hci_num_reset_loops > 2000)
hci_num_reset_loops = 2000;
#ifdef DEBUG
Notify(PSTR("\r\nNo response to HCI Reset"));
#endif
hci_state = HCI_INIT_STATE;
hci_counter = 0;
}
break;
case HCI_BDADDR_STATE:
if (hci_read_bdaddr_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nLocal Bluetooth Address: "));
for(int8_t i = 5; i > 0;i--) {
PrintHex<uint8_t>(my_bdaddr[i]);
Serial.print(":");
}
PrintHex<uint8_t>(my_bdaddr[0]);
#endif
hci_read_local_version_information();
hci_state = HCI_LOCAL_VERSION_STATE;
}
break;
case HCI_LOCAL_VERSION_STATE:
if (hci_read_version_complete) {
if(btdName != NULL) {
hci_set_local_name(btdName);
hci_state = HCI_SET_NAME_STATE;
} else
hci_state = HCI_SCANNING_STATE;
}
break;
case HCI_SET_NAME_STATE:
if (hci_cmd_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nThe name is set to: "));
Serial.print(btdName);
#endif
hci_state = HCI_SCANNING_STATE;
}
break;
case HCI_SCANNING_STATE:
#ifdef DEBUG
Notify(PSTR("\r\nWait For Incoming Connection Request"));
#endif
hci_write_scan_enable();
watingForConnection = true;
hci_state = HCI_CONNECT_IN_STATE;
break;
case HCI_CONNECT_IN_STATE:
if(hci_incoming_connect_request) {
watingForConnection = false;
#ifdef DEBUG
Notify(PSTR("\r\nIncoming Request"));
#endif
hci_remote_name();
hci_state = HCI_REMOTE_NAME_STATE;
} else if (hci_disconnect_complete)
hci_state = HCI_DISCONNECT_STATE;
break;
case HCI_REMOTE_NAME_STATE:
if(hci_remote_name_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nRemote Name: "));
for (uint8_t i = 0; i < 30; i++)
{
if(remote_name[i] == NULL)
break;
Serial.write(remote_name[i]);
}
#endif
hci_accept_connection();
hci_state = HCI_CONNECTED_STATE;
}
break;
case HCI_CONNECTED_STATE:
if (hci_connect_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nConnected to Device: "));
for(int8_t i = 5; i>0;i--)
{
PrintHex<uint8_t>(disc_bdaddr[i]);
Serial.print(":");
}
PrintHex<uint8_t>(disc_bdaddr[0]);
#endif
hci_write_scan_disable();
hci_state = HCI_DISABLE_SCAN_STATE;
}
break;
case HCI_DISABLE_SCAN_STATE:
if (hci_cmd_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nScan Disabled"));
#endif
hci_event_flag = 0;
hci_state = HCI_DONE_STATE;
}
break;
case HCI_DONE_STATE:
if(connectionClaimed) { // Wait until one of the services has claimed the connection before accepting more incoming requests
hci_state = HCI_SCANNING_STATE;
connectionClaimed = false;
}
break;
case HCI_DISCONNECT_STATE:
if (hci_disconnect_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nHCI Disconnected from Device"));
#endif
hci_event_flag = 0; // Clear all flags
// Reset all buffers
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
hcibuf[i] = 0;
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
l2capinbuf[i] = 0;
hci_state = HCI_SCANNING_STATE;
}
break;
default:
break;
}
}
void BTD::ACL_event_task() {
uint16_t MAX_BUFFER_SIZE = BULK_MAXPKTSIZE;
uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_DATAIN_PIPE ].epAddr, &MAX_BUFFER_SIZE, l2capinbuf); // input on endpoint 2
if(!rcode) { // Check for errors
for (uint8_t i=0; i<BTD_NUMDEVICES; i++)
if (btService[i])
btService[i]->ACLData(l2capinbuf);
} else if (rcode != hrNAK) {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nACL data in error: "));
PrintHex<uint8_t>(rcode);
#endif
}
for (uint8_t i=0; i<BTD_NUMDEVICES; i++)
if (btService[i])
btService[i]->Poll();
}
/************************************************************/
/* HCI Commands */
/************************************************************/
void BTD::HCI_Command(uint8_t* data, uint16_t nbytes) {
hci_event_flag &= ~HCI_FLAG_CMD_COMPLETE;
pUsb->ctrlReq(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bmREQ_HCI_OUT, 0x00, 0x00, 0x00 ,0x00, nbytes, nbytes, data, NULL);
}
void BTD::hci_reset() {
hci_event_flag = 0; // Clear all the flags
hcibuf[0] = 0x03; // HCI OCF = 3
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x00;
HCI_Command(hcibuf, 3);
}
void BTD::hci_write_scan_enable() {
hci_event_flag &= ~HCI_FLAG_INCOMING_REQUEST;
hcibuf[0] = 0x1A; // HCI OCF = 1A
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x01; // parameter length = 1
if(btdName != NULL)
hcibuf[3] = 0x03; // Inquiry Scan enabled. Page Scan enabled.
else
hcibuf[3] = 0x02; // Inquiry Scan disabled. Page Scan enabled.
HCI_Command(hcibuf, 4);
}
void BTD::hci_write_scan_disable() {
hcibuf[0] = 0x1A; // HCI OCF = 1A
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x01; // parameter length = 1
hcibuf[3] = 0x00; // Inquiry Scan disabled. Page Scan disabled.
HCI_Command(hcibuf, 4);
}
void BTD::hci_read_bdaddr() {
hcibuf[0] = 0x09; // HCI OCF = 9
hcibuf[1] = 0x04 << 2; // HCI OGF = 4
hcibuf[2] = 0x00;
HCI_Command(hcibuf, 3);
}
void BTD::hci_read_local_version_information() {
hcibuf[0] = 0x01; // HCI OCF = 1
hcibuf[1] = 0x04 << 2; // HCI OGF = 4
hcibuf[2] = 0x00;
HCI_Command(hcibuf, 3);
}
void BTD::hci_accept_connection() {
hcibuf[0] = 0x09; // HCI OCF = 9
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x07; // parameter length 7
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = 0x00; //switch role to master
HCI_Command(hcibuf, 10);
}
void BTD::hci_remote_name() {
hci_event_flag &= ~HCI_FLAG_REMOTE_NAME_COMPLETE;
hcibuf[0] = 0x19; // HCI OCF = 19
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x0A; // parameter length = 10
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = 0x01; //Page Scan Repetition Mode
hcibuf[10] = 0x00; //Reserved
hcibuf[11] = 0x00; //Clock offset - low byte
hcibuf[12] = 0x00; //Clock offset - high byte
HCI_Command(hcibuf, 13);
}
void BTD::hci_set_local_name(const char* name) {
hcibuf[0] = 0x13; // HCI OCF = 13
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = strlen(name)+1; // parameter length = the length of the string + end byte
uint8_t i;
for(i = 0; i < strlen(name); i++)
hcibuf[i+3] = name[i];
hcibuf[i+3] = 0x00; // End of string
HCI_Command(hcibuf, 4+strlen(name));
}
void BTD::hci_pin_code_request_reply(const char* key) {
hcibuf[0] = 0x0D; // HCI OCF = 0D
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x17; // parameter length 23
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = strlen(key); // Length of key
uint8_t i;
for(i = 0; i < strlen(key); i++) // The maximum size of the key is 16
hcibuf[i+10] = key[i];
for(;i < 16; i++)
hcibuf[i+10] = 0x00; // The rest should be 0
HCI_Command(hcibuf, 26);
}
void BTD::hci_pin_code_negative_request_reply() {
hcibuf[0] = 0x0E; // HCI OCF = 0E
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x06; // parameter length 6
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
HCI_Command(hcibuf, 9);
}
void BTD::hci_link_key_request_negative_reply() {
hcibuf[0] = 0x0C; // HCI OCF = 0C
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x06; // parameter length 6
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
HCI_Command(hcibuf, 9);
}
void BTD::hci_disconnect(uint16_t handle) { // This is called by the different services
hci_event_flag &= ~HCI_FLAG_DISCONN_COMPLETE;
hcibuf[0] = 0x06; // HCI OCF = 6
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x03; // parameter length = 3
hcibuf[3] = (uint8_t)(handle & 0xFF);//connection handle - low byte
hcibuf[4] = (uint8_t)((handle >> 8) & 0x0F);//connection handle - high byte
hcibuf[5] = 0x13; // reason
HCI_Command(hcibuf, 6);
}
/*******************************************************************
* *
* HCI ACL Data Packet *
* *
* buf[0] buf[1] buf[2] buf[3]
* 0 4 8 11 12 16 24 31 MSB
* .-+-+-+-+-+-+-+-|-+-+-+-|-+-|-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
* | HCI Handle |PB |BC | Data Total Length | HCI ACL Data Packet
* .-+-+-+-+-+-+-+-|-+-+-+-|-+-|-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
*
* buf[4] buf[5] buf[6] buf[7]
* 0 8 16 31 MSB
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
* | Length | Channel ID | Basic L2CAP header
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
*
* buf[8] buf[9] buf[10] buf[11]
* 0 8 16 31 MSB
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
* | Code | Identifier | Length | Control frame (C-frame)
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-. (signaling packet format)
*/
/************************************************************/
/* L2CAP Commands */
/************************************************************/
void BTD::L2CAP_Command(uint16_t handle, uint8_t* data, uint8_t nbytes, uint8_t channelLow, uint8_t channelHigh) {
uint8_t buf[256];
2012-08-04 19:46:32 +02:00
buf[0] = (uint8_t)(handle & 0xff); // HCI handle with PB,BC flag
2012-08-04 12:20:47 +02:00
buf[1] = (uint8_t)(((handle >> 8) & 0x0f) | 0x20);
2012-08-04 19:46:32 +02:00
buf[2] = (uint8_t)((4 + nbytes) & 0xff); // HCI ACL total data length
2012-08-04 12:20:47 +02:00
buf[3] = (uint8_t)((4 + nbytes) >> 8);
2012-08-04 19:46:32 +02:00
buf[4] = (uint8_t)(nbytes & 0xff); // L2CAP header: Length
2012-08-04 12:20:47 +02:00
buf[5] = (uint8_t)(nbytes >> 8);
buf[6] = channelLow;
buf[7] = channelHigh;
for (uint16_t i = 0; i < nbytes; i++) // L2CAP C-frame
buf[8 + i] = data[i];
uint8_t rcode = pUsb->outTransfer(bAddress, epInfo[ BTD_DATAOUT_PIPE ].epAddr, (8 + nbytes), buf);
if(rcode) {
#ifdef DEBUG
Notify(PSTR("\r\nError sending L2CAP message: 0x"));
PrintHex<uint8_t>(rcode);
Notify(PSTR(" - Channel ID: "));
Serial.print(channelHigh);
Notify(PSTR(" "));
Serial.print(channelLow);
#endif
}
}
void BTD::l2cap_connection_response(uint16_t handle, uint8_t rxid, uint8_t* dcid, uint8_t* scid, uint8_t result) {
l2capoutbuf[0] = L2CAP_CMD_CONNECTION_RESPONSE; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x08; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0]; // Destination CID
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = scid[0]; // Source CID
l2capoutbuf[7] = scid[1];
l2capoutbuf[8] = result; // Result: Pending or Success
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x00; // No further information
l2capoutbuf[11] = 0x00;
L2CAP_Command(handle, l2capoutbuf, 12);
}
void BTD::l2cap_config_request(uint16_t handle, uint8_t rxid, uint8_t* dcid) {
l2capoutbuf[0] = L2CAP_CMD_CONFIG_REQUEST; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x08; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0]; // Destination CID
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = 0x00; // Flags
l2capoutbuf[7] = 0x00;
l2capoutbuf[8] = 0x01; // Config Opt: type = MTU (Maximum Transmission Unit) - Hint
l2capoutbuf[9] = 0x02; // Config Opt: length
l2capoutbuf[10] = 0xFF; // MTU
l2capoutbuf[11] = 0xFF;
L2CAP_Command(handle, l2capoutbuf, 12);
}
void BTD::l2cap_config_response(uint16_t handle, uint8_t rxid, uint8_t* scid) {
l2capoutbuf[0] = L2CAP_CMD_CONFIG_RESPONSE; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x0A; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = scid[0]; // Source CID
l2capoutbuf[5] = scid[1];
l2capoutbuf[6] = 0x00; // Flag
l2capoutbuf[7] = 0x00;
l2capoutbuf[8] = 0x00; // Result
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x01; // Config
l2capoutbuf[11] = 0x02;
l2capoutbuf[12] = 0xA0;
l2capoutbuf[13] = 0x02;
L2CAP_Command(handle, l2capoutbuf, 14);
}
void BTD::l2cap_disconnection_request(uint16_t handle, uint8_t rxid, uint8_t* dcid, uint8_t* scid) {
l2capoutbuf[0] = L2CAP_CMD_DISCONNECT_REQUEST; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x04; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0];
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = scid[0];
l2capoutbuf[7] = scid[1];
L2CAP_Command(handle, l2capoutbuf, 8);
}
void BTD::l2cap_disconnection_response(uint16_t handle, uint8_t rxid, uint8_t* dcid, uint8_t* scid) {
l2capoutbuf[0] = L2CAP_CMD_DISCONNECT_RESPONSE; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x04; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0];
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = scid[0];
l2capoutbuf[7] = scid[1];
L2CAP_Command(handle, l2capoutbuf, 8);
}
void BTD::l2cap_information_response(uint16_t handle, uint8_t rxid, uint8_t infoTypeLow, uint8_t infoTypeHigh) {
l2capoutbuf[0] = L2CAP_CMD_INFORMATION_RESPONSE; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x08; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = infoTypeLow;
l2capoutbuf[5] = infoTypeHigh;
l2capoutbuf[6] = 0x00; // Result = success
l2capoutbuf[7] = 0x00; // Result = success
l2capoutbuf[8] = 0x00;
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x00;
l2capoutbuf[11] = 0x00;
L2CAP_Command(handle, l2capoutbuf, 12);
}
/* PS3 Commands - only set Bluetooth address is implemented */
2012-08-04 19:46:32 +02:00
void BTD::setBdaddr(uint8_t* BDADDR) {
2012-08-04 12:20:47 +02:00
/* Set the internal bluetooth address */
uint8_t buf[8];
buf[0] = 0x01;
buf[1] = 0x00;
for (uint8_t i = 0; i < 6; i++)
buf[i+2] = BDADDR[5 - i];//Copy into buffer, has to be written reversed
//bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0xF5), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data)
pUsb->ctrlReq(bAddress,epInfo[BTD_CONTROL_PIPE].epAddr, bmREQ_HID_OUT, HID_REQUEST_SET_REPORT, 0xF5, 0x03, 0x00, 8, 8, buf, NULL);
#ifdef DEBUG
Notify(PSTR("\r\nBluetooth Address was set to: "));
for(int8_t i = 5; i > 0; i--)
{
PrintHex<uint8_t>(my_bdaddr[i]);
Serial.print(":");
}
PrintHex<uint8_t>(my_bdaddr[0]);
#endif
return;
}
2012-08-04 19:46:32 +02:00
void BTD::setMoveBdaddr(uint8_t* BDADDR) {
2012-08-04 12:20:47 +02:00
/* Set the internal bluetooth address */
uint8_t buf[11];
buf[0] = 0x05;
buf[7] = 0x10;
buf[8] = 0x01;
buf[9] = 0x02;
buf[10] = 0x12;
for (uint8_t i = 0; i < 6; i++)
buf[i + 1] = BDADDR[i];
//bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0x05), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data)
pUsb->ctrlReq(bAddress,epInfo[BTD_CONTROL_PIPE].epAddr, bmREQ_HID_OUT, HID_REQUEST_SET_REPORT, 0x05, 0x03, 0x00,11,11, buf, NULL);
#ifdef DEBUG
Notify(PSTR("\r\nBluetooth Address was set to: "));
for(int8_t i = 5; i > 0; i--)
{
PrintHex<uint8_t>(my_bdaddr[i]);
Serial.print(":");
}
PrintHex<uint8_t>(my_bdaddr[0]);
#endif
return;
}