USB_Host_Shield_2.0/RFCOMM.cpp

1552 lines
62 KiB
C++
Raw Normal View History

2012-07-24 22:23:59 +02:00
/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#include "RFCOMM.h"
#define DEBUG // Uncomment to print data for debugging
//#define EXTRADEBUG // Uncomment to get even more debugging data
2012-07-26 19:17:52 +02:00
//#define PRINTREPORT // Uncomment to print the report sent to the Arduino
2012-07-24 22:23:59 +02:00
const uint8_t RFCOMM::BTD_EVENT_PIPE = 1;
const uint8_t RFCOMM::BTD_DATAIN_PIPE = 2;
const uint8_t RFCOMM::BTD_DATAOUT_PIPE = 3;
/*
* CRC (reversed crc) lookup table as calculated by the table generator in ETSI TS 101 369 V6.3.0.
*/
2012-07-26 19:17:52 +02:00
const uint8_t rfcomm_crc_table[256] PROGMEM = { /* reversed, 8-bit, poly=0x07 */
2012-07-24 22:23:59 +02:00
0x00, 0x91, 0xE3, 0x72, 0x07, 0x96, 0xE4, 0x75, 0x0E, 0x9F, 0xED, 0x7C, 0x09, 0x98, 0xEA, 0x7B,
0x1C, 0x8D, 0xFF, 0x6E, 0x1B, 0x8A, 0xF8, 0x69, 0x12, 0x83, 0xF1, 0x60, 0x15, 0x84, 0xF6, 0x67,
0x38, 0xA9, 0xDB, 0x4A, 0x3F, 0xAE, 0xDC, 0x4D, 0x36, 0xA7, 0xD5, 0x44, 0x31, 0xA0, 0xD2, 0x43,
0x24, 0xB5, 0xC7, 0x56, 0x23, 0xB2, 0xC0, 0x51, 0x2A, 0xBB, 0xC9, 0x58, 0x2D, 0xBC, 0xCE, 0x5F,
0x70, 0xE1, 0x93, 0x02, 0x77, 0xE6, 0x94, 0x05, 0x7E, 0xEF, 0x9D, 0x0C, 0x79, 0xE8, 0x9A, 0x0B,
0x6C, 0xFD, 0x8F, 0x1E, 0x6B, 0xFA, 0x88, 0x19, 0x62, 0xF3, 0x81, 0x10, 0x65, 0xF4, 0x86, 0x17,
0x48, 0xD9, 0xAB, 0x3A, 0x4F, 0xDE, 0xAC, 0x3D, 0x46, 0xD7, 0xA5, 0x34, 0x41, 0xD0, 0xA2, 0x33,
0x54, 0xC5, 0xB7, 0x26, 0x53, 0xC2, 0xB0, 0x21, 0x5A, 0xCB, 0xB9, 0x28, 0x5D, 0xCC, 0xBE, 0x2F,
0xE0, 0x71, 0x03, 0x92, 0xE7, 0x76, 0x04, 0x95, 0xEE, 0x7F, 0x0D, 0x9C, 0xE9, 0x78, 0x0A, 0x9B,
0xFC, 0x6D, 0x1F, 0x8E, 0xFB, 0x6A, 0x18, 0x89, 0xF2, 0x63, 0x11, 0x80, 0xF5, 0x64, 0x16, 0x87,
0xD8, 0x49, 0x3B, 0xAA, 0xDF, 0x4E, 0x3C, 0xAD, 0xD6, 0x47, 0x35, 0xA4, 0xD1, 0x40, 0x32, 0xA3,
0xC4, 0x55, 0x27, 0xB6, 0xC3, 0x52, 0x20, 0xB1, 0xCA, 0x5B, 0x29, 0xB8, 0xCD, 0x5C, 0x2E, 0xBF,
0x90, 0x01, 0x73, 0xE2, 0x97, 0x06, 0x74, 0xE5, 0x9E, 0x0F, 0x7D, 0xEC, 0x99, 0x08, 0x7A, 0xEB,
0x8C, 0x1D, 0x6F, 0xFE, 0x8B, 0x1A, 0x68, 0xF9, 0x82, 0x13, 0x61, 0xF0, 0x85, 0x14, 0x66, 0xF7,
0xA8, 0x39, 0x4B, 0xDA, 0xAF, 0x3E, 0x4C, 0xDD, 0xA6, 0x37, 0x45, 0xD4, 0xA1, 0x30, 0x42, 0xD3,
0xB4, 0x25, 0x57, 0xC6, 0xB3, 0x22, 0x50, 0xC1, 0xBA, 0x2B, 0x59, 0xC8, 0xBD, 0x2C, 0x5E, 0xCF
};
2012-07-26 19:17:52 +02:00
RFCOMM::RFCOMM(USB *p, const char* name, const char* pin):
2012-07-24 22:23:59 +02:00
pUsb(p), // pointer to USB class instance - mandatory
bAddress(0), // device address - mandatory
bNumEP(1), // if config descriptor needs to be parsed
qNextPollTime(0),
bPollEnable(false) // don't start polling before dongle is connected
{
for(uint8_t i=0; i<BTD_MAX_ENDPOINTS; i++)
{
epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0;
epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER;
}
if (pUsb) // register in USB subsystem
pUsb->RegisterDeviceClass(this); //set devConfig[] entry
btdName = name;
2012-07-26 19:17:52 +02:00
btdPin = pin;
2012-07-24 22:23:59 +02:00
}
uint8_t RFCOMM::Init(uint8_t parent, uint8_t port, bool lowspeed)
{
uint8_t buf[sizeof(USB_DEVICE_DESCRIPTOR)];
uint8_t rcode;
UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL;
uint8_t num_of_conf; // number of configurations
// get memory address of USB device address pool
AddressPool &addrPool = pUsb->GetAddressPool();
#ifdef EXTRADEBUG
Notify(PSTR("\r\nRFCOMM Init"));
#endif
// check if address has already been assigned to an instance
if (bAddress)
{
#ifdef DEBUG
Notify(PSTR("\r\nAddress in use"));
#endif
return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;
}
// Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0);
if (!p)
{
#ifdef DEBUG
Notify(PSTR("\r\nAddress not found"));
#endif
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
}
if (!p->epinfo)
{
#ifdef DEBUG
Notify(PSTR("\r\nepinfo is null"));
#endif
return USB_ERROR_EPINFO_IS_NULL;
}
// Save old pointer to EP_RECORD of address 0
oldep_ptr = p->epinfo;
// Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence
p->epinfo = epInfo;
p->lowspeed = lowspeed;
// Get device descriptor
rcode = pUsb->getDevDescr(0, 0, sizeof(USB_DEVICE_DESCRIPTOR), (uint8_t*)buf);// Get device descriptor - addr, ep, nbytes, data
// Restore p->epinfo
p->epinfo = oldep_ptr;
if(rcode)
goto FailGetDevDescr;
// Allocate new address according to device class
bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0;
// Assign new address to the device
rcode = pUsb->setAddr( 0, 0, bAddress );
if (rcode)
{
p->lowspeed = false;
addrPool.FreeAddress(bAddress);
bAddress = 0;
#ifdef DEBUG
Notify(PSTR("\r\nsetAddr: "));
#endif
PrintHex<uint8_t>(rcode);
return rcode;
}
#ifdef EXTRADEBUG
Notify(PSTR("\r\nAddr: "));
PrintHex<uint8_t>(bAddress);
#endif
p->lowspeed = false;
//get pointer to assigned address record
p = addrPool.GetUsbDevicePtr(bAddress);
if (!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed;
// Assign epInfo to epinfo pointer - only EP0 is known
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode)
goto FailSetDevTblEntry;
num_of_conf = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations;
// check if attached device is a Bluetooth dongle and fill endpoint data structure
// first interface in the configuration must have Bluetooth assigned Class/Subclass/Protocol
// and 3 endpoints - interrupt-IN, bulk-IN, bulk-OUT,
// not necessarily in this order
for (uint8_t i=0; i<num_of_conf; i++) {
ConfigDescParser<USB_CLASS_WIRELESS_CTRL, WI_SUBCLASS_RF, WI_PROTOCOL_BT, CP_MASK_COMPARE_ALL> confDescrParser(this);
rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
if(rcode)
goto FailGetConfDescr;
if(bNumEP > 3) //all endpoints extracted
break;
}
if (bNumEP < BTD_MAX_ENDPOINTS)
goto FailUnknownDevice;
// Assign epInfo to epinfo pointer - this time all 3 endpoins
rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo);
if(rcode)
goto FailSetDevTblEntry;
delay(200); // Give time for address change
// Set Configuration Value
rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bConfNum);
if(rcode)
goto FailSetConf;
/* Set device cid for the SDP and RFCOMM channelse */
sdp_dcid[0] = 0x50;//0x0050
sdp_dcid[1] = 0x00;
rfcomm_dcid[0] = 0x51;//0x0051
rfcomm_dcid[1] = 0x00;
hci_num_reset_loops = 100; // only loop 100 times before trying to send the hci reset command
hci_state = HCI_INIT_STATE;
hci_counter = 0;
l2cap_sdp_state = L2CAP_SDP_WAIT;
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
#ifdef DEBUG
Notify(PSTR("\r\nBluetooth Dongle Initialized"));
#endif
watingForConnection = false;
bPollEnable = true;
return 0; //successful configuration
/* diagnostic messages */
FailGetDevDescr:
#ifdef DEBUG
Notify(PSTR("\r\ngetDevDescr:"));
#endif
goto Fail;
FailSetDevTblEntry:
#ifdef DEBUG
Notify(PSTR("\r\nsetDevTblEn:"));
#endif
goto Fail;
FailGetConfDescr:
#ifdef DEBUG
Notify(PSTR("\r\ngetConf:"));
#endif
goto Fail;
FailSetConf:
#ifdef DEBUG
Notify(PSTR("\r\nsetConf:"));
#endif
goto Fail;
FailUnknownDevice:
#ifdef DEBUG
Notify(PSTR("\r\nUnknown Device Connected:"));
#endif
goto Fail;
Fail:
#ifdef DEBUG
Notify(PSTR("\r\nBTD Init Failed, error code: "));
Serial.print(rcode);
#endif
Release();
return rcode;
}
/* Extracts interrupt-IN, bulk-IN, bulk-OUT endpoint information from config descriptor */
void RFCOMM::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *pep) {
//ErrorMessage<uint8_t>(PSTR("Conf.Val"),conf);
//ErrorMessage<uint8_t>(PSTR("Iface Num"),iface);
//ErrorMessage<uint8_t>(PSTR("Alt.Set"),alt);
if(alt) // wrong interface - by BT spec, no alt setting
return;
bConfNum = conf;
uint8_t index;
if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) //Interrupt In endpoint found
index = BTD_EVENT_PIPE;
else {
if ((pep->bmAttributes & 0x02) == 2) //bulk endpoint found
index = ((pep->bEndpointAddress & 0x80) == 0x80) ? BTD_DATAIN_PIPE : BTD_DATAOUT_PIPE;
else
return;
}
//Fill the rest of endpoint data structure
epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F);
epInfo[index].maxPktSize = (uint8_t)pep->wMaxPacketSize;
#ifdef EXTRADEBUG
PrintEndpointDescriptor(pep);
#endif
if(pollInterval < pep->bInterval) // Set the polling interval as the largest polling interval obtained from endpoints
pollInterval = pep->bInterval;
bNumEP++;
return;
}
void RFCOMM::PrintEndpointDescriptor(const USB_ENDPOINT_DESCRIPTOR* ep_ptr) {
Notify(PSTR("\r\nEndpoint descriptor:"));
Notify(PSTR("\r\nLength:\t\t"));
PrintHex<uint8_t>(ep_ptr->bLength);
Notify(PSTR("\r\nType:\t\t"));
PrintHex<uint8_t>(ep_ptr->bDescriptorType);
Notify(PSTR("\r\nAddress:\t"));
PrintHex<uint8_t>(ep_ptr->bEndpointAddress);
Notify(PSTR("\r\nAttributes:\t"));
PrintHex<uint8_t>(ep_ptr->bmAttributes);
Notify(PSTR("\r\nMaxPktSize:\t"));
PrintHex<uint16_t>(ep_ptr->wMaxPacketSize);
Notify(PSTR("\r\nPoll Intrv:\t"));
PrintHex<uint8_t>(ep_ptr->bInterval);
}
/* Performs a cleanup after failed Init() attempt */
uint8_t RFCOMM::Release() {
connected = false;
pUsb->GetAddressPool().FreeAddress(bAddress);
bAddress = 0;
bPollEnable = false;
bNumEP = 1; // must have to be reset to 1
return 0;
}
uint8_t RFCOMM::Poll() {
if (!bPollEnable)
return 0;
if (qNextPollTime <= millis()) { // Don't poll if shorter than polling interval
qNextPollTime = millis() + pollInterval; // Set new poll time
HCI_event_task(); // poll the HCI event pipe
ACL_event_task(); // start polling the ACL input pipe too, though discard data until connected
}
return 0;
}
void RFCOMM::disconnect() { // Use this void to disconnect the RFCOMM Channel
connected = false;
// First the HID interrupt channel has to be disconencted, then the HID control channel and finally the HCI connection
if(RFCOMMConnected)
2012-07-26 19:17:52 +02:00
l2cap_disconnection_request(0x0A, rfcomm_dcid, rfcomm_scid);
2012-07-24 22:23:59 +02:00
if(SDPConnected)
l2cap_disconnection_request(0x0B, sdp_dcid, sdp_scid);
l2cap_sdp_state = L2CAP_DISCONNECT_RESPONSE;
}
void RFCOMM::HCI_event_task() {
/* check the event pipe*/
uint16_t MAX_BUFFER_SIZE = BULK_MAXPKTSIZE; // Request more than 16 bytes anyway, the inTransfer routine will take care of this
uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_EVENT_PIPE ].epAddr, &MAX_BUFFER_SIZE, hcibuf); // input on endpoint 1
if(!rcode || rcode == hrNAK) // Check for errors
{
switch (hcibuf[0]) //switch on event type
{
case EV_COMMAND_COMPLETE:
hci_event_flag |= HCI_FLAG_CMD_COMPLETE; // set command complete flag
if (!hcibuf[5]) { // check if command succeeded
if((hcibuf[3] == 0x09) && (hcibuf[4] == 0x10)) { // parameters from read local bluetooth address
for (uint8_t i = 0; i < 6; i++)
my_bdaddr[i] = hcibuf[6 + i];
hci_event_flag |= HCI_FLAG_READ_BDADDR;
}
}
break;
case EV_COMMAND_STATUS:
if(hcibuf[2]) // show status on serial if not OK
{
#ifdef DEBUG
Notify(PSTR("\r\nHCI Command Failed: "));
PrintHex<uint8_t>(hcibuf[2]);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" "));
2012-07-24 22:23:59 +02:00
PrintHex<uint8_t>(hcibuf[4]);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" "));
2012-07-24 22:23:59 +02:00
PrintHex<uint8_t>(hcibuf[5]);
#endif
}
break;
case EV_CONNECT_COMPLETE:
if (!hcibuf[2]) { // check if connected OK
hci_handle = hcibuf[3] | hcibuf[4] << 8; //store the handle for the ACL connection
hci_event_flag |= HCI_FLAG_CONN_COMPLETE; // set connection complete flag
}
break;
case EV_DISCONNECT_COMPLETE:
if (!hcibuf[2]) { // check if disconnected OK
hci_event_flag |= HCI_FLAG_DISCONN_COMPLETE; //set disconnect commend complete flag
hci_event_flag &= ~HCI_FLAG_CONN_COMPLETE; // clear connection complete flag
}
break;
case EV_REMOTE_NAME_COMPLETE:
if (!hcibuf[2]) { // check if reading is OK
for (uint8_t i = 0; i < 30; i++)
remote_name[i] = hcibuf[9 + i]; //store first 30 bytes
hci_event_flag |= HCI_FLAG_REMOTE_NAME_COMPLETE;
}
break;
case EV_INCOMING_CONNECT:
disc_bdaddr[0] = hcibuf[2];
disc_bdaddr[1] = hcibuf[3];
disc_bdaddr[2] = hcibuf[4];
disc_bdaddr[3] = hcibuf[5];
disc_bdaddr[4] = hcibuf[6];
disc_bdaddr[5] = hcibuf[7];
hci_event_flag |= HCI_FLAG_INCOMING_REQUEST;
break;
case EV_PIN_CODE_REQUEST:
#ifdef DEBUG
2012-07-26 19:17:52 +02:00
Notify(PSTR("\r\nBluetooth pin is set too: "));
Serial.print(btdPin);
2012-07-24 22:23:59 +02:00
#endif
2012-07-26 19:17:52 +02:00
hci_pin_code_request_reply(btdPin);
2012-07-24 22:23:59 +02:00
break;
case EV_LINK_KEY_REQUEST:
#ifdef DEBUG
Notify(PSTR("\r\nReceived Key Request"));
#endif
hci_link_key_request_negative_reply();
break;
/* We will just ignore the following events */
case EV_NUM_COMPLETE_PKT:
case EV_ROLE_CHANGED:
case EV_PAGE_SCAN_REP_MODE:
case EV_LOOPBACK_COMMAND:
case EV_DATA_BUFFER_OVERFLOW:
case EV_CHANGE_CONNECTION_LINK:
case EV_AUTHENTICATION_COMPLETE:
case EV_MAX_SLOTS_CHANGE:
case EV_QOS_SETUP_COMPLETE:
case EV_LINK_KEY_NOTIFICATION:
case EV_ENCRYPTION_CHANGE:
case EV_READ_REMOTE_VERSION_INFORMATION_COMPLETE:
break;
default:
#ifdef EXTRADEBUG
if(hcibuf[0] != 0x00) {
Notify(PSTR("\r\nUnmanaged HCI Event: "));
PrintHex<uint8_t>(hcibuf[0]);
}
#endif
break;
} // switch
HCI_task();
}
else {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nHCI event error: "));
PrintHex<uint8_t>(rcode);
#endif
}
}
/* Poll Bluetooth and print result */
void RFCOMM::HCI_task() {
switch (hci_state){
case HCI_INIT_STATE:
hci_counter++;
if (hci_counter > hci_num_reset_loops) // wait until we have looped x times to clear any old events
{
hci_reset();
hci_state = HCI_RESET_STATE;
hci_counter = 0;
}
break;
case HCI_RESET_STATE:
hci_counter++;
if (hci_cmd_complete)
{
#ifdef DEBUG
Notify(PSTR("\r\nHCI Reset complete"));
#endif
hci_state = HCI_BDADDR_STATE;
hci_read_bdaddr();
}
else if (hci_counter > hci_num_reset_loops)
{
hci_num_reset_loops *= 10;
if(hci_num_reset_loops > 2000)
hci_num_reset_loops = 2000;
#ifdef DEBUG
Notify(PSTR("\r\nNo response to HCI Reset"));
#endif
hci_state = HCI_INIT_STATE;
hci_counter = 0;
}
break;
case HCI_BDADDR_STATE:
if (hci_read_bdaddr_complete)
{
#ifdef DEBUG
2012-07-26 19:17:52 +02:00
Notify(PSTR("\r\nLocal Bluetooth Address: "));
2012-07-24 22:23:59 +02:00
for(int8_t i = 5; i > 0;i--)
{
PrintHex<uint8_t>(my_bdaddr[i]);
Serial.print(":");
}
PrintHex<uint8_t>(my_bdaddr[0]);
#endif
hci_set_local_name(btdName);
hci_state = HCI_SET_NAME_STATE;
}
break;
case HCI_SET_NAME_STATE:
if (hci_cmd_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nThe name is set to: "));
Serial.print(btdName);
#endif
hci_state = HCI_SCANNING_STATE;
}
break;
case HCI_SCANNING_STATE:
#ifdef DEBUG
Notify(PSTR("\r\nWait For Incoming Connection Request"));
#endif
hci_write_scan_enable();
watingForConnection = true;
hci_state = HCI_CONNECT_IN_STATE;
break;
case HCI_CONNECT_IN_STATE:
if(hci_incoming_connect_request) {
watingForConnection = false;
#ifdef DEBUG
Notify(PSTR("\r\nIncoming Request"));
#endif
hci_remote_name();
hci_state = HCI_REMOTE_NAME_STATE;
}
break;
case HCI_REMOTE_NAME_STATE:
if(hci_remote_name_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nRemote Name: "));
for (uint8_t i = 0; i < 30; i++)
{
if(remote_name[i] == NULL)
break;
Serial.write(remote_name[i]);
}
#endif
hci_accept_connection();
hci_state = HCI_CONNECTED_STATE;
}
break;
case HCI_CONNECTED_STATE:
if (hci_connect_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nConnected to Device: "));
for(int8_t i = 5; i>0;i--)
{
PrintHex<uint8_t>(disc_bdaddr[i]);
Serial.print(":");
}
PrintHex<uint8_t>(disc_bdaddr[0]);
#endif
hci_write_scan_disable(); // Only allow one controller
hci_state = HCI_DISABLE_SCAN;
}
break;
case HCI_DISABLE_SCAN:
if (hci_cmd_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nScan Disabled"));
#endif
l2cap_event_flag = 0;
hci_state = HCI_DONE_STATE;
}
break;
case HCI_DONE_STATE:
if (hci_disconnect_complete)
hci_state = HCI_DISCONNECT_STATE;
break;
case HCI_DISCONNECT_STATE:
if (hci_disconnect_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected from Device: "));
for(int8_t i = 5; i>0;i--)
{
PrintHex<uint8_t>(disc_bdaddr[i]);
Serial.print(":");
}
PrintHex<uint8_t>(disc_bdaddr[0]);
#endif
l2cap_event_flag = 0; // Clear all flags
hci_event_flag = 0; // Clear all flags
//Reset all buffers
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
hcibuf[i] = 0;
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
l2capinbuf[i] = 0;
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
l2capoutbuf[i] = 0;
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
rfcommbuf[i] = 0;
l2cap_sdp_state = L2CAP_SDP_WAIT;
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
hci_state = HCI_SCANNING_STATE;
}
break;
default:
break;
}
}
void RFCOMM::ACL_event_task()
{
uint16_t MAX_BUFFER_SIZE = BULK_MAXPKTSIZE;
uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_DATAIN_PIPE ].epAddr, &MAX_BUFFER_SIZE, l2capinbuf); // input on endpoint 2
if(!rcode) { // Check for errors
if (((l2capinbuf[0] | (l2capinbuf[1] << 8)) == (hci_handle | 0x2000))) { //acl_handle_ok
if ((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001) { //l2cap_control - Channel ID for ACL-U
/*
if (l2capinbuf[8] != 0x00)
{
Serial.print("\r\nL2CAP Signaling Command - 0x");
PrintHex<uint8_t>(l2capoutbuf[8]);
}
*/
if (l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) {
#ifdef DEBUG
Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "));
PrintHex<uint8_t>(l2capinbuf[13]);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" "));
2012-07-24 22:23:59 +02:00
PrintHex<uint8_t>(l2capinbuf[12]);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" Data: "));
2012-07-24 22:23:59 +02:00
PrintHex<uint8_t>(l2capinbuf[17]);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" "));
2012-07-24 22:23:59 +02:00
PrintHex<uint8_t>(l2capinbuf[16]);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" "));
2012-07-24 22:23:59 +02:00
PrintHex<uint8_t>(l2capinbuf[15]);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" "));
2012-07-24 22:23:59 +02:00
PrintHex<uint8_t>(l2capinbuf[14]);
#endif
}
else if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nL2CAP Connection Request - PSM: "));
PrintHex<uint8_t>(l2capinbuf[13]);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" "));
2012-07-24 22:23:59 +02:00
PrintHex<uint8_t>(l2capinbuf[12]);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" "));
2012-07-24 22:23:59 +02:00
Notify(PSTR(" SCID: "));
PrintHex<uint8_t>(l2capinbuf[15]);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" "));
2012-07-24 22:23:59 +02:00
PrintHex<uint8_t>(l2capinbuf[14]);
Notify(PSTR(" Identifier: "));
PrintHex<uint8_t>(l2capinbuf[9]);
#endif
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM) {
identifier = l2capinbuf[9];
sdp_scid[0] = l2capinbuf[14];
sdp_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_SDP_REQUEST;
}
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM) {
identifier = l2capinbuf[9];
rfcomm_scid[0] = l2capinbuf[14];
rfcomm_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST;
}
}
else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { //Success
//Serial.print("\r\nHID Control Configuration Complete");
l2cap_event_flag |= L2CAP_FLAG_CONFIG_SDP_SUCCESS;
}
}
else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { //Success
//Serial.print("\r\nHID Interrupt Configuration Complete");
l2cap_event_flag |= L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS;
}
}
}
else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
//Serial.print("\r\nHID Control Configuration Request");
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_CONFIG_SDP_REQUEST;
}
else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
//Serial.print("\r\nHID Interrupt Configuration Request");
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_CONFIG_RFCOMM_REQUEST;
}
}
else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
//Notify(PSTR("\r\nDisconnect Request: SDP Channel"));
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_SDP_REQUEST;
}
else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
//Notify(PSTR("\r\nDisconnect Request: RFCOMM Channel"));
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST;
}
}
else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) {
if (l2capinbuf[12] == sdp_scid[0] && l2capinbuf[13] == sdp_scid[1]) {
//Serial.print("\r\nDisconnect Response: SDP Channel");
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RESPONSE;
}
else if (l2capinbuf[12] == rfcomm_scid[0] && l2capinbuf[13] == rfcomm_scid[1]) {
//Serial.print("\r\nDisconnect Response: RFCOMM Channel");
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RESPONSE;
}
}
else if (l2capinbuf[8] == L2CAP_CMD_INFORMATION_REQUEST) {
#ifdef DEBUG
Notify(PSTR("\r\nInformation request"));
#endif
identifier = l2capinbuf[9];
l2cap_information_response(identifier,l2capinbuf[12],l2capinbuf[13]);
}
else {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nL2CAP Unknown Command: "));
#endif
PrintHex<uint8_t>(l2capinbuf[8]);
}
}
else if (l2capinbuf[6] == sdp_dcid[0] && l2capinbuf[7] == sdp_dcid[1]) { // SDP
if(l2capinbuf[8] == SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST_PDU) {
/*
Serial.print("\r\nUUID: 0x");
Serial.print(l2capinbuf[16],HEX);
Serial.print(" ");
Serial.print(l2capinbuf[17],HEX);
*/
if ((l2capinbuf[16] << 8 | l2capinbuf[17]) == SERIALPORT_UUID) {
if(firstMessage) {
serialPortResponse1(l2capinbuf[9],l2capinbuf[10]);
firstMessage = false;
} else {
serialPortResponse2(l2capinbuf[9],l2capinbuf[10]); // Serialport continuation state
firstMessage = true;
}
} else if ((l2capinbuf[16] << 8 | l2capinbuf[17]) == L2CAP_UUID) {
if(firstMessage) {
l2capResponse1(l2capinbuf[9],l2capinbuf[10]);
firstMessage = false;
} else {
l2capResponse2(l2capinbuf[9],l2capinbuf[10]); // L2CAP continuation state
firstMessage = true;
}
} else
serviceNotSupported(l2capinbuf[9],l2capinbuf[10]); // The service is not supported
}
}
else if (l2capinbuf[6] == rfcomm_dcid[0] && l2capinbuf[7] == rfcomm_dcid[1]) { // RFCOMM
rfcommChannel = l2capinbuf[8] & 0xF8;
rfcommDirection = l2capinbuf[8] & 0x04;
rfcommCommandResponse = l2capinbuf[8] & 0x02;
rfcommChannelType = l2capinbuf[9] & 0xEF;
rfcommPfBit = l2capinbuf[9] & 0x10;
if(rfcommChannel>>3 != 0x00)
rfcommChannelPermanent = rfcommChannel;
#ifdef EXTRADEBUG
2012-07-26 19:17:52 +02:00
Notify(PSTR("\r\nRFCOMM Channel: "));
2012-07-24 22:23:59 +02:00
Serial.print(rfcommChannel>>3,HEX);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" Direction: "));
2012-07-24 22:23:59 +02:00
Serial.print(rfcommDirection>>2,HEX);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" CommandResponse: "));
2012-07-24 22:23:59 +02:00
Serial.print(rfcommCommandResponse>>1,HEX);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" ChannelType: "));
2012-07-24 22:23:59 +02:00
Serial.print(rfcommChannelType,HEX);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" PF_BIT: "));
2012-07-24 22:23:59 +02:00
Serial.print(rfcommPfBit,HEX);
#endif
if(connected) {
readReport();
#ifdef PRINTREPORT
printReport(); //Uncomment "#define PRINTREPORT" to print the report send to the Arduino via Bluetooth
#endif
} else {
if(rfcommChannelType == RFCOMM_SABM) { // SABM Command - this is sent twice: once for channel 0 and then for the channel to establish
#ifdef DEBUG
Notify(PSTR("\r\nSABM Command"));
#endif
sendRfcomm(rfcommChannel,rfcommDirection,rfcommCommandResponse,RFCOMM_UA,rfcommPfBit,rfcommbuf,0x00); // UA Command
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_PN_CMD) { // UIH Parameter Negotiation Command
#ifdef DEBUG
Notify(PSTR("\r\nUIH Parameter Negotiation Command"));
#endif
rfcommbuf[0] = BT_RFCOMM_PN_RSP; // UIH Parameter Negotiation Response
rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1
rfcommbuf[3] = 0xE0; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
rfcommbuf[4] = 0x00; // Priority
rfcommbuf[5] = 0x00; // Timer
rfcommbuf[6] = 0x40; // Max Fram Size LSB - we will just set this to 64
rfcommbuf[7] = 0x00; // Max Fram Size MSB
rfcommbuf[8] = 0x00; // MaxRatransm.
rfcommbuf[9] = 0x00; // Number of Frames
sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x0A);
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command
#ifdef DEBUG
Notify(PSTR("\r\nUIH Modem Status Command"));
#endif
rfcommbuf[0] = BT_RFCOMM_MSC_CMD; // UIH Modem Status Command
rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3)
rfcommbuf[3] = 0x0D; // Can receive frames (YES), Ready to Communicate (YES), Ready to Receive (YES), Incomig Call (NO), Data is Value (NO)
sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x04);
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_RSP) { // UIH Modem Status Response
#ifdef DEBUG
Notify(PSTR("\r\nUIH Modem Status Response"));
#endif
rfcommbuf[0] = BT_RFCOMM_MSC_RSP; // UIH Modem Status Response
rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3)
rfcommbuf[3] = 0x8D; // Can receive frames (YES), Ready to Communicate (YES), Ready to Receive (YES), Incomig Call (NO), Data is Value (YES)
sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x04);
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[10] == 0x01) { // UIH Command with credit
#ifdef DEBUG
Notify(PSTR("\r\nUIH Command with credit"));
#endif
2012-07-26 19:17:52 +02:00
sendRfcommCredit(rfcommChannelPermanent,rfcommDirection,0,RFCOMM_UIH,0x10,0xFF); // 255 credit
timer = millis();
waitForLastCommand = true;
2012-07-24 22:23:59 +02:00
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command
#ifdef DEBUG
Notify(PSTR("\r\nUIH Remote Port Negotiation Command"));
#endif
rfcommbuf[0] = BT_RFCOMM_RPN_RSP; // Command
rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1
rfcommbuf[3] = l2capinbuf[14]; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
rfcommbuf[4] = l2capinbuf[15]; // Priority
rfcommbuf[5] = l2capinbuf[16]; // Timer
rfcommbuf[6] = l2capinbuf[17]; // Max Fram Size LSB
rfcommbuf[7] = l2capinbuf[18]; // Max Fram Size MSB
rfcommbuf[8] = l2capinbuf[19]; // MaxRatransm.
rfcommbuf[9] = l2capinbuf[20]; // Number of Frames
sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x0A); // UIH Remote Port Negotiation Response
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Connection is now established\r\n"));
#endif
2012-07-26 19:17:52 +02:00
waitForLastCommand = false;
2012-07-24 22:23:59 +02:00
connected = true; // The RFCOMM channel is now established
2012-07-26 19:17:52 +02:00
}
else if (rfcommChannelType == RFCOMM_DISC) {
2012-07-24 22:23:59 +02:00
#ifdef DEBUG
Notify(PSTR("\r\nReceived Disconnect RFCOMM Command"));
#endif
2012-07-26 19:17:52 +02:00
l2cap_disconnection_request(0x0A, rfcomm_dcid, rfcomm_scid);
2012-07-24 22:23:59 +02:00
} else {
#ifdef DEBUG
Notify(PSTR("\r\nUnsupported RFCOMM - ChannelType: "));
PrintHex<uint8_t>(rfcommChannelType);
#endif
}
}
}
SDP_task();
RFCOMM_task();
}
}
else if (rcode != hrNAK) {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nACL data in error: "));
PrintHex<uint8_t>(rcode);
#endif
}
}
void RFCOMM::SDP_task() {
switch (l2cap_sdp_state)
{
case L2CAP_SDP_WAIT:
if (l2cap_connection_request_sdp_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nSDP Incoming Connection Request"));
#endif
l2cap_connection_response(identifier, sdp_dcid, sdp_scid, PENDING);
delay(1);
l2cap_connection_response(identifier, sdp_dcid, sdp_scid, SUCCESSFUL);
identifier++;
delay(1);
l2cap_config_request(identifier, sdp_scid);
l2cap_sdp_state = L2CAP_SDP_REQUEST;
}
break;
case L2CAP_SDP_REQUEST:
if (l2cap_config_request_sdp_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nSDP Configuration Request"));
#endif
l2cap_config_response(identifier, sdp_scid);
l2cap_sdp_state = L2CAP_SDP_SUCCESS;
}
break;
case L2CAP_SDP_SUCCESS:
if (l2cap_config_success_sdp_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nSDP Successfully Configured"));
#endif
firstMessage = true; // Reset bool
SDPConnected = true;
l2cap_sdp_state = L2CAP_SDP_DONE;
}
break;
case L2CAP_SDP_DONE:
if(l2cap_disconnect_request_sdp_flag) {
SDPConnected = false;
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected SDP Channel"));
#endif
l2cap_disconnection_response(identifier,sdp_dcid,sdp_scid);
l2cap_sdp_state = L2CAP_SDP_WAIT;
}
break;
case L2CAP_DISCONNECT_RESPONSE: // This is for both disconnection response from the RFCOMM and SDP channel if they were connected
if (l2cap_disconnect_response_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected L2CAP Connection"));
#endif
RFCOMMConnected = false;
SDPConnected = false;
hci_disconnect();
l2cap_sdp_state = L2CAP_SDP_WAIT;
l2cap_sdp_state = L2CAP_RFCOMM_WAIT;
hci_state = HCI_DISCONNECT_STATE;
}
break;
}
}
void RFCOMM::RFCOMM_task()
{
2012-07-26 19:17:52 +02:00
if(!connected) {
if((millis() - timer) > 100 && waitForLastCommand) { // We will only wait 100ms and see if the UIH Remote Port Negotiation Command is send, as some deviced don't send it
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Connection is now established\r\n"));
#endif
waitForLastCommand = false;
connected = true; // The RFCOMM channel is now established
}
}
2012-07-24 22:23:59 +02:00
switch (l2cap_rfcomm_state)
{
case L2CAP_RFCOMM_WAIT:
if(l2cap_connection_request_rfcomm_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Incoming Connection Request"));
#endif
l2cap_connection_response(identifier, rfcomm_dcid, rfcomm_scid, PENDING);
delay(1);
l2cap_connection_response(identifier, rfcomm_dcid, rfcomm_scid, SUCCESSFUL);
identifier++;
delay(1);
l2cap_config_request(identifier, rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_REQUEST;
}
break;
case L2CAP_RFCOMM_REQUEST:
if (l2cap_config_request_rfcomm_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Configuration Request"));
#endif
l2cap_config_response(identifier, rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_SUCCESS;
}
break;
case L2CAP_RFCOMM_SUCCESS:
if (l2cap_config_success_rfcomm_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Successfully Configured"));
#endif
rfcommAvailable = 0; // Reset numbers of bytes available
RFCOMMConnected = true;
l2cap_rfcomm_state = L2CAP_RFCOMM_DONE;
}
break;
case L2CAP_RFCOMM_DONE:
if(l2cap_disconnect_request_rfcomm_flag) {
RFCOMMConnected = false;
connected = false;
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected RFCOMM Channel"));
#endif
l2cap_disconnection_response(identifier,rfcomm_dcid,rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
2012-07-26 19:17:52 +02:00
}
2012-07-24 22:23:59 +02:00
break;
}
}
/************************************************************/
/* RFCOMM Report */
/************************************************************/
void RFCOMM::readReport() {
uint8_t length = l2capinbuf[10] >> 1;
if(rfcommAvailable + length > 256)
return; // Return if the buffer would be full
for(uint8_t i = 0; i < length; i++)
rfcommDataBuffer[rfcommAvailable+i] = l2capinbuf[11+i];
rfcommAvailable += length;
#ifdef EXTRADEBUG
Notify(PSTR("\r\nRFCOMM Data Available: "));
Serial.print(rfcommAvailable);
#endif
}
void RFCOMM::printReport() { //Uncomment "#define PRINTREPORT" to print the report send to the Arduino
if(rfcommChannelType == RFCOMM_UIH) {
uint8_t length = l2capinbuf[10] >> 1; // Get length
uint8_t message[length]; // Create buffer
for(uint8_t i = 0; i < length; i++)
message[i] = l2capinbuf[i+11];
Serial.write(message,length); // Print text
}
}
/************************************************************/
/* HCI Commands */
/************************************************************/
void RFCOMM::HCI_Command(uint8_t* data, uint16_t nbytes) {
hci_event_flag &= ~HCI_FLAG_CMD_COMPLETE;
pUsb->ctrlReq(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bmREQ_HCI_OUT, 0x00, 0x00, 0x00 ,0x00, nbytes, nbytes, data, NULL);
}
void RFCOMM::hci_reset() {
hci_event_flag = 0; // clear all the flags
hcibuf[0] = 0x03; // HCI OCF = 3
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x00;
HCI_Command(hcibuf, 3);
}
void RFCOMM::hci_write_scan_enable() {
hci_event_flag &= ~HCI_FLAG_INCOMING_REQUEST;
hcibuf[0] = 0x1A; // HCI OCF = 1A
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x01; // parameter length = 1
hcibuf[3] = 0x03; // Inquiry Scan enabled. Page Scan enabled.
HCI_Command(hcibuf, 4);
}
void RFCOMM::hci_write_scan_disable() {
hcibuf[0] = 0x1A; // HCI OCF = 1A
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x01; // parameter length = 1
hcibuf[3] = 0x00; // Inquiry Scan disabled. Page Scan disabled.
HCI_Command(hcibuf, 4);
}
void RFCOMM::hci_read_bdaddr() {
hcibuf[0] = 0x09; // HCI OCF = 9
hcibuf[1] = 0x04 << 2; // HCI OGF = 4
hcibuf[2] = 0x00;
HCI_Command(hcibuf, 3);
}
void RFCOMM::hci_accept_connection() {
hcibuf[0] = 0x09; // HCI OCF = 9
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x07; // parameter length 7
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = 0x00; //switch role to master
HCI_Command(hcibuf, 10);
}
void RFCOMM::hci_remote_name() {
hci_event_flag &= ~HCI_FLAG_REMOTE_NAME_COMPLETE;
hcibuf[0] = 0x19; // HCI OCF = 19
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x0A; // parameter length = 10
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = 0x01; //Page Scan Repetition Mode
hcibuf[10] = 0x00; //Reserved
hcibuf[11] = 0x00; //Clock offset - low byte
hcibuf[12] = 0x00; //Clock offset - high byte
HCI_Command(hcibuf, 13);
}
void RFCOMM::hci_set_local_name(const char* name) {
hcibuf[0] = 0x13; // HCI OCF = 13
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = strlen(name)+1; // parameter length = the length of the string
uint8_t i;
for(i = 0; i < strlen(name); i++)
hcibuf[i+3] = name[i];
hcibuf[i+3] = 0x00; // End of string
HCI_Command(hcibuf, 4+strlen(name));
}
void RFCOMM::hci_pin_code_request_reply(const char* key) {
hcibuf[0] = 0x0D; // HCI OCF = 0D
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x17; // parameter length 23
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = strlen(key); // Length of key
uint8_t i;
for(i = 0; i < strlen(key); i++) // The maximum size of the key is 16
hcibuf[i+10] = key[i];
for(;i < 16; i++)
hcibuf[i+10] = 0x00; // The rest should be 0
HCI_Command(hcibuf, 26);
}
void RFCOMM::hci_link_key_request_negative_reply() {
2012-07-26 19:17:52 +02:00
hcibuf[0] = 0x0C; // HCI OCF = 0C
2012-07-24 22:23:59 +02:00
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x06; // parameter length 7
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
HCI_Command(hcibuf, 9);
}
void RFCOMM::hci_disconnect() {
hci_event_flag &= ~HCI_FLAG_DISCONN_COMPLETE;
hcibuf[0] = 0x06; // HCI OCF = 6
hcibuf[1]= 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x03; // parameter length =3
hcibuf[3] = (uint8_t)(hci_handle & 0xFF);//connection handle - low byte
hcibuf[4] = (uint8_t)((hci_handle >> 8) & 0x0F);//connection handle - high byte
hcibuf[5] = 0x13; // reason
HCI_Command(hcibuf, 6);
}
/************************************************************/
/* L2CAP Commands */
/************************************************************/
void RFCOMM::L2CAP_Command(uint8_t* data, uint16_t nbytes) {
uint8_t buf[64];
buf[0] = (uint8_t)(hci_handle & 0xff); // HCI handle with PB,BC flag
buf[1] = (uint8_t)(((hci_handle >> 8) & 0x0f) | 0x20);
buf[2] = (uint8_t)((4 + nbytes) & 0xff); // HCI ACL total data length
buf[3] = (uint8_t)((4 + nbytes) >> 8);
buf[4] = (uint8_t)(nbytes & 0xff); // L2CAP header: Length
buf[5] = (uint8_t)(nbytes >> 8);
buf[6] = 0x01; // L2CAP header: Channel ID
buf[7] = 0x00; // L2CAP Signalling channel over ACL-U logical link
for (uint16_t i = 0; i < nbytes; i++)//L2CAP C-frame
buf[8 + i] = data[i];
uint8_t rcode = pUsb->outTransfer(bAddress, epInfo[ BTD_DATAOUT_PIPE ].epAddr, (8 + nbytes), buf);
if(rcode) {
#ifdef DEBUG
Notify(PSTR("\r\nError sending L2CAP message: 0x"));
PrintHex(rcode);
#endif
}
}
void RFCOMM::l2cap_connection_response(uint8_t rxid, uint8_t* dcid, uint8_t* scid, uint8_t result) {
l2capoutbuf[0] = L2CAP_CMD_CONNECTION_RESPONSE;// Code
l2capoutbuf[1] = rxid;// Identifier
l2capoutbuf[2] = 0x08;// Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0];// Destination CID
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = scid[0];// Source CID
l2capoutbuf[7] = scid[1];
l2capoutbuf[8] = result;// Result: Pending or Success
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x00;// No further information
l2capoutbuf[11] = 0x00;
L2CAP_Command(l2capoutbuf, 12);
}
void RFCOMM::l2cap_config_request(uint8_t rxid, uint8_t* dcid) {
l2capoutbuf[0] = L2CAP_CMD_CONFIG_REQUEST;// Code
l2capoutbuf[1] = rxid;// Identifier
l2capoutbuf[2] = 0x08;// Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0];// Destination CID
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = 0x00;// Flags
l2capoutbuf[7] = 0x00;
l2capoutbuf[8] = 0x01;// Config Opt: type = MTU (Maximum Transmission Unit) - Hint
l2capoutbuf[9] = 0x02;// Config Opt: length
l2capoutbuf[10] = 0xFF;// MTU
l2capoutbuf[11] = 0xFF;
L2CAP_Command(l2capoutbuf, 12);
}
void RFCOMM::l2cap_config_response(uint8_t rxid, uint8_t* scid) {
l2capoutbuf[0] = L2CAP_CMD_CONFIG_RESPONSE;// Code
l2capoutbuf[1] = rxid;// Identifier
l2capoutbuf[2] = 0x0A;// Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = scid[0];// Source CID
l2capoutbuf[5] = scid[1];
l2capoutbuf[6] = 0x00;// Flag
l2capoutbuf[7] = 0x00;
l2capoutbuf[8] = 0x00;// Result
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x01;// Config
l2capoutbuf[11] = 0x02;
l2capoutbuf[12] = 0xA0;
l2capoutbuf[13] = 0x02;
L2CAP_Command(l2capoutbuf, 14);
}
void RFCOMM::l2cap_disconnection_request(uint8_t rxid, uint8_t* dcid, uint8_t* scid) {
l2cap_event_flag = 0; // Reset flags
l2capoutbuf[0] = L2CAP_CMD_DISCONNECT_REQUEST;// Code
l2capoutbuf[1] = rxid;// Identifier
l2capoutbuf[2] = 0x04;// Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = scid[0];// Really Destination CID
l2capoutbuf[5] = scid[1];
l2capoutbuf[6] = dcid[0];// Really Source CID
l2capoutbuf[7] = dcid[1];
L2CAP_Command(l2capoutbuf, 8);
}
void RFCOMM::l2cap_disconnection_response(uint8_t rxid, uint8_t* dcid, uint8_t* scid) {
l2cap_event_flag = 0; // Reset flags
l2capoutbuf[0] = L2CAP_CMD_DISCONNECT_RESPONSE;// Code
l2capoutbuf[1] = rxid;// Identifier
l2capoutbuf[2] = 0x04;// Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0];
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = scid[0];
l2capoutbuf[7] = scid[1];
L2CAP_Command(l2capoutbuf, 8);
}
void RFCOMM::l2cap_information_response(uint8_t rxid, uint8_t infoTypeLow, uint8_t infoTypeHigh) {
l2capoutbuf[0] = L2CAP_CMD_INFORMATION_RESPONSE;// Code
l2capoutbuf[1] = rxid;// Identifier
l2capoutbuf[2] = 0x08;// Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = infoTypeLow;
l2capoutbuf[5] = infoTypeHigh;
l2capoutbuf[6] = 0x00; // Result = success
l2capoutbuf[7] = 0x00; // Result = success
l2capoutbuf[8] = 0x00;
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x00;
l2capoutbuf[11] = 0x00;
L2CAP_Command(l2capoutbuf, 12);
}
/*******************************************************************
* *
* HCI ACL Data Packet *
* *
* buf[0] buf[1] buf[2] buf[3]
* 0 4 8 11 12 16 24 31 MSB
* .-+-+-+-+-+-+-+-|-+-+-+-|-+-|-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
* | HCI Handle |PB |BC | Data Total Length | HCI ACL Data Packet
* .-+-+-+-+-+-+-+-|-+-+-+-|-+-|-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
*
* buf[4] buf[5] buf[6] buf[7]
* 0 8 16 31 MSB
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
* | Length | Channel ID | Basic L2CAP header
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
*
* buf[8] buf[9] buf[10] buf[11]
* 0 8 16 31 MSB
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
* | Code | Identifier | Length | Control frame (C-frame)
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-. (signaling packet format)
*/
/************************************************************/
/* SDP Commands */
/************************************************************/
void RFCOMM::SDP_Command(uint8_t* data, uint16_t nbytes) { // See page 223 in the Bluetooth specs
uint8_t buf[64];
buf[0] = (uint8_t)(hci_handle & 0xff); // HCI handle with PB,BC flag
buf[1] = (uint8_t)(((hci_handle >> 8) & 0x0f) | 0x20);
buf[2] = (uint8_t)((4 + nbytes) & 0xff); // HCI ACL total data length
buf[3] = (uint8_t)((4 + nbytes) >> 8);
buf[4] = (uint8_t)(nbytes & 0xff); // L2CAP header: Length
buf[5] = (uint8_t)(nbytes >> 8);
buf[6] = sdp_scid[0]; // L2CAP header: Channel ID
buf[7] = sdp_scid[1]; // L2CAP Signalling channel over ACL-U logical link
for (uint16_t i = 0; i < nbytes; i++)//L2CAP C-frame
buf[8 + i] = data[i];
uint8_t rcode = pUsb->outTransfer(bAddress, epInfo[ BTD_DATAOUT_PIPE ].epAddr, (8 + nbytes), buf);
if(rcode) {
#ifdef DEBUG
Notify(PSTR("\r\nError sending SDP message: 0x"));
PrintHex(rcode);
#endif
}
}
void RFCOMM::serviceNotSupported(uint8_t transactionIDHigh, uint8_t transactionIDLow) { // See page 235 in the Bluetooth specs
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length
l2capoutbuf[4] = 0x05; // Parameter Length
l2capoutbuf[5] = 0x00; // AttributeListsByteCount
l2capoutbuf[6] = 0x02; // AttributeListsByteCount
/* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x35;
l2capoutbuf[8] = 0x00;
l2capoutbuf[9] = 0x00;
SDP_Command(l2capoutbuf,10);
}
void RFCOMM::serialPortResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length
l2capoutbuf[4] = 0x2B; // Parameter Length
l2capoutbuf[5] = 0x00; // AttributeListsByteCount
l2capoutbuf[6] = 0x26; // AttributeListsByteCount
/* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x36;
l2capoutbuf[8] = 0x00;
l2capoutbuf[9] = 0x3C;
l2capoutbuf[10] = 0x36;
l2capoutbuf[11] = 0x00;
l2capoutbuf[12] = 0x39;
l2capoutbuf[13] = 0x09;
l2capoutbuf[14] = 0x00;
l2capoutbuf[15] = 0x00;
l2capoutbuf[16] = 0x0A;
l2capoutbuf[17] = 0x00;
l2capoutbuf[18] = 0x01;
l2capoutbuf[19] = 0x00;
l2capoutbuf[20] = 0x06;
l2capoutbuf[21] = 0x09;
l2capoutbuf[22] = 0x00;
l2capoutbuf[23] = 0x01;
l2capoutbuf[24] = 0x35;
l2capoutbuf[25] = 0x03;
l2capoutbuf[26] = 0x19;
l2capoutbuf[27] = 0x11;
l2capoutbuf[28] = 0x01;
l2capoutbuf[29] = 0x09;
l2capoutbuf[30] = 0x00;
l2capoutbuf[31] = 0x04;
l2capoutbuf[32] = 0x35;
l2capoutbuf[33] = 0x0C;
l2capoutbuf[34] = 0x35;
l2capoutbuf[35] = 0x03;
l2capoutbuf[36] = 0x19;
l2capoutbuf[37] = 0x01;
l2capoutbuf[38] = 0x00;
l2capoutbuf[39] = 0x35;
l2capoutbuf[40] = 0x05;
l2capoutbuf[41] = 0x19;
l2capoutbuf[42] = 0x00;
l2capoutbuf[43] = 0x03;
l2capoutbuf[44] = 0x08;
l2capoutbuf[45] = 0x02; // Two more bytes?
l2capoutbuf[46] = 0x00; // 19 more bytes to come
l2capoutbuf[47] = 0x19;
SDP_Command(l2capoutbuf,48);
}
void RFCOMM::serialPortResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length
l2capoutbuf[4] = 0x21; // Parameter Length
l2capoutbuf[5] = 0x00; // AttributeListsByteCount
l2capoutbuf[6] = 0x1E; // AttributeListsByteCount
/* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x01;
l2capoutbuf[8] = 0x09;
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x06;
l2capoutbuf[11] = 0x35;
l2capoutbuf[12] = 0x09;
l2capoutbuf[13] = 0x09;
l2capoutbuf[14] = 0x65;
l2capoutbuf[15] = 0x6E;
l2capoutbuf[16] = 0x09;
l2capoutbuf[17] = 0x00;
l2capoutbuf[18] = 0x6A;
l2capoutbuf[19] = 0x09;
l2capoutbuf[20] = 0x01;
l2capoutbuf[21] = 0x00;
l2capoutbuf[22] = 0x09;
l2capoutbuf[23] = 0x01;
l2capoutbuf[24] = 0x00;
l2capoutbuf[25] = 0x25;
l2capoutbuf[26] = 0x0A; // Name length
l2capoutbuf[27] = 'S';
l2capoutbuf[28] = 'e';
l2capoutbuf[29] = 'r';
l2capoutbuf[30] = 'i';
l2capoutbuf[31] = 'a';
l2capoutbuf[32] = 'l';
l2capoutbuf[33] = 'P';
l2capoutbuf[34] = 'o';
l2capoutbuf[35] = 'r';
l2capoutbuf[36] = 't';
l2capoutbuf[37] = 0x00;
SDP_Command(l2capoutbuf,38);
}
void RFCOMM::l2capResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
serialPortResponse1(transactionIDHigh,transactionIDLow); // These has to send include all the supported functions, since it only support virtual serialport it just sends the message again
}
void RFCOMM::l2capResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
serialPortResponse2(transactionIDHigh,transactionIDLow); // Same data as serialPortResponse2
}
/************************************************************/
/* RFCOMM Commands */
/************************************************************/
void RFCOMM::RFCOMM_Command(uint8_t* data, uint16_t nbytes) { // See page 223 in the Bluetooth specs
uint8_t buf[64];
buf[0] = (uint8_t)(hci_handle & 0xff); // HCI handle with PB,BC flag
buf[1] = (uint8_t)(((hci_handle >> 8) & 0x0f) | 0x20);
buf[2] = (uint8_t)((4 + nbytes) & 0xff); // HCI ACL total data length
buf[3] = (uint8_t)((4 + nbytes) >> 8);
buf[4] = (uint8_t)(nbytes & 0xff); // L2CAP header: Length
buf[5] = (uint8_t)(nbytes >> 8);
buf[6] = rfcomm_scid[0]; // L2CAP header: Channel ID
buf[7] = rfcomm_scid[1]; // L2CAP Signalling channel over ACL-U logical link
for (uint16_t i = 0; i < nbytes; i++)//L2CAP C-frame
buf[8 + i] = data[i];
uint8_t rcode = pUsb->outTransfer(bAddress, epInfo[ BTD_DATAOUT_PIPE ].epAddr, (8 + nbytes), buf);
if(rcode) {
#ifdef DEBUG
Notify(PSTR("\r\nError sending RFCOMM message: 0x"));
PrintHex(rcode);
#endif
}
}
void RFCOMM::sendRfcomm(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t* data, uint8_t length) {
l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address
l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control
l2capoutbuf[2] = length << 1 | 0x01; // Length and format (allways 0x01 bytes format)
uint8_t i = 0;
for(; i < length; i++)
l2capoutbuf[i+3] = data[i];
l2capoutbuf[i+3] = calcFcs(l2capoutbuf);
#ifdef EXTRADEBUG
2012-07-26 19:17:52 +02:00
Notify(PSTR(" - RFCOMM Data: "));
2012-07-24 22:23:59 +02:00
for(i = 0; i < length+4; i++) {
Serial.print(l2capoutbuf[i],HEX);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" "));
2012-07-24 22:23:59 +02:00
}
#endif
RFCOMM_Command(l2capoutbuf,length+4);
}
void RFCOMM::sendRfcommCredit(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t credit) {
l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address
l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control
l2capoutbuf[2] = 0x01; // Length = 0
l2capoutbuf[3] = credit; // Credit
l2capoutbuf[4] = calcFcs(l2capoutbuf);
#ifdef EXTRADEBUG
2012-07-26 19:17:52 +02:00
Notify(PSTR(" - RFCOMM Credit Data: "));
2012-07-24 22:23:59 +02:00
for(uint8_t i = 0; i < 5; i++) {
Serial.print(l2capoutbuf[i],HEX);
2012-07-26 19:17:52 +02:00
Notify(PSTR(" "));
2012-07-24 22:23:59 +02:00
}
#endif
RFCOMM_Command(l2capoutbuf,5);
}
2012-07-26 19:17:52 +02:00
/* CRC on 2 bytes */
uint8_t RFCOMM::__crc(uint8_t* data) {
return(pgm_read_byte(&rfcomm_crc_table[pgm_read_byte(&rfcomm_crc_table[0xff ^ data[0]]) ^ data[1]]));
}
2012-07-24 22:23:59 +02:00
/* Calculate FCS - we never actually check if the host sends correct FCS to the Arduino */
uint8_t RFCOMM::calcFcs(uint8_t *data) {
if((data[1] & 0xEF) == RFCOMM_UIH)
return (0xff - __crc(data)); // FCS on 2 bytes
else
2012-07-26 19:17:52 +02:00
return (0xff - pgm_read_byte(&rfcomm_crc_table[__crc(data) ^ data[2]])); // FCS on 3 bytes
2012-07-24 22:23:59 +02:00
}
/* Serial commands */
void RFCOMM::print(const char* data) {
rfcommbuf[0] = rfcommChannelPermanent | 0 | 0 | extendAddress;; // RFCOMM Address
rfcommbuf[1] = RFCOMM_UIH; // RFCOMM Control
rfcommbuf[2] = strlen(data) << 1 | 1; // Length
uint8_t i = 0;
for(; i < strlen(data); i++)
rfcommbuf[i+3] = data[i];
rfcommbuf[i+3] = calcFcs(rfcommbuf);
RFCOMM_Command(rfcommbuf,strlen(data)+4);
}
void RFCOMM::print(uint8_t data) {
rfcommbuf[0] = rfcommChannelPermanent | 0 | 0 | extendAddress;; // RFCOMM Address
rfcommbuf[1] = RFCOMM_UIH; // RFCOMM Control
rfcommbuf[2] = 1 << 1 | 1; // Length = 1
rfcommbuf[3] = data;
rfcommbuf[4] = calcFcs(rfcommbuf);
RFCOMM_Command(rfcommbuf,5);
}
void RFCOMM::println(const char* data) {
char output[strlen(data)+2];
strcpy(output,data);
strcat(output,"\r\n");
print(output);
}
void RFCOMM::println(uint8_t data) {
print(data);
print("\r\n");
}
uint8_t RFCOMM::read() {
uint8_t output = rfcommDataBuffer[0];
for(uint8_t i = 1; i < rfcommAvailable; i++)
rfcommDataBuffer[i-1] = rfcommDataBuffer[i]; // Shift the buffer one left
rfcommAvailable--;
return output;
}