USB_Host_Shield_2.0/examples/board_qc/board_qc.ino

257 lines
8.4 KiB
Arduino
Raw Normal View History

2013-04-03 19:40:33 +02:00
#include <avrpins.h>
#include <max3421e.h>
#include <usbhost.h>
#include <usb_ch9.h>
#include <Usb.h>
#include <usbhub.h>
#include <avr/pgmspace.h>
#include <address.h>
#include <printhex.h>
#include <message.h>
#include <hexdump.h>
#include <parsetools.h>
/* variables */
uint8_t rcode;
uint8_t usbstate;
//uint8_t buf[sizeof(USB_DEVICE_DESCRIPTOR)];
USB_DEVICE_DESCRIPTOR buf;
/* objects */
USB Usb;
//USBHub hub(&Usb);
void setup()
{
Serial.begin( 115200 );
Notify(PSTR("\r\nCircuits At Home 2011"),0x80);
Notify(PSTR("\r\nUSB Host Shield Quality Control Routine"),0x80);
/* SPI quick test - check revision register */
Notify(PSTR("\r\nReading REVISION register... Die revision "),0x80);
{
uint8_t tmpbyte = Usb.regRd( rREVISION );
switch( tmpbyte ) {
case( 0x01): //rev.01
Notify(PSTR("01"),0x80);
break;
case( 0x12): //rev.02
Notify(PSTR("02"),0x80);
break;
case( 0x13): //rev.03
Notify(PSTR("03"),0x80);
break;
default:
Notify(PSTR("invalid. Value returned: "),0x80);
print_hex( tmpbyte, 8 );
halt55();
break;
}//switch( tmpbyte...
}//check revision register
/* SPI long test */
{
Notify(PSTR("\r\nSPI long test. Transfers 1MB of data. Each dot is 64K"),0x80);
uint8_t sample_wr = 0;
uint8_t sample_rd = 0;
uint8_t gpinpol_copy = Usb.regRd( rGPINPOL );
for( uint8_t i = 0; i < 16; i++ ) {
for( uint16_t j = 0; j < 65535; j++ ) {
Usb.regWr( rGPINPOL, sample_wr );
sample_rd = Usb.regRd( rGPINPOL );
if( sample_rd != sample_wr ) {
Notify(PSTR("\r\nTest failed. "),0x80);
Notify(PSTR("Value written: "),0x80);
print_hex( sample_wr, 8 );
Notify(PSTR(" read: "),0x80);
print_hex( sample_rd, 8 );
halt55();
}//if( sample_rd != sample_wr..
sample_wr++;
}//for( uint16_t j...
Notify(PSTR("."),0x80);
}//for( uint8_t i...
Usb.regWr( rGPINPOL, gpinpol_copy );
Notify(PSTR(" SPI long test passed"),0x80);
}//SPI long test
/* GPIO test */
/* in order to simplify board layout, GPIN pins on text fixture are connected to GPOUT */
/* in reverse order, i.e, GPIN0 is connected to GPOUT7, GPIN1 to GPOUT6, etc. */
{
uint8_t tmpbyte;
Notify(PSTR("\r\nGPIO test. Connect GPIN0 to GPOUT7, GPIN1 to GPOUT6, and so on"),0x80);
for( uint8_t sample_gpio = 0; sample_gpio < 255; sample_gpio++ ) {
Usb.gpioWr( sample_gpio );
tmpbyte = Usb.gpioRd();
/* bit reversing code copied vetbatim from http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */
tmpbyte = ((tmpbyte * 0x0802LU & 0x22110LU) | (tmpbyte * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
if( sample_gpio != tmpbyte ) {
Notify(PSTR("\r\nTest failed. Value written: "),0x80);
print_hex( sample_gpio, 8 );
Notify(PSTR(" Value read: "),0x80);
print_hex( tmpbyte , 8 );
Notify(PSTR(" "),0x80);
press_any_key();
break;
}//if( sample_gpio != tmpbyte...
}//for( uint8_t sample_gpio...
Notify(PSTR("\r\nGPIO test passed."),0x80);
}//GPIO test
/* PLL test. Stops/starts MAX3421E oscillator several times */
{
Notify(PSTR("\r\nPLL test. 100 chip resets will be performed"),0x80);
/* check current state of the oscillator */
if(!( Usb.regRd( rUSBIRQ ) & bmOSCOKIRQ )) { //wrong state - should be on
Notify(PSTR("\r\nCurrent oscillator state unexpected."),0x80);
press_any_key();
}
/* Restart oscillator */
Notify(PSTR("\r\nResetting oscillator"),0x80);
for( uint16_t i = 0; i < 101; i++ ) {
Notify(PSTR("\rReset number "),0x80);
Serial.print( i, DEC );
Usb.regWr( rUSBCTL, bmCHIPRES ); //reset
if( Usb.regRd( rUSBIRQ ) & bmOSCOKIRQ ) { //wrong state - should be off
Notify(PSTR("\r\nCurrent oscillator state unexpected."),0x80);
halt55();
}
Usb.regWr( rUSBCTL, 0x00 ); //release from reset
uint16_t j = 0;
for( j = 0; j < 65535; j++ ) { //tracking off to on time
if( Usb.regRd( rUSBIRQ ) & bmOSCOKIRQ ) {
Notify(PSTR(" Time to stabilize - "),0x80);
Serial.print( j, DEC );
Notify(PSTR(" cycles"),0x80);
break;
}
}//for( uint16_t j = 0; j < 65535; j++
if( j == 0 ) {
Notify(PSTR("PLL failed to stabilize"),0x80);
press_any_key();
}
}//for( uint8_t i = 0; i < 255; i++
}//PLL test
/* initializing USB stack */
if (Usb.Init() == -1) {
Notify(PSTR("\r\nOSCOKIRQ failed to assert"),0x80);
halt55();
}
Notify(PSTR("\r\nChecking USB device communication.\r\n"),0x80);
}
void loop()
{
delay( 200 );
Usb.Task();
usbstate = Usb.getUsbTaskState();
/**/
switch( usbstate ) {
case( USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE ):
Notify(PSTR("\rWaiting for device ..."),0x80);
break;
case( USB_ATTACHED_SUBSTATE_RESET_DEVICE ):
Notify(PSTR("\r\nDevice connected. Resetting"),0x80);
break;
case( USB_ATTACHED_SUBSTATE_WAIT_SOF ):
Notify(PSTR("\rReset complete. Waiting for the first SOF..."),0x80);
break;
case( USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE ):
Notify(PSTR("\r\nSOF generation started. Enumerating device."),0x80);
break;
case( USB_STATE_ADDRESSING ):
Notify(PSTR("\r\nSetting device address"),0x80);
break;
case( USB_STATE_RUNNING ):
Notify(PSTR("\r\nGetting device descriptor"),0x80);
rcode = Usb.getDevDescr( 1, 0, sizeof(USB_DEVICE_DESCRIPTOR), (uint8_t*)&buf );
if( rcode ) {
Notify(PSTR("\rError reading device descriptor. Error code "),0x80);
print_hex( rcode, 8 );
}
else {
/**/
Notify(PSTR("\r\nDescriptor Length:\t"),0x80);
print_hex( buf.bLength, 8 );
Notify(PSTR("\r\nDescriptor type:\t"),0x80);
print_hex( buf.bDescriptorType, 8 );
Notify(PSTR("\r\nUSB version:\t\t"),0x80);
print_hex( buf.bcdUSB, 16 );
Notify(PSTR("\r\nDevice class:\t\t"),0x80);
print_hex( buf.bDeviceClass, 8 );
Notify(PSTR("\r\nDevice Subclass:\t"),0x80);
print_hex( buf.bDeviceSubClass, 8 );
Notify(PSTR("\r\nDevice Protocol:\t"),0x80);
print_hex( buf.bDeviceProtocol, 8 );
Notify(PSTR("\r\nMax.packet size:\t"),0x80);
print_hex( buf.bMaxPacketSize0, 8 );
Notify(PSTR("\r\nVendor ID:\t\t"),0x80);
print_hex( buf.idVendor, 16 );
Notify(PSTR("\r\nProduct ID:\t\t"),0x80);
print_hex( buf.idProduct, 16 );
Notify(PSTR("\r\nRevision ID:\t\t"),0x80);
print_hex( buf.bcdDevice, 16 );
Notify(PSTR("\r\nMfg.string index:\t"),0x80);
print_hex( buf.iManufacturer, 8 );
Notify(PSTR("\r\nProd.string index:\t"),0x80);
print_hex( buf.iProduct, 8 );
Notify(PSTR("\r\nSerial number index:\t"),0x80);
print_hex( buf.iSerialNumber, 8 );
Notify(PSTR("\r\nNumber of conf.:\t"),0x80);
print_hex( buf.bNumConfigurations, 8 );
/**/
Notify(PSTR("\r\n\nAll tests passed. Press RESET to restart test"),0x80);
while(1);
}
break;
case( USB_STATE_ERROR ):
Notify(PSTR("\rUSB state machine reached error state"),0x80);
break;
default:
break;
}//switch( usbstate...
}//loop()...
/* constantly transmits 0x55 via SPI to aid probing */
void halt55()
{
Notify(PSTR("\r\nUnrecoverable error - test halted!!"),0x80);
Notify(PSTR("\r\n0x55 pattern is transmitted via SPI"),0x80);
Notify(PSTR("\r\nPress RESET to restart test"),0x80);
while( 1 ) {
Usb.regWr( 0x55, 0x55 );
}
}
/* prints hex numbers with leading zeroes */
void print_hex(int v, int num_places)
{
int mask=0, n, num_nibbles, digit;
for (n=1; n<=num_places; n++) {
mask = (mask << 1) | 0x0001;
}
v = v & mask; // truncate v to specified number of places
num_nibbles = num_places / 4;
if ((num_places % 4) != 0) {
++num_nibbles;
}
do {
digit = ((v >> (num_nibbles-1) * 4)) & 0x0f;
Serial.print(digit, HEX);
} while(--num_nibbles);
}
/* prints "Press any key" and returns when key is pressed */
void press_any_key()
{
Notify(PSTR("\r\nPress any key to continue..."),0x80);
while( Serial.available() <= 0 ); //wait for input
Serial.read(); //empty input buffer
return;
}