This commit is contained in:
Oleg Mazurov 2014-08-23 17:08:43 -06:00
commit 230c26eeed
114 changed files with 5628 additions and 3701 deletions

392
BTD.cpp
View file

@ -36,18 +36,19 @@ qNextPollTime(0), // Reset NextPollTime
pollInterval(0), pollInterval(0),
bPollEnable(false) // Don't start polling before dongle is connected bPollEnable(false) // Don't start polling before dongle is connected
{ {
for (uint8_t i = 0; i < BTD_NUMSERVICES; i++) for(uint8_t i = 0; i < BTD_NUM_SERVICES; i++)
btService[i] = NULL; btService[i] = NULL;
Initialize(); // Set all variables, endpoint structs etc. to default values Initialize(); // Set all variables, endpoint structs etc. to default values
if (pUsb) // Register in USB subsystem if(pUsb) // Register in USB subsystem
pUsb->RegisterDeviceClass(this); // Set devConfig[] entry pUsb->RegisterDeviceClass(this); // Set devConfig[] entry
} }
uint8_t BTD::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) { uint8_t BTD::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR); const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR);
uint8_t buf[constBufSize]; uint8_t buf[constBufSize];
USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf);
uint8_t rcode; uint8_t rcode;
UsbDevice *p = NULL; UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL; EpInfo *oldep_ptr = NULL;
@ -59,7 +60,7 @@ uint8_t BTD::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
Notify(PSTR("\r\nBTD ConfigureDevice"), 0x80); Notify(PSTR("\r\nBTD ConfigureDevice"), 0x80);
#endif #endif
if (bAddress) { // Check if address has already been assigned to an instance if(bAddress) { // Check if address has already been assigned to an instance
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress in use"), 0x80); Notify(PSTR("\r\nAddress in use"), 0x80);
#endif #endif
@ -67,14 +68,14 @@ uint8_t BTD::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
} }
p = addrPool.GetUsbDevicePtr(0); // Get pointer to pseudo device with address 0 assigned p = addrPool.GetUsbDevicePtr(0); // Get pointer to pseudo device with address 0 assigned
if (!p) { if(!p) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress not found"), 0x80); Notify(PSTR("\r\nAddress not found"), 0x80);
#endif #endif
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
} }
if (!p->epinfo) { if(!p->epinfo) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nepinfo is null"), 0x80); Notify(PSTR("\r\nepinfo is null"), 0x80);
#endif #endif
@ -88,23 +89,23 @@ uint8_t BTD::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
p->epinfo = oldep_ptr; // Restore p->epinfo p->epinfo = oldep_ptr; // Restore p->epinfo
if (rcode) if(rcode)
goto FailGetDevDescr; goto FailGetDevDescr;
bAddress = addrPool.AllocAddress(parent, false, port); // Allocate new address according to device class bAddress = addrPool.AllocAddress(parent, false, port); // Allocate new address according to device class
if (!bAddress) { if(!bAddress) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nOut of address space"), 0x80); Notify(PSTR("\r\nOut of address space"), 0x80);
#endif #endif
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
} }
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; // Extract Max Packet Size from device descriptor epInfo[0].maxPktSize = udd->bMaxPacketSize0; // Extract Max Packet Size from device descriptor
epInfo[1].epAddr = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations; // Steal and abuse from epInfo structure to save memory epInfo[1].epAddr = udd->bNumConfigurations; // Steal and abuse from epInfo structure to save memory
VID = ((USB_DEVICE_DESCRIPTOR*)buf)->idVendor; VID = udd->idVendor;
PID = ((USB_DEVICE_DESCRIPTOR*)buf)->idProduct; PID = udd->idProduct;
return USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET; return USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET;
@ -112,7 +113,7 @@ FailGetDevDescr:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailGetDevDescr(rcode); NotifyFailGetDevDescr(rcode);
#endif #endif
if (rcode != hrJERR) if(rcode != hrJERR)
rcode = USB_ERROR_FailGetDevDescr; rcode = USB_ERROR_FailGetDevDescr;
Release(); Release();
return rcode; return rcode;
@ -129,7 +130,7 @@ uint8_t BTD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
#endif #endif
UsbDevice *p = addrPool.GetUsbDevicePtr(bAddress); // Get pointer to assigned address record UsbDevice *p = addrPool.GetUsbDevicePtr(bAddress); // Get pointer to assigned address record
if (!p) { if(!p) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress not found"), 0x80); Notify(PSTR("\r\nAddress not found"), 0x80);
#endif #endif
@ -139,7 +140,7 @@ uint8_t BTD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
delay(300); // Assign new address to the device delay(300); // Assign new address to the device
rcode = pUsb->setAddr(0, 0, bAddress); // Assign new address to the device rcode = pUsb->setAddr(0, 0, bAddress); // Assign new address to the device
if (rcode) { if(rcode) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nsetAddr: "), 0x80); Notify(PSTR("\r\nsetAddr: "), 0x80);
D_PrintHex<uint8_t > (rcode, 0x80); D_PrintHex<uint8_t > (rcode, 0x80);
@ -155,7 +156,7 @@ uint8_t BTD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
p->lowspeed = false; p->lowspeed = false;
p = addrPool.GetUsbDevicePtr(bAddress); // Get pointer to assigned address record p = addrPool.GetUsbDevicePtr(bAddress); // Get pointer to assigned address record
if (!p) { if(!p) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress not found"), 0x80); Notify(PSTR("\r\nAddress not found"), 0x80);
#endif #endif
@ -165,18 +166,18 @@ uint8_t BTD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); // Assign epInfo to epinfo pointer - only EP0 is known rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); // Assign epInfo to epinfo pointer - only EP0 is known
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
if (VID == PS3_VID && (PID == PS3_PID || PID == PS3NAVIGATION_PID || PID == PS3MOVE_PID)) { if(VID == PS3_VID && (PID == PS3_PID || PID == PS3NAVIGATION_PID || PID == PS3MOVE_PID)) {
delay(100); delay(100);
rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, 1); // We only need the Control endpoint, so we don't have to initialize the other endpoints of device rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, 1); // We only need the Control endpoint, so we don't have to initialize the other endpoints of device
if (rcode) if(rcode)
goto FailSetConfDescr; goto FailSetConfDescr;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (PID == PS3_PID || PID == PS3NAVIGATION_PID) { if(PID == PS3_PID || PID == PS3NAVIGATION_PID) {
if (PID == PS3_PID) if(PID == PS3_PID)
Notify(PSTR("\r\nDualshock 3 Controller Connected"), 0x80); Notify(PSTR("\r\nDualshock 3 Controller Connected"), 0x80);
else // It must be a navigation controller else // It must be a navigation controller
Notify(PSTR("\r\nNavigation Controller Connected"), 0x80); Notify(PSTR("\r\nNavigation Controller Connected"), 0x80);
@ -184,18 +185,18 @@ uint8_t BTD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
Notify(PSTR("\r\nMotion Controller Connected"), 0x80); Notify(PSTR("\r\nMotion Controller Connected"), 0x80);
#endif #endif
if (my_bdaddr[0] == 0x00 && my_bdaddr[1] == 0x00 && my_bdaddr[2] == 0x00 && my_bdaddr[3] == 0x00 && my_bdaddr[4] == 0x00 && my_bdaddr[5] == 0x00) { if(my_bdaddr[0] == 0x00 && my_bdaddr[1] == 0x00 && my_bdaddr[2] == 0x00 && my_bdaddr[3] == 0x00 && my_bdaddr[4] == 0x00 && my_bdaddr[5] == 0x00) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nPlease plug in the dongle before trying to pair with the PS3 Controller\r\nor set the Bluetooth address in the constructor of the PS3BT class"), 0x80); Notify(PSTR("\r\nPlease plug in the dongle before trying to pair with the PS3 Controller\r\nor set the Bluetooth address in the constructor of the PS3BT class"), 0x80);
#endif #endif
} else { } else {
if (PID == PS3_PID || PID == PS3NAVIGATION_PID) if(PID == PS3_PID || PID == PS3NAVIGATION_PID)
setBdaddr(my_bdaddr); // Set internal Bluetooth address setBdaddr(my_bdaddr); // Set internal Bluetooth address
else else
setMoveBdaddr(my_bdaddr); // Set internal Bluetooth address setMoveBdaddr(my_bdaddr); // Set internal Bluetooth address
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nBluetooth Address was set to: "), 0x80); Notify(PSTR("\r\nBluetooth Address was set to: "), 0x80);
for (int8_t i = 5; i > 0; i--) { for(int8_t i = 5; i > 0; i--) {
D_PrintHex<uint8_t > (my_bdaddr[i], 0x80); D_PrintHex<uint8_t > (my_bdaddr[i], 0x80);
Notify(PSTR(":"), 0x80); Notify(PSTR(":"), 0x80);
} }
@ -211,31 +212,31 @@ uint8_t BTD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Check if attached device is a Bluetooth dongle and fill endpoint data structure // Check if attached device is a Bluetooth dongle and fill endpoint data structure
// First interface in the configuration must have Bluetooth assigned Class/Subclass/Protocol // First interface in the configuration must have Bluetooth assigned Class/Subclass/Protocol
// And 3 endpoints - interrupt-IN, bulk-IN, bulk-OUT, not necessarily in this order // And 3 endpoints - interrupt-IN, bulk-IN, bulk-OUT, not necessarily in this order
for (uint8_t i = 0; i < num_of_conf; i++) { for(uint8_t i = 0; i < num_of_conf; i++) {
if (VID == IOGEAR_GBU521_VID && PID == IOGEAR_GBU521_PID) { if(VID == IOGEAR_GBU521_VID && PID == IOGEAR_GBU521_PID) {
ConfigDescParser<USB_CLASS_VENDOR_SPECIFIC, WI_SUBCLASS_RF, WI_PROTOCOL_BT, CP_MASK_COMPARE_ALL> confDescrParser(this); // Needed for the IOGEAR GBU521 ConfigDescParser<USB_CLASS_VENDOR_SPECIFIC, WI_SUBCLASS_RF, WI_PROTOCOL_BT, CP_MASK_COMPARE_ALL> confDescrParser(this); // Needed for the IOGEAR GBU521
rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser); rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
} else { } else {
ConfigDescParser<USB_CLASS_WIRELESS_CTRL, WI_SUBCLASS_RF, WI_PROTOCOL_BT, CP_MASK_COMPARE_ALL> confDescrParser(this); ConfigDescParser<USB_CLASS_WIRELESS_CTRL, WI_SUBCLASS_RF, WI_PROTOCOL_BT, CP_MASK_COMPARE_ALL> confDescrParser(this);
rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser); rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
} }
if (rcode) // Check error code if(rcode) // Check error code
goto FailGetConfDescr; goto FailGetConfDescr;
if (bNumEP >= BTD_MAX_ENDPOINTS) // All endpoints extracted if(bNumEP >= BTD_MAX_ENDPOINTS) // All endpoints extracted
break; break;
} }
if (bNumEP < BTD_MAX_ENDPOINTS) if(bNumEP < BTD_MAX_ENDPOINTS)
goto FailUnknownDevice; goto FailUnknownDevice;
// Assign epInfo to epinfo pointer - this time all 3 endpoins // Assign epInfo to epinfo pointer - this time all 3 endpoins
rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo);
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
// Set Configuration Value // Set Configuration Value
rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bConfNum); rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bConfNum);
if (rcode) if(rcode)
goto FailSetConfDescr; goto FailSetConfDescr;
hci_num_reset_loops = 100; // only loop 100 times before trying to send the hci reset command hci_num_reset_loops = 100; // only loop 100 times before trying to send the hci reset command
@ -250,13 +251,7 @@ uint8_t BTD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
} }
return 0; // Successful configuration return 0; // Successful configuration
/* diagnostic messages */ /* Diagnostic messages */
FailGetDevDescr:
#ifdef DEBUG_USB_HOST
NotifyFailGetDevDescr();
goto Fail;
#endif
FailSetDevTblEntry: FailSetDevTblEntry:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailSetDevTblEntry(); NotifyFailSetDevTblEntry();
@ -292,14 +287,14 @@ Fail:
void BTD::Initialize() { void BTD::Initialize() {
uint8_t i; uint8_t i;
for (i = 0; i < BTD_MAX_ENDPOINTS; i++) { for(i = 0; i < BTD_MAX_ENDPOINTS; i++) {
epInfo[i].epAddr = 0; epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0; epInfo[i].epAttribs = 0;
epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER; epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER;
} }
for (i = 0; i < BTD_NUMSERVICES; i++) { for(i = 0; i < BTD_NUM_SERVICES; i++) {
if (btService[i]) if(btService[i])
btService[i]->Reset(); // Reset all Bluetooth services btService[i]->Reset(); // Reset all Bluetooth services
} }
@ -307,6 +302,7 @@ void BTD::Initialize() {
incomingWii = false; incomingWii = false;
connectToHIDDevice = false; connectToHIDDevice = false;
incomingHIDDevice = false; incomingHIDDevice = false;
incomingPS4 = false;
bAddress = 0; // Clear device address bAddress = 0; // Clear device address
bNumEP = 1; // Must have to be reset to 1 bNumEP = 1; // Must have to be reset to 1
qNextPollTime = 0; // Reset next poll time qNextPollTime = 0; // Reset next poll time
@ -320,17 +316,17 @@ void BTD::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto
//ErrorMessage<uint8_t>(PSTR("Iface Num"),iface); //ErrorMessage<uint8_t>(PSTR("Iface Num"),iface);
//ErrorMessage<uint8_t>(PSTR("Alt.Set"),alt); //ErrorMessage<uint8_t>(PSTR("Alt.Set"),alt);
if (alt) // Wrong interface - by BT spec, no alt setting if(alt) // Wrong interface - by BT spec, no alt setting
return; return;
bConfNum = conf; bConfNum = conf;
uint8_t index; uint8_t index;
if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) { // Interrupt In endpoint found if((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) { // Interrupt In endpoint found
index = BTD_EVENT_PIPE; index = BTD_EVENT_PIPE;
epInfo[index].bmNakPower = USB_NAK_NOWAIT; epInfo[index].bmNakPower = USB_NAK_NOWAIT;
} else { } else {
if ((pep->bmAttributes & 0x02) == 2) // Bulk endpoint found if((pep->bmAttributes & 0x02) == 2) // Bulk endpoint found
index = ((pep->bEndpointAddress & 0x80) == 0x80) ? BTD_DATAIN_PIPE : BTD_DATAOUT_PIPE; index = ((pep->bEndpointAddress & 0x80) == 0x80) ? BTD_DATAIN_PIPE : BTD_DATAOUT_PIPE;
else else
return; return;
@ -342,7 +338,7 @@ void BTD::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
PrintEndpointDescriptor(pep); PrintEndpointDescriptor(pep);
#endif #endif
if (pollInterval < pep->bInterval) // Set the polling interval as the largest polling interval obtained from endpoints if(pollInterval < pep->bInterval) // Set the polling interval as the largest polling interval obtained from endpoints
pollInterval = pep->bInterval; pollInterval = pep->bInterval;
bNumEP++; bNumEP++;
} }
@ -373,40 +369,39 @@ uint8_t BTD::Release() {
} }
uint8_t BTD::Poll() { uint8_t BTD::Poll() {
if (!bPollEnable) if(!bPollEnable)
return 0; return 0;
if (qNextPollTime <= millis()) { // Don't poll if shorter than polling interval if((long)(millis() - qNextPollTime) >= 0L) { // Don't poll if shorter than polling interval
qNextPollTime = millis() + pollInterval; // Set new poll time qNextPollTime = millis() + pollInterval; // Set new poll time
HCI_event_task(); // poll the HCI event pipe HCI_event_task(); // Poll the HCI event pipe
ACL_event_task(); // start polling the ACL input pipe too, though discard data until connected HCI_task(); // HCI state machine
ACL_event_task(); // Poll the ACL input pipe too
} }
return 0; return 0;
} }
void BTD::HCI_event_task() { void BTD::HCI_event_task() {
/* check the event pipe*/ uint16_t length = BULK_MAXPKTSIZE; // Request more than 16 bytes anyway, the inTransfer routine will take care of this
uint16_t MAX_BUFFER_SIZE = BULK_MAXPKTSIZE; // Request more than 16 bytes anyway, the inTransfer routine will take care of this uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_EVENT_PIPE ].epAddr, &length, hcibuf); // Input on endpoint 1
uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_EVENT_PIPE ].epAddr, &MAX_BUFFER_SIZE, hcibuf); // input on endpoint 1
if (!rcode || rcode == hrNAK) // Check for errors if(!rcode || rcode == hrNAK) { // Check for errors
{ switch(hcibuf[0]) { // Switch on event type
switch (hcibuf[0]) //switch on event type
{
case EV_COMMAND_COMPLETE: case EV_COMMAND_COMPLETE:
if (!hcibuf[5]) { // Check if command succeeded if(!hcibuf[5]) { // Check if command succeeded
hci_event_flag |= HCI_FLAG_CMD_COMPLETE; // set command complete flag hci_set_flag(HCI_FLAG_CMD_COMPLETE); // Set command complete flag
if ((hcibuf[3] == 0x01) && (hcibuf[4] == 0x10)) { // parameters from read local version information if((hcibuf[3] == 0x01) && (hcibuf[4] == 0x10)) { // Parameters from read local version information
hci_version = hcibuf[6]; // Used to check if it supports 2.0+EDR - see http://www.bluetooth.org/Technical/AssignedNumbers/hci.htm hci_version = hcibuf[6]; // Used to check if it supports 2.0+EDR - see http://www.bluetooth.org/Technical/AssignedNumbers/hci.htm
hci_event_flag |= HCI_FLAG_READ_VERSION; hci_set_flag(HCI_FLAG_READ_VERSION);
} else if ((hcibuf[3] == 0x09) && (hcibuf[4] == 0x10)) { // parameters from read local bluetooth address } else if((hcibuf[3] == 0x09) && (hcibuf[4] == 0x10)) { // Parameters from read local bluetooth address
for (uint8_t i = 0; i < 6; i++) for(uint8_t i = 0; i < 6; i++)
my_bdaddr[i] = hcibuf[6 + i]; my_bdaddr[i] = hcibuf[6 + i];
hci_event_flag |= HCI_FLAG_READ_BDADDR; hci_set_flag(HCI_FLAG_READ_BDADDR);
} }
} }
break; break;
case EV_COMMAND_STATUS: case EV_COMMAND_STATUS:
if (hcibuf[2]) { // Show status on serial if not OK if(hcibuf[2]) { // Show status on serial if not OK
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHCI Command Failed: "), 0x80); Notify(PSTR("\r\nHCI Command Failed: "), 0x80);
D_PrintHex<uint8_t > (hcibuf[2], 0x80); D_PrintHex<uint8_t > (hcibuf[2], 0x80);
@ -415,10 +410,10 @@ void BTD::HCI_event_task() {
break; break;
case EV_INQUIRY_COMPLETE: case EV_INQUIRY_COMPLETE:
if (inquiry_counter >= 5 && (pairWithWii || pairWithHIDDevice)) { if(inquiry_counter >= 5 && (pairWithWii || pairWithHIDDevice)) {
inquiry_counter = 0; inquiry_counter = 0;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (pairWithWii) if(pairWithWii)
Notify(PSTR("\r\nCouldn't find Wiimote"), 0x80); Notify(PSTR("\r\nCouldn't find Wiimote"), 0x80);
else else
Notify(PSTR("\r\nCouldn't find HID device"), 0x80); Notify(PSTR("\r\nCouldn't find HID device"), 0x80);
@ -433,41 +428,43 @@ void BTD::HCI_event_task() {
break; break;
case EV_INQUIRY_RESULT: case EV_INQUIRY_RESULT:
if (hcibuf[2]) { // Check that there is more than zero responses if(hcibuf[2]) { // Check that there is more than zero responses
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
Notify(PSTR("\r\nNumber of responses: "), 0x80); Notify(PSTR("\r\nNumber of responses: "), 0x80);
Notify(hcibuf[2], 0x80); Notify(hcibuf[2], 0x80);
#endif #endif
for (uint8_t i = 0; i < hcibuf[2]; i++) { for(uint8_t i = 0; i < hcibuf[2]; i++) {
uint8_t offset = 8 * hcibuf[2] + 3 * i; uint8_t offset = 8 * hcibuf[2] + 3 * i;
uint8_t classOfDevice[3];
for (uint8_t j = 0; j < 3; j++) for(uint8_t j = 0; j < 3; j++)
classOfDevice[j] = hcibuf[j + 4 + offset]; classOfDevice[j] = hcibuf[j + 4 + offset];
if (pairWithWii && classOfDevice[2] == 0x00 && (classOfDevice[1] & 0x05) && (classOfDevice[0] & 0x0C)) { // See http://bluetooth-pentest.narod.ru/software/bluetooth_class_of_device-service_generator.html and http://wiibrew.org/wiki/Wiimote#SDP_information if(pairWithWii && classOfDevice[2] == 0x00 && (classOfDevice[1] & 0x05) && (classOfDevice[0] & 0x0C)) { // See http://wiibrew.org/wiki/Wiimote#SDP_information
if (classOfDevice[0] & 0x08) // Check if it's the new Wiimote with motion plus inside that was detected if(classOfDevice[0] & 0x08) // Check if it's the new Wiimote with motion plus inside that was detected
motionPlusInside = true; motionPlusInside = true;
else else
motionPlusInside = false; motionPlusInside = false;
for (uint8_t j = 0; j < 6; j++) for(uint8_t j = 0; j < 6; j++)
disc_bdaddr[j] = hcibuf[j + 3 + 6 * i]; disc_bdaddr[j] = hcibuf[j + 3 + 6 * i];
hci_event_flag |= HCI_FLAG_DEVICE_FOUND; hci_set_flag(HCI_FLAG_DEVICE_FOUND);
break; break;
} else if (pairWithHIDDevice && (classOfDevice[1] & 0x05) && (classOfDevice[0] & 0xC0)) { // Check if it is a mouse or keyboard } else if(pairWithHIDDevice && (classOfDevice[1] & 0x05) && (classOfDevice[0] & 0xC8)) { // Check if it is a mouse, keyboard or a gamepad - see: http://bluetooth-pentest.narod.ru/software/bluetooth_class_of_device-service_generator.html
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (classOfDevice[0] & 0x80) if(classOfDevice[0] & 0x80)
Notify(PSTR("\r\nMouse found"), 0x80); Notify(PSTR("\r\nMouse found"), 0x80);
if (classOfDevice[0] & 0x40) if(classOfDevice[0] & 0x40)
Notify(PSTR("\r\nKeyboard found"), 0x80); Notify(PSTR("\r\nKeyboard found"), 0x80);
if(classOfDevice[0] & 0x08)
Notify(PSTR("\r\nGamepad found"), 0x80);
#endif #endif
for (uint8_t j = 0; j < 6; j++) for(uint8_t j = 0; j < 6; j++)
disc_bdaddr[j] = hcibuf[j + 3 + 6 * i]; disc_bdaddr[j] = hcibuf[j + 3 + 6 * i];
hci_event_flag |= HCI_FLAG_DEVICE_FOUND; hci_set_flag(HCI_FLAG_DEVICE_FOUND);
break;
} }
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
else { else {
@ -484,13 +481,13 @@ void BTD::HCI_event_task() {
break; break;
case EV_CONNECT_COMPLETE: case EV_CONNECT_COMPLETE:
hci_event_flag |= HCI_FLAG_CONNECT_EVENT; hci_set_flag(HCI_FLAG_CONNECT_EVENT);
if (!hcibuf[2]) { // check if connected OK if(!hcibuf[2]) { // Check if connected OK
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
Notify(PSTR("\r\nConnection established"), 0x80); Notify(PSTR("\r\nConnection established"), 0x80);
#endif #endif
hci_handle = hcibuf[3] | ((hcibuf[4] & 0x0F) << 8); // store the handle for the ACL connection hci_handle = hcibuf[3] | ((hcibuf[4] & 0x0F) << 8); // Store the handle for the ACL connection
hci_event_flag |= HCI_FLAG_CONN_COMPLETE; // set connection complete flag hci_set_flag(HCI_FLAG_CONNECT_COMPLETE); // Set connection complete flag
} else { } else {
hci_state = HCI_CHECK_DEVICE_SERVICE; hci_state = HCI_CHECK_DEVICE_SERVICE;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
@ -501,52 +498,60 @@ void BTD::HCI_event_task() {
break; break;
case EV_DISCONNECT_COMPLETE: case EV_DISCONNECT_COMPLETE:
if (!hcibuf[2]) { // check if disconnected OK if(!hcibuf[2]) { // Check if disconnected OK
hci_event_flag |= HCI_FLAG_DISCONN_COMPLETE; // set disconnect command complete flag hci_set_flag(HCI_FLAG_DISCONNECT_COMPLETE); // Set disconnect command complete flag
hci_event_flag &= ~HCI_FLAG_CONN_COMPLETE; // clear connection complete flag hci_clear_flag(HCI_FLAG_CONNECT_COMPLETE); // Clear connection complete flag
} }
break; break;
case EV_REMOTE_NAME_COMPLETE: case EV_REMOTE_NAME_COMPLETE:
if (!hcibuf[2]) { // check if reading is OK if(!hcibuf[2]) { // Check if reading is OK
for (uint8_t i = 0; i < min(sizeof (remote_name), sizeof (hcibuf) - 9); i++) for(uint8_t i = 0; i < min(sizeof (remote_name), sizeof (hcibuf) - 9); i++) {
remote_name[i] = hcibuf[9 + i]; remote_name[i] = hcibuf[9 + i];
hci_event_flag |= HCI_FLAG_REMOTE_NAME_COMPLETE; if(remote_name[i] == '\0') // End of string
break;
}
hci_set_flag(HCI_FLAG_REMOTE_NAME_COMPLETE);
} }
break; break;
case EV_INCOMING_CONNECT: case EV_INCOMING_CONNECT:
for (uint8_t i = 0; i < 6; i++) for(uint8_t i = 0; i < 6; i++)
disc_bdaddr[i] = hcibuf[i + 2]; disc_bdaddr[i] = hcibuf[i + 2];
if ((hcibuf[9] & 0x05) && (hcibuf[8] & 0xC0)) { // Check if it is a mouse or keyboard for(uint8_t i = 0; i < 3; i++)
classOfDevice[i] = hcibuf[i + 8];
if((classOfDevice[1] & 0x05) && (classOfDevice[0] & 0xC8)) { // Check if it is a mouse, keyboard or a gamepad
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (hcibuf[8] & 0x80) if(classOfDevice[0] & 0x80)
Notify(PSTR("\r\nMouse is connecting"), 0x80); Notify(PSTR("\r\nMouse is connecting"), 0x80);
if (hcibuf[8] & 0x40) if(classOfDevice[0] & 0x40)
Notify(PSTR("\r\nKeyboard is connecting"), 0x80); Notify(PSTR("\r\nKeyboard is connecting"), 0x80);
if(classOfDevice[0] & 0x08)
Notify(PSTR("\r\nGamepad is connecting"), 0x80);
#endif #endif
incomingHIDDevice = true; incomingHIDDevice = true;
} }
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
Notify(PSTR("\r\nClass of device: "), 0x80); Notify(PSTR("\r\nClass of device: "), 0x80);
D_PrintHex<uint8_t > (hcibuf[10], 0x80); D_PrintHex<uint8_t > (classOfDevice[2], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
D_PrintHex<uint8_t > (hcibuf[9], 0x80); D_PrintHex<uint8_t > (classOfDevice[1], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
D_PrintHex<uint8_t > (hcibuf[8], 0x80); D_PrintHex<uint8_t > (classOfDevice[0], 0x80);
#endif #endif
hci_event_flag |= HCI_FLAG_INCOMING_REQUEST; hci_set_flag(HCI_FLAG_INCOMING_REQUEST);
break; break;
case EV_PIN_CODE_REQUEST: case EV_PIN_CODE_REQUEST:
if (pairWithWii) { if(pairWithWii) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nPairing with wiimote"), 0x80); Notify(PSTR("\r\nPairing with wiimote"), 0x80);
#endif #endif
hci_pin_code_request_reply(); hci_pin_code_request_reply();
} else if (btdPin != NULL) { } else if(btdPin != NULL) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nBluetooth pin is set too: "), 0x80); Notify(PSTR("\r\nBluetooth pin is set too: "), 0x80);
NotifyStr(btdPin, 0x80); NotifyStr(btdPin, 0x80);
@ -568,16 +573,16 @@ void BTD::HCI_event_task() {
break; break;
case EV_AUTHENTICATION_COMPLETE: case EV_AUTHENTICATION_COMPLETE:
if (pairWithWii && !connectToWii) { if(pairWithWii && !connectToWii) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nPairing successful with Wiimote"), 0x80); Notify(PSTR("\r\nPairing successful with Wiimote"), 0x80);
#endif #endif
connectToWii = true; // Only send the ACL data to the Wii service connectToWii = true; // Used to indicate to the Wii service, that it should connect to this device
} else if (pairWithHIDDevice && !connectToHIDDevice) { } else if(pairWithHIDDevice && !connectToHIDDevice) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nPairing successful with HID device"), 0x80); Notify(PSTR("\r\nPairing successful with HID device"), 0x80);
#endif #endif
connectToHIDDevice = true; // Only send the ACL data to the Wii service connectToHIDDevice = true; // Used to indicate to the BTHID service, that it should connect to this device
} }
break; break;
/* We will just ignore the following events */ /* We will just ignore the following events */
@ -595,13 +600,13 @@ void BTD::HCI_event_task() {
break; break;
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
default: default:
if (hcibuf[0] != 0x00) { if(hcibuf[0] != 0x00) {
Notify(PSTR("\r\nUnmanaged HCI Event: "), 0x80); Notify(PSTR("\r\nUnmanaged HCI Event: "), 0x80);
D_PrintHex<uint8_t > (hcibuf[0], 0x80); D_PrintHex<uint8_t > (hcibuf[0], 0x80);
} }
break; break;
#endif #endif
} // switch } // Switch
} }
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
else { else {
@ -609,15 +614,14 @@ void BTD::HCI_event_task() {
D_PrintHex<uint8_t > (rcode, 0x80); D_PrintHex<uint8_t > (rcode, 0x80);
} }
#endif #endif
HCI_task();
} }
/* Poll Bluetooth and print result */ /* Poll Bluetooth and print result */
void BTD::HCI_task() { void BTD::HCI_task() {
switch (hci_state) { switch(hci_state) {
case HCI_INIT_STATE: case HCI_INIT_STATE:
hci_counter++; hci_counter++;
if (hci_counter > hci_num_reset_loops) { // wait until we have looped x times to clear any old events if(hci_counter > hci_num_reset_loops) { // wait until we have looped x times to clear any old events
hci_reset(); hci_reset();
hci_state = HCI_RESET_STATE; hci_state = HCI_RESET_STATE;
hci_counter = 0; hci_counter = 0;
@ -626,16 +630,16 @@ void BTD::HCI_task() {
case HCI_RESET_STATE: case HCI_RESET_STATE:
hci_counter++; hci_counter++;
if (hci_cmd_complete) { if(hci_check_flag(HCI_FLAG_CMD_COMPLETE)) {
hci_counter = 0; hci_counter = 0;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHCI Reset complete"), 0x80); Notify(PSTR("\r\nHCI Reset complete"), 0x80);
#endif #endif
hci_state = HCI_CLASS_STATE; hci_state = HCI_CLASS_STATE;
hci_write_class_of_device(); hci_write_class_of_device();
} else if (hci_counter > hci_num_reset_loops) { } else if(hci_counter > hci_num_reset_loops) {
hci_num_reset_loops *= 10; hci_num_reset_loops *= 10;
if (hci_num_reset_loops > 2000) if(hci_num_reset_loops > 2000)
hci_num_reset_loops = 2000; hci_num_reset_loops = 2000;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nNo response to HCI Reset"), 0x80); Notify(PSTR("\r\nNo response to HCI Reset"), 0x80);
@ -646,7 +650,7 @@ void BTD::HCI_task() {
break; break;
case HCI_CLASS_STATE: case HCI_CLASS_STATE:
if (hci_cmd_complete) { if(hci_check_flag(HCI_FLAG_CMD_COMPLETE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nWrite class of device"), 0x80); Notify(PSTR("\r\nWrite class of device"), 0x80);
#endif #endif
@ -656,10 +660,10 @@ void BTD::HCI_task() {
break; break;
case HCI_BDADDR_STATE: case HCI_BDADDR_STATE:
if (hci_read_bdaddr_complete) { if(hci_check_flag(HCI_FLAG_READ_BDADDR)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nLocal Bluetooth Address: "), 0x80); Notify(PSTR("\r\nLocal Bluetooth Address: "), 0x80);
for (int8_t i = 5; i > 0; i--) { for(int8_t i = 5; i > 0; i--) {
D_PrintHex<uint8_t > (my_bdaddr[i], 0x80); D_PrintHex<uint8_t > (my_bdaddr[i], 0x80);
Notify(PSTR(":"), 0x80); Notify(PSTR(":"), 0x80);
} }
@ -671,8 +675,8 @@ void BTD::HCI_task() {
break; break;
case HCI_LOCAL_VERSION_STATE: // The local version is used by the PS3BT class case HCI_LOCAL_VERSION_STATE: // The local version is used by the PS3BT class
if (hci_read_version_complete) { if(hci_check_flag(HCI_FLAG_READ_VERSION)) {
if (btdName != NULL) { if(btdName != NULL) {
hci_set_local_name(btdName); hci_set_local_name(btdName);
hci_state = HCI_SET_NAME_STATE; hci_state = HCI_SET_NAME_STATE;
} else } else
@ -681,7 +685,7 @@ void BTD::HCI_task() {
break; break;
case HCI_SET_NAME_STATE: case HCI_SET_NAME_STATE:
if (hci_cmd_complete) { if(hci_check_flag(HCI_FLAG_CMD_COMPLETE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nThe name is set to: "), 0x80); Notify(PSTR("\r\nThe name is set to: "), 0x80);
NotifyStr(btdName, 0x80); NotifyStr(btdName, 0x80);
@ -691,9 +695,9 @@ void BTD::HCI_task() {
break; break;
case HCI_CHECK_DEVICE_SERVICE: case HCI_CHECK_DEVICE_SERVICE:
if (pairWithHIDDevice || pairWithWii) { // Check if it should try to connect to a wiimote if(pairWithHIDDevice || pairWithWii) { // Check if it should try to connect to a Wiimote
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (pairWithWii) if(pairWithWii)
Notify(PSTR("\r\nStarting inquiry\r\nPress 1 & 2 on the Wiimote\r\nOr press sync if you are using a Wii U Pro Controller"), 0x80); Notify(PSTR("\r\nStarting inquiry\r\nPress 1 & 2 on the Wiimote\r\nOr press sync if you are using a Wii U Pro Controller"), 0x80);
else else
Notify(PSTR("\r\nPlease enable discovery of your device"), 0x80); Notify(PSTR("\r\nPlease enable discovery of your device"), 0x80);
@ -705,27 +709,27 @@ void BTD::HCI_task() {
break; break;
case HCI_INQUIRY_STATE: case HCI_INQUIRY_STATE:
if (hci_device_found) { if(hci_check_flag(HCI_FLAG_DEVICE_FOUND)) {
hci_inquiry_cancel(); // Stop inquiry hci_inquiry_cancel(); // Stop inquiry
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (pairWithWii) if(pairWithWii)
Notify(PSTR("\r\nWiimote found"), 0x80); Notify(PSTR("\r\nWiimote found"), 0x80);
else else
Notify(PSTR("\r\nHID device found"), 0x80); Notify(PSTR("\r\nHID device found"), 0x80);
Notify(PSTR("\r\nNow just create the instance like so:"), 0x80); Notify(PSTR("\r\nNow just create the instance like so:"), 0x80);
if (pairWithWii) if(pairWithWii)
Notify(PSTR("\r\nWII Wii(&Btd);"), 0x80); Notify(PSTR("\r\nWII Wii(&Btd);"), 0x80);
else else
Notify(PSTR("\r\nBTHID hid(&Btd);"), 0x80); Notify(PSTR("\r\nBTHID bthid(&Btd);"), 0x80);
Notify(PSTR("\r\nAnd then press any button on the "), 0x80); Notify(PSTR("\r\nAnd then press any button on the "), 0x80);
if (pairWithWii) if(pairWithWii)
Notify(PSTR("Wiimote"), 0x80); Notify(PSTR("Wiimote"), 0x80);
else else
Notify(PSTR("device"), 0x80); Notify(PSTR("device"), 0x80);
#endif #endif
if (motionPlusInside) { if(motionPlusInside) {
hci_remote_name(); // We need to know the name to distinguish between a Wiimote and a Wii U Pro Controller hci_remote_name(); // We need to know the name to distinguish between a Wiimote and a Wii U Pro Controller
hci_state = HCI_REMOTE_NAME_STATE; hci_state = HCI_REMOTE_NAME_STATE;
} else } else
@ -734,9 +738,9 @@ void BTD::HCI_task() {
break; break;
case HCI_CONNECT_DEVICE_STATE: case HCI_CONNECT_DEVICE_STATE:
if (hci_cmd_complete) { if(hci_check_flag(HCI_FLAG_CMD_COMPLETE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (pairWithWii) if(pairWithWii)
Notify(PSTR("\r\nConnecting to Wiimote"), 0x80); Notify(PSTR("\r\nConnecting to Wiimote"), 0x80);
else else
Notify(PSTR("\r\nConnecting to HID device"), 0x80); Notify(PSTR("\r\nConnecting to HID device"), 0x80);
@ -747,15 +751,15 @@ void BTD::HCI_task() {
break; break;
case HCI_CONNECTED_DEVICE_STATE: case HCI_CONNECTED_DEVICE_STATE:
if (hci_connect_event) { if(hci_check_flag(HCI_FLAG_CONNECT_EVENT)) {
if (hci_connect_complete) { if(hci_check_flag(HCI_FLAG_CONNECT_COMPLETE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (pairWithWii) if(pairWithWii)
Notify(PSTR("\r\nConnected to Wiimote"), 0x80); Notify(PSTR("\r\nConnected to Wiimote"), 0x80);
else else
Notify(PSTR("\r\nConnected to HID device"), 0x80); Notify(PSTR("\r\nConnected to HID device"), 0x80);
#endif #endif
hci_authentication_request(); // This will start the pairing with the wiimote hci_authentication_request(); // This will start the pairing with the Wiimote
hci_state = HCI_SCANNING_STATE; hci_state = HCI_SCANNING_STATE;
} else { } else {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
@ -767,7 +771,7 @@ void BTD::HCI_task() {
break; break;
case HCI_SCANNING_STATE: case HCI_SCANNING_STATE:
if (!connectToWii && !pairWithWii && !connectToHIDDevice && !pairWithHIDDevice) { if(!connectToWii && !pairWithWii && !connectToHIDDevice && !pairWithHIDDevice) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nWait For Incoming Connection Request"), 0x80); Notify(PSTR("\r\nWait For Incoming Connection Request"), 0x80);
#endif #endif
@ -778,38 +782,35 @@ void BTD::HCI_task() {
break; break;
case HCI_CONNECT_IN_STATE: case HCI_CONNECT_IN_STATE:
if (hci_incoming_connect_request) { if(hci_check_flag(HCI_FLAG_INCOMING_REQUEST)) {
watingForConnection = false; watingForConnection = false;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nIncoming Connection Request"), 0x80); Notify(PSTR("\r\nIncoming Connection Request"), 0x80);
#endif #endif
hci_remote_name(); hci_remote_name();
hci_state = HCI_REMOTE_NAME_STATE; hci_state = HCI_REMOTE_NAME_STATE;
} else if (hci_disconnect_complete) } else if(hci_check_flag(HCI_FLAG_DISCONNECT_COMPLETE))
hci_state = HCI_DISCONNECT_STATE; hci_state = HCI_DISCONNECT_STATE;
break; break;
case HCI_REMOTE_NAME_STATE: case HCI_REMOTE_NAME_STATE:
if (hci_remote_name_complete) { if(hci_check_flag(HCI_FLAG_REMOTE_NAME_COMPLETE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nRemote Name: "), 0x80); Notify(PSTR("\r\nRemote Name: "), 0x80);
for (uint8_t i = 0; i < 30; i++) { for(uint8_t i = 0; i < strlen(remote_name); i++)
if (remote_name[i] == NULL)
break;
Notifyc(remote_name[i], 0x80); Notifyc(remote_name[i], 0x80);
}
#endif #endif
if (strncmp((const char*)remote_name, "Nintendo", 8) == 0) { if(strncmp((const char*)remote_name, "Nintendo", 8) == 0) {
incomingWii = true; incomingWii = true;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nWiimote is connecting"), 0x80); Notify(PSTR("\r\nWiimote is connecting"), 0x80);
#endif #endif
if (strncmp((const char*)remote_name, "Nintendo RVL-CNT-01-TR", 22) == 0) { if(strncmp((const char*)remote_name, "Nintendo RVL-CNT-01-TR", 22) == 0) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR(" with Motion Plus Inside"), 0x80); Notify(PSTR(" with Motion Plus Inside"), 0x80);
#endif #endif
motionPlusInside = true; motionPlusInside = true;
} else if (strncmp((const char*)remote_name, "Nintendo RVL-CNT-01-UC", 22) == 0) { } else if(strncmp((const char*)remote_name, "Nintendo RVL-CNT-01-UC", 22) == 0) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR(" - Wii U Pro Controller"), 0x80); Notify(PSTR(" - Wii U Pro Controller"), 0x80);
#endif #endif
@ -820,7 +821,13 @@ void BTD::HCI_task() {
wiiUProController = false; wiiUProController = false;
} }
} }
if (pairWithWii && motionPlusInside) if(classOfDevice[2] == 0 && classOfDevice[1] == 0x25 && classOfDevice[0] == 0x08 && strncmp((const char*)remote_name, "Wireless Controller", 19) == 0) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nPS4 controller is connecting"), 0x80);
#endif
incomingPS4 = true;
}
if(pairWithWii && motionPlusInside)
hci_state = HCI_CONNECT_DEVICE_STATE; hci_state = HCI_CONNECT_DEVICE_STATE;
else { else {
hci_accept_connection(); hci_accept_connection();
@ -830,15 +837,18 @@ void BTD::HCI_task() {
break; break;
case HCI_CONNECTED_STATE: case HCI_CONNECTED_STATE:
if (hci_connect_complete) { if(hci_check_flag(HCI_FLAG_CONNECT_COMPLETE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nConnected to Device: "), 0x80); Notify(PSTR("\r\nConnected to Device: "), 0x80);
for (int8_t i = 5; i > 0; i--) { for(int8_t i = 5; i > 0; i--) {
D_PrintHex<uint8_t > (disc_bdaddr[i], 0x80); D_PrintHex<uint8_t > (disc_bdaddr[i], 0x80);
Notify(PSTR(":"), 0x80); Notify(PSTR(":"), 0x80);
} }
D_PrintHex<uint8_t > (disc_bdaddr[0], 0x80); D_PrintHex<uint8_t > (disc_bdaddr[0], 0x80);
#endif #endif
if(incomingPS4)
connectToHIDDevice = true; // We should always connect to the PS4 controller
// Clear these flags for a new connection // Clear these flags for a new connection
l2capConnectionClaimed = false; l2capConnectionClaimed = false;
sdpConnectionClaimed = false; sdpConnectionClaimed = false;
@ -851,32 +861,26 @@ void BTD::HCI_task() {
case HCI_DONE_STATE: case HCI_DONE_STATE:
hci_counter++; hci_counter++;
if (hci_counter > 1000) { // Wait until we have looped 1000 times to make sure that the L2CAP connection has been started if(hci_counter > 1000) { // Wait until we have looped 1000 times to make sure that the L2CAP connection has been started
hci_counter = 0; hci_counter = 0;
hci_state = HCI_SCANNING_STATE; hci_state = HCI_SCANNING_STATE;
} }
break; break;
case HCI_DISCONNECT_STATE: case HCI_DISCONNECT_STATE:
if (hci_disconnect_complete) { if(hci_check_flag(HCI_FLAG_DISCONNECT_COMPLETE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHCI Disconnected from Device"), 0x80); Notify(PSTR("\r\nHCI Disconnected from Device"), 0x80);
#endif #endif
hci_event_flag = 0; // Clear all flags hci_event_flag = 0; // Clear all flags
// Reset all buffers // Reset all buffers
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++) memset(hcibuf, 0, BULK_MAXPKTSIZE);
hcibuf[i] = 0; memset(l2capinbuf, 0, BULK_MAXPKTSIZE);
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
l2capinbuf[i] = 0;
connectToWii = false; connectToWii = incomingWii = pairWithWii = false;
incomingWii = false; connectToHIDDevice = incomingHIDDevice = pairWithHIDDevice = false;
pairWithWii = false; incomingPS4 = false;
connectToHIDDevice = false;
incomingHIDDevice = false;
pairWithHIDDevice = false;
hci_state = HCI_SCANNING_STATE; hci_state = HCI_SCANNING_STATE;
} }
@ -887,21 +891,25 @@ void BTD::HCI_task() {
} }
void BTD::ACL_event_task() { void BTD::ACL_event_task() {
uint16_t MAX_BUFFER_SIZE = BULK_MAXPKTSIZE; uint16_t length = BULK_MAXPKTSIZE;
uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_DATAIN_PIPE ].epAddr, &MAX_BUFFER_SIZE, l2capinbuf); // input on endpoint 2 uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_DATAIN_PIPE ].epAddr, &length, l2capinbuf); // Input on endpoint 2
if (!rcode) { // Check for errors
for (uint8_t i = 0; i < BTD_NUMSERVICES; i++) if(!rcode) { // Check for errors
if (btService[i]) if(length > 0) { // Check if any data was read
btService[i]->ACLData(l2capinbuf); for(uint8_t i = 0; i < BTD_NUM_SERVICES; i++) {
if(btService[i])
btService[i]->ACLData(l2capinbuf);
}
}
} }
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
else if (rcode != hrNAK) { else if(rcode != hrNAK) {
Notify(PSTR("\r\nACL data in error: "), 0x80); Notify(PSTR("\r\nACL data in error: "), 0x80);
D_PrintHex<uint8_t > (rcode, 0x80); D_PrintHex<uint8_t > (rcode, 0x80);
} }
#endif #endif
for (uint8_t i = 0; i < BTD_NUMSERVICES; i++) for(uint8_t i = 0; i < BTD_NUM_SERVICES; i++)
if (btService[i]) if(btService[i])
btService[i]->Run(); btService[i]->Run();
} }
@ -910,7 +918,7 @@ void BTD::ACL_event_task() {
/************************************************************/ /************************************************************/
void BTD::HCI_Command(uint8_t* data, uint16_t nbytes) { void BTD::HCI_Command(uint8_t* data, uint16_t nbytes) {
hci_event_flag &= ~HCI_FLAG_CMD_COMPLETE; hci_clear_flag(HCI_FLAG_CMD_COMPLETE);
pUsb->ctrlReq(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bmREQ_HCI_OUT, 0x00, 0x00, 0x00, 0x00, nbytes, nbytes, data, NULL); pUsb->ctrlReq(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bmREQ_HCI_OUT, 0x00, 0x00, 0x00, 0x00, nbytes, nbytes, data, NULL);
} }
@ -924,11 +932,11 @@ void BTD::hci_reset() {
} }
void BTD::hci_write_scan_enable() { void BTD::hci_write_scan_enable() {
hci_event_flag &= ~HCI_FLAG_INCOMING_REQUEST; hci_clear_flag(HCI_FLAG_INCOMING_REQUEST);
hcibuf[0] = 0x1A; // HCI OCF = 1A hcibuf[0] = 0x1A; // HCI OCF = 1A
hcibuf[1] = 0x03 << 2; // HCI OGF = 3 hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x01; // parameter length = 1 hcibuf[2] = 0x01; // parameter length = 1
if (btdName != NULL) if(btdName != NULL)
hcibuf[3] = 0x03; // Inquiry Scan enabled. Page Scan enabled. hcibuf[3] = 0x03; // Inquiry Scan enabled. Page Scan enabled.
else else
hcibuf[3] = 0x02; // Inquiry Scan disabled. Page Scan enabled. hcibuf[3] = 0x02; // Inquiry Scan disabled. Page Scan enabled.
@ -946,6 +954,7 @@ void BTD::hci_write_scan_disable() {
} }
void BTD::hci_read_bdaddr() { void BTD::hci_read_bdaddr() {
hci_clear_flag(HCI_FLAG_READ_BDADDR);
hcibuf[0] = 0x09; // HCI OCF = 9 hcibuf[0] = 0x09; // HCI OCF = 9
hcibuf[1] = 0x04 << 2; // HCI OGF = 4 hcibuf[1] = 0x04 << 2; // HCI OGF = 4
hcibuf[2] = 0x00; hcibuf[2] = 0x00;
@ -954,6 +963,7 @@ void BTD::hci_read_bdaddr() {
} }
void BTD::hci_read_local_version_information() { void BTD::hci_read_local_version_information() {
hci_clear_flag(HCI_FLAG_READ_VERSION);
hcibuf[0] = 0x01; // HCI OCF = 1 hcibuf[0] = 0x01; // HCI OCF = 1
hcibuf[1] = 0x04 << 2; // HCI OGF = 4 hcibuf[1] = 0x04 << 2; // HCI OGF = 4
hcibuf[2] = 0x00; hcibuf[2] = 0x00;
@ -962,7 +972,7 @@ void BTD::hci_read_local_version_information() {
} }
void BTD::hci_accept_connection() { void BTD::hci_accept_connection() {
hci_event_flag &= ~HCI_FLAG_CONN_COMPLETE; hci_clear_flag(HCI_FLAG_CONNECT_COMPLETE);
hcibuf[0] = 0x09; // HCI OCF = 9 hcibuf[0] = 0x09; // HCI OCF = 9
hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x07; // parameter length 7 hcibuf[2] = 0x07; // parameter length 7
@ -972,13 +982,13 @@ void BTD::hci_accept_connection() {
hcibuf[6] = disc_bdaddr[3]; hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4]; hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5]; hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = 0x00; //switch role to master hcibuf[9] = 0x00; // Switch role to master
HCI_Command(hcibuf, 10); HCI_Command(hcibuf, 10);
} }
void BTD::hci_remote_name() { void BTD::hci_remote_name() {
hci_event_flag &= ~HCI_FLAG_REMOTE_NAME_COMPLETE; hci_clear_flag(HCI_FLAG_REMOTE_NAME_COMPLETE);
hcibuf[0] = 0x19; // HCI OCF = 19 hcibuf[0] = 0x19; // HCI OCF = 19
hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x0A; // parameter length = 10 hcibuf[2] = 0x0A; // parameter length = 10
@ -988,10 +998,10 @@ void BTD::hci_remote_name() {
hcibuf[6] = disc_bdaddr[3]; hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4]; hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5]; hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = 0x01; //Page Scan Repetition Mode hcibuf[9] = 0x01; // Page Scan Repetition Mode
hcibuf[10] = 0x00; //Reserved hcibuf[10] = 0x00; // Reserved
hcibuf[11] = 0x00; //Clock offset - low byte hcibuf[11] = 0x00; // Clock offset - low byte
hcibuf[12] = 0x00; //Clock offset - high byte hcibuf[12] = 0x00; // Clock offset - high byte
HCI_Command(hcibuf, 13); HCI_Command(hcibuf, 13);
} }
@ -1001,7 +1011,7 @@ void BTD::hci_set_local_name(const char* name) {
hcibuf[1] = 0x03 << 2; // HCI OGF = 3 hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = strlen(name) + 1; // parameter length = the length of the string + end byte hcibuf[2] = strlen(name) + 1; // parameter length = the length of the string + end byte
uint8_t i; uint8_t i;
for (i = 0; i < strlen(name); i++) for(i = 0; i < strlen(name); i++)
hcibuf[i + 3] = name[i]; hcibuf[i + 3] = name[i];
hcibuf[i + 3] = 0x00; // End of string hcibuf[i + 3] = 0x00; // End of string
@ -1009,7 +1019,7 @@ void BTD::hci_set_local_name(const char* name) {
} }
void BTD::hci_inquiry() { void BTD::hci_inquiry() {
hci_event_flag &= ~HCI_FLAG_DEVICE_FOUND; hci_clear_flag(HCI_FLAG_DEVICE_FOUND);
hcibuf[0] = 0x01; hcibuf[0] = 0x01;
hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x05; // Parameter Total Length = 5 hcibuf[2] = 0x05; // Parameter Total Length = 5
@ -1035,7 +1045,7 @@ void BTD::hci_connect() {
} }
void BTD::hci_connect(uint8_t *bdaddr) { void BTD::hci_connect(uint8_t *bdaddr) {
hci_event_flag &= ~(HCI_FLAG_CONN_COMPLETE | HCI_FLAG_CONNECT_EVENT); hci_clear_flag(HCI_FLAG_CONNECT_COMPLETE | HCI_FLAG_CONNECT_EVENT);
hcibuf[0] = 0x05; hcibuf[0] = 0x05;
hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x0D; // parameter Total Length = 13 hcibuf[2] = 0x0D; // parameter Total Length = 13
@ -1066,26 +1076,26 @@ void BTD::hci_pin_code_request_reply() {
hcibuf[6] = disc_bdaddr[3]; hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4]; hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5]; hcibuf[8] = disc_bdaddr[5];
if (pairWithWii) { if(pairWithWii) {
hcibuf[9] = 6; // Pin length is the length of the Bluetooth address hcibuf[9] = 6; // Pin length is the length of the Bluetooth address
if (wiiUProController) { if(wiiUProController) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nParing with Wii U Pro Controller"), 0x80); Notify(PSTR("\r\nParing with Wii U Pro Controller"), 0x80);
#endif #endif
for (uint8_t i = 0; i < 6; i++) for(uint8_t i = 0; i < 6; i++)
hcibuf[10 + i] = my_bdaddr[i]; // The pin is the Bluetooth dongles Bluetooth address backwards hcibuf[10 + i] = my_bdaddr[i]; // The pin is the Bluetooth dongles Bluetooth address backwards
} else { } else {
for (uint8_t i = 0; i < 6; i++) for(uint8_t i = 0; i < 6; i++)
hcibuf[10 + i] = disc_bdaddr[i]; // The pin is the Wiimote's Bluetooth address backwards hcibuf[10 + i] = disc_bdaddr[i]; // The pin is the Wiimote's Bluetooth address backwards
} }
for (uint8_t i = 16; i < 26; i++) for(uint8_t i = 16; i < 26; i++)
hcibuf[i] = 0x00; // The rest should be 0 hcibuf[i] = 0x00; // The rest should be 0
} else { } else {
hcibuf[9] = strlen(btdPin); // Length of pin hcibuf[9] = strlen(btdPin); // Length of pin
uint8_t i; uint8_t i;
for (i = 0; i < strlen(btdPin); i++) // The maximum size of the pin is 16 for(i = 0; i < strlen(btdPin); i++) // The maximum size of the pin is 16
hcibuf[i + 10] = btdPin[i]; hcibuf[i + 10] = btdPin[i];
for (; i < 16; i++) for(; i < 16; i++)
hcibuf[i + 10] = 0x00; // The rest should be 0 hcibuf[i + 10] = 0x00; // The rest should be 0
} }
@ -1131,7 +1141,7 @@ void BTD::hci_authentication_request() {
} }
void BTD::hci_disconnect(uint16_t handle) { // This is called by the different services void BTD::hci_disconnect(uint16_t handle) { // This is called by the different services
hci_event_flag &= ~HCI_FLAG_DISCONN_COMPLETE; hci_clear_flag(HCI_FLAG_DISCONNECT_COMPLETE);
hcibuf[0] = 0x06; // HCI OCF = 6 hcibuf[0] = 0x06; // HCI OCF = 6
hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x03; // parameter length = 3 hcibuf[2] = 0x03; // parameter length = 3
@ -1189,11 +1199,11 @@ void BTD::L2CAP_Command(uint16_t handle, uint8_t* data, uint8_t nbytes, uint8_t
buf[6] = channelLow; buf[6] = channelLow;
buf[7] = channelHigh; buf[7] = channelHigh;
for (uint16_t i = 0; i < nbytes; i++) // L2CAP C-frame for(uint16_t i = 0; i < nbytes; i++) // L2CAP C-frame
buf[8 + i] = data[i]; buf[8 + i] = data[i];
uint8_t rcode = pUsb->outTransfer(bAddress, epInfo[ BTD_DATAOUT_PIPE ].epAddr, (8 + nbytes), buf); uint8_t rcode = pUsb->outTransfer(bAddress, epInfo[ BTD_DATAOUT_PIPE ].epAddr, (8 + nbytes), buf);
if (rcode) { if(rcode) {
delay(100); // This small delay prevents it from overflowing if it fails delay(100); // This small delay prevents it from overflowing if it fails
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nError sending L2CAP message: 0x"), 0x80); Notify(PSTR("\r\nError sending L2CAP message: 0x"), 0x80);
@ -1322,7 +1332,7 @@ void BTD::setBdaddr(uint8_t* bdaddr) {
buf[0] = 0x01; buf[0] = 0x01;
buf[1] = 0x00; buf[1] = 0x00;
for (uint8_t i = 0; i < 6; i++) for(uint8_t i = 0; i < 6; i++)
buf[i + 2] = bdaddr[5 - i]; // Copy into buffer, has to be written reversed, so it is MSB first buf[i + 2] = bdaddr[5 - i]; // Copy into buffer, has to be written reversed, so it is MSB first
// bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0xF5), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data // bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0xF5), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data
@ -1338,7 +1348,7 @@ void BTD::setMoveBdaddr(uint8_t* bdaddr) {
buf[9] = 0x02; buf[9] = 0x02;
buf[10] = 0x12; buf[10] = 0x12;
for (uint8_t i = 0; i < 6; i++) for(uint8_t i = 0; i < 6; i++)
buf[i + 1] = bdaddr[i]; buf[i + 1] = bdaddr[i];
// bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0x05), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data // bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0x05), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data

156
BTD.h
View file

@ -30,7 +30,7 @@
#define IOGEAR_GBU521_PID 0x21E8 #define IOGEAR_GBU521_PID 0x21E8
/* Bluetooth dongle data taken from descriptors */ /* Bluetooth dongle data taken from descriptors */
#define BULK_MAXPKTSIZE 64 // max size for ACL data #define BULK_MAXPKTSIZE 64 // Max size for ACL data
// Used in control endpoint header for HCI Commands // Used in control endpoint header for HCI Commands
#define bmREQ_HCI_OUT USB_SETUP_HOST_TO_DEVICE|USB_SETUP_TYPE_CLASS|USB_SETUP_RECIPIENT_DEVICE #define bmREQ_HCI_OUT USB_SETUP_HOST_TO_DEVICE|USB_SETUP_TYPE_CLASS|USB_SETUP_RECIPIENT_DEVICE
@ -47,7 +47,7 @@
#define HCI_SET_NAME_STATE 5 #define HCI_SET_NAME_STATE 5
#define HCI_CHECK_DEVICE_SERVICE 6 #define HCI_CHECK_DEVICE_SERVICE 6
#define HCI_INQUIRY_STATE 7 // These three states are only used if it should pair and connect to a Wii controller #define HCI_INQUIRY_STATE 7 // These three states are only used if it should pair and connect to a device
#define HCI_CONNECT_DEVICE_STATE 8 #define HCI_CONNECT_DEVICE_STATE 8
#define HCI_CONNECTED_DEVICE_STATE 9 #define HCI_CONNECTED_DEVICE_STATE 9
@ -61,8 +61,8 @@
/* HCI event flags*/ /* HCI event flags*/
#define HCI_FLAG_CMD_COMPLETE 0x01 #define HCI_FLAG_CMD_COMPLETE 0x01
#define HCI_FLAG_CONN_COMPLETE 0x02 #define HCI_FLAG_CONNECT_COMPLETE 0x02
#define HCI_FLAG_DISCONN_COMPLETE 0x04 #define HCI_FLAG_DISCONNECT_COMPLETE 0x04
#define HCI_FLAG_REMOTE_NAME_COMPLETE 0x08 #define HCI_FLAG_REMOTE_NAME_COMPLETE 0x08
#define HCI_FLAG_INCOMING_REQUEST 0x10 #define HCI_FLAG_INCOMING_REQUEST 0x10
#define HCI_FLAG_READ_BDADDR 0x20 #define HCI_FLAG_READ_BDADDR 0x20
@ -70,16 +70,10 @@
#define HCI_FLAG_DEVICE_FOUND 0x80 #define HCI_FLAG_DEVICE_FOUND 0x80
#define HCI_FLAG_CONNECT_EVENT 0x100 #define HCI_FLAG_CONNECT_EVENT 0x100
/*Macros for HCI event flag tests */ /* Macros for HCI event flag tests */
#define hci_cmd_complete (hci_event_flag & HCI_FLAG_CMD_COMPLETE) #define hci_check_flag(flag) (hci_event_flag & (flag))
#define hci_connect_complete (hci_event_flag & HCI_FLAG_CONN_COMPLETE) #define hci_set_flag(flag) (hci_event_flag |= (flag))
#define hci_disconnect_complete (hci_event_flag & HCI_FLAG_DISCONN_COMPLETE) #define hci_clear_flag(flag) (hci_event_flag &= ~(flag))
#define hci_remote_name_complete (hci_event_flag & HCI_FLAG_REMOTE_NAME_COMPLETE)
#define hci_incoming_connect_request (hci_event_flag & HCI_FLAG_INCOMING_REQUEST)
#define hci_read_bdaddr_complete (hci_event_flag & HCI_FLAG_READ_BDADDR)
#define hci_read_version_complete (hci_event_flag & HCI_FLAG_READ_VERSION)
#define hci_device_found (hci_event_flag & HCI_FLAG_DEVICE_FOUND)
#define hci_connect_event (hci_event_flag & HCI_FLAG_CONNECT_EVENT)
/* HCI Events managed */ /* HCI Events managed */
#define EV_INQUIRY_COMPLETE 0x01 #define EV_INQUIRY_COMPLETE 0x01
@ -105,6 +99,68 @@
#define EV_LOOPBACK_COMMAND 0x19 #define EV_LOOPBACK_COMMAND 0x19
#define EV_PAGE_SCAN_REP_MODE 0x20 #define EV_PAGE_SCAN_REP_MODE 0x20
/* Bluetooth states for the different Bluetooth drivers */
#define L2CAP_WAIT 0
#define L2CAP_DONE 1
/* Used for HID Control channel */
#define L2CAP_CONTROL_CONNECT_REQUEST 2
#define L2CAP_CONTROL_CONFIG_REQUEST 3
#define L2CAP_CONTROL_SUCCESS 4
#define L2CAP_CONTROL_DISCONNECT 5
/* Used for HID Interrupt channel */
#define L2CAP_INTERRUPT_SETUP 6
#define L2CAP_INTERRUPT_CONNECT_REQUEST 7
#define L2CAP_INTERRUPT_CONFIG_REQUEST 8
#define L2CAP_INTERRUPT_DISCONNECT 9
/* Used for SDP channel */
#define L2CAP_SDP_WAIT 10
#define L2CAP_SDP_SUCCESS 11
/* Used for RFCOMM channel */
#define L2CAP_RFCOMM_WAIT 12
#define L2CAP_RFCOMM_SUCCESS 13
#define L2CAP_DISCONNECT_RESPONSE 14 // Used for both SDP and RFCOMM channel
/* Bluetooth states used by some drivers */
#define TURN_ON_LED 17
#define PS3_ENABLE_SIXAXIS 18
#define WII_CHECK_MOTION_PLUS_STATE 19
#define WII_CHECK_EXTENSION_STATE 20
#define WII_INIT_MOTION_PLUS_STATE 21
/* L2CAP event flags for HID Control channel */
#define L2CAP_FLAG_CONNECTION_CONTROL_REQUEST 0x00000001
#define L2CAP_FLAG_CONFIG_CONTROL_SUCCESS 0x00000002
#define L2CAP_FLAG_CONTROL_CONNECTED 0x00000004
#define L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE 0x00000008
/* L2CAP event flags for HID Interrupt channel */
#define L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST 0x00000010
#define L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS 0x00000020
#define L2CAP_FLAG_INTERRUPT_CONNECTED 0x00000040
#define L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE 0x00000080
/* L2CAP event flags for SDP channel */
#define L2CAP_FLAG_CONNECTION_SDP_REQUEST 0x00000100
#define L2CAP_FLAG_CONFIG_SDP_SUCCESS 0x00000200
#define L2CAP_FLAG_DISCONNECT_SDP_REQUEST 0x00000400
/* L2CAP event flags for RFCOMM channel */
#define L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST 0x00000800
#define L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS 0x00001000
#define L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST 0x00002000
#define L2CAP_FLAG_DISCONNECT_RESPONSE 0x00004000
/* Macros for L2CAP event flag tests */
#define l2cap_check_flag(flag) (l2cap_event_flag & (flag))
#define l2cap_set_flag(flag) (l2cap_event_flag |= (flag))
#define l2cap_clear_flag(flag) (l2cap_event_flag &= ~(flag))
/* L2CAP signaling commands */ /* L2CAP signaling commands */
#define L2CAP_CMD_COMMAND_REJECT 0x01 #define L2CAP_CMD_COMMAND_REJECT 0x01
#define L2CAP_CMD_CONNECTION_REQUEST 0x02 #define L2CAP_CMD_CONNECTION_REQUEST 0x02
@ -131,11 +187,27 @@
#define WI_PROTOCOL_BT 0x01 // Bluetooth Programming Interface #define WI_PROTOCOL_BT 0x01 // Bluetooth Programming Interface
#define BTD_MAX_ENDPOINTS 4 #define BTD_MAX_ENDPOINTS 4
#define BTD_NUMSERVICES 4 // Max number of Bluetooth services - if you need more than four simply increase this number #define BTD_NUM_SERVICES 4 // Max number of Bluetooth services - if you need more than 4 simply increase this number
#define PAIR 1 #define PAIR 1
/** All Bluetooth services should include this class. */ /* acl_handle_ok or it's a new connection */
#if 0
#define UHS_ACL_HANDLE_OK(x, y) ((uint16_t)(x[0]) | (uint16_t)(x[1] << 8)) == (y | 0x2000U)
#else
/*
* Better implementation.
* o One place for this code, it is reused four times in the source.
* Perhaps it is better as a function.
* o This should be faster since the && operation can early exit, this means
* the shift would only be performed if the first byte matches.
* o Casting is eliminated.
* o How does this compare in code size? No difference. It is a free optimization.
*/
#define UHS_ACL_HANDLE_OK(x, y) ((x[0] == (y & 0xff)) && (x[1] == ((y >> 8) | 0x20)))
#endif
/** All Bluetooth services should inherit this class. */
class BluetoothService { class BluetoothService {
public: public:
/** /**
@ -165,7 +237,7 @@ public:
/** @name USBDeviceConfig implementation */ /** @name USBDeviceConfig implementation */
/** /**
* Address assignment and basic initilization is done here. * Address assignment and basic initialization is done here.
* @param parent Hub number. * @param parent Hub number.
* @param port Port number on the hub. * @param port Port number on the hub.
* @param lowspeed Speed of the device. * @param lowspeed Speed of the device.
@ -186,7 +258,7 @@ public:
*/ */
virtual uint8_t Release(); virtual uint8_t Release();
/** /**
* Poll the USB Input endpoins and run the state machines. * Poll the USB Input endpoints and run the state machines.
* @return 0 on success. * @return 0 on success.
*/ */
virtual uint8_t Poll(); virtual uint8_t Poll();
@ -206,12 +278,15 @@ public:
virtual bool isReady() { virtual bool isReady() {
return bPollEnable; return bPollEnable;
}; };
/** /**
* Used by the USB core to check what this driver support. * Used by the USB core to check what this driver support.
* @param klass The device's USB class. * @param klass The device's USB class.
* @return Returns true if the device's USB class matches this driver. * @return Returns true if the device's USB class matches this driver.
*/ */
virtual boolean DEVCLASSOK(uint8_t klass) { return (klass == USB_CLASS_WIRELESS_CTRL); } virtual boolean DEVCLASSOK(uint8_t klass) {
return (klass == USB_CLASS_WIRELESS_CTRL);
};
/** /**
* Used by the USB core to check what this driver support. * Used by the USB core to check what this driver support.
@ -221,10 +296,10 @@ public:
* @return Returns true if the device's VID and PID matches this driver. * @return Returns true if the device's VID and PID matches this driver.
*/ */
virtual boolean VIDPIDOK(uint16_t vid, uint16_t pid) { virtual boolean VIDPIDOK(uint16_t vid, uint16_t pid) {
if (vid == IOGEAR_GBU521_VID && pid == IOGEAR_GBU521_PID) if(vid == IOGEAR_GBU521_VID && pid == IOGEAR_GBU521_PID)
return true; return true;
if (my_bdaddr[0] != 0x00 || my_bdaddr[1] != 0x00 || my_bdaddr[2] != 0x00 || my_bdaddr[3] != 0x00 || my_bdaddr[4] != 0x00 || my_bdaddr[5] != 0x00) { // Check if Bluetooth address is set if(my_bdaddr[0] != 0x00 || my_bdaddr[1] != 0x00 || my_bdaddr[2] != 0x00 || my_bdaddr[3] != 0x00 || my_bdaddr[4] != 0x00 || my_bdaddr[5] != 0x00) { // Check if Bluetooth address is set
if (vid == PS3_VID && (pid == PS3_PID || pid == PS3NAVIGATION_PID || pid == PS3MOVE_PID)) if(vid == PS3_VID && (pid == PS3_PID || pid == PS3NAVIGATION_PID || pid == PS3MOVE_PID))
return true; return true;
} }
return false; return false;
@ -245,18 +320,18 @@ public:
/** Disconnects both the L2CAP Channel and the HCI Connection for all Bluetooth services. */ /** Disconnects both the L2CAP Channel and the HCI Connection for all Bluetooth services. */
void disconnect() { void disconnect() {
for(uint8_t i = 0; i < BTD_NUMSERVICES; i++) for(uint8_t i = 0; i < BTD_NUM_SERVICES; i++)
if(btService[i]) if(btService[i])
btService[i]->disconnect(); btService[i]->disconnect();
}; };
/** /**
* Register bluetooth dongle members/services. * Register Bluetooth dongle members/services.
* @param pService Pointer to BluetoothService class instance. * @param pService Pointer to BluetoothService class instance.
* @return The serice ID on succes or -1 on fail. * @return The service ID on success or -1 on fail.
*/ */
int8_t registerServiceClass(BluetoothService *pService) { int8_t registerServiceClass(BluetoothService *pService) {
for(uint8_t i = 0; i < BTD_NUMSERVICES; i++) { for(uint8_t i = 0; i < BTD_NUM_SERVICES; i++) {
if(!btService[i]) { if(!btService[i]) {
btService[i] = pService; btService[i] = pService;
return i; // Return ID return i; // Return ID
@ -403,7 +478,7 @@ public:
/** The name you wish to make the dongle show up as. It is set automatically by the SPP library. */ /** The name you wish to make the dongle show up as. It is set automatically by the SPP library. */
const char* btdName; const char* btdName;
/** The pin you wish to make the dongle use for authentication. It is set automatically by the SPP library. */ /** The pin you wish to make the dongle use for authentication. It is set automatically by the SPP and BTHID library. */
const char* btdPin; const char* btdPin;
/** The bluetooth dongles Bluetooth address. */ /** The bluetooth dongles Bluetooth address. */
@ -413,7 +488,7 @@ public:
/** Last incoming devices Bluetooth address. */ /** Last incoming devices Bluetooth address. */
uint8_t disc_bdaddr[6]; uint8_t disc_bdaddr[6];
/** First 30 chars of last remote name. */ /** First 30 chars of last remote name. */
uint8_t remote_name[30]; char remote_name[30];
/** /**
* The supported HCI Version read from the Bluetooth dongle. * The supported HCI Version read from the Bluetooth dongle.
* Used by the PS3BT library to check the HCI Version of the Bluetooth dongle, * Used by the PS3BT library to check the HCI Version of the Bluetooth dongle,
@ -426,7 +501,7 @@ public:
pairWithWii = true; pairWithWii = true;
hci_state = HCI_CHECK_DEVICE_SERVICE; hci_state = HCI_CHECK_DEVICE_SERVICE;
}; };
/** Used to only send the ACL data to the wiimote. */ /** Used to only send the ACL data to the Wiimote. */
bool connectToWii; bool connectToWii;
/** True if a Wiimote is connecting. */ /** True if a Wiimote is connecting. */
bool incomingWii; bool incomingWii;
@ -442,7 +517,7 @@ public:
pairWithHIDDevice = true; pairWithHIDDevice = true;
hci_state = HCI_CHECK_DEVICE_SERVICE; hci_state = HCI_CHECK_DEVICE_SERVICE;
}; };
/** Used to only send the ACL data to the wiimote. */ /** Used to only send the ACL data to the Wiimote. */
bool connectToHIDDevice; bool connectToHIDDevice;
/** True if a Wiimote is connecting. */ /** True if a Wiimote is connecting. */
bool incomingHIDDevice; bool incomingHIDDevice;
@ -489,23 +564,26 @@ protected:
private: private:
void Initialize(); // Set all variables, endpoint structs etc. to default values void Initialize(); // Set all variables, endpoint structs etc. to default values
BluetoothService* btService[BTD_NUMSERVICES]; BluetoothService *btService[BTD_NUM_SERVICES];
uint16_t PID, VID; // PID and VID of device connected uint16_t PID, VID; // PID and VID of device connected
bool bPollEnable;
uint8_t pollInterval; uint8_t pollInterval;
bool bPollEnable;
bool incomingPS4; // True if a PS4 controller is connecting
uint8_t classOfDevice[3]; // Class of device of last device
/* Variables used by high level HCI task */ /* Variables used by high level HCI task */
uint8_t hci_state; //current state of bluetooth hci connection uint8_t hci_state; // Current state of Bluetooth HCI connection
uint16_t hci_counter; // counter used for bluetooth hci reset loops uint16_t hci_counter; // Counter used for Bluetooth HCI reset loops
uint8_t hci_num_reset_loops; // this value indicate how many times it should read before trying to reset uint16_t hci_num_reset_loops; // This value indicate how many times it should read before trying to reset
uint16_t hci_event_flag; // hci flags of received bluetooth events uint16_t hci_event_flag; // HCI flags of received Bluetooth events
uint8_t inquiry_counter; uint8_t inquiry_counter;
uint8_t hcibuf[BULK_MAXPKTSIZE]; //General purpose buffer for hci data uint8_t hcibuf[BULK_MAXPKTSIZE]; // General purpose buffer for HCI data
uint8_t l2capinbuf[BULK_MAXPKTSIZE]; //General purpose buffer for l2cap in data uint8_t l2capinbuf[BULK_MAXPKTSIZE]; // General purpose buffer for L2CAP in data
uint8_t l2capoutbuf[14]; //General purpose buffer for l2cap out data uint8_t l2capoutbuf[14]; // General purpose buffer for L2CAP out data
/* State machines */ /* State machines */
void HCI_event_task(); // Poll the HCI event pipe void HCI_event_task(); // Poll the HCI event pipe

160
BTHID.cpp
View file

@ -22,18 +22,15 @@
BTHID::BTHID(BTD *p, bool pair, const char *pin) : BTHID::BTHID(BTD *p, bool pair, const char *pin) :
pBtd(p), // pointer to USB class instance - mandatory pBtd(p), // pointer to USB class instance - mandatory
protocolMode(HID_BOOT_PROTOCOL) protocolMode(HID_BOOT_PROTOCOL) {
{ for(uint8_t i = 0; i < NUM_PARSERS; i++)
for (uint8_t i = 0; i < epMUL; i++)
pRptParser[i] = NULL; pRptParser[i] = NULL;
if (pBtd) if(pBtd)
pBtd->registerServiceClass(this); // Register it as a Bluetooth service pBtd->registerServiceClass(this); // Register it as a Bluetooth service
pBtd->pairWithHIDDevice = pair; pBtd->pairWithHIDDevice = pair;
pBtd->btdPin = pin;
if (pair)
pBtd->btdPin= pin;
/* Set device cid for the control and intterrupt channelse - LSB */ /* Set device cid for the control and intterrupt channelse - LSB */
control_dcid[0] = 0x70; // 0x0070 control_dcid[0] = 0x70; // 0x0070
@ -49,19 +46,20 @@ void BTHID::Reset() {
activeConnection = false; activeConnection = false;
l2cap_event_flag = 0; // Reset flags l2cap_event_flag = 0; // Reset flags
l2cap_state = L2CAP_WAIT; l2cap_state = L2CAP_WAIT;
ResetBTHID();
} }
void BTHID::disconnect() { // Use this void to disconnect any of the controllers void BTHID::disconnect() { // Use this void to disconnect the device
// First the HID interrupt channel has to be disconnected, then the HID control channel and finally the HCI connection // First the HID interrupt channel has to be disconnected, then the HID control channel and finally the HCI connection
pBtd->l2cap_disconnection_request(hci_handle, 0x0A, interrupt_scid, interrupt_dcid); pBtd->l2cap_disconnection_request(hci_handle, ++identifier, interrupt_scid, interrupt_dcid);
Reset(); Reset();
l2cap_state = L2CAP_INTERRUPT_DISCONNECT; l2cap_state = L2CAP_INTERRUPT_DISCONNECT;
} }
void BTHID::ACLData(uint8_t* l2capinbuf) { void BTHID::ACLData(uint8_t* l2capinbuf) {
if (!pBtd->l2capConnectionClaimed && pBtd->incomingHIDDevice && !connected && !activeConnection) { if(!pBtd->l2capConnectionClaimed && pBtd->incomingHIDDevice && !connected && !activeConnection) {
if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) { if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_CTRL_PSM) { if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_CTRL_PSM) {
pBtd->incomingHIDDevice = false; pBtd->incomingHIDDevice = false;
pBtd->l2capConnectionClaimed = true; // Claim that the incoming connection belongs to this service pBtd->l2capConnectionClaimed = true; // Claim that the incoming connection belongs to this service
activeConnection = true; activeConnection = true;
@ -70,9 +68,10 @@ void BTHID::ACLData(uint8_t* l2capinbuf) {
} }
} }
} }
if ((l2capinbuf[0] | (l2capinbuf[1] << 8)) == (hci_handle | 0x2000)) { // acl_handle_ok or it's a new connection //if((l2capinbuf[0] | (uint16_t)l2capinbuf[1] << 8) == (hci_handle | 0x2000U)) { // acl_handle_ok or it's a new connection
if ((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001) { // l2cap_control - Channel ID for ACL-U if(UHS_ACL_HANDLE_OK(l2capinbuf, hci_handle)) { // acl_handle_ok or it's a new connection
if (l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) { if((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001U) { // l2cap_control - Channel ID for ACL-U
if(l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "), 0x80); Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[13], 0x80); D_PrintHex<uint8_t > (l2capinbuf[13], 0x80);
@ -87,23 +86,23 @@ void BTHID::ACLData(uint8_t* l2capinbuf) {
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[14], 0x80); D_PrintHex<uint8_t > (l2capinbuf[14], 0x80);
#endif #endif
} else if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_RESPONSE) { } else if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_RESPONSE) {
if (((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) && ((l2capinbuf[18] | (l2capinbuf[19] << 8)) == SUCCESSFUL)) { // Success if(((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) && ((l2capinbuf[18] | (l2capinbuf[19] << 8)) == SUCCESSFUL)) { // Success
if (l2capinbuf[14] == control_dcid[0] && l2capinbuf[15] == control_dcid[1]) { if(l2capinbuf[14] == control_dcid[0] && l2capinbuf[15] == control_dcid[1]) {
//Notify(PSTR("\r\nHID Control Connection Complete"), 0x80); //Notify(PSTR("\r\nHID Control Connection Complete"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
control_scid[0] = l2capinbuf[12]; control_scid[0] = l2capinbuf[12];
control_scid[1] = l2capinbuf[13]; control_scid[1] = l2capinbuf[13];
l2cap_event_flag |= L2CAP_FLAG_CONTROL_CONNECTED; l2cap_set_flag(L2CAP_FLAG_CONTROL_CONNECTED);
} else if (l2capinbuf[14] == interrupt_dcid[0] && l2capinbuf[15] == interrupt_dcid[1]) { } else if(l2capinbuf[14] == interrupt_dcid[0] && l2capinbuf[15] == interrupt_dcid[1]) {
//Notify(PSTR("\r\nHID Interrupt Connection Complete"), 0x80); //Notify(PSTR("\r\nHID Interrupt Connection Complete"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
interrupt_scid[0] = l2capinbuf[12]; interrupt_scid[0] = l2capinbuf[12];
interrupt_scid[1] = l2capinbuf[13]; interrupt_scid[1] = l2capinbuf[13];
l2cap_event_flag |= L2CAP_FLAG_INTERRUPT_CONNECTED; l2cap_set_flag(L2CAP_FLAG_INTERRUPT_CONNECTED);
} }
} }
} else if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
Notify(PSTR("\r\nL2CAP Connection Request - PSM: "), 0x80); Notify(PSTR("\r\nL2CAP Connection Request - PSM: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[13], 0x80); D_PrintHex<uint8_t > (l2capinbuf[13], 0x80);
@ -116,46 +115,46 @@ void BTHID::ACLData(uint8_t* l2capinbuf) {
Notify(PSTR(" Identifier: "), 0x80); Notify(PSTR(" Identifier: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[9], 0x80); D_PrintHex<uint8_t > (l2capinbuf[9], 0x80);
#endif #endif
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_CTRL_PSM) { if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_CTRL_PSM) {
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
control_scid[0] = l2capinbuf[14]; control_scid[0] = l2capinbuf[14];
control_scid[1] = l2capinbuf[15]; control_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_CONTROL_REQUEST; l2cap_set_flag(L2CAP_FLAG_CONNECTION_CONTROL_REQUEST);
} else if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_INTR_PSM) { } else if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_INTR_PSM) {
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
interrupt_scid[0] = l2capinbuf[14]; interrupt_scid[0] = l2capinbuf[14];
interrupt_scid[1] = l2capinbuf[15]; interrupt_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST; l2cap_set_flag(L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST);
} }
} else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) { } else if(l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) {
if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success if((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success
if (l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) { if(l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) {
//Notify(PSTR("\r\nHID Control Configuration Complete"), 0x80); //Notify(PSTR("\r\nHID Control Configuration Complete"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_CONFIG_CONTROL_SUCCESS; l2cap_set_flag(L2CAP_FLAG_CONFIG_CONTROL_SUCCESS);
} else if (l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) { } else if(l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) {
//Notify(PSTR("\r\nHID Interrupt Configuration Complete"), 0x80); //Notify(PSTR("\r\nHID Interrupt Configuration Complete"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS; l2cap_set_flag(L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS);
} }
} }
} else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) {
if (l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) { if(l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) {
//Notify(PSTR("\r\nHID Control Configuration Request"), 0x80); //Notify(PSTR("\r\nHID Control Configuration Request"), 0x80);
pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], control_scid); pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], control_scid);
} else if (l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) { } else if(l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) {
//Notify(PSTR("\r\nHID Interrupt Configuration Request"), 0x80); //Notify(PSTR("\r\nHID Interrupt Configuration Request"), 0x80);
pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], interrupt_scid); pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], interrupt_scid);
} }
} else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) {
if (l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) { if(l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnect Request: Control Channel"), 0x80); Notify(PSTR("\r\nDisconnect Request: Control Channel"), 0x80);
#endif #endif
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
pBtd->l2cap_disconnection_response(hci_handle, identifier, control_dcid, control_scid); pBtd->l2cap_disconnection_response(hci_handle, identifier, control_dcid, control_scid);
Reset(); Reset();
} else if (l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) { } else if(l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnect Request: Interrupt Channel"), 0x80); Notify(PSTR("\r\nDisconnect Request: Interrupt Channel"), 0x80);
#endif #endif
@ -163,15 +162,15 @@ void BTHID::ACLData(uint8_t* l2capinbuf) {
pBtd->l2cap_disconnection_response(hci_handle, identifier, interrupt_dcid, interrupt_scid); pBtd->l2cap_disconnection_response(hci_handle, identifier, interrupt_dcid, interrupt_scid);
Reset(); Reset();
} }
} else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) { } else if(l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) {
if (l2capinbuf[12] == control_scid[0] && l2capinbuf[13] == control_scid[1]) { if(l2capinbuf[12] == control_scid[0] && l2capinbuf[13] == control_scid[1]) {
//Notify(PSTR("\r\nDisconnect Response: Control Channel"), 0x80); //Notify(PSTR("\r\nDisconnect Response: Control Channel"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE);
} else if (l2capinbuf[12] == interrupt_scid[0] && l2capinbuf[13] == interrupt_scid[1]) { } else if(l2capinbuf[12] == interrupt_scid[0] && l2capinbuf[13] == interrupt_scid[1]) {
//Notify(PSTR("\r\nDisconnect Response: Interrupt Channel"), 0x80); //Notify(PSTR("\r\nDisconnect Response: Interrupt Channel"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE);
} }
} }
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
@ -181,37 +180,29 @@ void BTHID::ACLData(uint8_t* l2capinbuf) {
D_PrintHex<uint8_t > (l2capinbuf[8], 0x80); D_PrintHex<uint8_t > (l2capinbuf[8], 0x80);
} }
#endif #endif
} else if (l2capinbuf[6] == interrupt_dcid[0] && l2capinbuf[7] == interrupt_dcid[1]) { // l2cap_interrupt } else if(l2capinbuf[6] == interrupt_dcid[0] && l2capinbuf[7] == interrupt_dcid[1]) { // l2cap_interrupt
#ifdef PRINTREPORT #ifdef PRINTREPORT
Notify(PSTR("\r\nL2CAP Interrupt: "), 0x80); Notify(PSTR("\r\nL2CAP Interrupt: "), 0x80);
for (uint16_t i = 0; i < ((uint16_t)l2capinbuf[5] << 8 | l2capinbuf[4]); i++) { for(uint16_t i = 0; i < ((uint16_t)l2capinbuf[5] << 8 | l2capinbuf[4]); i++) {
D_PrintHex<uint8_t > (l2capinbuf[i + 8], 0x80); D_PrintHex<uint8_t > (l2capinbuf[i + 8], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
} }
#endif #endif
if (l2capinbuf[8] == 0xA1) { // HID_THDR_DATA_INPUT if(l2capinbuf[8] == 0xA1) { // HID_THDR_DATA_INPUT
switch (l2capinbuf[9]) { uint16_t length = ((uint16_t)l2capinbuf[5] << 8 | l2capinbuf[4]);
case 0x01: // Keyboard events ParseBTHIDData((uint8_t)(length - 1), &l2capinbuf[9]);
if (pRptParser[KEYBOARD_PARSER_ID]) {
uint16_t length = ((uint16_t)l2capinbuf[5] << 8 | l2capinbuf[4]); switch(l2capinbuf[9]) {
pRptParser[KEYBOARD_PARSER_ID]->Parse(reinterpret_cast<HID *> (this), 0, (uint8_t) length, &l2capinbuf[10]); // Use reinterpret_cast again to extract the instance case 0x01: // Keyboard or Joystick events
} if(pRptParser[KEYBOARD_PARSER_ID])
pRptParser[KEYBOARD_PARSER_ID]->Parse(reinterpret_cast<HID *>(this), 0, (uint8_t)(length - 2), &l2capinbuf[10]); // Use reinterpret_cast again to extract the instance
break; break;
case 0x02: // Mouse events case 0x02: // Mouse events
if (pRptParser[MOUSE_PARSER_ID]) { if(pRptParser[MOUSE_PARSER_ID])
uint16_t length = ((uint16_t)l2capinbuf[5] << 8 | l2capinbuf[4]); pRptParser[MOUSE_PARSER_ID]->Parse(reinterpret_cast<HID *>(this), 0, (uint8_t)(length - 2), &l2capinbuf[10]); // Use reinterpret_cast again to extract the instance
pRptParser[MOUSE_PARSER_ID]->Parse(reinterpret_cast<HID *> (this), 0, (uint8_t) length, &l2capinbuf[10]); // Use reinterpret_cast again to extract the instance
}
break; break;
#ifdef EXTRADEBUG
case 0x03:
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nChange mode event: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[11], 0x80);
#endif
break;
#ifdef DEBUG_USB_HOST
default: default:
Notify(PSTR("\r\nUnknown Report type: "), 0x80); Notify(PSTR("\r\nUnknown Report type: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[9], 0x80); D_PrintHex<uint8_t > (l2capinbuf[9], 0x80);
@ -219,10 +210,10 @@ void BTHID::ACLData(uint8_t* l2capinbuf) {
#endif #endif
} }
} }
} else if (l2capinbuf[6] == control_dcid[0] && l2capinbuf[7] == control_dcid[1]) { // l2cap_control } else if(l2capinbuf[6] == control_dcid[0] && l2capinbuf[7] == control_dcid[1]) { // l2cap_control
#ifdef PRINTREPORT #ifdef PRINTREPORT
Notify(PSTR("\r\nL2CAP Control: "), 0x80); Notify(PSTR("\r\nL2CAP Control: "), 0x80);
for (uint16_t i = 0; i < ((uint16_t)l2capinbuf[5] << 8 | l2capinbuf[4]); i++) { for(uint16_t i = 0; i < ((uint16_t)l2capinbuf[5] << 8 | l2capinbuf[4]); i++) {
D_PrintHex<uint8_t > (l2capinbuf[i + 8], 0x80); D_PrintHex<uint8_t > (l2capinbuf[i + 8], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
} }
@ -237,7 +228,7 @@ void BTHID::ACLData(uint8_t* l2capinbuf) {
Notify(PSTR("\r\nData: "), 0x80); Notify(PSTR("\r\nData: "), 0x80);
Notify(PSTR("\r\n"), 0x80); Notify(PSTR("\r\n"), 0x80);
for (uint16_t i = 0; i < ((uint16_t)l2capinbuf[5] << 8 | l2capinbuf[4]); i++) { for(uint16_t i = 0; i < ((uint16_t)l2capinbuf[5] << 8 | l2capinbuf[4]); i++) {
D_PrintHex<uint8_t > (l2capinbuf[i + 8], 0x80); D_PrintHex<uint8_t > (l2capinbuf[i + 8], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
} }
@ -248,10 +239,10 @@ void BTHID::ACLData(uint8_t* l2capinbuf) {
} }
void BTHID::L2CAP_task() { void BTHID::L2CAP_task() {
switch (l2cap_state) { switch(l2cap_state) {
/* These states are used if the HID device is the host */ /* These states are used if the HID device is the host */
case L2CAP_CONTROL_SUCCESS: case L2CAP_CONTROL_SUCCESS:
if (l2cap_config_success_control_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONFIG_CONTROL_SUCCESS)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Control Successfully Configured"), 0x80); Notify(PSTR("\r\nHID Control Successfully Configured"), 0x80);
#endif #endif
@ -261,7 +252,7 @@ void BTHID::L2CAP_task() {
break; break;
case L2CAP_INTERRUPT_SETUP: case L2CAP_INTERRUPT_SETUP:
if (l2cap_connection_request_interrupt_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Interrupt Incoming Connection Request"), 0x80); Notify(PSTR("\r\nHID Interrupt Incoming Connection Request"), 0x80);
#endif #endif
@ -278,7 +269,7 @@ void BTHID::L2CAP_task() {
/* These states are used if the Arduino is the host */ /* These states are used if the Arduino is the host */
case L2CAP_CONTROL_CONNECT_REQUEST: case L2CAP_CONTROL_CONNECT_REQUEST:
if (l2cap_connected_control_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONTROL_CONNECTED)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSend HID Control Config Request"), 0x80); Notify(PSTR("\r\nSend HID Control Config Request"), 0x80);
#endif #endif
@ -289,7 +280,7 @@ void BTHID::L2CAP_task() {
break; break;
case L2CAP_CONTROL_CONFIG_REQUEST: case L2CAP_CONTROL_CONFIG_REQUEST:
if (l2cap_config_success_control_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONFIG_CONTROL_SUCCESS)) {
setProtocol(); // Set protocol before establishing HID interrupt channel setProtocol(); // Set protocol before establishing HID interrupt channel
delay(1); // Short delay between commands - just to be sure delay(1); // Short delay between commands - just to be sure
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
@ -302,7 +293,7 @@ void BTHID::L2CAP_task() {
break; break;
case L2CAP_INTERRUPT_CONNECT_REQUEST: case L2CAP_INTERRUPT_CONNECT_REQUEST:
if (l2cap_connected_interrupt_flag) { if(l2cap_check_flag(L2CAP_FLAG_INTERRUPT_CONNECTED)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSend HID Interrupt Config Request"), 0x80); Notify(PSTR("\r\nSend HID Interrupt Config Request"), 0x80);
#endif #endif
@ -313,7 +304,7 @@ void BTHID::L2CAP_task() {
break; break;
case L2CAP_INTERRUPT_CONFIG_REQUEST: case L2CAP_INTERRUPT_CONFIG_REQUEST:
if (l2cap_config_success_interrupt_flag) { // Now the HID channels is established if(l2cap_check_flag(L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS)) { // Now the HID channels is established
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Channels Established"), 0x80); Notify(PSTR("\r\nHID Channels Established"), 0x80);
#endif #endif
@ -329,7 +320,7 @@ void BTHID::L2CAP_task() {
break; break;
case L2CAP_INTERRUPT_DISCONNECT: case L2CAP_INTERRUPT_DISCONNECT:
if (l2cap_disconnect_response_interrupt_flag) { if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnected Interrupt Channel"), 0x80); Notify(PSTR("\r\nDisconnected Interrupt Channel"), 0x80);
#endif #endif
@ -340,7 +331,7 @@ void BTHID::L2CAP_task() {
break; break;
case L2CAP_CONTROL_DISCONNECT: case L2CAP_CONTROL_DISCONNECT:
if (l2cap_disconnect_response_control_flag) { if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnected Control Channel"), 0x80); Notify(PSTR("\r\nDisconnected Control Channel"), 0x80);
#endif #endif
@ -354,9 +345,9 @@ void BTHID::L2CAP_task() {
} }
void BTHID::Run() { void BTHID::Run() {
switch (l2cap_state) { switch(l2cap_state) {
case L2CAP_WAIT: case L2CAP_WAIT:
if (pBtd->connectToHIDDevice && !pBtd->l2capConnectionClaimed && !connected && !activeConnection) { if(pBtd->connectToHIDDevice && !pBtd->l2capConnectionClaimed && !connected && !activeConnection) {
pBtd->l2capConnectionClaimed = true; pBtd->l2capConnectionClaimed = true;
activeConnection = true; activeConnection = true;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
@ -367,7 +358,7 @@ void BTHID::Run() {
identifier = 0; identifier = 0;
pBtd->l2cap_connection_request(hci_handle, identifier, control_dcid, HID_CTRL_PSM); pBtd->l2cap_connection_request(hci_handle, identifier, control_dcid, HID_CTRL_PSM);
l2cap_state = L2CAP_CONTROL_CONNECT_REQUEST; l2cap_state = L2CAP_CONTROL_CONNECT_REQUEST;
} else if (l2cap_connection_request_control_flag) { } else if(l2cap_check_flag(L2CAP_FLAG_CONNECTION_CONTROL_REQUEST)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Control Incoming Connection Request"), 0x80); Notify(PSTR("\r\nHID Control Incoming Connection Request"), 0x80);
#endif #endif
@ -385,13 +376,20 @@ void BTHID::Run() {
/************************************************************/ /************************************************************/
/* HID Commands */ /* HID Commands */
/************************************************************/ /************************************************************/
void BTHID::setProtocol() { void BTHID::setProtocol() {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSet protocol mode: "), 0x80); Notify(PSTR("\r\nSet protocol mode: "), 0x80);
D_PrintHex<uint8_t > (protocolMode, 0x80); D_PrintHex<uint8_t > (protocolMode, 0x80);
#endif #endif
uint8_t command = 0x70 | protocolMode; // Set Protocol, see HID specs page 33 if (protocolMode != HID_BOOT_PROTOCOL && protocolMode != HID_RPT_PROTOCOL) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nNot a valid protocol mode. Using Boot protocol instead."), 0x80);
#endif
protocolMode = HID_BOOT_PROTOCOL; // Use Boot Protocol by default
}
uint8_t command = 0x70 | protocolMode; // Set Protocol, see Bluetooth HID specs page 33
pBtd->L2CAP_Command(hci_handle, &command, 1, control_scid[0], control_scid[1]); pBtd->L2CAP_Command(hci_handle, &command, 1, control_scid[0], control_scid[1]);
} }
@ -401,4 +399,4 @@ void BTHID::setLeds(uint8_t data) {
buf[1] = 0x01; // Report ID buf[1] = 0x01; // Report ID
buf[2] = data; buf[2] = data;
pBtd->L2CAP_Command(hci_handle, buf, 3, interrupt_scid[0], interrupt_scid[1]); pBtd->L2CAP_Command(hci_handle, buf, 3, interrupt_scid[0], interrupt_scid[1]);
} }

140
BTHID.h
View file

@ -21,49 +21,11 @@
#include "BTD.h" #include "BTD.h"
#include "hidboot.h" #include "hidboot.h"
/* Bluetooth L2CAP states for L2CAP_task() */
#define L2CAP_WAIT 0
// These states are used if the device is the host
#define L2CAP_CONTROL_SUCCESS 1
#define L2CAP_INTERRUPT_SETUP 2
// These states are used if the Arduino is the host
#define L2CAP_CONTROL_CONNECT_REQUEST 3
#define L2CAP_CONTROL_CONFIG_REQUEST 4
#define L2CAP_INTERRUPT_CONNECT_REQUEST 5
#define L2CAP_INTERRUPT_CONFIG_REQUEST 6
#define L2CAP_DONE 7
#define L2CAP_INTERRUPT_DISCONNECT 8
#define L2CAP_CONTROL_DISCONNECT 9
/* L2CAP event flags */
#define L2CAP_FLAG_CONTROL_CONNECTED 0x01
#define L2CAP_FLAG_INTERRUPT_CONNECTED 0x02
#define L2CAP_FLAG_CONFIG_CONTROL_SUCCESS 0x04
#define L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS 0x08
#define L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE 0x10
#define L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE 0x20
#define L2CAP_FLAG_CONNECTION_CONTROL_REQUEST 0x40
#define L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST 0x80
/* Macros for L2CAP event flag tests */
#define l2cap_connected_control_flag (l2cap_event_flag & L2CAP_FLAG_CONTROL_CONNECTED)
#define l2cap_connected_interrupt_flag (l2cap_event_flag & L2CAP_FLAG_INTERRUPT_CONNECTED)
#define l2cap_config_success_control_flag (l2cap_event_flag & L2CAP_FLAG_CONFIG_CONTROL_SUCCESS)
#define l2cap_config_success_interrupt_flag (l2cap_event_flag & L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS)
#define l2cap_disconnect_response_control_flag (l2cap_event_flag & L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE)
#define l2cap_disconnect_response_interrupt_flag (l2cap_event_flag & L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE)
#define l2cap_connection_request_control_flag (l2cap_event_flag & L2CAP_FLAG_CONNECTION_CONTROL_REQUEST)
#define l2cap_connection_request_interrupt_flag (l2cap_event_flag & L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST)
#define KEYBOARD_PARSER_ID 0 #define KEYBOARD_PARSER_ID 0
#define MOUSE_PARSER_ID 1 #define MOUSE_PARSER_ID 1
#define epMUL 2 #define NUM_PARSERS 2
/** This BluetoothService class implements support for the HID keyboard and mice. */ /** This BluetoothService class implements support for Bluetooth HID devices. */
class BTHID : public BluetoothService { class BTHID : public BluetoothService {
public: public:
/** /**
@ -80,82 +42,130 @@ public:
* @param ACLData Incoming acldata. * @param ACLData Incoming acldata.
*/ */
virtual void ACLData(uint8_t* ACLData); virtual void ACLData(uint8_t* ACLData);
/** Used to run part of the state maschine. */ /** Used to run part of the state machine. */
virtual void Run(); virtual void Run();
/** Use this to reset the service. */ /** Use this to reset the service. */
virtual void Reset(); virtual void Reset();
/** Used this to disconnect any of the controllers. */ /** Used this to disconnect the devices. */
virtual void disconnect(); virtual void disconnect();
/**@}*/ /**@}*/
/**
* Get HIDReportParser.
* @param id ID of parser.
* @return Returns the corresponding HIDReportParser. Returns NULL if id is not valid.
*/
HIDReportParser *GetReportParser(uint8_t id) { HIDReportParser *GetReportParser(uint8_t id) {
if (id >= NUM_PARSERS)
return NULL;
return pRptParser[id]; return pRptParser[id];
}; };
/**
* Set HIDReportParser to be used.
* @param id Id of parser.
* @param prs Pointer to HIDReportParser.
* @return Returns true if the HIDReportParser is set. False otherwise.
*/
bool SetReportParser(uint8_t id, HIDReportParser *prs) { bool SetReportParser(uint8_t id, HIDReportParser *prs) {
if (id >= NUM_PARSERS)
return false;
pRptParser[id] = prs; pRptParser[id] = prs;
return true; return true;
}; };
/**
* Set HID protocol mode.
* @param mode HID protocol to use. Either HID_BOOT_PROTOCOL or HID_RPT_PROTOCOL.
*/
void setProtocolMode(uint8_t mode) { void setProtocolMode(uint8_t mode) {
protocolMode = mode; protocolMode = mode;
}; };
/** Used to set the leds on a keyboard */ /**
* Used to set the leds on a keyboard.
* @param data See KBDLEDS in hidboot.h
*/
void setLeds(uint8_t data); void setLeds(uint8_t data);
/** True if a device is connected */ /** True if a device is connected */
bool connected; bool connected;
/** Call this to start the paring sequence with a controller */ /** Call this to start the paring sequence with a device */
void pair(void) { void pair(void) {
if (pBtd) if(pBtd)
pBtd->pairWithHID(); pBtd->pairWithHID();
}; };
/** /**
* Used to call your own function when the controller is successfully initialized. * Used to call your own function when the device is successfully initialized.
* @param funcOnInit Function to call. * @param funcOnInit Function to call.
*/ */
void attachOnInit(void (*funcOnInit)(void)) { void attachOnInit(void (*funcOnInit)(void)) {
pFuncOnInit = funcOnInit; pFuncOnInit = funcOnInit;
}; };
private: protected:
BTD *pBtd; // Pointer to BTD instance /** @name Overridable functions */
/**
* Used to parse Bluetooth HID data to any class that inherits this class.
* @param len The length of the incoming data.
* @param buf Pointer to the data buffer.
*/
virtual void ParseBTHIDData(uint8_t len, uint8_t *buf) {
return;
};
/** Called when a device is connected */
virtual void OnInitBTHID() {
return;
};
/** Used to reset any buffers in the class that inherits this */
virtual void ResetBTHID() {
return;
}
/**@}*/
HIDReportParser *pRptParser[epMUL]; /** Pointer to BTD instance */
BTD *pBtd;
/** HCI Handle for connection */
uint16_t hci_handle;
/** L2CAP source CID for HID_Control */
uint8_t control_scid[2];
/** L2CAP source CID for HID_Interrupt */
uint8_t interrupt_scid[2];
private:
HIDReportParser *pRptParser[NUM_PARSERS]; // Pointer to HIDReportParsers.
/** Set report protocol. */ /** Set report protocol. */
void setProtocol(); void setProtocol();
uint8_t protocolMode; uint8_t protocolMode;
/** /**
* Called when the controller is successfully initialized. * Called when a device is successfully initialized.
* Use attachOnInit(void (*funcOnInit)(void)) to call your own function. * Use attachOnInit(void (*funcOnInit)(void)) to call your own function.
* This is useful for instance if you want to set the LEDs in a specific way. * This is useful for instance if you want to set the LEDs in a specific way.
*/ */
void onInit() { void onInit() {
if (pFuncOnInit) if(pFuncOnInit)
pFuncOnInit(); // Call the user function pFuncOnInit(); // Call the user function
} OnInitBTHID();
};
void (*pFuncOnInit)(void); // Pointer to function called in onInit() void (*pFuncOnInit)(void); // Pointer to function called in onInit()
void L2CAP_task(); // L2CAP state machine void L2CAP_task(); // L2CAP state machine
/* Variables filled from HCI event management */ bool activeConnection; // Used to indicate if it already has established a connection
uint16_t hci_handle;
bool activeConnection; // Used to indicate if it's already has established a connection
/* Variables used by high level L2CAP task */ /* Variables used for L2CAP communication */
uint8_t l2cap_state; uint8_t control_dcid[2]; // L2CAP device CID for HID_Control - Always 0x0070
uint8_t l2cap_event_flag; // l2cap flags of received Bluetooth events uint8_t interrupt_dcid[2]; // L2CAP device CID for HID_Interrupt - Always 0x0071
/* L2CAP Channels */
uint8_t control_scid[2]; // L2CAP source CID for HID_Control
uint8_t control_dcid[2]; // 0x0070
uint8_t interrupt_scid[2]; // L2CAP source CID for HID_Interrupt
uint8_t interrupt_dcid[2]; // 0x0071
uint8_t identifier; // Identifier for connection uint8_t identifier; // Identifier for connection
uint8_t l2cap_state;
uint32_t l2cap_event_flag; // l2cap flags of received Bluetooth events
}; };
#endif #endif

337
PS3BT.cpp
View file

@ -23,7 +23,7 @@
PS3BT::PS3BT(BTD *p, uint8_t btadr5, uint8_t btadr4, uint8_t btadr3, uint8_t btadr2, uint8_t btadr1, uint8_t btadr0) : PS3BT::PS3BT(BTD *p, uint8_t btadr5, uint8_t btadr4, uint8_t btadr3, uint8_t btadr2, uint8_t btadr1, uint8_t btadr0) :
pBtd(p) // pointer to USB class instance - mandatory pBtd(p) // pointer to USB class instance - mandatory
{ {
if (pBtd) if(pBtd)
pBtd->registerServiceClass(this); // Register it as a Bluetooth service pBtd->registerServiceClass(this); // Register it as a Bluetooth service
pBtd->my_bdaddr[5] = btadr5; // Change to your dongle's Bluetooth address instead pBtd->my_bdaddr[5] = btadr5; // Change to your dongle's Bluetooth address instead
@ -49,35 +49,35 @@ pBtd(p) // pointer to USB class instance - mandatory
Reset(); Reset();
} }
bool PS3BT::getButtonPress(Button b) { bool PS3BT::getButtonPress(ButtonEnum b) {
return (ButtonState & pgm_read_dword(&BUTTONS[(uint8_t)b])); return (ButtonState & pgm_read_dword(&PS3_BUTTONS[(uint8_t)b]));
} }
bool PS3BT::getButtonClick(Button b) { bool PS3BT::getButtonClick(ButtonEnum b) {
uint32_t button = pgm_read_dword(&BUTTONS[(uint8_t)b]); uint32_t button = pgm_read_dword(&PS3_BUTTONS[(uint8_t)b]);
bool click = (ButtonClickState & button); bool click = (ButtonClickState & button);
ButtonClickState &= ~button; // Clear "click" event ButtonClickState &= ~button; // Clear "click" event
return click; return click;
} }
uint8_t PS3BT::getAnalogButton(Button a) { uint8_t PS3BT::getAnalogButton(ButtonEnum a) {
return (uint8_t)(l2capinbuf[pgm_read_byte(&ANALOGBUTTONS[(uint8_t)a])]); return (uint8_t)(l2capinbuf[pgm_read_byte(&PS3_ANALOG_BUTTONS[(uint8_t)a])]);
} }
uint8_t PS3BT::getAnalogHat(AnalogHat a) { uint8_t PS3BT::getAnalogHat(AnalogHatEnum a) {
return (uint8_t)(l2capinbuf[(uint8_t)a + 15]); return (uint8_t)(l2capinbuf[(uint8_t)a + 15]);
} }
int16_t PS3BT::getSensor(Sensor a) { int16_t PS3BT::getSensor(SensorEnum a) {
if (PS3Connected) { if(PS3Connected) {
if (a == aX || a == aY || a == aZ || a == gZ) if(a == aX || a == aY || a == aZ || a == gZ)
return ((l2capinbuf[(uint16_t)a] << 8) | l2capinbuf[(uint16_t)a + 1]); return ((l2capinbuf[(uint16_t)a] << 8) | l2capinbuf[(uint16_t)a + 1]);
else else
return 0; return 0;
} else if (PS3MoveConnected) { } else if(PS3MoveConnected) {
if (a == mXmove || a == mYmove) // These are all 12-bits long if(a == mXmove || a == mYmove) // These are all 12-bits long
return (((l2capinbuf[(uint16_t)a] & 0x0F) << 8) | (l2capinbuf[(uint16_t)a + 1])); return (((l2capinbuf[(uint16_t)a] & 0x0F) << 8) | (l2capinbuf[(uint16_t)a + 1]));
else if (a == mZmove || a == tempMove) // The tempearature is also 12 bits long else if(a == mZmove || a == tempMove) // The tempearature is also 12 bits long
return ((l2capinbuf[(uint16_t)a] << 4) | ((l2capinbuf[(uint16_t)a + 1] & 0xF0) >> 4)); return ((l2capinbuf[(uint16_t)a] << 4) | ((l2capinbuf[(uint16_t)a + 1] & 0xF0) >> 4));
else // aXmove, aYmove, aZmove, gXmove, gYmove and gZmove else // aXmove, aYmove, aZmove, gXmove, gYmove and gZmove
return (l2capinbuf[(uint16_t)a] | (l2capinbuf[(uint16_t)a + 1] << 8)); return (l2capinbuf[(uint16_t)a] | (l2capinbuf[(uint16_t)a + 1] << 8));
@ -85,16 +85,16 @@ int16_t PS3BT::getSensor(Sensor a) {
return 0; return 0;
} }
double PS3BT::getAngle(Angle a) { double PS3BT::getAngle(AngleEnum a) {
double accXval, accYval, accZval; double accXval, accYval, accZval;
if (PS3Connected) { if(PS3Connected) {
// Data for the Kionix KXPC4 used in the DualShock 3 // Data for the Kionix KXPC4 used in the DualShock 3
const double zeroG = 511.5; // 1.65/3.3*1023 (1.65V) const double zeroG = 511.5; // 1.65/3.3*1023 (1.65V)
accXval = -((double)getSensor(aX) - zeroG); accXval = -((double)getSensor(aX) - zeroG);
accYval = -((double)getSensor(aY) - zeroG); accYval = -((double)getSensor(aY) - zeroG);
accZval = -((double)getSensor(aZ) - zeroG); accZval = -((double)getSensor(aZ) - zeroG);
} else if (PS3MoveConnected) { } else if(PS3MoveConnected) {
// It's a Kionix KXSC4 inside the Motion controller // It's a Kionix KXSC4 inside the Motion controller
const uint16_t zeroG = 0x8000; const uint16_t zeroG = 0x8000;
accXval = -(int16_t)(getSensor(aXmove) - zeroG); accXval = -(int16_t)(getSensor(aXmove) - zeroG);
@ -106,34 +106,34 @@ double PS3BT::getAngle(Angle a) {
// Convert to 360 degrees resolution // Convert to 360 degrees resolution
// atan2 outputs the value of -π to π (radians) // atan2 outputs the value of -π to π (radians)
// We are then converting it to 0 to 2π and then to degrees // We are then converting it to 0 to 2π and then to degrees
if (a == Pitch) if(a == Pitch)
return (atan2(accYval, accZval) + PI) * RAD_TO_DEG; return (atan2(accYval, accZval) + PI) * RAD_TO_DEG;
else else
return (atan2(accXval, accZval) + PI) * RAD_TO_DEG; return (atan2(accXval, accZval) + PI) * RAD_TO_DEG;
} }
double PS3BT::get9DOFValues(Sensor a) { // Thanks to Manfred Piendl double PS3BT::get9DOFValues(SensorEnum a) { // Thanks to Manfred Piendl
if (!PS3MoveConnected) if(!PS3MoveConnected)
return 0; return 0;
int16_t value = getSensor(a); int16_t value = getSensor(a);
if (a == mXmove || a == mYmove || a == mZmove) { if(a == mXmove || a == mYmove || a == mZmove) {
if (value > 2047) if(value > 2047)
value -= 0x1000; value -= 0x1000;
return (double)value / 3.2; // unit: muT = 10^(-6) Tesla return (double)value / 3.2; // unit: muT = 10^(-6) Tesla
} else if (a == aXmove || a == aYmove || a == aZmove) { } else if(a == aXmove || a == aYmove || a == aZmove) {
if (value < 0) if(value < 0)
value += 0x8000; value += 0x8000;
else else
value -= 0x8000; value -= 0x8000;
return (double)value / 442.0; // unit: m/(s^2) return (double)value / 442.0; // unit: m/(s^2)
} else if (a == gXmove || a == gYmove || a == gZmove) { } else if(a == gXmove || a == gYmove || a == gZmove) {
if (value < 0) if(value < 0)
value += 0x8000; value += 0x8000;
else else
value -= 0x8000; value -= 0x8000;
if (a == gXmove) if(a == gXmove)
return (double)value / 11.6; // unit: deg/s return (double)value / 11.6; // unit: deg/s
else if (a == gYmove) else if(a == gYmove)
return (double)value / 11.2; // unit: deg/s return (double)value / 11.2; // unit: deg/s
else // gZmove else // gZmove
return (double)value / 9.6; // unit: deg/s return (double)value / 9.6; // unit: deg/s
@ -142,12 +142,12 @@ double PS3BT::get9DOFValues(Sensor a) { // Thanks to Manfred Piendl
} }
String PS3BT::getTemperature() { String PS3BT::getTemperature() {
if (PS3MoveConnected) { if(PS3MoveConnected) {
int16_t input = getSensor(tempMove); int16_t input = getSensor(tempMove);
String output = String(input / 100); String output = String(input / 100);
output += "."; output += ".";
if (input % 100 < 10) if(input % 100 < 10)
output += "0"; output += "0";
output += String(input % 100); output += String(input % 100);
@ -156,58 +156,52 @@ String PS3BT::getTemperature() {
return "Error"; return "Error";
} }
bool PS3BT::getStatus(Status c) { bool PS3BT::getStatus(StatusEnum c) {
return (l2capinbuf[(uint16_t)c >> 8] == ((uint8_t)c & 0xff)); return (l2capinbuf[(uint16_t)c >> 8] == ((uint8_t)c & 0xff));
} }
String PS3BT::getStatusString() { void PS3BT::printStatusString() {
if (PS3Connected || PS3NavigationConnected) { char statusOutput[100]; // Max string length plus null character
char statusOutput[100]; if(PS3Connected || PS3NavigationConnected) {
strcpy_P(statusOutput, PSTR("ConnectionStatus: "));
strcpy(statusOutput, "ConnectionStatus: "); if(getStatus(Plugged)) strcat_P(statusOutput, PSTR("Plugged"));
else if(getStatus(Unplugged)) strcat_P(statusOutput, PSTR("Unplugged"));
else strcat_P(statusOutput, PSTR("Error"));
if (getStatus(Plugged)) strcat(statusOutput, "Plugged"); strcat_P(statusOutput, PSTR(" - PowerRating: "));
else if (getStatus(Unplugged)) strcat(statusOutput, "Unplugged");
else strcat(statusOutput, "Error");
if(getStatus(Charging)) strcat_P(statusOutput, PSTR("Charging"));
else if(getStatus(NotCharging)) strcat_P(statusOutput, PSTR("Not Charging"));
else if(getStatus(Shutdown)) strcat_P(statusOutput, PSTR("Shutdown"));
else if(getStatus(Dying)) strcat_P(statusOutput, PSTR("Dying"));
else if(getStatus(Low)) strcat_P(statusOutput, PSTR("Low"));
else if(getStatus(High)) strcat_P(statusOutput, PSTR("High"));
else if(getStatus(Full)) strcat_P(statusOutput, PSTR("Full"));
else strcat_P(statusOutput, PSTR("Error"));
strcat(statusOutput, " - PowerRating: "); strcat_P(statusOutput, PSTR(" - WirelessStatus: "));
if (getStatus(Charging)) strcat(statusOutput, "Charging");
else if (getStatus(NotCharging)) strcat(statusOutput, "Not Charging");
else if (getStatus(Shutdown)) strcat(statusOutput, "Shutdown");
else if (getStatus(Dying)) strcat(statusOutput, "Dying");
else if (getStatus(Low)) strcat(statusOutput, "Low");
else if (getStatus(High)) strcat(statusOutput, "High");
else if (getStatus(Full)) strcat(statusOutput, "Full");
else strcat(statusOutput, "Error");
strcat(statusOutput, " - WirelessStatus: "); if(getStatus(CableRumble)) strcat_P(statusOutput, PSTR("Cable - Rumble is on"));
else if(getStatus(Cable)) strcat_P(statusOutput, PSTR("Cable - Rumble is off"));
else if(getStatus(BluetoothRumble)) strcat_P(statusOutput, PSTR("Bluetooth - Rumble is on"));
else if(getStatus(Bluetooth)) strcat_P(statusOutput, PSTR("Bluetooth - Rumble is off"));
else strcat_P(statusOutput, PSTR("Error"));
} else if(PS3MoveConnected) {
strcpy_P(statusOutput, PSTR("PowerRating: "));
if (getStatus(CableRumble)) strcat(statusOutput, "Cable - Rumble is on"); if(getStatus(MoveCharging)) strcat_P(statusOutput, PSTR("Charging"));
else if (getStatus(Cable)) strcat(statusOutput, "Cable - Rumble is off"); else if(getStatus(MoveNotCharging)) strcat_P(statusOutput, PSTR("Not Charging"));
else if (getStatus(BluetoothRumble)) strcat(statusOutput, "Bluetooth - Rumble is on"); else if(getStatus(MoveShutdown)) strcat_P(statusOutput, PSTR("Shutdown"));
else if (getStatus(Bluetooth)) strcat(statusOutput, "Bluetooth - Rumble is off"); else if(getStatus(MoveDying)) strcat_P(statusOutput, PSTR("Dying"));
else strcat(statusOutput, "Error"); else if(getStatus(MoveLow)) strcat_P(statusOutput, PSTR("Low"));
else if(getStatus(MoveHigh)) strcat_P(statusOutput, PSTR("High"));
return statusOutput; else if(getStatus(MoveFull)) strcat_P(statusOutput, PSTR("Full"));
else strcat_P(statusOutput, PSTR("Error"));
} else if (PS3MoveConnected) {
char statusOutput[50];
strcpy(statusOutput, "PowerRating: ");
if (getStatus(MoveCharging)) strcat(statusOutput, "Charging");
else if (getStatus(MoveNotCharging)) strcat(statusOutput, "Not Charging");
else if (getStatus(MoveShutdown)) strcat(statusOutput, "Shutdown");
else if (getStatus(MoveDying)) strcat(statusOutput, "Dying");
else if (getStatus(MoveLow)) strcat(statusOutput, "Low");
else if (getStatus(MoveHigh)) strcat(statusOutput, "High");
else if (getStatus(MoveFull)) strcat(statusOutput, "Full");
else strcat(statusOutput, "Error");
return statusOutput;
} else } else
return "Error"; strcpy_P(statusOutput, PSTR("Error"));
USB_HOST_SERIAL.write(statusOutput);
} }
void PS3BT::Reset() { void PS3BT::Reset() {
@ -218,30 +212,30 @@ void PS3BT::Reset() {
l2cap_event_flag = 0; // Reset flags l2cap_event_flag = 0; // Reset flags
l2cap_state = L2CAP_WAIT; l2cap_state = L2CAP_WAIT;
// Needed for PS3 Dualshock Controller commands to work via bluetooth // Needed for PS3 Dualshock Controller commands to work via Bluetooth
for (uint8_t i = 0; i < PS3_REPORT_BUFFER_SIZE; i++) for(uint8_t i = 0; i < PS3_REPORT_BUFFER_SIZE; i++)
HIDBuffer[i + 2] = pgm_read_byte(&PS3_REPORT_BUFFER[i]); // First two bytes reserved for report type and ID HIDBuffer[i + 2] = pgm_read_byte(&PS3_REPORT_BUFFER[i]); // First two bytes reserved for report type and ID
} }
void PS3BT::disconnect() { // Use this void to disconnect any of the controllers void PS3BT::disconnect() { // Use this void to disconnect any of the controllers
//First the HID interrupt channel has to be disconencted, then the HID control channel and finally the HCI connection // First the HID interrupt channel has to be disconnected, then the HID control channel and finally the HCI connection
pBtd->l2cap_disconnection_request(hci_handle, 0x0A, interrupt_scid, interrupt_dcid); pBtd->l2cap_disconnection_request(hci_handle, ++identifier, interrupt_scid, interrupt_dcid);
Reset(); Reset();
l2cap_state = L2CAP_INTERRUPT_DISCONNECT; l2cap_state = L2CAP_INTERRUPT_DISCONNECT;
} }
void PS3BT::ACLData(uint8_t* ACLData) { void PS3BT::ACLData(uint8_t* ACLData) {
if (!pBtd->l2capConnectionClaimed && !PS3Connected && !PS3MoveConnected && !PS3NavigationConnected && !activeConnection && !pBtd->connectToWii && !pBtd->incomingWii && !pBtd->pairWithWii) { if(!pBtd->l2capConnectionClaimed && !PS3Connected && !PS3MoveConnected && !PS3NavigationConnected && !activeConnection && !pBtd->connectToWii && !pBtd->incomingWii && !pBtd->pairWithWii) {
if (ACLData[8] == L2CAP_CMD_CONNECTION_REQUEST) { if(ACLData[8] == L2CAP_CMD_CONNECTION_REQUEST) {
if ((ACLData[12] | (ACLData[13] << 8)) == HID_CTRL_PSM) { if((ACLData[12] | (ACLData[13] << 8)) == HID_CTRL_PSM) {
pBtd->l2capConnectionClaimed = true; // Claim that the incoming connection belongs to this service pBtd->l2capConnectionClaimed = true; // Claim that the incoming connection belongs to this service
activeConnection = true; activeConnection = true;
hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection
l2cap_state = L2CAP_WAIT; l2cap_state = L2CAP_WAIT;
for (uint8_t i = 0; i < 30; i++) for(uint8_t i = 0; i < 30; i++)
remote_name[i] = pBtd->remote_name[i]; // Store the remote name for the connection remote_name[i] = pBtd->remote_name[i]; // Store the remote name for the connection
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (pBtd->hci_version < 3) { // Check the HCI Version of the Bluetooth dongle if(pBtd->hci_version < 3) { // Check the HCI Version of the Bluetooth dongle
Notify(PSTR("\r\nYour dongle may not support reading the analog buttons, sensors and status\r\nYour HCI Version is: "), 0x80); Notify(PSTR("\r\nYour dongle may not support reading the analog buttons, sensors and status\r\nYour HCI Version is: "), 0x80);
Notify(pBtd->hci_version, 0x80); Notify(pBtd->hci_version, 0x80);
Notify(PSTR("\r\nBut should be at least 3\r\nThis means that it doesn't support Bluetooth Version 2.0+EDR"), 0x80); Notify(PSTR("\r\nBut should be at least 3\r\nThis means that it doesn't support Bluetooth Version 2.0+EDR"), 0x80);
@ -250,10 +244,11 @@ void PS3BT::ACLData(uint8_t* ACLData) {
} }
} }
} }
if (((ACLData[0] | (ACLData[1] << 8)) == (hci_handle | 0x2000))) { //acl_handle_ok //if((ACLData[0] | (uint16_t)ACLData[1] << 8) == (hci_handle | 0x2000U)) { //acl_handle_ok
if(UHS_ACL_HANDLE_OK(ACLData, hci_handle)) { //acl_handle_ok
memcpy(l2capinbuf, ACLData, BULK_MAXPKTSIZE); memcpy(l2capinbuf, ACLData, BULK_MAXPKTSIZE);
if ((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001) { //l2cap_control - Channel ID for ACL-U if((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001U) { //l2cap_control - Channel ID for ACL-U
if (l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) { if(l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "), 0x80); Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[13], 0x80); D_PrintHex<uint8_t > (l2capinbuf[13], 0x80);
@ -268,7 +263,7 @@ void PS3BT::ACLData(uint8_t* ACLData) {
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[14], 0x80); D_PrintHex<uint8_t > (l2capinbuf[14], 0x80);
#endif #endif
} else if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
Notify(PSTR("\r\nL2CAP Connection Request - PSM: "), 0x80); Notify(PSTR("\r\nL2CAP Connection Request - PSM: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[13], 0x80); D_PrintHex<uint8_t > (l2capinbuf[13], 0x80);
@ -281,46 +276,44 @@ void PS3BT::ACLData(uint8_t* ACLData) {
Notify(PSTR(" Identifier: "), 0x80); Notify(PSTR(" Identifier: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[9], 0x80); D_PrintHex<uint8_t > (l2capinbuf[9], 0x80);
#endif #endif
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_CTRL_PSM) { if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_CTRL_PSM) {
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
control_scid[0] = l2capinbuf[14]; control_scid[0] = l2capinbuf[14];
control_scid[1] = l2capinbuf[15]; control_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_CONTROL_REQUEST; l2cap_set_flag(L2CAP_FLAG_CONNECTION_CONTROL_REQUEST);
} else if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_INTR_PSM) { } else if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_INTR_PSM) {
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
interrupt_scid[0] = l2capinbuf[14]; interrupt_scid[0] = l2capinbuf[14];
interrupt_scid[1] = l2capinbuf[15]; interrupt_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST; l2cap_set_flag(L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST);
} }
} else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) { } else if(l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) {
if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success if((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success
if (l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) { if(l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) {
//Notify(PSTR("\r\nHID Control Configuration Complete"), 0x80); //Notify(PSTR("\r\nHID Control Configuration Complete"), 0x80);
l2cap_event_flag |= L2CAP_FLAG_CONFIG_CONTROL_SUCCESS; l2cap_set_flag(L2CAP_FLAG_CONFIG_CONTROL_SUCCESS);
} else if (l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) { } else if(l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) {
//Notify(PSTR("\r\nHID Interrupt Configuration Complete"), 0x80); //Notify(PSTR("\r\nHID Interrupt Configuration Complete"), 0x80);
l2cap_event_flag |= L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS; l2cap_set_flag(L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS);
} }
} }
} else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) {
if (l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) { if(l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) {
//Notify(PSTR("\r\nHID Control Configuration Request"), 0x80); //Notify(PSTR("\r\nHID Control Configuration Request"), 0x80);
identifier = l2capinbuf[9]; pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], control_scid);
l2cap_event_flag |= L2CAP_FLAG_CONFIG_CONTROL_REQUEST; } else if(l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) {
} else if (l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) {
//Notify(PSTR("\r\nHID Interrupt Configuration Request"), 0x80); //Notify(PSTR("\r\nHID Interrupt Configuration Request"), 0x80);
identifier = l2capinbuf[9]; pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], interrupt_scid);
l2cap_event_flag |= L2CAP_FLAG_CONFIG_INTERRUPT_REQUEST;
} }
} else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) {
if (l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) { if(l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnect Request: Control Channel"), 0x80); Notify(PSTR("\r\nDisconnect Request: Control Channel"), 0x80);
#endif #endif
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
pBtd->l2cap_disconnection_response(hci_handle, identifier, control_dcid, control_scid); pBtd->l2cap_disconnection_response(hci_handle, identifier, control_dcid, control_scid);
Reset(); Reset();
} else if (l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) { } else if(l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnect Request: Interrupt Channel"), 0x80); Notify(PSTR("\r\nDisconnect Request: Interrupt Channel"), 0x80);
#endif #endif
@ -328,15 +321,15 @@ void PS3BT::ACLData(uint8_t* ACLData) {
pBtd->l2cap_disconnection_response(hci_handle, identifier, interrupt_dcid, interrupt_scid); pBtd->l2cap_disconnection_response(hci_handle, identifier, interrupt_dcid, interrupt_scid);
Reset(); Reset();
} }
} else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) { } else if(l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) {
if (l2capinbuf[12] == control_scid[0] && l2capinbuf[13] == control_scid[1]) { if(l2capinbuf[12] == control_scid[0] && l2capinbuf[13] == control_scid[1]) {
//Notify(PSTR("\r\nDisconnect Response: Control Channel"), 0x80); //Notify(PSTR("\r\nDisconnect Response: Control Channel"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE);
} else if (l2capinbuf[12] == interrupt_scid[0] && l2capinbuf[13] == interrupt_scid[1]) { } else if(l2capinbuf[12] == interrupt_scid[0] && l2capinbuf[13] == interrupt_scid[1]) {
//Notify(PSTR("\r\nDisconnect Response: Interrupt Channel"), 0x80); //Notify(PSTR("\r\nDisconnect Response: Interrupt Channel"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE);
} }
} }
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
@ -345,26 +338,28 @@ void PS3BT::ACLData(uint8_t* ACLData) {
D_PrintHex<uint8_t > (l2capinbuf[8], 0x80); D_PrintHex<uint8_t > (l2capinbuf[8], 0x80);
} }
#endif #endif
} else if (l2capinbuf[6] == interrupt_dcid[0] && l2capinbuf[7] == interrupt_dcid[1]) { // l2cap_interrupt } else if(l2capinbuf[6] == interrupt_dcid[0] && l2capinbuf[7] == interrupt_dcid[1]) { // l2cap_interrupt
//Notify(PSTR("\r\nL2CAP Interrupt"), 0x80); //Notify(PSTR("\r\nL2CAP Interrupt"), 0x80);
if (PS3Connected || PS3MoveConnected || PS3NavigationConnected) { if(PS3Connected || PS3MoveConnected || PS3NavigationConnected) {
/* Read Report */ /* Read Report */
if (l2capinbuf[8] == 0xA1) { // HID_THDR_DATA_INPUT if(l2capinbuf[8] == 0xA1) { // HID_THDR_DATA_INPUT
if (PS3Connected || PS3NavigationConnected) lastMessageTime = millis(); // Store the last message time
if(PS3Connected || PS3NavigationConnected)
ButtonState = (uint32_t)(l2capinbuf[11] | ((uint16_t)l2capinbuf[12] << 8) | ((uint32_t)l2capinbuf[13] << 16)); ButtonState = (uint32_t)(l2capinbuf[11] | ((uint16_t)l2capinbuf[12] << 8) | ((uint32_t)l2capinbuf[13] << 16));
else if (PS3MoveConnected) else if(PS3MoveConnected)
ButtonState = (uint32_t)(l2capinbuf[10] | ((uint16_t)l2capinbuf[11] << 8) | ((uint32_t)l2capinbuf[12] << 16)); ButtonState = (uint32_t)(l2capinbuf[10] | ((uint16_t)l2capinbuf[11] << 8) | ((uint32_t)l2capinbuf[12] << 16));
//Notify(PSTR("\r\nButtonState", 0x80); //Notify(PSTR("\r\nButtonState", 0x80);
//PrintHex<uint32_t>(ButtonState, 0x80); //PrintHex<uint32_t>(ButtonState, 0x80);
if (ButtonState != OldButtonState) { if(ButtonState != OldButtonState) {
ButtonClickState = ButtonState & ~OldButtonState; // Update click state variable ButtonClickState = ButtonState & ~OldButtonState; // Update click state variable
OldButtonState = ButtonState; OldButtonState = ButtonState;
} }
#ifdef PRINTREPORT // Uncomment "#define PRINTREPORT" to print the report send by the PS3 Controllers #ifdef PRINTREPORT // Uncomment "#define PRINTREPORT" to print the report send by the PS3 Controllers
for (uint8_t i = 10; i < 58; i++) { for(uint8_t i = 10; i < 58; i++) {
D_PrintHex<uint8_t > (l2capinbuf[i], 0x80); D_PrintHex<uint8_t > (l2capinbuf[i], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
} }
@ -378,9 +373,9 @@ void PS3BT::ACLData(uint8_t* ACLData) {
} }
void PS3BT::L2CAP_task() { void PS3BT::L2CAP_task() {
switch (l2cap_state) { switch(l2cap_state) {
case L2CAP_WAIT: case L2CAP_WAIT:
if (l2cap_connection_request_control_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONNECTION_CONTROL_REQUEST)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Control Incoming Connection Request"), 0x80); Notify(PSTR("\r\nHID Control Incoming Connection Request"), 0x80);
#endif #endif
@ -390,29 +385,21 @@ void PS3BT::L2CAP_task() {
identifier++; identifier++;
delay(1); delay(1);
pBtd->l2cap_config_request(hci_handle, identifier, control_scid); pBtd->l2cap_config_request(hci_handle, identifier, control_scid);
l2cap_state = L2CAP_CONTROL_REQUEST;
}
break;
case L2CAP_CONTROL_REQUEST:
if (l2cap_config_request_control_flag) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Control Configuration Request"), 0x80);
#endif
pBtd->l2cap_config_response(hci_handle, identifier, control_scid);
l2cap_state = L2CAP_CONTROL_SUCCESS; l2cap_state = L2CAP_CONTROL_SUCCESS;
} }
break; break;
case L2CAP_CONTROL_SUCCESS: case L2CAP_CONTROL_SUCCESS:
if (l2cap_config_success_control_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONFIG_CONTROL_SUCCESS)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Control Successfully Configured"), 0x80); Notify(PSTR("\r\nHID Control Successfully Configured"), 0x80);
#endif #endif
l2cap_state = L2CAP_INTERRUPT_SETUP; l2cap_state = L2CAP_INTERRUPT_SETUP;
} }
break; break;
case L2CAP_INTERRUPT_SETUP: case L2CAP_INTERRUPT_SETUP:
if (l2cap_connection_request_interrupt_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Interrupt Incoming Connection Request"), 0x80); Notify(PSTR("\r\nHID Interrupt Incoming Connection Request"), 0x80);
#endif #endif
@ -423,28 +410,20 @@ void PS3BT::L2CAP_task() {
delay(1); delay(1);
pBtd->l2cap_config_request(hci_handle, identifier, interrupt_scid); pBtd->l2cap_config_request(hci_handle, identifier, interrupt_scid);
l2cap_state = L2CAP_INTERRUPT_REQUEST; l2cap_state = L2CAP_INTERRUPT_CONFIG_REQUEST;
} }
break; break;
case L2CAP_INTERRUPT_REQUEST:
if (l2cap_config_request_interrupt_flag) { case L2CAP_INTERRUPT_CONFIG_REQUEST:
#ifdef DEBUG_USB_HOST if(l2cap_check_flag(L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS)) { // Now the HID channels is established
Notify(PSTR("\r\nHID Interrupt Configuration Request"), 0x80);
#endif
pBtd->l2cap_config_response(hci_handle, identifier, interrupt_scid);
l2cap_state = L2CAP_INTERRUPT_SUCCESS;
}
break;
case L2CAP_INTERRUPT_SUCCESS:
if (l2cap_config_success_interrupt_flag) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Interrupt Successfully Configured"), 0x80); Notify(PSTR("\r\nHID Interrupt Successfully Configured"), 0x80);
#endif #endif
if (remote_name[0] == 'M') { // First letter in Motion Controller ('M') if(remote_name[0] == 'M') { // First letter in Motion Controller ('M')
memset(l2capinbuf, 0, BULK_MAXPKTSIZE); // Reset l2cap in buffer as it sometimes read it as a button has been pressed memset(l2capinbuf, 0, BULK_MAXPKTSIZE); // Reset l2cap in buffer as it sometimes read it as a button has been pressed
l2cap_state = L2CAP_HID_PS3_LED; l2cap_state = TURN_ON_LED;
} else } else
l2cap_state = L2CAP_HID_ENABLE_SIXAXIS; l2cap_state = PS3_ENABLE_SIXAXIS;
timer = millis(); timer = millis();
} }
break; break;
@ -452,7 +431,7 @@ void PS3BT::L2CAP_task() {
/* These states are handled in Run() */ /* These states are handled in Run() */
case L2CAP_INTERRUPT_DISCONNECT: case L2CAP_INTERRUPT_DISCONNECT:
if (l2cap_disconnect_response_interrupt_flag) { if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnected Interrupt Channel"), 0x80); Notify(PSTR("\r\nDisconnected Interrupt Channel"), 0x80);
#endif #endif
@ -463,7 +442,7 @@ void PS3BT::L2CAP_task() {
break; break;
case L2CAP_CONTROL_DISCONNECT: case L2CAP_CONTROL_DISCONNECT:
if (l2cap_disconnect_response_control_flag) { if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnected Control Channel"), 0x80); Notify(PSTR("\r\nDisconnected Control Channel"), 0x80);
#endif #endif
@ -477,31 +456,31 @@ void PS3BT::L2CAP_task() {
} }
void PS3BT::Run() { void PS3BT::Run() {
switch (l2cap_state) { switch(l2cap_state) {
case L2CAP_HID_ENABLE_SIXAXIS: case PS3_ENABLE_SIXAXIS:
if (millis() - timer > 1000) { // loop 1 second before sending the command if(millis() - timer > 1000) { // loop 1 second before sending the command
memset(l2capinbuf, 0, BULK_MAXPKTSIZE); // Reset l2cap in buffer as it sometimes read it as a button has been pressed memset(l2capinbuf, 0, BULK_MAXPKTSIZE); // Reset l2cap in buffer as it sometimes read it as a button has been pressed
for (uint8_t i = 15; i < 19; i++) for(uint8_t i = 15; i < 19; i++)
l2capinbuf[i] = 0x7F; // Set the analog joystick values to center position l2capinbuf[i] = 0x7F; // Set the analog joystick values to center position
enable_sixaxis(); enable_sixaxis();
l2cap_state = L2CAP_HID_PS3_LED; l2cap_state = TURN_ON_LED;
timer = millis(); timer = millis();
} }
break; break;
case L2CAP_HID_PS3_LED: case TURN_ON_LED:
if (millis() - timer > 1000) { // loop 1 second before sending the command if(millis() - timer > 1000) { // loop 1 second before sending the command
if (remote_name[0] == 'P') { // First letter in PLAYSTATION(R)3 Controller ('P') if(remote_name[0] == 'P') { // First letter in PLAYSTATION(R)3 Controller ('P')
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDualshock 3 Controller Enabled\r\n"), 0x80); Notify(PSTR("\r\nDualshock 3 Controller Enabled\r\n"), 0x80);
#endif #endif
PS3Connected = true; PS3Connected = true;
} else if (remote_name[0] == 'N') { // First letter in Navigation Controller ('N') } else if(remote_name[0] == 'N') { // First letter in Navigation Controller ('N')
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nNavigation Controller Enabled\r\n"), 0x80); Notify(PSTR("\r\nNavigation Controller Enabled\r\n"), 0x80);
#endif #endif
PS3NavigationConnected = true; PS3NavigationConnected = true;
} else if (remote_name[0] == 'M') { // First letter in Motion Controller ('M') } else if(remote_name[0] == 'M') { // First letter in Motion Controller ('M')
timerBulbRumble = millis(); timerBulbRumble = millis();
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nMotion Controller Enabled\r\n"), 0x80); Notify(PSTR("\r\nMotion Controller Enabled\r\n"), 0x80);
@ -518,8 +497,8 @@ void PS3BT::Run() {
break; break;
case L2CAP_DONE: case L2CAP_DONE:
if (PS3MoveConnected) { // The Bulb and rumble values, has to be send at aproximatly every 5th second for it to stay on if(PS3MoveConnected) { // The Bulb and rumble values, has to be send at aproximatly every 5th second for it to stay on
if (millis() - timerBulbRumble > 4000) { // Send at least every 4th second if(millis() - timerBulbRumble > 4000) { // Send at least every 4th second
HIDMove_Command(HIDMoveBuffer, HID_BUFFERSIZE); // The Bulb and rumble values, has to be written again and again, for it to stay turned on HIDMove_Command(HIDMoveBuffer, HID_BUFFERSIZE); // The Bulb and rumble values, has to be written again and again, for it to stay turned on
timerBulbRumble = millis(); timerBulbRumble = millis();
} }
@ -535,7 +514,7 @@ void PS3BT::Run() {
// Playstation Sixaxis Dualshock and Navigation Controller commands // Playstation Sixaxis Dualshock and Navigation Controller commands
void PS3BT::HID_Command(uint8_t* data, uint8_t nbytes) { void PS3BT::HID_Command(uint8_t* data, uint8_t nbytes) {
if (millis() - timerHID <= 150) // Check if is has been more than 150ms since last command if(millis() - timerHID <= 150) // Check if is has been more than 150ms since last command
delay((uint32_t)(150 - (millis() - timerHID))); // There have to be a delay between commands delay((uint32_t)(150 - (millis() - timerHID))); // There have to be a delay between commands
pBtd->L2CAP_Command(hci_handle, data, nbytes, control_scid[0], control_scid[1]); // Both the Navigation and Dualshock controller sends data via the control channel pBtd->L2CAP_Command(hci_handle, data, nbytes, control_scid[0], control_scid[1]); // Both the Navigation and Dualshock controller sends data via the control channel
timerHID = millis(); timerHID = millis();
@ -561,9 +540,9 @@ void PS3BT::setRumbleOff() {
HID_Command(HIDBuffer, HID_BUFFERSIZE); HID_Command(HIDBuffer, HID_BUFFERSIZE);
} }
void PS3BT::setRumbleOn(Rumble mode) { void PS3BT::setRumbleOn(RumbleEnum mode) {
uint8_t power[2] = { 0xff, 0x00 }; // Defaults to RumbleLow uint8_t power[2] = {0xff, 0x00}; // Defaults to RumbleLow
if (mode == RumbleHigh) { if(mode == RumbleHigh) {
power[0] = 0x00; power[0] = 0x00;
power[1] = 0xff; power[1] = 0xff;
} }
@ -583,18 +562,22 @@ void PS3BT::setLedRaw(uint8_t value) {
HID_Command(HIDBuffer, HID_BUFFERSIZE); HID_Command(HIDBuffer, HID_BUFFERSIZE);
} }
void PS3BT::setLedOff(LED a) { void PS3BT::setLedOff(LEDEnum a) {
HIDBuffer[11] &= ~((uint8_t)((pgm_read_byte(&LEDS[(uint8_t)a]) & 0x0f) << 1)); HIDBuffer[11] &= ~((uint8_t)((pgm_read_byte(&PS3_LEDS[(uint8_t)a]) & 0x0f) << 1));
HID_Command(HIDBuffer, HID_BUFFERSIZE); HID_Command(HIDBuffer, HID_BUFFERSIZE);
} }
void PS3BT::setLedOn(LED a) { void PS3BT::setLedOn(LEDEnum a) {
HIDBuffer[11] |= (uint8_t)((pgm_read_byte(&LEDS[(uint8_t)a]) & 0x0f) << 1); if(a == OFF)
HID_Command(HIDBuffer, HID_BUFFERSIZE); setLedRaw(0);
else {
HIDBuffer[11] |= (uint8_t)((pgm_read_byte(&PS3_LEDS[(uint8_t)a]) & 0x0f) << 1);
HID_Command(HIDBuffer, HID_BUFFERSIZE);
}
} }
void PS3BT::setLedToggle(LED a) { void PS3BT::setLedToggle(LEDEnum a) {
HIDBuffer[11] ^= (uint8_t)((pgm_read_byte(&LEDS[(uint8_t)a]) & 0x0f) << 1); HIDBuffer[11] ^= (uint8_t)((pgm_read_byte(&PS3_LEDS[(uint8_t)a]) & 0x0f) << 1);
HID_Command(HIDBuffer, HID_BUFFERSIZE); HID_Command(HIDBuffer, HID_BUFFERSIZE);
} }
@ -613,13 +596,13 @@ void PS3BT::enable_sixaxis() { // Command used to enable the Dualshock 3 and Nav
// Playstation Move Controller commands // Playstation Move Controller commands
void PS3BT::HIDMove_Command(uint8_t* data, uint8_t nbytes) { void PS3BT::HIDMove_Command(uint8_t* data, uint8_t nbytes) {
if (millis() - timerHID <= 150)// Check if is has been less than 150ms since last command if(millis() - timerHID <= 150)// Check if is has been less than 150ms since last command
delay((uint32_t)(150 - (millis() - timerHID))); // There have to be a delay between commands delay((uint32_t)(150 - (millis() - timerHID))); // There have to be a delay between commands
pBtd->L2CAP_Command(hci_handle, data, nbytes, interrupt_scid[0], interrupt_scid[1]); // The Move controller sends it's data via the intterrupt channel pBtd->L2CAP_Command(hci_handle, data, nbytes, interrupt_scid[0], interrupt_scid[1]); // The Move controller sends it's data via the intterrupt channel
timerHID = millis(); timerHID = millis();
} }
void PS3BT::moveSetBulb(uint8_t r, uint8_t g, uint8_t b) { //Use this to set the Color using RGB values void PS3BT::moveSetBulb(uint8_t r, uint8_t g, uint8_t b) { // Use this to set the Color using RGB values
// Set the Bulb's values into the write buffer // Set the Bulb's values into the write buffer
HIDMoveBuffer[3] = r; HIDMoveBuffer[3] = r;
HIDMoveBuffer[4] = g; HIDMoveBuffer[4] = g;
@ -628,13 +611,13 @@ void PS3BT::moveSetBulb(uint8_t r, uint8_t g, uint8_t b) { //Use this to set the
HIDMove_Command(HIDMoveBuffer, HID_BUFFERSIZE); HIDMove_Command(HIDMoveBuffer, HID_BUFFERSIZE);
} }
void PS3BT::moveSetBulb(Colors color) { //Use this to set the Color using the predefined colors in enum void PS3BT::moveSetBulb(ColorsEnum color) { // Use this to set the Color using the predefined colors in enum
moveSetBulb((uint8_t)(color >> 16), (uint8_t)(color >> 8), (uint8_t)(color)); moveSetBulb((uint8_t)(color >> 16), (uint8_t)(color >> 8), (uint8_t)(color));
} }
void PS3BT::moveSetRumble(uint8_t rumble) { void PS3BT::moveSetRumble(uint8_t rumble) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (rumble < 64 && rumble != 0) // The rumble value has to at least 64, or approximately 25% (64/255*100) if(rumble < 64 && rumble != 0) // The rumble value has to at least 64, or approximately 25% (64/255*100)
Notify(PSTR("\r\nThe rumble value has to at least 64, or approximately 25%"), 0x80); Notify(PSTR("\r\nThe rumble value has to at least 64, or approximately 25%"), 0x80);
#endif #endif
// Set the rumble value into the write buffer // Set the rumble value into the write buffer
@ -644,12 +627,12 @@ void PS3BT::moveSetRumble(uint8_t rumble) {
} }
void PS3BT::onInit() { void PS3BT::onInit() {
if (pFuncOnInit) if(pFuncOnInit)
pFuncOnInit(); // Call the user function pFuncOnInit(); // Call the user function
else { else {
if (PS3MoveConnected) if(PS3MoveConnected)
moveSetBulb(Red); moveSetBulb(Red);
else // Dualshock 3 or Navigation controller else // Dualshock 3 or Navigation controller
setLedOn(LED1); setLedOn(LED1);
} }
} }

128
PS3BT.h
View file

@ -21,40 +21,7 @@
#include "BTD.h" #include "BTD.h"
#include "PS3Enums.h" #include "PS3Enums.h"
#define HID_BUFFERSIZE 50 // Size of the buffer for the Playstation Motion Controller #define HID_BUFFERSIZE 50 // Size of the buffer for the Playstation Motion Controller
/* Bluetooth L2CAP states for L2CAP_task() */
#define L2CAP_WAIT 0
#define L2CAP_CONTROL_REQUEST 1
#define L2CAP_CONTROL_SUCCESS 2
#define L2CAP_INTERRUPT_SETUP 3
#define L2CAP_INTERRUPT_REQUEST 4
#define L2CAP_INTERRUPT_SUCCESS 5
#define L2CAP_HID_ENABLE_SIXAXIS 6
#define L2CAP_HID_PS3_LED 7
#define L2CAP_DONE 8
#define L2CAP_INTERRUPT_DISCONNECT 9
#define L2CAP_CONTROL_DISCONNECT 10
/* L2CAP event flags */
#define L2CAP_FLAG_CONNECTION_CONTROL_REQUEST 0x01
#define L2CAP_FLAG_CONFIG_CONTROL_REQUEST 0x02
#define L2CAP_FLAG_CONFIG_CONTROL_SUCCESS 0x04
#define L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST 0x08
#define L2CAP_FLAG_CONFIG_INTERRUPT_REQUEST 0x10
#define L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS 0x20
#define L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE 0x40
#define L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE 0x80
/*Macros for L2CAP event flag tests */
#define l2cap_connection_request_control_flag (l2cap_event_flag & L2CAP_FLAG_CONNECTION_CONTROL_REQUEST)
#define l2cap_config_request_control_flag (l2cap_event_flag & L2CAP_FLAG_CONFIG_CONTROL_REQUEST)
#define l2cap_config_success_control_flag (l2cap_event_flag & L2CAP_FLAG_CONFIG_CONTROL_SUCCESS)
#define l2cap_connection_request_interrupt_flag (l2cap_event_flag & L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST)
#define l2cap_config_request_interrupt_flag (l2cap_event_flag & L2CAP_FLAG_CONFIG_INTERRUPT_REQUEST)
#define l2cap_config_success_interrupt_flag (l2cap_event_flag & L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS)
#define l2cap_disconnect_response_control_flag (l2cap_event_flag & L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE)
#define l2cap_disconnect_response_interrupt_flag (l2cap_event_flag & L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE)
/** /**
* This BluetoothService class implements support for all the official PS3 Controllers: * This BluetoothService class implements support for all the official PS3 Controllers:
@ -79,7 +46,7 @@ public:
* @param ACLData Incoming acldata. * @param ACLData Incoming acldata.
*/ */
virtual void ACLData(uint8_t* ACLData); virtual void ACLData(uint8_t* ACLData);
/** Used to run part of the state maschine. */ /** Used to run part of the state machine. */
virtual void Run(); virtual void Run();
/** Use this to reset the service. */ /** Use this to reset the service. */
virtual void Reset(); virtual void Reset();
@ -89,32 +56,34 @@ public:
/** @name PS3 Controller functions */ /** @name PS3 Controller functions */
/** /**
* getButtonPress(Button b) will return true as long as the button is held down. * getButtonPress(ButtonEnum b) will return true as long as the button is held down.
* *
* While getButtonClick(Button b) will only return it once. * While getButtonClick(ButtonEnum b) will only return it once.
* *
* So you instance if you need to increase a variable once you would use getButtonClick(Button b), * So you instance if you need to increase a variable once you would use getButtonClick(ButtonEnum b),
* but if you need to drive a robot forward you would use getButtonPress(Button b). * but if you need to drive a robot forward you would use getButtonPress(ButtonEnum b).
* @param b ::ButtonEnum to read.
* @return getButtonPress(ButtonEnum b) will return a true as long as a button is held down, while getButtonClick(ButtonEnum b) will return true once for each button press.
*/ */
bool getButtonPress(Button b); bool getButtonPress(ButtonEnum b);
bool getButtonClick(Button b); bool getButtonClick(ButtonEnum b);
/**@}*/ /**@}*/
/** @name PS3 Controller functions */ /** @name PS3 Controller functions */
/** /**
* Used to get the analog value from button presses. * Used to get the analog value from button presses.
* @param a The ::Button to read. * @param a The ::ButtonEnum to read.
* The supported buttons are: * The supported buttons are:
* ::UP, ::RIGHT, ::DOWN, ::LEFT, ::L1, ::L2, ::R1, ::R2, * ::UP, ::RIGHT, ::DOWN, ::LEFT, ::L1, ::L2, ::R1, ::R2,
* ::TRIANGLE, ::CIRCLE, ::CROSS, ::SQUARE, and ::T. * ::TRIANGLE, ::CIRCLE, ::CROSS, ::SQUARE, and ::T.
* @return Analog value in the range of 0-255. * @return Analog value in the range of 0-255.
*/ */
uint8_t getAnalogButton(Button a); uint8_t getAnalogButton(ButtonEnum a);
/** /**
* Used to read the analog joystick. * Used to read the analog joystick.
* @param a ::LeftHatX, ::LeftHatY, ::RightHatX, and ::RightHatY. * @param a ::LeftHatX, ::LeftHatY, ::RightHatX, and ::RightHatY.
* @return Return the analog value in the range of 0-255. * @return Return the analog value in the range of 0-255.
*/ */
uint8_t getAnalogHat(AnalogHat a); uint8_t getAnalogHat(AnalogHatEnum a);
/** /**
* Used to read the sensors inside the Dualshock 3 and Move controller. * Used to read the sensors inside the Dualshock 3 and Move controller.
* @param a * @param a
@ -123,47 +92,44 @@ public:
* and a temperature sensor inside. * and a temperature sensor inside.
* @return Return the raw sensor value. * @return Return the raw sensor value.
*/ */
int16_t getSensor(Sensor a); int16_t getSensor(SensorEnum a);
/** /**
* Use this to get ::Pitch and ::Roll calculated using the accelerometer. * Use this to get ::Pitch and ::Roll calculated using the accelerometer.
* @param a Either ::Pitch or ::Roll. * @param a Either ::Pitch or ::Roll.
* @return Return the angle in the range of 0-360. * @return Return the angle in the range of 0-360.
*/ */
double getAngle(Angle a); double getAngle(AngleEnum a);
/** /**
* Read the sensors inside the Move controller. * Read the sensors inside the Move controller.
* @param a ::aXmove, ::aYmove, ::aZmove, ::gXmove, ::gYmove, ::gZmove, ::mXmove, ::mYmove, and ::mXmove. * @param a ::aXmove, ::aYmove, ::aZmove, ::gXmove, ::gYmove, ::gZmove, ::mXmove, ::mYmove, and ::mXmove.
* @return The value in SI units. * @return The value in SI units.
*/ */
double get9DOFValues(Sensor a); double get9DOFValues(SensorEnum a);
/** /**
* Get the ::Status from the controller. * Get the status from the controller.
* @param c The ::Status you want to read. * @param c The ::StatusEnum you want to read.
* @return True if correct and false if not. * @return True if correct and false if not.
*/ */
bool getStatus(Status c); bool getStatus(StatusEnum c);
/** /** Read all the available statuses from the controller and prints it as a nice formated string. */
* Read all the available ::Status from the controller. void printStatusString();
* @return One large string with all the information.
*/
String getStatusString();
/** /**
* Read the temperature from the Move controller. * Read the temperature from the Move controller.
* @return The temperature in degrees celsius. * @return The temperature in degrees Celsius.
*/ */
String getTemperature(); String getTemperature();
/** Used to set all LEDs and ::Rumble off. */ /** Used to set all LEDs and rumble off. */
void setAllOff(); void setAllOff();
/** Turn off ::Rumble. */ /** Turn off rumble. */
void setRumbleOff(); void setRumbleOff();
/** /**
* Turn on ::Rumble. * Turn on rumble.
* @param mode Either ::RumbleHigh or ::RumbleLow. * @param mode Either ::RumbleHigh or ::RumbleLow.
*/ */
void setRumbleOn(Rumble mode); void setRumbleOn(RumbleEnum mode);
/** /**
* Turn on ::Rumble using custom duration and power. * Turn on rumble using custom duration and power.
* @param rightDuration The duration of the right/low rumble effect. * @param rightDuration The duration of the right/low rumble effect.
* @param rightPower The intensity of the right/low rumble effect. * @param rightPower The intensity of the right/low rumble effect.
* @param leftDuration The duration of the left/high rumble effect. * @param leftDuration The duration of the left/high rumble effect.
@ -172,29 +138,30 @@ public:
void setRumbleOn(uint8_t rightDuration, uint8_t rightPower, uint8_t leftDuration, uint8_t leftPower); void setRumbleOn(uint8_t rightDuration, uint8_t rightPower, uint8_t leftDuration, uint8_t leftPower);
/** /**
* Set LED value without using the ::LED enum. * Set LED value without using ::LEDEnum.
* @param value See: ::LED enum. * @param value See: ::LEDEnum.
*/ */
void setLedRaw(uint8_t value); void setLedRaw(uint8_t value);
/** Turn all LEDs off. */ /** Turn all LEDs off. */
void setLedOff() { void setLedOff() {
setLedRaw(0); setLedRaw(0);
} };
/** /**
* Turn the specific ::LED off. * Turn the specific LED off.
* @param a The ::LED to turn off. * @param a The ::LEDEnum to turn off.
*/ */
void setLedOff(LED a); void setLedOff(LEDEnum a);
/** /**
* Turn the specific ::LED on. * Turn the specific LED on.
* @param a The ::LED to turn on. * @param a The ::LEDEnum to turn on.
*/ */
void setLedOn(LED a); void setLedOn(LEDEnum a);
/** /**
* Toggle the specific ::LED. * Toggle the specific LED.
* @param a The ::LED to toggle. * @param a The ::LEDEnum to toggle.
*/ */
void setLedToggle(LED a); void setLedToggle(LEDEnum a);
/** /**
* Use this to set the Color using RGB values. * Use this to set the Color using RGB values.
@ -202,16 +169,21 @@ public:
*/ */
void moveSetBulb(uint8_t r, uint8_t g, uint8_t b); void moveSetBulb(uint8_t r, uint8_t g, uint8_t b);
/** /**
* Use this to set the color using the predefined colors in ::Colors. * Use this to set the color using the predefined colors in ::ColorsEnum.
* @param color The desired color. * @param color The desired color.
*/ */
void moveSetBulb(Colors color); void moveSetBulb(ColorsEnum color);
/** /**
* Set the rumble value inside the Move controller. * Set the rumble value inside the Move controller.
* @param rumble The desired value in the range from 64-255. * @param rumble The desired value in the range from 64-255.
*/ */
void moveSetRumble(uint8_t rumble); void moveSetRumble(uint8_t rumble);
/** Used to get the millis() of the last message */
uint32_t getLastMessageTime() {
return lastMessageTime;
};
/** /**
* Used to call your own function when the controller is successfully initialized. * Used to call your own function when the controller is successfully initialized.
* @param funcOnInit Function to call. * @param funcOnInit Function to call.
@ -247,9 +219,11 @@ private:
uint8_t remote_name[30]; // First 30 chars of remote name uint8_t remote_name[30]; // First 30 chars of remote name
bool activeConnection; // Used to indicate if it's already has established a connection bool activeConnection; // Used to indicate if it's already has established a connection
/* variables used by high level L2CAP task */ /* Variables used by high level L2CAP task */
uint8_t l2cap_state; uint8_t l2cap_state;
uint16_t l2cap_event_flag; // L2CAP flags of received Bluetooth events uint32_t l2cap_event_flag; // L2CAP flags of received Bluetooth events
uint32_t lastMessageTime; // Variable used to store the millis value of the last message.
unsigned long timer; unsigned long timer;

View file

@ -20,8 +20,11 @@
#include "controllerEnums.h" #include "controllerEnums.h"
/** Size of the output report buffer for the Dualshock and Navigation controllers */
#define PS3_REPORT_BUFFER_SIZE 48
/** Report buffer for all PS3 commands */ /** Report buffer for all PS3 commands */
const uint8_t PS3_REPORT_BUFFER[] PROGMEM = { const uint8_t PS3_REPORT_BUFFER[PS3_REPORT_BUFFER_SIZE] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0x27, 0x10, 0x00, 0x32, 0xff, 0x27, 0x10, 0x00, 0x32,
@ -33,14 +36,12 @@ const uint8_t PS3_REPORT_BUFFER[] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}; };
/** Size of the output report buffer for the Dualshock and Navigation controllers */
#define PS3_REPORT_BUFFER_SIZE 48
/** Size of the output report buffer for the Move Controller */ /** Size of the output report buffer for the Move Controller */
#define MOVE_REPORT_BUFFER_SIZE 7 #define MOVE_REPORT_BUFFER_SIZE 7
/** Used to set the LEDs on the controllers */ /** Used to set the LEDs on the controllers */
const uint8_t LEDS[] PROGMEM = { const uint8_t PS3_LEDS[] PROGMEM = {
0x00, // OFF
0x01, // LED1 0x01, // LED1
0x02, // LED2 0x02, // LED2
0x04, // LED3 0x04, // LED3
@ -51,15 +52,14 @@ const uint8_t LEDS[] PROGMEM = {
0x0C, // LED7 0x0C, // LED7
0x0D, // LED8 0x0D, // LED8
0x0E, // LED9 0x0E, // LED9
0x0F // LED10 0x0F, // LED10
}; };
/** /**
* Buttons on the controllers * Buttons on the controllers.
* * <B>Note:</B> that the location is shifted 9 when it's connected via USB.
* <B>Note:</B> that the location is shiftet 9 when it's connected via USB.
*/ */
const uint32_t BUTTONS[] PROGMEM = { const uint32_t PS3_BUTTONS[] PROGMEM = {
0x10, // UP 0x10, // UP
0x20, // RIGHT 0x20, // RIGHT
0x40, // DOWN 0x40, // DOWN
@ -82,15 +82,14 @@ const uint32_t BUTTONS[] PROGMEM = {
0x010000, // PS 0x010000, // PS
0x080000, // MOVE - covers 12 bits - we only need to read the top 8 0x080000, // MOVE - covers 12 bits - we only need to read the top 8
0x100000 // T - covers 12 bits - we only need to read the top 8 0x100000, // T - covers 12 bits - we only need to read the top 8
}; };
/** /**
* Analog buttons on the controllers * Analog buttons on the controllers.
* * <B>Note:</B> that the location is shifted 9 when it's connected via USB.
* <B>Note:</B> that the location is shiftet 9 when it's connected via USB.
*/ */
const uint8_t ANALOGBUTTONS[] PROGMEM = { const uint8_t PS3_ANALOG_BUTTONS[] PROGMEM = {
23, // UP_ANALOG 23, // UP_ANALOG
24, // RIGHT_ANALOG 24, // RIGHT_ANALOG
25, // DOWN_ANALOG 25, // DOWN_ANALOG
@ -108,79 +107,11 @@ const uint8_t ANALOGBUTTONS[] PROGMEM = {
0, 0, // Skip PS and MOVE 0, 0, // Skip PS and MOVE
// Playstation Move Controller // Playstation Move Controller
15 // T_ANALOG - Both at byte 14 (last reading) and byte 15 (current reading) 15, // T_ANALOG - Both at byte 14 (last reading) and byte 15 (current reading)
}; };
/** Used to set the colors of the move controller. */ enum StatusEnum {
enum Colors { // Note that the location is shifted 9 when it's connected via USB
/** r = 255, g = 0, b = 0 */
Red = 0xFF0000,
/** r = 0, g = 255, b = 0 */
Green = 0xFF00,
/** r = 0, g = 0, b = 255 */
Blue = 0xFF,
/** r = 255, g = 235, b = 4 */
Yellow = 0xFFEB04,
/** r = 0, g = 255, b = 255 */
Lightblue = 0xFFFF,
/** r = 255, g = 0, b = 255 */
Purble = 0xFF00FF,
/** r = 255, g = 255, b = 255 */
White = 0xFFFFFF,
/** r = 0, g = 0, b = 0 */
Off = 0x00,
};
/**
* Sensors inside the Sixaxis Dualshock 3 and Move controller.
*
* <B>Note:</B> that the location is shiftet 9 when it's connected via USB.
*/
enum Sensor {
/** Accelerometer x-axis */
aX = 50,
/** Accelerometer y-axis */
aY = 52,
/** Accelerometer z-axis */
aZ = 54,
/** Gyro z-axis */
gZ = 56,
/** Accelerometer x-axis */
aXmove = 28,
/** Accelerometer z-axis */
aZmove = 30,
/** Accelerometer y-axis */
aYmove = 32,
/** Gyro x-axis */
gXmove = 40,
/** Gyro z-axis */
gZmove = 42,
/** Gyro y-axis */
gYmove = 44,
/** Temperature sensor */
tempMove = 46,
/** Magnetometer x-axis */
mXmove = 47,
/** Magnetometer z-axis */
mZmove = 49,
/** Magnetometer y-axis */
mYmove = 50,
};
/** Used to get the angle calculated using the accelerometer. */
enum Angle {
Pitch = 0x01,
Roll = 0x02,
};
enum Status {
// Note that the location is shiftet 9 when it's connected via USB
// Byte location | bit location // Byte location | bit location
Plugged = (38 << 8) | 0x02, Plugged = (38 << 8) | 0x02,
Unplugged = (38 << 8) | 0x03, Unplugged = (38 << 8) | 0x03,
@ -201,15 +132,10 @@ enum Status {
MoveHigh = (21 << 8) | 0x04, MoveHigh = (21 << 8) | 0x04,
MoveFull = (21 << 8) | 0x05, MoveFull = (21 << 8) | 0x05,
CableRumble = (40 << 8) | 0x10, //Opperating by USB and rumble is turned on CableRumble = (40 << 8) | 0x10, // Operating by USB and rumble is turned on
Cable = (40 << 8) | 0x12, //Opperating by USB and rumble is turned off Cable = (40 << 8) | 0x12, // Operating by USB and rumble is turned off
BluetoothRumble = (40 << 8) | 0x14, //Opperating by bluetooth and rumble is turned on BluetoothRumble = (40 << 8) | 0x14, // Operating by Bluetooth and rumble is turned on
Bluetooth = (40 << 8) | 0x16, //Opperating by bluetooth and rumble is turned off Bluetooth = (40 << 8) | 0x16, // Operating by Bluetooth and rumble is turned off
}; };
enum Rumble { #endif
RumbleHigh = 0x10,
RumbleLow = 0x20,
};
#endif

View file

@ -25,14 +25,14 @@ pUsb(p), // pointer to USB class instance - mandatory
bAddress(0), // device address - mandatory bAddress(0), // device address - mandatory
bPollEnable(false) // don't start polling before dongle is connected bPollEnable(false) // don't start polling before dongle is connected
{ {
for (uint8_t i = 0; i < PS3_MAX_ENDPOINTS; i++) { for(uint8_t i = 0; i < PS3_MAX_ENDPOINTS; i++) {
epInfo[i].epAddr = 0; epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0; epInfo[i].epAttribs = 0;
epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER; epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER;
} }
if (pUsb) // register in USB subsystem if(pUsb) // register in USB subsystem
pUsb->RegisterDeviceClass(this); //set devConfig[] entry pUsb->RegisterDeviceClass(this); //set devConfig[] entry
my_bdaddr[5] = btadr5; // Change to your dongle's Bluetooth address instead my_bdaddr[5] = btadr5; // Change to your dongle's Bluetooth address instead
@ -45,6 +45,7 @@ bPollEnable(false) // don't start polling before dongle is connected
uint8_t PS3USB::Init(uint8_t parent, uint8_t port, bool lowspeed) { uint8_t PS3USB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)]; uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)];
USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf);
uint8_t rcode; uint8_t rcode;
UsbDevice *p = NULL; UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL; EpInfo *oldep_ptr = NULL;
@ -57,7 +58,7 @@ uint8_t PS3USB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
Notify(PSTR("\r\nPS3USB Init"), 0x80); Notify(PSTR("\r\nPS3USB Init"), 0x80);
#endif #endif
// check if address has already been assigned to an instance // check if address has already been assigned to an instance
if (bAddress) { if(bAddress) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress in use"), 0x80); Notify(PSTR("\r\nAddress in use"), 0x80);
#endif #endif
@ -67,14 +68,14 @@ uint8_t PS3USB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Get pointer to pseudo device with address 0 assigned // Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0); p = addrPool.GetUsbDevicePtr(0);
if (!p) { if(!p) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress not found"), 0x80); Notify(PSTR("\r\nAddress not found"), 0x80);
#endif #endif
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
} }
if (!p->epinfo) { if(!p->epinfo) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nepinfo is null"), 0x80); Notify(PSTR("\r\nepinfo is null"), 0x80);
#endif #endif
@ -94,27 +95,27 @@ uint8_t PS3USB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Restore p->epinfo // Restore p->epinfo
p->epinfo = oldep_ptr; p->epinfo = oldep_ptr;
if (rcode) if(rcode)
goto FailGetDevDescr; goto FailGetDevDescr;
VID = ((USB_DEVICE_DESCRIPTOR*)buf)->idVendor; VID = udd->idVendor;
PID = ((USB_DEVICE_DESCRIPTOR*)buf)->idProduct; PID = udd->idProduct;
if (VID != PS3_VID || (PID != PS3_PID && PID != PS3NAVIGATION_PID && PID != PS3MOVE_PID)) if(VID != PS3_VID || (PID != PS3_PID && PID != PS3NAVIGATION_PID && PID != PS3MOVE_PID))
goto FailUnknownDevice; goto FailUnknownDevice;
// Allocate new address according to device class // Allocate new address according to device class
bAddress = addrPool.AllocAddress(parent, false, port); bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress) if(!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from device descriptor // Extract Max Packet Size from device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; epInfo[0].maxPktSize = udd->bMaxPacketSize0;
// Assign new address to the device // Assign new address to the device
rcode = pUsb->setAddr(0, 0, bAddress); rcode = pUsb->setAddr(0, 0, bAddress);
if (rcode) { if(rcode) {
p->lowspeed = false; p->lowspeed = false;
addrPool.FreeAddress(bAddress); addrPool.FreeAddress(bAddress);
bAddress = 0; bAddress = 0;
@ -128,20 +129,20 @@ uint8_t PS3USB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
Notify(PSTR("\r\nAddr: "), 0x80); Notify(PSTR("\r\nAddr: "), 0x80);
D_PrintHex<uint8_t > (bAddress, 0x80); D_PrintHex<uint8_t > (bAddress, 0x80);
#endif #endif
delay(300); // Spec says you should wait at least 200ms //delay(300); // Spec says you should wait at least 200ms
p->lowspeed = false; p->lowspeed = false;
//get pointer to assigned address record //get pointer to assigned address record
p = addrPool.GetUsbDevicePtr(bAddress); p = addrPool.GetUsbDevicePtr(bAddress);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
// Assign epInfo to epinfo pointer - only EP0 is known // Assign epInfo to epinfo pointer - only EP0 is known
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
@ -154,27 +155,27 @@ uint8_t PS3USB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
epInfo[ PS3_OUTPUT_PIPE ].epAttribs = EP_INTERRUPT; epInfo[ PS3_OUTPUT_PIPE ].epAttribs = EP_INTERRUPT;
epInfo[ PS3_OUTPUT_PIPE ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ PS3_OUTPUT_PIPE ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ PS3_OUTPUT_PIPE ].maxPktSize = EP_MAXPKTSIZE; epInfo[ PS3_OUTPUT_PIPE ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ PS3_OUTPUT_PIPE ].bmSndToggle = bmSNDTOG0; epInfo[ PS3_OUTPUT_PIPE ].bmSndToggle = 0;
epInfo[ PS3_OUTPUT_PIPE ].bmRcvToggle = bmRCVTOG0; epInfo[ PS3_OUTPUT_PIPE ].bmRcvToggle = 0;
epInfo[ PS3_INPUT_PIPE ].epAddr = 0x01; // PS3 report endpoint epInfo[ PS3_INPUT_PIPE ].epAddr = 0x01; // PS3 report endpoint
epInfo[ PS3_INPUT_PIPE ].epAttribs = EP_INTERRUPT; epInfo[ PS3_INPUT_PIPE ].epAttribs = EP_INTERRUPT;
epInfo[ PS3_INPUT_PIPE ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ PS3_INPUT_PIPE ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ PS3_INPUT_PIPE ].maxPktSize = EP_MAXPKTSIZE; epInfo[ PS3_INPUT_PIPE ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ PS3_INPUT_PIPE ].bmSndToggle = bmSNDTOG0; epInfo[ PS3_INPUT_PIPE ].bmSndToggle = 0;
epInfo[ PS3_INPUT_PIPE ].bmRcvToggle = bmRCVTOG0; epInfo[ PS3_INPUT_PIPE ].bmRcvToggle = 0;
rcode = pUsb->setEpInfoEntry(bAddress, 3, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 3, epInfo);
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
delay(200); //Give time for address change delay(200); //Give time for address change
rcode = pUsb->setConf(bAddress, epInfo[ PS3_CONTROL_PIPE ].epAddr, 1); rcode = pUsb->setConf(bAddress, epInfo[ PS3_CONTROL_PIPE ].epAddr, 1);
if (rcode) if(rcode)
goto FailSetConfDescr; goto FailSetConfDescr;
if (PID == PS3_PID || PID == PS3NAVIGATION_PID) { if(PID == PS3_PID || PID == PS3NAVIGATION_PID) {
if (PID == PS3_PID) { if(PID == PS3_PID) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDualshock 3 Controller Connected"), 0x80); Notify(PSTR("\r\nDualshock 3 Controller Connected"), 0x80);
#endif #endif
@ -188,10 +189,10 @@ uint8_t PS3USB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
enable_sixaxis(); // The PS3 controller needs a special command before it starts sending data enable_sixaxis(); // The PS3 controller needs a special command before it starts sending data
// Needed for PS3 Dualshock and Navigation commands to work // Needed for PS3 Dualshock and Navigation commands to work
for (uint8_t i = 0; i < PS3_REPORT_BUFFER_SIZE; i++) for(uint8_t i = 0; i < PS3_REPORT_BUFFER_SIZE; i++)
writeBuf[i] = pgm_read_byte(&PS3_REPORT_BUFFER[i]); writeBuf[i] = pgm_read_byte(&PS3_REPORT_BUFFER[i]);
for (uint8_t i = 6; i < 10; i++) for(uint8_t i = 6; i < 10; i++)
readBuf[i] = 0x7F; // Set the analog joystick values to center position readBuf[i] = 0x7F; // Set the analog joystick values to center position
} else { // must be a Motion controller } else { // must be a Motion controller
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
@ -200,15 +201,15 @@ uint8_t PS3USB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
PS3MoveConnected = true; PS3MoveConnected = true;
writeBuf[0] = 0x02; // Set report ID, this is needed for Move commands to work writeBuf[0] = 0x02; // Set report ID, this is needed for Move commands to work
} }
if (my_bdaddr[0] != 0x00 || my_bdaddr[1] != 0x00 || my_bdaddr[2] != 0x00 || my_bdaddr[3] != 0x00 || my_bdaddr[4] != 0x00 || my_bdaddr[5] != 0x00) { if(my_bdaddr[0] != 0x00 || my_bdaddr[1] != 0x00 || my_bdaddr[2] != 0x00 || my_bdaddr[3] != 0x00 || my_bdaddr[4] != 0x00 || my_bdaddr[5] != 0x00) {
if (PS3MoveConnected) if(PS3MoveConnected)
setMoveBdaddr(my_bdaddr); // Set internal Bluetooth address setMoveBdaddr(my_bdaddr); // Set internal Bluetooth address
else else
setBdaddr(my_bdaddr); // Set internal Bluetooth address setBdaddr(my_bdaddr); // Set internal Bluetooth address
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nBluetooth Address was set to: "), 0x80); Notify(PSTR("\r\nBluetooth Address was set to: "), 0x80);
for (int8_t i = 5; i > 0; i--) { for(int8_t i = 5; i > 0; i--) {
D_PrintHex<uint8_t > (my_bdaddr[i], 0x80); D_PrintHex<uint8_t > (my_bdaddr[i], 0x80);
Notify(PSTR(":"), 0x80); Notify(PSTR(":"), 0x80);
} }
@ -220,14 +221,15 @@ uint8_t PS3USB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
bPollEnable = true; bPollEnable = true;
Notify(PSTR("\r\n"), 0x80); Notify(PSTR("\r\n"), 0x80);
timer = millis(); timer = millis();
return 0; // successful configuration return 0; // Successful configuration
/* diagnostic messages */ /* Diagnostic messages */
FailGetDevDescr: FailGetDevDescr:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailGetDevDescr(); NotifyFailGetDevDescr();
goto Fail; goto Fail;
#endif #endif
FailSetDevTblEntry: FailSetDevTblEntry:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailSetDevTblEntry(); NotifyFailSetDevTblEntry();
@ -239,13 +241,14 @@ FailSetConfDescr:
NotifyFailSetConfDescr(); NotifyFailSetConfDescr();
#endif #endif
goto Fail; goto Fail;
FailUnknownDevice: FailUnknownDevice:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailUnknownDevice(VID, PID); NotifyFailUnknownDevice(VID, PID);
#endif #endif
rcode = USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; rcode = USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;
Fail:
Fail:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nPS3 Init Failed, error code: "), 0x80); Notify(PSTR("\r\nPS3 Init Failed, error code: "), 0x80);
NotifyFail(rcode); NotifyFail(rcode);
@ -266,20 +269,20 @@ uint8_t PS3USB::Release() {
} }
uint8_t PS3USB::Poll() { uint8_t PS3USB::Poll() {
if (!bPollEnable) if(!bPollEnable)
return 0; return 0;
if (PS3Connected || PS3NavigationConnected) { if(PS3Connected || PS3NavigationConnected) {
uint16_t BUFFER_SIZE = EP_MAXPKTSIZE; uint16_t BUFFER_SIZE = EP_MAXPKTSIZE;
pUsb->inTransfer(bAddress, epInfo[ PS3_INPUT_PIPE ].epAddr, &BUFFER_SIZE, readBuf); // input on endpoint 1 pUsb->inTransfer(bAddress, epInfo[ PS3_INPUT_PIPE ].epAddr, &BUFFER_SIZE, readBuf); // input on endpoint 1
if (millis() - timer > 100) { // Loop 100ms before processing data if(millis() - timer > 100) { // Loop 100ms before processing data
readReport(); readReport();
#ifdef PRINTREPORT #ifdef PRINTREPORT
printReport(); // Uncomment "#define PRINTREPORT" to print the report send by the PS3 Controllers printReport(); // Uncomment "#define PRINTREPORT" to print the report send by the PS3 Controllers
#endif #endif
} }
} else if (PS3MoveConnected) { // One can only set the color of the bulb, set the rumble, set and get the bluetooth address and calibrate the magnetometer via USB } else if(PS3MoveConnected) { // One can only set the color of the bulb, set the rumble, set and get the bluetooth address and calibrate the magnetometer via USB
if (millis() - timer > 4000) { // Send at least every 4th second if(millis() - timer > 4000) { // Send at least every 4th second
Move_Command(writeBuf, MOVE_REPORT_BUFFER_SIZE); // The Bulb and rumble values, has to be written again and again, for it to stay turned on Move_Command(writeBuf, MOVE_REPORT_BUFFER_SIZE); // The Bulb and rumble values, has to be written again and again, for it to stay turned on
timer = millis(); timer = millis();
} }
@ -293,7 +296,7 @@ void PS3USB::readReport() {
//Notify(PSTR("\r\nButtonState", 0x80); //Notify(PSTR("\r\nButtonState", 0x80);
//PrintHex<uint32_t>(ButtonState, 0x80); //PrintHex<uint32_t>(ButtonState, 0x80);
if (ButtonState != OldButtonState) { if(ButtonState != OldButtonState) {
ButtonClickState = ButtonState & ~OldButtonState; // Update click state variable ButtonClickState = ButtonState & ~OldButtonState; // Update click state variable
OldButtonState = ButtonState; OldButtonState = ButtonState;
} }
@ -301,7 +304,7 @@ void PS3USB::readReport() {
void PS3USB::printReport() { // Uncomment "#define PRINTREPORT" to print the report send by the PS3 Controllers void PS3USB::printReport() { // Uncomment "#define PRINTREPORT" to print the report send by the PS3 Controllers
#ifdef PRINTREPORT #ifdef PRINTREPORT
for (uint8_t i = 0; i < PS3_REPORT_BUFFER_SIZE; i++) { for(uint8_t i = 0; i < PS3_REPORT_BUFFER_SIZE; i++) {
D_PrintHex<uint8_t > (readBuf[i], 0x80); D_PrintHex<uint8_t > (readBuf[i], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
} }
@ -309,31 +312,31 @@ void PS3USB::printReport() { // Uncomment "#define PRINTREPORT" to print the rep
#endif #endif
} }
bool PS3USB::getButtonPress(Button b) { bool PS3USB::getButtonPress(ButtonEnum b) {
return (ButtonState & pgm_read_dword(&BUTTONS[(uint8_t)b])); return (ButtonState & pgm_read_dword(&PS3_BUTTONS[(uint8_t)b]));
} }
bool PS3USB::getButtonClick(Button b) { bool PS3USB::getButtonClick(ButtonEnum b) {
uint32_t button = pgm_read_dword(&BUTTONS[(uint8_t)b]); uint32_t button = pgm_read_dword(&PS3_BUTTONS[(uint8_t)b]);
bool click = (ButtonClickState & button); bool click = (ButtonClickState & button);
ButtonClickState &= ~button; // Clear "click" event ButtonClickState &= ~button; // Clear "click" event
return click; return click;
} }
uint8_t PS3USB::getAnalogButton(Button a) { uint8_t PS3USB::getAnalogButton(ButtonEnum a) {
return (uint8_t)(readBuf[(pgm_read_byte(&ANALOGBUTTONS[(uint8_t)a])) - 9]); return (uint8_t)(readBuf[(pgm_read_byte(&PS3_ANALOG_BUTTONS[(uint8_t)a])) - 9]);
} }
uint8_t PS3USB::getAnalogHat(AnalogHat a) { uint8_t PS3USB::getAnalogHat(AnalogHatEnum a) {
return (uint8_t)(readBuf[((uint8_t)a + 6)]); return (uint8_t)(readBuf[((uint8_t)a + 6)]);
} }
uint16_t PS3USB::getSensor(Sensor a) { uint16_t PS3USB::getSensor(SensorEnum a) {
return ((readBuf[((uint16_t)a) - 9] << 8) | readBuf[((uint16_t)a + 1) - 9]); return ((readBuf[((uint16_t)a) - 9] << 8) | readBuf[((uint16_t)a + 1) - 9]);
} }
double PS3USB::getAngle(Angle a) { double PS3USB::getAngle(AngleEnum a) {
if (PS3Connected) { if(PS3Connected) {
double accXval; double accXval;
double accYval; double accYval;
double accZval; double accZval;
@ -347,7 +350,7 @@ double PS3USB::getAngle(Angle a) {
// Convert to 360 degrees resolution // Convert to 360 degrees resolution
// atan2 outputs the value of -π to π (radians) // atan2 outputs the value of -π to π (radians)
// We are then converting it to 0 to 2π and then to degrees // We are then converting it to 0 to 2π and then to degrees
if (a == Pitch) if(a == Pitch)
return (atan2(accYval, accZval) + PI) * RAD_TO_DEG; return (atan2(accYval, accZval) + PI) * RAD_TO_DEG;
else else
return (atan2(accXval, accZval) + PI) * RAD_TO_DEG; return (atan2(accXval, accZval) + PI) * RAD_TO_DEG;
@ -355,43 +358,41 @@ double PS3USB::getAngle(Angle a) {
return 0; return 0;
} }
bool PS3USB::getStatus(Status c) { bool PS3USB::getStatus(StatusEnum c) {
return (readBuf[((uint16_t)c >> 8) - 9] == ((uint8_t)c & 0xff)); return (readBuf[((uint16_t)c >> 8) - 9] == ((uint8_t)c & 0xff));
} }
String PS3USB::getStatusString() { void PS3USB::printStatusString() {
if (PS3Connected || PS3NavigationConnected) { char statusOutput[100]; // Max string length plus null character
char statusOutput[100]; if(PS3Connected || PS3NavigationConnected) {
strcpy_P(statusOutput, PSTR("ConnectionStatus: "));
strcpy(statusOutput, "ConnectionStatus: "); if(getStatus(Plugged)) strcat_P(statusOutput, PSTR("Plugged"));
else if(getStatus(Unplugged)) strcat_P(statusOutput, PSTR("Unplugged"));
else strcat_P(statusOutput, PSTR("Error"));
if (getStatus(Plugged)) strcat(statusOutput, "Plugged"); strcat_P(statusOutput, PSTR(" - PowerRating: "));
else if (getStatus(Unplugged)) strcat(statusOutput, "Unplugged");
else strcat(statusOutput, "Error");
if(getStatus(Charging)) strcat_P(statusOutput, PSTR("Charging"));
else if(getStatus(NotCharging)) strcat_P(statusOutput, PSTR("Not Charging"));
else if(getStatus(Shutdown)) strcat_P(statusOutput, PSTR("Shutdown"));
else if(getStatus(Dying)) strcat_P(statusOutput, PSTR("Dying"));
else if(getStatus(Low)) strcat_P(statusOutput, PSTR("Low"));
else if(getStatus(High)) strcat_P(statusOutput, PSTR("High"));
else if(getStatus(Full)) strcat_P(statusOutput, PSTR("Full"));
else strcat_P(statusOutput, PSTR("Error"));
strcat(statusOutput, " - PowerRating: "); strcat_P(statusOutput, PSTR(" - WirelessStatus: "));
if (getStatus(Charging)) strcat(statusOutput, "Charging"); if(getStatus(CableRumble)) strcat_P(statusOutput, PSTR("Cable - Rumble is on"));
else if (getStatus(NotCharging)) strcat(statusOutput, "Not Charging"); else if(getStatus(Cable)) strcat_P(statusOutput, PSTR("Cable - Rumble is off"));
else if (getStatus(Shutdown)) strcat(statusOutput, "Shutdown"); else if(getStatus(BluetoothRumble)) strcat_P(statusOutput, PSTR("Bluetooth - Rumble is on"));
else if (getStatus(Dying)) strcat(statusOutput, "Dying"); else if(getStatus(Bluetooth)) strcat_P(statusOutput, PSTR("Bluetooth - Rumble is off"));
else if (getStatus(Low)) strcat(statusOutput, "Low"); else strcat_P(statusOutput, PSTR("Error"));
else if (getStatus(High)) strcat(statusOutput, "High");
else if (getStatus(Full)) strcat(statusOutput, "Full");
else strcat(statusOutput, "Error");
strcat(statusOutput, " - WirelessStatus: ");
if (getStatus(CableRumble)) strcat(statusOutput, "Cable - Rumble is on");
else if (getStatus(Cable)) strcat(statusOutput, "Cable - Rumble is off");
else if (getStatus(BluetoothRumble)) strcat(statusOutput, "Bluetooth - Rumble is on");
else if (getStatus(Bluetooth)) strcat(statusOutput, "Bluetooth - Rumble is off");
else strcat(statusOutput, "Error");
return statusOutput;
} else } else
return "Error"; strcpy_P(statusOutput, PSTR("Error"));
USB_HOST_SERIAL.write(statusOutput);
} }
/* Playstation Sixaxis Dualshock and Navigation Controller commands */ /* Playstation Sixaxis Dualshock and Navigation Controller commands */
@ -401,7 +402,7 @@ void PS3USB::PS3_Command(uint8_t *data, uint16_t nbytes) {
} }
void PS3USB::setAllOff() { void PS3USB::setAllOff() {
for (uint8_t i = 0; i < PS3_REPORT_BUFFER_SIZE; i++) for(uint8_t i = 0; i < PS3_REPORT_BUFFER_SIZE; i++)
writeBuf[i] = pgm_read_byte(&PS3_REPORT_BUFFER[i]); // Reset buffer writeBuf[i] = pgm_read_byte(&PS3_REPORT_BUFFER[i]); // Reset buffer
PS3_Command(writeBuf, PS3_REPORT_BUFFER_SIZE); PS3_Command(writeBuf, PS3_REPORT_BUFFER_SIZE);
@ -416,10 +417,10 @@ void PS3USB::setRumbleOff() {
PS3_Command(writeBuf, PS3_REPORT_BUFFER_SIZE); PS3_Command(writeBuf, PS3_REPORT_BUFFER_SIZE);
} }
void PS3USB::setRumbleOn(Rumble mode) { void PS3USB::setRumbleOn(RumbleEnum mode) {
if ((mode & 0x30) > 0x00) { if((mode & 0x30) > 0x00) {
uint8_t power[2] = {0xff, 0x00}; // Defaults to RumbleLow uint8_t power[2] = {0xff, 0x00}; // Defaults to RumbleLow
if (mode == RumbleHigh) { if(mode == RumbleHigh) {
power[0] = 0x00; power[0] = 0x00;
power[1] = 0xff; power[1] = 0xff;
} }
@ -440,18 +441,22 @@ void PS3USB::setLedRaw(uint8_t value) {
PS3_Command(writeBuf, PS3_REPORT_BUFFER_SIZE); PS3_Command(writeBuf, PS3_REPORT_BUFFER_SIZE);
} }
void PS3USB::setLedOff(LED a) { void PS3USB::setLedOff(LEDEnum a) {
writeBuf[9] &= ~((uint8_t)((pgm_read_byte(&LEDS[(uint8_t)a]) & 0x0f) << 1)); writeBuf[9] &= ~((uint8_t)((pgm_read_byte(&PS3_LEDS[(uint8_t)a]) & 0x0f) << 1));
PS3_Command(writeBuf, PS3_REPORT_BUFFER_SIZE); PS3_Command(writeBuf, PS3_REPORT_BUFFER_SIZE);
} }
void PS3USB::setLedOn(LED a) { void PS3USB::setLedOn(LEDEnum a) {
writeBuf[9] |= (uint8_t)((pgm_read_byte(&LEDS[(uint8_t)a]) & 0x0f) << 1); if(a == OFF)
PS3_Command(writeBuf, PS3_REPORT_BUFFER_SIZE); setLedRaw(0);
else {
writeBuf[9] |= (uint8_t)((pgm_read_byte(&PS3_LEDS[(uint8_t)a]) & 0x0f) << 1);
PS3_Command(writeBuf, PS3_REPORT_BUFFER_SIZE);
}
} }
void PS3USB::setLedToggle(LED a) { void PS3USB::setLedToggle(LEDEnum a) {
writeBuf[9] ^= (uint8_t)((pgm_read_byte(&LEDS[(uint8_t)a]) & 0x0f) << 1); writeBuf[9] ^= (uint8_t)((pgm_read_byte(&PS3_LEDS[(uint8_t)a]) & 0x0f) << 1);
PS3_Command(writeBuf, PS3_REPORT_BUFFER_SIZE); PS3_Command(writeBuf, PS3_REPORT_BUFFER_SIZE);
} }
@ -461,7 +466,7 @@ void PS3USB::setBdaddr(uint8_t *bdaddr) {
buf[0] = 0x01; buf[0] = 0x01;
buf[1] = 0x00; buf[1] = 0x00;
for (uint8_t i = 0; i < 6; i++) for(uint8_t i = 0; i < 6; i++)
buf[i + 2] = bdaddr[5 - i]; // Copy into buffer, has to be written reversed, so it is MSB first buf[i + 2] = bdaddr[5 - i]; // Copy into buffer, has to be written reversed, so it is MSB first
// bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0xF5), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data // bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0xF5), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data
@ -474,7 +479,7 @@ void PS3USB::getBdaddr(uint8_t *bdaddr) {
// bmRequest = Device to host (0x80) | Class (0x20) | Interface (0x01) = 0xA1, bRequest = Get Report (0x01), Report ID (0xF5), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data // bmRequest = Device to host (0x80) | Class (0x20) | Interface (0x01) = 0xA1, bRequest = Get Report (0x01), Report ID (0xF5), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data
pUsb->ctrlReq(bAddress, epInfo[PS3_CONTROL_PIPE].epAddr, bmREQ_HID_IN, HID_REQUEST_GET_REPORT, 0xF5, 0x03, 0x00, 8, 8, buf, NULL); pUsb->ctrlReq(bAddress, epInfo[PS3_CONTROL_PIPE].epAddr, bmREQ_HID_IN, HID_REQUEST_GET_REPORT, 0xF5, 0x03, 0x00, 8, 8, buf, NULL);
for (uint8_t i = 0; i < 6; i++) for(uint8_t i = 0; i < 6; i++)
bdaddr[5 - i] = buf[i + 2]; // Copy into buffer reversed, so it is LSB first bdaddr[5 - i] = buf[i + 2]; // Copy into buffer reversed, so it is LSB first
} }
@ -503,13 +508,13 @@ void PS3USB::moveSetBulb(uint8_t r, uint8_t g, uint8_t b) { // Use this to set t
Move_Command(writeBuf, MOVE_REPORT_BUFFER_SIZE); Move_Command(writeBuf, MOVE_REPORT_BUFFER_SIZE);
} }
void PS3USB::moveSetBulb(Colors color) { // Use this to set the Color using the predefined colors in "enums.h" void PS3USB::moveSetBulb(ColorsEnum color) { // Use this to set the Color using the predefined colors in "enums.h"
moveSetBulb((uint8_t)(color >> 16), (uint8_t)(color >> 8), (uint8_t)(color)); moveSetBulb((uint8_t)(color >> 16), (uint8_t)(color >> 8), (uint8_t)(color));
} }
void PS3USB::moveSetRumble(uint8_t rumble) { void PS3USB::moveSetRumble(uint8_t rumble) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (rumble < 64 && rumble != 0) // The rumble value has to at least 64, or approximately 25% (64/255*100) if(rumble < 64 && rumble != 0) // The rumble value has to at least 64, or approximately 25% (64/255*100)
Notify(PSTR("\r\nThe rumble value has to at least 64, or approximately 25%"), 0x80); Notify(PSTR("\r\nThe rumble value has to at least 64, or approximately 25%"), 0x80);
#endif #endif
writeBuf[6] = rumble; // Set the rumble value into the write buffer writeBuf[6] = rumble; // Set the rumble value into the write buffer
@ -526,7 +531,7 @@ void PS3USB::setMoveBdaddr(uint8_t *bdaddr) {
buf[9] = 0x02; buf[9] = 0x02;
buf[10] = 0x12; buf[10] = 0x12;
for (uint8_t i = 0; i < 6; i++) for(uint8_t i = 0; i < 6; i++)
buf[i + 1] = bdaddr[i]; buf[i + 1] = bdaddr[i];
// bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0x05), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data // bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0x05), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data
@ -539,27 +544,27 @@ void PS3USB::getMoveBdaddr(uint8_t *bdaddr) {
// bmRequest = Device to host (0x80) | Class (0x20) | Interface (0x01) = 0xA1, bRequest = Get Report (0x01), Report ID (0x04), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data // bmRequest = Device to host (0x80) | Class (0x20) | Interface (0x01) = 0xA1, bRequest = Get Report (0x01), Report ID (0x04), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data
pUsb->ctrlReq(bAddress, epInfo[PS3_CONTROL_PIPE].epAddr, bmREQ_HID_IN, HID_REQUEST_GET_REPORT, 0x04, 0x03, 0x00, 16, 16, buf, NULL); pUsb->ctrlReq(bAddress, epInfo[PS3_CONTROL_PIPE].epAddr, bmREQ_HID_IN, HID_REQUEST_GET_REPORT, 0x04, 0x03, 0x00, 16, 16, buf, NULL);
for (uint8_t i = 0; i < 6; i++) for(uint8_t i = 0; i < 6; i++)
bdaddr[i] = buf[10 + i]; bdaddr[i] = buf[10 + i];
} }
void PS3USB::getMoveCalibration(uint8_t *data) { void PS3USB::getMoveCalibration(uint8_t *data) {
uint8_t buf[49]; uint8_t buf[49];
for (uint8_t i = 0; i < 3; i++) { for(uint8_t i = 0; i < 3; i++) {
// bmRequest = Device to host (0x80) | Class (0x20) | Interface (0x01) = 0xA1, bRequest = Get Report (0x01), Report ID (0x10), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data // bmRequest = Device to host (0x80) | Class (0x20) | Interface (0x01) = 0xA1, bRequest = Get Report (0x01), Report ID (0x10), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data
pUsb->ctrlReq(bAddress, epInfo[PS3_CONTROL_PIPE].epAddr, bmREQ_HID_IN, HID_REQUEST_GET_REPORT, 0x10, 0x03, 0x00, 49, 49, buf, NULL); pUsb->ctrlReq(bAddress, epInfo[PS3_CONTROL_PIPE].epAddr, bmREQ_HID_IN, HID_REQUEST_GET_REPORT, 0x10, 0x03, 0x00, 49, 49, buf, NULL);
for (byte j = 0; j < 49; j++) for(byte j = 0; j < 49; j++)
data[49 * i + j] = buf[j]; data[49 * i + j] = buf[j];
} }
} }
void PS3USB::onInit() { void PS3USB::onInit() {
if (pFuncOnInit) if(pFuncOnInit)
pFuncOnInit(); // Call the user function pFuncOnInit(); // Call the user function
else { else {
if (PS3MoveConnected) if(PS3MoveConnected)
moveSetBulb(Red); moveSetBulb(Red);
else // Dualshock 3 or Navigation controller else // Dualshock 3 or Navigation controller
setLedOn(LED1); setLedOn(LED1);

View file

@ -146,68 +146,67 @@ public:
/** @name PS3 Controller functions */ /** @name PS3 Controller functions */
/** /**
* getButtonPress(Button b) will return true as long as the button is held down. * getButtonPress(ButtonEnum b) will return true as long as the button is held down.
* *
* While getButtonClick(Button b) will only return it once. * While getButtonClick(ButtonEnum b) will only return it once.
* *
* So you instance if you need to increase a variable once you would use getButtonClick(Button b), * So you instance if you need to increase a variable once you would use getButtonClick(ButtonEnum b),
* but if you need to drive a robot forward you would use getButtonPress(Button b). * but if you need to drive a robot forward you would use getButtonPress(ButtonEnum b).
* @param b ::ButtonEnum to read.
* @return getButtonPress(ButtonEnum b) will return a true as long as a button is held down, while getButtonClick(ButtonEnum b) will return true once for each button press.
*/ */
bool getButtonPress(Button b); bool getButtonPress(ButtonEnum b);
bool getButtonClick(Button b); bool getButtonClick(ButtonEnum b);
/**@}*/ /**@}*/
/** @name PS3 Controller functions */ /** @name PS3 Controller functions */
/** /**
* Used to get the analog value from button presses. * Used to get the analog value from button presses.
* @param a The ::Button to read. * @param a The ::ButtonEnum to read.
* The supported buttons are: * The supported buttons are:
* ::UP, ::RIGHT, ::DOWN, ::LEFT, ::L1, ::L2, ::R1, ::R2, * ::UP, ::RIGHT, ::DOWN, ::LEFT, ::L1, ::L2, ::R1, ::R2,
* ::TRIANGLE, ::CIRCLE, ::CROSS, ::SQUARE, and ::T. * ::TRIANGLE, ::CIRCLE, ::CROSS, ::SQUARE, and ::T.
* @return Analog value in the range of 0-255. * @return Analog value in the range of 0-255.
*/ */
uint8_t getAnalogButton(Button a); uint8_t getAnalogButton(ButtonEnum a);
/** /**
* Used to read the analog joystick. * Used to read the analog joystick.
* @param a ::LeftHatX, ::LeftHatY, ::RightHatX, and ::RightHatY. * @param a ::LeftHatX, ::LeftHatY, ::RightHatX, and ::RightHatY.
* @return Return the analog value in the range of 0-255. * @return Return the analog value in the range of 0-255.
*/ */
uint8_t getAnalogHat(AnalogHat a); uint8_t getAnalogHat(AnalogHatEnum a);
/** /**
* Used to read the sensors inside the Dualshock 3 controller. * Used to read the sensors inside the Dualshock 3 controller.
* @param a * @param a
* The Dualshock 3 has a 3-axis accelerometer and a 1-axis gyro inside. * The Dualshock 3 has a 3-axis accelerometer and a 1-axis gyro inside.
* @return Return the raw sensor value. * @return Return the raw sensor value.
*/ */
uint16_t getSensor(Sensor a); uint16_t getSensor(SensorEnum a);
/** /**
* Use this to get ::Pitch and ::Roll calculated using the accelerometer. * Use this to get ::Pitch and ::Roll calculated using the accelerometer.
* @param a Either ::Pitch or ::Roll. * @param a Either ::Pitch or ::Roll.
* @return Return the angle in the range of 0-360. * @return Return the angle in the range of 0-360.
*/ */
double getAngle(Angle a); double getAngle(AngleEnum a);
/** /**
* Get the ::Status from the controller. * Get the ::StatusEnum from the controller.
* @param c The ::Status you want to read. * @param c The ::StatusEnum you want to read.
* @return True if correct and false if not. * @return True if correct and false if not.
*/ */
bool getStatus(Status c); bool getStatus(StatusEnum c);
/** /** Read all the available statuses from the controller and prints it as a nice formated string. */
* Read all the available ::Status from the controller. void printStatusString();
* @return One large string with all the information.
*/
String getStatusString();
/** Used to set all LEDs and ::Rumble off. */ /** Used to set all LEDs and rumble off. */
void setAllOff(); void setAllOff();
/** Turn off ::Rumble. */ /** Turn off rumble. */
void setRumbleOff(); void setRumbleOff();
/** /**
* Turn on ::Rumble. * Turn on rumble.
* @param mode Either ::RumbleHigh or ::RumbleLow. * @param mode Either ::RumbleHigh or ::RumbleLow.
*/ */
void setRumbleOn(Rumble mode); void setRumbleOn(RumbleEnum mode);
/** /**
* Turn on ::Rumble using custom duration and power. * Turn on rumble using custom duration and power.
* @param rightDuration The duration of the right/low rumble effect. * @param rightDuration The duration of the right/low rumble effect.
* @param rightPower The intensity of the right/low rumble effect. * @param rightPower The intensity of the right/low rumble effect.
* @param leftDuration The duration of the left/high rumble effect. * @param leftDuration The duration of the left/high rumble effect.
@ -216,29 +215,30 @@ public:
void setRumbleOn(uint8_t rightDuration, uint8_t rightPower, uint8_t leftDuration, uint8_t leftPower); void setRumbleOn(uint8_t rightDuration, uint8_t rightPower, uint8_t leftDuration, uint8_t leftPower);
/** /**
* Set LED value without using the ::LED enum. * Set LED value without using the ::LEDEnum.
* @param value See: ::LED enum. * @param value See: ::LEDEnum.
*/ */
void setLedRaw(uint8_t value); void setLedRaw(uint8_t value);
/** Turn all LEDs off. */ /** Turn all LEDs off. */
void setLedOff() { void setLedOff() {
setLedRaw(0); setLedRaw(0);
} }
/** /**
* Turn the specific ::LED off. * Turn the specific ::LEDEnum off.
* @param a The ::LED to turn off. * @param a The ::LEDEnum to turn off.
*/ */
void setLedOff(LED a); void setLedOff(LEDEnum a);
/** /**
* Turn the specific ::LED on. * Turn the specific ::LEDEnum on.
* @param a The ::LED to turn on. * @param a The ::LEDEnum to turn on.
*/ */
void setLedOn(LED a); void setLedOn(LEDEnum a);
/** /**
* Toggle the specific ::LED. * Toggle the specific ::LEDEnum.
* @param a The ::LED to toggle. * @param a The ::LEDEnum to toggle.
*/ */
void setLedToggle(LED a); void setLedToggle(LEDEnum a);
/** /**
* Use this to set the Color using RGB values. * Use this to set the Color using RGB values.
@ -246,10 +246,10 @@ public:
*/ */
void moveSetBulb(uint8_t r, uint8_t g, uint8_t b); void moveSetBulb(uint8_t r, uint8_t g, uint8_t b);
/** /**
* Use this to set the color using the predefined colors in ::Colors. * Use this to set the color using the predefined colors in ::ColorsEnum.
* @param color The desired color. * @param color The desired color.
*/ */
void moveSetBulb(Colors color); void moveSetBulb(ColorsEnum color);
/** /**
* Set the rumble value inside the Move controller. * Set the rumble value inside the Move controller.
* @param rumble The desired value in the range from 64-255. * @param rumble The desired value in the range from 64-255.

131
PS4BT.h Normal file
View file

@ -0,0 +1,131 @@
/* Copyright (C) 2014 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#ifndef _ps4bt_h_
#define _ps4bt_h_
#include "BTHID.h"
#include "PS4Parser.h"
/**
* This class implements support for the PS4 controller via Bluetooth.
* It uses the BTHID class for all the Bluetooth communication.
*/
class PS4BT : public BTHID, public PS4Parser {
public:
/**
* Constructor for the PS4BT class.
* @param p Pointer to the BTD class instance.
* @param pair Set this to true in order to pair with the device. If the argument is omitted then it will not pair with it. One can use ::PAIR to set it to true.
* @param pin Write the pin to BTD#btdPin. If argument is omitted, then "0000" will be used.
*/
PS4BT(BTD *p, bool pair = false, const char *pin = "0000") :
BTHID(p, pair, pin) {
PS4Parser::Reset();
};
/**
* Used to check if a PS4 controller is connected.
* @return Returns true if it is connected.
*/
bool connected() {
return BTHID::connected;
};
/**
* Used to call your own function when the device is successfully initialized.
* @param funcOnInit Function to call.
*/
void attachOnInit(void (*funcOnInit)(void)) {
pFuncOnInit = funcOnInit;
};
protected:
/** @name BTHID implementation */
/**
* Used to parse Bluetooth HID data.
* @param len The length of the incoming data.
* @param buf Pointer to the data buffer.
*/
virtual void ParseBTHIDData(uint8_t len, uint8_t *buf) {
PS4Parser::Parse(len, buf);
};
/**
* Called when a device is successfully initialized.
* Use attachOnInit(void (*funcOnInit)(void)) to call your own function.
* This is useful for instance if you want to set the LEDs in a specific way.
*/
virtual void OnInitBTHID() {
PS4Parser::Reset();
enable_sixaxis(); // Make the controller send out the entire output report
if (pFuncOnInit)
pFuncOnInit(); // Call the user function
else
setLed(Blue);
};
/** Used to reset the different buffers to there default values */
virtual void ResetBTHID() {
PS4Parser::Reset();
};
/**@}*/
/** @name PS4Parser implementation */
virtual void sendOutputReport(PS4Output *output) { // Source: https://github.com/chrippa/ds4drv
uint8_t buf[79];
memset(buf, 0, sizeof(buf));
buf[0] = 0x52; // HID BT Set_report (0x50) | Report Type (Output 0x02)
buf[1] = 0x11; // Report ID
buf[2] = 0x80;
buf[4]= 0xFF;
buf[7] = output->smallRumble; // Small Rumble
buf[8] = output->bigRumble; // Big rumble
buf[9] = output->r; // Red
buf[10] = output->g; // Green
buf[11] = output->b; // Blue
buf[12] = output->flashOn; // Time to flash bright (255 = 2.5 seconds)
buf[13] = output->flashOff; // Time to flash dark (255 = 2.5 seconds)
output->reportChanged = false;
// The PS4 console actually set the four last bytes to a CRC32 checksum, but it seems like it is actually not needed
HID_Command(buf, sizeof(buf));
};
/**@}*/
private:
void enable_sixaxis() { // Command used to make the PS4 controller send out the entire output report
uint8_t buf[2];
buf[0] = 0x43; // HID BT Get_report (0x40) | Report Type (Feature 0x03)
buf[1] = 0x02; // Report ID
HID_Command(buf, 2);
};
void HID_Command(uint8_t *data, uint8_t nbytes) {
pBtd->L2CAP_Command(hci_handle, data, nbytes, control_scid[0], control_scid[1]);
};
void (*pFuncOnInit)(void); // Pointer to function called in onInit()
};
#endif

109
PS4Parser.cpp Normal file
View file

@ -0,0 +1,109 @@
/* Copyright (C) 2014 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#include "PS4Parser.h"
// To enable serial debugging see "settings.h"
//#define PRINTREPORT // Uncomment to print the report send by the PS4 Controller
bool PS4Parser::checkDpad(ButtonEnum b) {
switch (b) {
case UP:
return ps4Data.btn.dpad == DPAD_LEFT_UP || ps4Data.btn.dpad == DPAD_UP || ps4Data.btn.dpad == DPAD_UP_RIGHT;
case RIGHT:
return ps4Data.btn.dpad == DPAD_UP_RIGHT || ps4Data.btn.dpad == DPAD_RIGHT || ps4Data.btn.dpad == DPAD_RIGHT_DOWN;
case DOWN:
return ps4Data.btn.dpad == DPAD_RIGHT_DOWN || ps4Data.btn.dpad == DPAD_DOWN || ps4Data.btn.dpad == DPAD_DOWN_LEFT;
case LEFT:
return ps4Data.btn.dpad == DPAD_DOWN_LEFT || ps4Data.btn.dpad == DPAD_LEFT || ps4Data.btn.dpad == DPAD_LEFT_UP;
default:
return false;
}
}
bool PS4Parser::getButtonPress(ButtonEnum b) {
if (b <= LEFT) // Dpad
return checkDpad(b);
else
return ps4Data.btn.val & (1UL << pgm_read_byte(&PS4_BUTTONS[(uint8_t)b]));
}
bool PS4Parser::getButtonClick(ButtonEnum b) {
uint32_t mask = 1UL << pgm_read_byte(&PS4_BUTTONS[(uint8_t)b]);
bool click = buttonClickState.val & mask;
buttonClickState.val &= ~mask; // Clear "click" event
return click;
}
uint8_t PS4Parser::getAnalogButton(ButtonEnum b) {
if (b == L2) // These are the only analog buttons on the controller
return ps4Data.trigger[0];
else if (b == R2)
return ps4Data.trigger[1];
return 0;
}
uint8_t PS4Parser::getAnalogHat(AnalogHatEnum a) {
return ps4Data.hatValue[(uint8_t)a];
}
void PS4Parser::Parse(uint8_t len, uint8_t *buf) {
if (len > 0 && buf) {
#ifdef PRINTREPORT
Notify(PSTR("\r\n"), 0x80);
for (uint8_t i = 0; i < len; i++) {
D_PrintHex<uint8_t > (buf[i], 0x80);
Notify(PSTR(" "), 0x80);
}
#endif
if (buf[0] == 0x01) // Check report ID
memcpy(&ps4Data, buf + 1, min(len - 1, sizeof(ps4Data)));
else if (buf[0] == 0x11) // This report is send via Bluetooth, it has an offset of 2 compared to the USB data
memcpy(&ps4Data, buf + 3, min(len - 3, sizeof(ps4Data)));
else {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nUnknown report id: "), 0x80);
D_PrintHex<uint8_t > (buf[0], 0x80);
#endif
return;
}
if (ps4Data.btn.val != oldButtonState.val) { // Check if anything has changed
buttonClickState.val = ps4Data.btn.val & ~oldButtonState.val; // Update click state variable
oldButtonState.val = ps4Data.btn.val;
// The DPAD buttons does not set the different bits, but set a value corresponding to the buttons pressed, we will simply set the bits ourself
uint8_t newDpad = 0;
if (checkDpad(UP))
newDpad |= 1 << UP;
if (checkDpad(RIGHT))
newDpad |= 1 << RIGHT;
if (checkDpad(DOWN))
newDpad |= 1 << DOWN;
if (checkDpad(LEFT))
newDpad |= 1 << LEFT;
if (newDpad != oldDpad) {
buttonClickState.dpad = newDpad & ~oldDpad; // Override values
oldDpad = newDpad;
}
}
}
if (ps4Output.reportChanged)
sendOutputReport(&ps4Output); // Send output report
}

407
PS4Parser.h Normal file
View file

@ -0,0 +1,407 @@
/* Copyright (C) 2014 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#ifndef _ps4parser_h_
#define _ps4parser_h_
#include "Usb.h"
#include "controllerEnums.h"
/** Buttons on the controller */
const uint8_t PS4_BUTTONS[] PROGMEM = {
UP, // UP
RIGHT, // RIGHT
DOWN, // DOWN
LEFT, // LEFT
0x0C, // SHARE
0x0D, // OPTIONS
0x0E, // L3
0x0F, // R3
0x0A, // L2
0x0B, // R2
0x08, // L1
0x09, // R1
0x07, // TRIANGLE
0x06, // CIRCLE
0x05, // CROSS
0x04, // SQUARE
0x10, // PS
0x11, // TOUCHPAD
};
union PS4Buttons {
struct {
uint8_t dpad : 4;
uint8_t square : 1;
uint8_t cross : 1;
uint8_t circle : 1;
uint8_t triangle : 1;
uint8_t l1 : 1;
uint8_t r1 : 1;
uint8_t l2 : 1;
uint8_t r2 : 1;
uint8_t share : 1;
uint8_t options : 1;
uint8_t l3 : 1;
uint8_t r3 : 1;
uint8_t ps : 1;
uint8_t touchpad : 1;
uint8_t reportCounter : 6;
} __attribute__((packed));
uint32_t val : 24;
} __attribute__((packed));
struct touchpadXY {
uint8_t dummy; // I can not figure out what this data is for, it seems to change randomly, maybe a timestamp?
struct {
uint8_t counter : 7; // Increments every time a finger is touching the touchpad
uint8_t touching : 1; // The top bit is cleared if the finger is touching the touchpad
uint16_t x : 12;
uint16_t y : 12;
} __attribute__((packed)) finger[2]; // 0 = first finger, 1 = second finger
} __attribute__((packed));
struct PS4Status {
uint8_t battery : 4;
uint8_t usb : 1;
uint8_t audio : 1;
uint8_t mic : 1;
uint8_t unknown : 1; // Extension port?
} __attribute__((packed));
struct PS4Data {
/* Button and joystick values */
uint8_t hatValue[4];
PS4Buttons btn;
uint8_t trigger[2];
/* Gyro and accelerometer values */
uint8_t dummy[3]; // First two looks random, while the third one might be some kind of status - it increments once in a while
int16_t gyroY, gyroZ, gyroX;
int16_t accX, accZ, accY;
uint8_t dummy2[5];
PS4Status status;
uint8_t dummy3[3];
/* The rest is data for the touchpad */
touchpadXY xy[3]; // It looks like it sends out three coordinates each time, this might be because the microcontroller inside the PS4 controller is much faster than the Bluetooth connection.
// The last data is read from the last position in the array while the oldest measurement is from the first position.
// The first position will also keep it's value after the finger is released, while the other two will set them to zero.
// Note that if you read fast enough from the device, then only the first one will contain any data.
// The last three bytes are always: 0x00, 0x80, 0x00
} __attribute__((packed));
struct PS4Output {
uint8_t bigRumble, smallRumble; // Rumble
uint8_t r, g, b; // RGB
uint8_t flashOn, flashOff; // Time to flash bright/dark (255 = 2.5 seconds)
bool reportChanged; // The data is send when data is received from the controller
} __attribute__((packed));
enum DPADEnum {
DPAD_UP = 0x0,
DPAD_UP_RIGHT = 0x1,
DPAD_RIGHT = 0x2,
DPAD_RIGHT_DOWN = 0x3,
DPAD_DOWN = 0x4,
DPAD_DOWN_LEFT = 0x5,
DPAD_LEFT = 0x6,
DPAD_LEFT_UP = 0x7,
DPAD_OFF = 0x8,
};
/** This class parses all the data sent by the PS4 controller */
class PS4Parser {
public:
/** Constructor for the PS4Parser class. */
PS4Parser() {
Reset();
};
/** @name PS4 Controller functions */
/**
* getButtonPress(ButtonEnum b) will return true as long as the button is held down.
*
* While getButtonClick(ButtonEnum b) will only return it once.
*
* So you instance if you need to increase a variable once you would use getButtonClick(ButtonEnum b),
* but if you need to drive a robot forward you would use getButtonPress(ButtonEnum b).
* @param b ::ButtonEnum to read.
* @return getButtonPress(ButtonEnum b) will return a true as long as a button is held down, while getButtonClick(ButtonEnum b) will return true once for each button press.
*/
bool getButtonPress(ButtonEnum b);
bool getButtonClick(ButtonEnum b);
/**@}*/
/** @name PS4 Controller functions */
/**
* Used to get the analog value from button presses.
* @param b The ::ButtonEnum to read.
* The supported buttons are:
* ::UP, ::RIGHT, ::DOWN, ::LEFT, ::L1, ::L2, ::R1, ::R2,
* ::TRIANGLE, ::CIRCLE, ::CROSS, ::SQUARE, and ::T.
* @return Analog value in the range of 0-255.
*/
uint8_t getAnalogButton(ButtonEnum b);
/**
* Used to read the analog joystick.
* @param a ::LeftHatX, ::LeftHatY, ::RightHatX, and ::RightHatY.
* @return Return the analog value in the range of 0-255.
*/
uint8_t getAnalogHat(AnalogHatEnum a);
/**
* Get the x-coordinate of the touchpad. Position 0 is in the top left.
* @param finger 0 = first finger, 1 = second finger. If omitted, then 0 will be used.
* @param xyId The controller sends out three packets with the same structure.
* The third one will contain the last measure, but if you read from the controller then there is only be data in the first one.
* For that reason it will be set to 0 if the argument is omitted.
* @return Returns the x-coordinate of the finger.
*/
uint16_t getX(uint8_t finger = 0, uint8_t xyId = 0) {
return ps4Data.xy[xyId].finger[finger].x;
};
/**
* Get the y-coordinate of the touchpad. Position 0 is in the top left.
* @param finger 0 = first finger, 1 = second finger. If omitted, then 0 will be used.
* @param xyId The controller sends out three packets with the same structure.
* The third one will contain the last measure, but if you read from the controller then there is only be data in the first one.
* For that reason it will be set to 0 if the argument is omitted.
* @return Returns the y-coordinate of the finger.
*/
uint16_t getY(uint8_t finger = 0, uint8_t xyId = 0) {
return ps4Data.xy[xyId].finger[finger].y;
};
/**
* Returns whenever the user is toucing the touchpad.
* @param finger 0 = first finger, 1 = second finger. If omitted, then 0 will be used.
* @param xyId The controller sends out three packets with the same structure.
* The third one will contain the last measure, but if you read from the controller then there is only be data in the first one.
* For that reason it will be set to 0 if the argument is omitted.
* @return Returns true if the specific finger is touching the touchpad.
*/
bool isTouching(uint8_t finger = 0, uint8_t xyId = 0) {
return !(ps4Data.xy[xyId].finger[finger].touching); // The bit is cleared when a finger is touching the touchpad
};
/**
* This counter increments every time a finger touches the touchpad.
* @param finger 0 = first finger, 1 = second finger. If omitted, then 0 will be used.
* @param xyId The controller sends out three packets with the same structure.
* The third one will contain the last measure, but if you read from the controller then there is only be data in the first one.
* For that reason it will be set to 0 if the argument is omitted.
* @return Return the value of the counter, note that it is only a 7-bit value.
*/
uint8_t getTouchCounter(uint8_t finger = 0, uint8_t xyId = 0) {
return ps4Data.xy[xyId].finger[finger].counter;
};
/**
* Get the angle of the controller calculated using the accelerometer.
* @param a Either ::Pitch or ::Roll.
* @return Return the angle in the range of 0-360.
*/
double getAngle(AngleEnum a) {
if (a == Pitch)
return (atan2(ps4Data.accY, ps4Data.accZ) + PI) * RAD_TO_DEG;
else
return (atan2(ps4Data.accX, ps4Data.accZ) + PI) * RAD_TO_DEG;
};
/**
* Used to get the raw values from the 3-axis gyroscope and 3-axis accelerometer inside the PS4 controller.
* @param s The sensor to read.
* @return Returns the raw sensor reading.
*/
int16_t getSensor(SensorEnum s) {
switch(s) {
case gX:
return ps4Data.gyroX;
case gY:
return ps4Data.gyroY;
case gZ:
return ps4Data.gyroZ;
case aX:
return ps4Data.accX;
case aY:
return ps4Data.accY;
case aZ:
return ps4Data.accZ;
default:
return 0;
}
};
/**
* Return the battery level of the PS4 controller.
* @return The battery level in the range 0-15.
*/
uint8_t getBatteryLevel() {
return ps4Data.status.battery;
};
/**
* Use this to check if an USB cable is connected to the PS4 controller.
* @return Returns true if an USB cable is connected.
*/
bool getUsbStatus() {
return ps4Data.status.usb;
};
/**
* Use this to check if an audio jack cable is connected to the PS4 controller.
* @return Returns true if an audio jack cable is connected.
*/
bool getAudioStatus() {
return ps4Data.status.audio;
};
/**
* Use this to check if a microphone is connected to the PS4 controller.
* @return Returns true if a microphone is connected.
*/
bool getMicStatus() {
return ps4Data.status.mic;
};
/** Turn both rumble and the LEDs off. */
void setAllOff() {
setRumbleOff();
setLedOff();
};
/** Set rumble off. */
void setRumbleOff() {
setRumbleOn(0, 0);
};
/**
* Turn on rumble.
* @param mode Either ::RumbleHigh or ::RumbleLow.
*/
void setRumbleOn(RumbleEnum mode) {
if (mode == RumbleLow)
setRumbleOn(0x00, 0xFF);
else
setRumbleOn(0xFF, 0x00);
};
/**
* Turn on rumble.
* @param bigRumble Value for big motor.
* @param smallRumble Value for small motor.
*/
void setRumbleOn(uint8_t bigRumble, uint8_t smallRumble) {
ps4Output.bigRumble = bigRumble;
ps4Output.smallRumble = smallRumble;
ps4Output.reportChanged = true;
};
/** Turn all LEDs off. */
void setLedOff() {
setLed(0, 0, 0);
};
/**
* Use this to set the color using RGB values.
* @param r,g,b RGB value.
*/
void setLed(uint8_t r, uint8_t g, uint8_t b) {
ps4Output.r = r;
ps4Output.g = g;
ps4Output.b = b;
ps4Output.reportChanged = true;
};
/**
* Use this to set the color using the predefined colors in ::ColorsEnum.
* @param color The desired color.
*/
void setLed(ColorsEnum color) {
setLed((uint8_t)(color >> 16), (uint8_t)(color >> 8), (uint8_t)(color));
};
/**
* Set the LEDs flash time.
* @param flashOn Time to flash bright (255 = 2.5 seconds).
* @param flashOff Time to flash dark (255 = 2.5 seconds).
*/
void setLedFlash(uint8_t flashOn, uint8_t flashOff) {
ps4Output.flashOn = flashOn;
ps4Output.flashOff = flashOff;
ps4Output.reportChanged = true;
};
/**@}*/
protected:
/**
* Used to parse data sent from the PS4 controller.
* @param len Length of the data.
* @param buf Pointer to the data buffer.
*/
void Parse(uint8_t len, uint8_t *buf);
/** Used to reset the different buffers to their default values */
void Reset() {
uint8_t i;
for (i = 0; i < sizeof(ps4Data.hatValue); i++)
ps4Data.hatValue[i] = 127; // Center value
ps4Data.btn.val = 0;
oldButtonState.val = 0;
for (i = 0; i < sizeof(ps4Data.trigger); i++)
ps4Data.trigger[i] = 0;
for (i = 0; i < sizeof(ps4Data.xy)/sizeof(ps4Data.xy[0]); i++) {
for (uint8_t j = 0; j < sizeof(ps4Data.xy[0].finger)/sizeof(ps4Data.xy[0].finger[0]); j++)
ps4Data.xy[i].finger[j].touching = 1; // The bit is cleared if the finger is touching the touchpad
}
ps4Data.btn.dpad = DPAD_OFF;
oldButtonState.dpad = DPAD_OFF;
buttonClickState.dpad = 0;
oldDpad = 0;
ps4Output.bigRumble = ps4Output.smallRumble = 0;
ps4Output.r = ps4Output.g = ps4Output.b = 0;
ps4Output.flashOn = ps4Output.flashOff = 0;
ps4Output.reportChanged = false;
};
/**
* Send the output to the PS4 controller. This is implemented in PS4BT.h and PS4USB.h.
* @param output Pointer to PS4Output buffer;
*/
virtual void sendOutputReport(PS4Output *output) = 0;
private:
bool checkDpad(ButtonEnum b); // Used to check PS4 DPAD buttons
PS4Data ps4Data;
PS4Buttons oldButtonState, buttonClickState;
PS4Output ps4Output;
uint8_t oldDpad;
};
#endif

130
PS4USB.h Normal file
View file

@ -0,0 +1,130 @@
/* Copyright (C) 2014 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#ifndef _ps4usb_h_
#define _ps4usb_h_
#include "hiduniversal.h"
#include "PS4Parser.h"
#define PS4_VID 0x054C // Sony Corporation
#define PS4_PID 0x05C4 // PS4 Controller
/**
* This class implements support for the PS4 controller via USB.
* It uses the HIDUniversal class for all the USB communication.
*/
class PS4USB : public HIDUniversal, public PS4Parser {
public:
/**
* Constructor for the PS4USB class.
* @param p Pointer to the USB class instance.
*/
PS4USB(USB *p) :
HIDUniversal(p) {
PS4Parser::Reset();
};
/**
* Used to check if a PS4 controller is connected.
* @return Returns true if it is connected.
*/
bool connected() {
return HIDUniversal::isReady() && HIDUniversal::VID == PS4_VID && HIDUniversal::PID == PS4_PID;
};
/**
* Used to call your own function when the device is successfully initialized.
* @param funcOnInit Function to call.
*/
void attachOnInit(void (*funcOnInit)(void)) {
pFuncOnInit = funcOnInit;
};
protected:
/** @name HIDUniversal implementation */
/**
* Used to parse USB HID data.
* @param hid Pointer to the HID class.
* @param is_rpt_id Only used for Hubs.
* @param len The length of the incoming data.
* @param buf Pointer to the data buffer.
*/
virtual void ParseHIDData(HID *hid, bool is_rpt_id, uint8_t len, uint8_t *buf) {
if (HIDUniversal::VID == PS4_VID && HIDUniversal::PID == PS4_PID)
PS4Parser::Parse(len, buf);
};
/**
* Called when a device is successfully initialized.
* Use attachOnInit(void (*funcOnInit)(void)) to call your own function.
* This is useful for instance if you want to set the LEDs in a specific way.
*/
virtual uint8_t OnInitSuccessful() {
if (HIDUniversal::VID == PS4_VID && HIDUniversal::PID == PS4_PID) {
PS4Parser::Reset();
if (pFuncOnInit)
pFuncOnInit(); // Call the user function
else
setLed(Blue);
};
return 0;
};
/**@}*/
/** @name PS4Parser implementation */
virtual void sendOutputReport(PS4Output *output) { // Source: https://github.com/chrippa/ds4drv
uint8_t buf[32];
memset(buf, 0, sizeof(buf));
buf[0] = 0x05; // Report ID
buf[1]= 0xFF;
buf[4] = output->smallRumble; // Small Rumble
buf[5] = output->bigRumble; // Big rumble
buf[6] = output->r; // Red
buf[7] = output->g; // Green
buf[8] = output->b; // Blue
buf[9] = output->flashOn; // Time to flash bright (255 = 2.5 seconds)
buf[10] = output->flashOff; // Time to flash dark (255 = 2.5 seconds)
output->reportChanged = false;
// The PS4 console actually set the four last bytes to a CRC32 checksum, but it seems like it is actually not needed
pUsb->outTransfer(bAddress, epInfo[ hidInterfaces[0].epIndex[epInterruptOutIndex] ].epAddr, sizeof(buf), buf);
};
/**@}*/
/** @name USBDeviceConfig implementation */
/**
* Used by the USB core to check what this driver support.
* @param vid The device's VID.
* @param pid The device's PID.
* @return Returns true if the device's VID and PID matches this driver.
*/
virtual boolean VIDPIDOK(uint16_t vid, uint16_t pid) {
return (vid == PS4_VID && pid == PS4_PID);
};
/**@}*/
private:
void (*pFuncOnInit)(void); // Pointer to function called in onInit()
};
#endif

82
PSBuzz.cpp Normal file
View file

@ -0,0 +1,82 @@
/* Copyright (C) 2014 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#include "PSBuzz.h"
// To enable serial debugging see "settings.h"
//#define PRINTREPORT // Uncomment to print the report send by the PS Buzz Controllers
void PSBuzz::ParseHIDData(HID *hid, bool is_rpt_id, uint8_t len, uint8_t *buf) {
if (HIDUniversal::VID == PSBUZZ_VID && HIDUniversal::PID == PSBUZZ_PID && len > 0 && buf) {
#ifdef PRINTREPORT
Notify(PSTR("\r\n"), 0x80);
for (uint8_t i = 0; i < len; i++) {
D_PrintHex<uint8_t > (buf[i], 0x80);
Notify(PSTR(" "), 0x80);
}
#endif
memcpy(&psbuzzButtons, buf + 2, min(len - 2, sizeof(psbuzzButtons)));
if (psbuzzButtons.val != oldButtonState.val) { // Check if anything has changed
buttonClickState.val = psbuzzButtons.val & ~oldButtonState.val; // Update click state variable
oldButtonState.val = psbuzzButtons.val;
}
}
};
uint8_t PSBuzz::OnInitSuccessful() {
if (HIDUniversal::VID == PSBUZZ_VID && HIDUniversal::PID == PSBUZZ_PID) {
Reset();
if (pFuncOnInit)
pFuncOnInit(); // Call the user function
else
setLedOnAll(); // Turn the LED on, on all four controllers
};
return 0;
};
bool PSBuzz::getButtonPress(ButtonEnum b, uint8_t controller) {
return psbuzzButtons.val & (1UL << (b + 5 * controller)); // Each controller uses 5 bits, so the value is shifted 5 for each controller
};
bool PSBuzz::getButtonClick(ButtonEnum b, uint8_t controller) {
uint32_t mask = (1UL << (b + 5 * controller)); // Each controller uses 5 bits, so the value is shifted 5 for each controller
bool click = buttonClickState.val & mask;
buttonClickState.val &= ~mask; // Clear "click" event
return click;
};
// Source: http://www.developerfusion.com/article/84338/making-usb-c-friendly/ and https://github.com/torvalds/linux/blob/master/drivers/hid/hid-sony.c
void PSBuzz::setLedRaw(bool value, uint8_t controller) {
ledState[controller] = value; // Save value for next time it is called
uint8_t buf[7];
buf[0] = 0x00;
buf[1] = ledState[0] ? 0xFF : 0x00;
buf[2] = ledState[1] ? 0xFF : 0x00;
buf[3] = ledState[2] ? 0xFF : 0x00;
buf[4] = ledState[3] ? 0xFF : 0x00;
buf[5] = 0x00;
buf[6] = 0x00;
PSBuzz_Command(buf, sizeof(buf));
};
void PSBuzz::PSBuzz_Command(uint8_t *data, uint16_t nbytes) {
// bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0x00), Report Type (Output 0x02), interface (0x00), datalength, datalength, data)
pUsb->ctrlReq(bAddress, epInfo[0].epAddr, bmREQ_HIDOUT, HID_REQUEST_SET_REPORT, 0x00, 0x02, 0x00, nbytes, nbytes, data, NULL);
};

185
PSBuzz.h Normal file
View file

@ -0,0 +1,185 @@
/* Copyright (C) 2014 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#ifndef _psbuzz_h_
#define _psbuzz_h_
#include "hiduniversal.h"
#include "controllerEnums.h"
#define PSBUZZ_VID 0x054C // Sony Corporation
#define PSBUZZ_PID 0x1000 // PS Buzz Controller
/** Struct used to easily read the different buttons on the controllers */
union PSBUZZButtons {
struct {
uint8_t red : 1;
uint8_t yellow : 1;
uint8_t green : 1;
uint8_t orange : 1;
uint8_t blue : 1;
} __attribute__((packed)) btn[4];
uint32_t val : 20;
} __attribute__((packed));
/**
* This class implements support for the PS Buzz controllers via USB.
* It uses the HIDUniversal class for all the USB communication.
*/
class PSBuzz : public HIDUniversal {
public:
/**
* Constructor for the PSBuzz class.
* @param p Pointer to the USB class instance.
*/
PSBuzz(USB *p) :
HIDUniversal(p) {
Reset();
};
/**
* Used to check if a PS Buzz controller is connected.
* @return Returns true if it is connected.
*/
bool connected() {
return HIDUniversal::isReady() && HIDUniversal::VID == PSBUZZ_VID && HIDUniversal::PID == PSBUZZ_PID;
};
/**
* Used to call your own function when the device is successfully initialized.
* @param funcOnInit Function to call.
*/
void attachOnInit(void (*funcOnInit)(void)) {
pFuncOnInit = funcOnInit;
};
/** @name PS Buzzer Controller functions */
/**
* getButtonPress(ButtonEnum b) will return true as long as the button is held down.
*
* While getButtonClick(ButtonEnum b) will only return it once.
*
* So you instance if you need to increase a variable once you would use getButtonClick(ButtonEnum b),
* but if you need to drive a robot forward you would use getButtonPress(ButtonEnum b).
* @param b ::ButtonEnum to read.
* @param controller The controller to read from. Default to 0.
* @return getButtonPress(ButtonEnum b) will return a true as long as a button is held down, while getButtonClick(ButtonEnum b) will return true once for each button press.
*/
bool getButtonPress(ButtonEnum b, uint8_t controller = 0);
bool getButtonClick(ButtonEnum b, uint8_t controller = 0);
/**@}*/
/** @name PS Buzzer Controller functions */
/**
* Set LED value without using ::LEDEnum.
* @param value See: ::LEDEnum.
*/
/**
* Set LED values directly.
* @param value Used to set whenever the LED should be on or off
* @param controller The controller to control. Defaults to 0.
*/
void setLedRaw(bool value, uint8_t controller = 0);
/** Turn all LEDs off. */
void setLedOffAll() {
for (uint8_t i = 1; i < 4; i++) // Skip first as it will be set in setLedRaw
ledState[i] = false; // Just an easy way to set all four off at the same time
setLedRaw(false); // Turn the LED off, on all four controllers
};
/**
* Turn the LED off on a specific controller.
* @param controller The controller to turn off. Defaults to 0.
*/
void setLedOff(uint8_t controller = 0) {
setLedRaw(false, controller);
};
/** Turn all LEDs on. */
void setLedOnAll() {
for (uint8_t i = 1; i < 4; i++) // Skip first as it will be set in setLedRaw
ledState[i] = true; // Just an easy way to set all four off at the same time
setLedRaw(true); // Turn the LED on, on all four controllers
};
/**
* Turn the LED on on a specific controller.
* @param controller The controller to turn off. Defaults to 0.
*/
void setLedOn(uint8_t controller = 0) {
setLedRaw(true, controller);
};
/**
* Toggle the LED on a specific controller.
* @param controller The controller to turn off. Defaults to 0.
*/
void setLedToggle(uint8_t controller = 0) {
setLedRaw(!ledState[controller], controller);
};
/**@}*/
protected:
/** @name HIDUniversal implementation */
/**
* Used to parse USB HID data.
* @param hid Pointer to the HID class.
* @param is_rpt_id Only used for Hubs.
* @param len The length of the incoming data.
* @param buf Pointer to the data buffer.
*/
virtual void ParseHIDData(HID *hid, bool is_rpt_id, uint8_t len, uint8_t *buf);
/**
* Called when a device is successfully initialized.
* Use attachOnInit(void (*funcOnInit)(void)) to call your own function.
* This is useful for instance if you want to set the LEDs in a specific way.
*/
virtual uint8_t OnInitSuccessful();
/**@}*/
/** Used to reset the different buffers to their default values */
void Reset() {
psbuzzButtons.val = 0;
oldButtonState.val = 0;
buttonClickState.val = 0;
for (uint8_t i = 0; i < sizeof(ledState); i++)
ledState[i] = 0;
};
/** @name USBDeviceConfig implementation */
/**
* Used by the USB core to check what this driver support.
* @param vid The device's VID.
* @param pid The device's PID.
* @return Returns true if the device's VID and PID matches this driver.
*/
virtual boolean VIDPIDOK(uint16_t vid, uint16_t pid) {
return (vid == PSBUZZ_VID && pid == PSBUZZ_PID);
};
/**@}*/
private:
void (*pFuncOnInit)(void); // Pointer to function called in onInit()
void PSBuzz_Command(uint8_t *data, uint16_t nbytes);
PSBUZZButtons psbuzzButtons, oldButtonState, buttonClickState;
bool ledState[4];
};
#endif

113
README.md
View file

@ -22,10 +22,30 @@ For more information about the hardware see the [Hardware Manual](http://www.cir
* __Alexei Glushchenko, Circuits@Home__ - <alex-gl@mail.ru> * __Alexei Glushchenko, Circuits@Home__ - <alex-gl@mail.ru>
* Developers of the USB Core, HID, FTDI, ADK, ACM, and PL2303 libraries * Developers of the USB Core, HID, FTDI, ADK, ACM, and PL2303 libraries
* __Kristian Lauszus, TKJ Electronics__ - <kristianl@tkjelectronics.com> * __Kristian Lauszus, TKJ Electronics__ - <kristianl@tkjelectronics.com>
* Developer of the [BTD](#bluetooth-libraries), [BTHID](#bthid-library), [SPP](#spp-library), [PS3](#ps3-library), [Wii](#wii-library), and [Xbox](#xbox-library) libraries * Developer of the [BTD](#bluetooth-libraries), [BTHID](#bthid-library), [SPP](#spp-library), [PS4](#ps4-library), [PS3](#ps3-library), [Wii](#wii-library), [Xbox](#xbox-library), and [PSBuzz](#ps-buzz-library) libraries
* __Andrew Kroll__ - <xxxajk@gmail.com> * __Andrew Kroll__ - <xxxajk@gmail.com>
* Major contributor to mass storage code * Major contributor to mass storage code
# Table of Contents
* [How to include the library](#how-to-include-the-library)
* [How to use the library](#how-to-use-the-library)
* [Documentation](#documentation)
* [Enable debugging](#enable-debugging)
* [Boards](#boards)
* [Bluetooth libraries](#bluetooth-libraries)
* [BTHID library](#bthid-library)
* [SPP library](#spp-library)
* [PS4 Library](#ps4-library)
* [PS3 Library](#ps3-library)
* [Xbox Libraries](#xbox-libraries)
* [Xbox library](#xbox-library)
* [Xbox 360 Library](#xbox-360-library)
* [Wii library](#wii-library)
* [PS Buzz Library](#ps-buzz-library)
* [Interface modifications](#interface-modifications)
* [FAQ](#faq)
# How to include the library # How to include the library
First download the library by clicking on the following link: <https://github.com/felis/USB_Host_Shield_2.0/archive/master.zip>. First download the library by clicking on the following link: <https://github.com/felis/USB_Host_Shield_2.0/archive/master.zip>.
@ -57,7 +77,7 @@ Documentation for the library can be found at the following link: <http://felis.
By default serial debugging is disabled. To turn it on simply change ```ENABLE_UHS_DEBUGGING``` to 1 in [settings.h](settings.h) like so: By default serial debugging is disabled. To turn it on simply change ```ENABLE_UHS_DEBUGGING``` to 1 in [settings.h](settings.h) like so:
``` ```C++
#define ENABLE_UHS_DEBUGGING 1 #define ENABLE_UHS_DEBUGGING 1
``` ```
@ -66,8 +86,10 @@ By default serial debugging is disabled. To turn it on simply change ```ENABLE_U
Currently the following boards are supported by the library: Currently the following boards are supported by the library:
* All official Arduino AVR boards (Uno, Duemilanove, Mega, Mega 2560, Mega ADK, Leonardo etc.) * All official Arduino AVR boards (Uno, Duemilanove, Mega, Mega 2560, Mega ADK, Leonardo etc.)
* Teensy (Teensy++ 1.0, Teensy 2.0, Teensy++ 2.0, and Teensy 3.0) * Arduino Due
* Note if you are using the Teensy 3.0 you should download this SPI library as well: <https://github.com/xxxajk/spi4teensy3>. You should then add ```#include <spi4teensy3.h>``` to your .ino file. * If you are using the Arduino Due, then you must include the Arduino SPI library like so: ```#include <SPI.h>``` in your .ino file.
* Teensy (Teensy++ 1.0, Teensy 2.0, Teensy++ 2.0, and Teensy 3.x)
* Note if you are using the Teensy 3.x you should download this SPI library as well: <https://github.com/xxxajk/spi4teensy3>. You should then add ```#include <spi4teensy3.h>``` to your .ino file.
* Balanduino * Balanduino
* Sanguino * Sanguino
* Black Widdow * Black Widdow
@ -86,8 +108,8 @@ The [BTD library](BTD.cpp) is a general purpose library for an ordinary Bluetoot
This library make it easy to add support for different Bluetooth services like a PS3 or a Wii controller or SPP which is a virtual serial port via Bluetooth. This library make it easy to add support for different Bluetooth services like a PS3 or a Wii controller or SPP which is a virtual serial port via Bluetooth.
Some different examples can be found in the [example directory](examples/Bluetooth). Some different examples can be found in the [example directory](examples/Bluetooth).
The BTD library will also make it possible to use multiple services at once, the following example sketch is an example of this: The BTD library also makes it possible to use multiple services at once, the following example sketch is an example of this:
<https://github.com/felis/USB_Host_Shield_2.0/blob/master/examples/Bluetooth/PS3SPP/PS3SPP.ino>. [PS3SPP.ino](examples/Bluetooth/PS3SPP/PS3SPP.ino).
### [BTHID library](BTHID.cpp) ### [BTHID library](BTHID.cpp)
@ -95,13 +117,19 @@ The [Bluetooth HID library](BTHID.cpp) allows you to connect HID devices via Blu
Currently HID mice and keyboards are supported. Currently HID mice and keyboards are supported.
It uses the standard Boot protocol by default, but it is also able to use the Report protocol as well. You would simply have to call ```setProtocolMode()``` and then parse ```HID_RPT_PROTOCOL``` as an argument. You will then have to modify the parser for your device. See the example: <https://github.com/felis/USB_Host_Shield_2.0/blob/master/examples/Bluetooth/BTHID/BTHID.ino> for more information. It uses the standard Boot protocol by default, but it is also able to use the Report protocol as well. You would simply have to call ```setProtocolMode()``` and then parse ```HID_RPT_PROTOCOL``` as an argument. You will then have to modify the parser for your device. See the example: [BTHID.ino](examples/Bluetooth/BTHID/BTHID.ino) for more information.
The [PS4 library](#ps4-library) also uses this class to handle all Bluetooth communication.
For information see the following blog post: <http://blog.tkjelectronics.dk/2013/12/bluetooth-hid-devices-now-supported-by-the-usb-host-library/>.
### [SPP library](SPP.cpp) ### [SPP library](SPP.cpp)
SPP stands for "Serial Port Profile" and is a Bluetooth protocol that implements a virtual comport which allows you to send data back and forth from your computer/phone to your Arduino via Bluetooth. SPP stands for "Serial Port Profile" and is a Bluetooth protocol that implements a virtual comport which allows you to send data back and forth from your computer/phone to your Arduino via Bluetooth.
It has been tested successfully on Windows, Mac OS X, Linux, and Android. It has been tested successfully on Windows, Mac OS X, Linux, and Android.
Take a look at the [SPP.ino](examples/Bluetooth/SPP/SPP.ino) example for more information.
More information can be found at these blog posts: More information can be found at these blog posts:
* <http://www.circuitsathome.com/mcu/bluetooth-rfcommspp-service-support-for-usb-host-2-0-library-released> * <http://www.circuitsathome.com/mcu/bluetooth-rfcommspp-service-support-for-usb-host-2-0-library-released>
@ -110,13 +138,31 @@ More information can be found at these blog posts:
To implement the SPP protocol I used a Bluetooth sniffing tool called [PacketLogger](http://www.tkjelectronics.com/uploads/PacketLogger.zip) developed by Apple. To implement the SPP protocol I used a Bluetooth sniffing tool called [PacketLogger](http://www.tkjelectronics.com/uploads/PacketLogger.zip) developed by Apple.
It enables me to see the Bluetooth communication between my Mac and any device. It enables me to see the Bluetooth communication between my Mac and any device.
### PS4 Library
The PS4BT library is split up into the [PS4BT](PS4BT.h) and the [PS4USB](PS4USB.h) library. These allow you to use the Sony PS4 controller via Bluetooth and USB.
The [PS4BT.ino](examples/Bluetooth/PS4BT/PS4BT.ino) and [PS4USB.ino](examples/PS4USB/PS4USB.ino) examples shows how to easily read the buttons, joysticks, touchpad and IMU on the controller via Bluetooth and USB respectively. It is also possible to control the rumble and light on the controller and get the battery level.
Before you can use the PS4 controller via Bluetooth you will need to pair with it.
Simply create the PS4BT instance like so: ```PS4BT PS4(&Btd, PAIR);``` and then hold down the Share button and then hold down the PS without releasing the Share button. The PS4 controller will then start to blink rapidly indicating that it is in paring mode.
It should then automatically pair the dongle with your controller. This only have to be done once.
For information see the following blog post: <http://blog.tkjelectronics.dk/2014/01/ps4-controller-now-supported-by-the-usb-host-library/>.
Also check out this excellent Wiki by Frank Zhao about the PS4 controller: <http://eleccelerator.com/wiki/index.php?title=DualShock_4> and this Linux driver: <https://github.com/chrippa/ds4drv>.
### PS3 Library ### PS3 Library
These libraries consist of the [PS3BT](PS3BT.cpp) and [PS3USB](PS3USB.cpp). These libraries allows you to use a Dualshock 3, Navigation or a Motion controller with the USB Host Shield both via Bluetooth and USB. These libraries consist of the [PS3BT](PS3BT.cpp) and [PS3USB](PS3USB.cpp). These libraries allows you to use a Dualshock 3, Navigation or a Motion controller with the USB Host Shield both via Bluetooth and USB.
In order to use your Playstation controller via Bluetooth you have to set the Bluetooth address of the dongle internally to your PS3 Controller. This can be achieved by plugging the controller in via USB and letting the library set it automatically. In order to use your Playstation controller via Bluetooth you have to set the Bluetooth address of the dongle internally to your PS3 Controller. This can be achieved by first plugging in the Bluetooth dongle and wait a few seconds. Now plug in the controller via USB and wait until the LEDs start to flash. The library has now written the Bluetooth address of the dongle to the PS3 controller.
__Note:__ To obtain the address you have to plug in the Bluetooth dongle before connecting the controller, or alternatively you could set it in code like so: <https://github.com/felis/USB_Host_Shield_2.0/blob/master/examples/Bluetooth/PS3BT/PS3BT.ino#L15>. Finally simply plug in the Bluetooth dongle again and press PS on the PS3 controller. After a few seconds it should be connected to the dongle and ready to use.
__Note:__ You will have to plug in the Bluetooth dongle before connecting the controller, as the library needs to read the address of the dongle. Alternatively you could set it in code like so: [PS3BT.ino#L20](examples/Bluetooth/PS3BT/PS3BT.ino#L20).
For more information about the PS3 protocol see the official wiki: <https://github.com/felis/USB_Host_Shield_2.0/wiki/PS3-Information>. For more information about the PS3 protocol see the official wiki: <https://github.com/felis/USB_Host_Shield_2.0/wiki/PS3-Information>.
@ -181,26 +227,31 @@ The [Wii](Wii.cpp) library support the Wiimote, but also the Nunchuch and Motion
First you have to pair with the controller, this is done automatically by the library if you create the instance like so: First you have to pair with the controller, this is done automatically by the library if you create the instance like so:
``` ```C++
WII Wii(&Btd,PAIR); WII Wii(&Btd, PAIR);
``` ```
And then press 1 & 2 at once on the Wiimote or press sync if you are using a Wii U Pro Controller. And then press 1 & 2 at once on the Wiimote or press sync if you are using a Wii U Pro Controller.
After that you can simply create the instance like so: After that you can simply create the instance like so:
``` ```C++
WII Wii(&Btd); WII Wii(&Btd);
``` ```
Then just press any button on the Wiimote and it will then connect to the dongle. Then just press any button on the Wiimote and it will then connect to the dongle.
Take a look at the example for more information: <https://github.com/felis/USB_Host_Shield_2.0/blob/master/examples/Bluetooth/Wii/Wii.ino>. Take a look at the example for more information: [Wii.ino](examples/Bluetooth/Wii/Wii.ino).
Also take a look at the blog post: Also take a look at the blog post:
* <http://blog.tkjelectronics.dk/2012/08/wiimote-added-to-usb-host-library/> * <http://blog.tkjelectronics.dk/2012/08/wiimote-added-to-usb-host-library/>
The Wii IR camera can also be used, but you will have to activate the code for it manually as it is quite large. Simply set ```ENABLE_WII_IR_CAMERA``` to 1 in [settings.h](settings.h).
The [WiiIRCamera.ino](examples/Bluetooth/WiiIRCamera/WiiIRCamera.ino) example shows how it can be used.
All the information about the Wii controllers are from these sites: All the information about the Wii controllers are from these sites:
* <http://wiibrew.org/wiki/Wiimote> * <http://wiibrew.org/wiki/Wiimote>
@ -209,8 +260,42 @@ All the information about the Wii controllers are from these sites:
* <http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Wii_Motion_Plus> * <http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Wii_Motion_Plus>
* The old library created by _Tomoyuki Tanaka_: <https://github.com/moyuchin/WiiRemote_on_Arduino> also helped a lot. * The old library created by _Tomoyuki Tanaka_: <https://github.com/moyuchin/WiiRemote_on_Arduino> also helped a lot.
### [PS Buzz Library](PSBuzz.cpp)
This library implements support for the Playstation Buzz controllers via USB.
It is essentially just a wrapper around the [HIDUniversal](hiduniversal.cpp) which takes care of the initializing and reading of the controllers. The [PSBuzz](PSBuzz.cpp) class simply inherits this and parses the data, so it is easy for users to read the buttons and turn the big red button on the controllers on and off.
The example [PSBuzz.ino](examples/PSBuzz/PSBuzz.ino) shows how one can do this with just a few lines of code.
More information about the controller can be found at the following sites:
* http://www.developerfusion.com/article/84338/making-usb-c-friendly/
* https://github.com/torvalds/linux/blob/master/drivers/hid/hid-sony.c
# Interface modifications
The shield is using SPI for communicating with the MAX3421E USB host controller. It uses the SCK, MISO and MOSI pins via the ICSP on your board.
Furthermore it uses one pin as SS and one INT pin. These are by default located on pin 10 and 9 respectively. They can easily be reconfigured in case you need to use them for something else by cutting the jumper on the shield and then solder a wire from the pad to the new pin.
After that you need modify the following entry in [UsbCore.h](UsbCore.h):
```C++
typedef MAX3421e<P10, P9> MAX3421E;
```
For instance if you have rerouted SS to pin 7 it should read:
```C++
typedef MAX3421e<P7, P9> MAX3421E;
```
See the "Interface modifications" section in the [hardware manual](https://www.circuitsathome.com/usb-host-shield-hardware-manual) for more information.
# FAQ # FAQ
> When I plug my device into the USB connector nothing happens? > When I plug my device into the USB connector nothing happens?
Try to connect a external power supply to the Arduino - this solves the problem in most cases. * Try to connect a external power supply to the Arduino - this solves the problem in most cases.
* You can also use a powered hub between the device and the USB Host Shield. You should then include the USB hub library: ```#include <usbhub.h>``` and create the instance like so: ```USBHub Hub1(&Usb);```.

462
SPP.cpp
View file

@ -45,7 +45,7 @@ const uint8_t rfcomm_crc_table[256] PROGMEM = {/* reversed, 8-bit, poly=0x07 */
SPP::SPP(BTD *p, const char* name, const char* pin) : SPP::SPP(BTD *p, const char* name, const char* pin) :
pBtd(p) // Pointer to BTD class instance - mandatory pBtd(p) // Pointer to BTD class instance - mandatory
{ {
if (pBtd) if(pBtd)
pBtd->registerServiceClass(this); // Register it as a Bluetooth service pBtd->registerServiceClass(this); // Register it as a Bluetooth service
pBtd->btdName = name; pBtd->btdName = name;
@ -73,33 +73,34 @@ void SPP::Reset() {
void SPP::disconnect() { void SPP::disconnect() {
connected = false; connected = false;
// First the two L2CAP channels has to be disconencted and then the HCI connection // First the two L2CAP channels has to be disconnected and then the HCI connection
if (RFCOMMConnected) if(RFCOMMConnected)
pBtd->l2cap_disconnection_request(hci_handle, 0x0A, rfcomm_scid, rfcomm_dcid); pBtd->l2cap_disconnection_request(hci_handle, ++identifier, rfcomm_scid, rfcomm_dcid);
if (RFCOMMConnected && SDPConnected) if(RFCOMMConnected && SDPConnected)
delay(1); // Add delay between commands delay(1); // Add delay between commands
if (SDPConnected) if(SDPConnected)
pBtd->l2cap_disconnection_request(hci_handle, 0x0B, sdp_scid, sdp_dcid); pBtd->l2cap_disconnection_request(hci_handle, ++identifier, sdp_scid, sdp_dcid);
l2cap_sdp_state = L2CAP_DISCONNECT_RESPONSE; l2cap_sdp_state = L2CAP_DISCONNECT_RESPONSE;
} }
void SPP::ACLData(uint8_t* l2capinbuf) { void SPP::ACLData(uint8_t* l2capinbuf) {
if (!connected) { if(!connected) {
if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) { if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM && !pBtd->sdpConnectionClaimed) { if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM && !pBtd->sdpConnectionClaimed) {
pBtd->sdpConnectionClaimed = true; pBtd->sdpConnectionClaimed = true;
hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection
l2cap_sdp_state = L2CAP_SDP_WAIT; // Reset state l2cap_sdp_state = L2CAP_SDP_WAIT; // Reset state
} else if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM && !pBtd->rfcommConnectionClaimed) { } else if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM && !pBtd->rfcommConnectionClaimed) {
pBtd->rfcommConnectionClaimed = true; pBtd->rfcommConnectionClaimed = true;
hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT; // Reset state l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT; // Reset state
} }
} }
} }
if (((l2capinbuf[0] | (l2capinbuf[1] << 8)) == (hci_handle | 0x2000))) { // acl_handle_ok //if((l2capinbuf[0] | (uint16_t)l2capinbuf[1] << 8) == (hci_handle | 0x2000U)) { // acl_handle_ok
if ((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001) { //l2cap_control - Channel ID for ACL-U if(UHS_ACL_HANDLE_OK(l2capinbuf, hci_handle)) { // acl_handle_ok
if (l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) { if((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001U) { //l2cap_control - Channel ID for ACL-U
if(l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "), 0x80); Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[13], 0x80); D_PrintHex<uint8_t > (l2capinbuf[13], 0x80);
@ -114,7 +115,7 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[14], 0x80); D_PrintHex<uint8_t > (l2capinbuf[14], 0x80);
#endif #endif
} else if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
Notify(PSTR("\r\nL2CAP Connection Request - PSM: "), 0x80); Notify(PSTR("\r\nL2CAP Connection Request - PSM: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[13], 0x80); D_PrintHex<uint8_t > (l2capinbuf[13], 0x80);
@ -127,58 +128,56 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
Notify(PSTR(" Identifier: "), 0x80); Notify(PSTR(" Identifier: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[9], 0x80); D_PrintHex<uint8_t > (l2capinbuf[9], 0x80);
#endif #endif
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM) { // It doesn't matter if it receives another reqeust, since it waits for the channel to disconnect in the L2CAP_SDP_DONE state, and the l2cap_event_flag will be cleared if so if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM) { // It doesn't matter if it receives another reqeust, since it waits for the channel to disconnect in the L2CAP_SDP_DONE state, and the l2cap_event_flag will be cleared if so
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
sdp_scid[0] = l2capinbuf[14]; sdp_scid[0] = l2capinbuf[14];
sdp_scid[1] = l2capinbuf[15]; sdp_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_SDP_REQUEST; l2cap_set_flag(L2CAP_FLAG_CONNECTION_SDP_REQUEST);
} else if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM) { // ----- || ----- } else if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM) { // ----- || -----
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
rfcomm_scid[0] = l2capinbuf[14]; rfcomm_scid[0] = l2capinbuf[14];
rfcomm_scid[1] = l2capinbuf[15]; rfcomm_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST; l2cap_set_flag(L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST);
} }
} else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) { } else if(l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) {
if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success if((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) { if(l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
//Notify(PSTR("\r\nSDP Configuration Complete"), 0x80); //Notify(PSTR("\r\nSDP Configuration Complete"), 0x80);
l2cap_event_flag |= L2CAP_FLAG_CONFIG_SDP_SUCCESS; l2cap_set_flag(L2CAP_FLAG_CONFIG_SDP_SUCCESS);
} else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) { } else if(l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
//Notify(PSTR("\r\nRFCOMM Configuration Complete"), 0x80); //Notify(PSTR("\r\nRFCOMM Configuration Complete"), 0x80);
l2cap_event_flag |= L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS; l2cap_set_flag(L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS);
} }
} }
} else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) { if(l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
//Notify(PSTR("\r\nSDP Configuration Request"), 0x80); //Notify(PSTR("\r\nSDP Configuration Request"), 0x80);
identifier = l2capinbuf[9]; pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], sdp_scid);
l2cap_event_flag |= L2CAP_FLAG_CONFIG_SDP_REQUEST; } else if(l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
} else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
//Notify(PSTR("\r\nRFCOMM Configuration Request"), 0x80); //Notify(PSTR("\r\nRFCOMM Configuration Request"), 0x80);
identifier = l2capinbuf[9]; pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], rfcomm_scid);
l2cap_event_flag |= L2CAP_FLAG_CONFIG_RFCOMM_REQUEST;
} }
} else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) { if(l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
//Notify(PSTR("\r\nDisconnect Request: SDP Channel"), 0x80); //Notify(PSTR("\r\nDisconnect Request: SDP Channel"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_SDP_REQUEST; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_SDP_REQUEST);
} else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) { } else if(l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
//Notify(PSTR("\r\nDisconnect Request: RFCOMM Channel"), 0x80); //Notify(PSTR("\r\nDisconnect Request: RFCOMM Channel"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST);
} }
} else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) { } else if(l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) {
if (l2capinbuf[12] == sdp_scid[0] && l2capinbuf[13] == sdp_scid[1]) { if(l2capinbuf[12] == sdp_scid[0] && l2capinbuf[13] == sdp_scid[1]) {
//Notify(PSTR("\r\nDisconnect Response: SDP Channel"), 0x80); //Notify(PSTR("\r\nDisconnect Response: SDP Channel"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RESPONSE; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_RESPONSE);
} else if (l2capinbuf[12] == rfcomm_scid[0] && l2capinbuf[13] == rfcomm_scid[1]) { } else if(l2capinbuf[12] == rfcomm_scid[0] && l2capinbuf[13] == rfcomm_scid[1]) {
//Notify(PSTR("\r\nDisconnect Response: RFCOMM Channel"), 0x80); //Notify(PSTR("\r\nDisconnect Response: RFCOMM Channel"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RESPONSE; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_RESPONSE);
} }
} else if (l2capinbuf[8] == L2CAP_CMD_INFORMATION_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_INFORMATION_REQUEST) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nInformation request"), 0x80); Notify(PSTR("\r\nInformation request"), 0x80);
#endif #endif
@ -191,18 +190,18 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
D_PrintHex<uint8_t > (l2capinbuf[8], 0x80); D_PrintHex<uint8_t > (l2capinbuf[8], 0x80);
} }
#endif #endif
} else if (l2capinbuf[6] == sdp_dcid[0] && l2capinbuf[7] == sdp_dcid[1]) { // SDP } else if(l2capinbuf[6] == sdp_dcid[0] && l2capinbuf[7] == sdp_dcid[1]) { // SDP
if (l2capinbuf[8] == SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST_PDU) { if(l2capinbuf[8] == SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST_PDU) {
if (((l2capinbuf[16] << 8 | l2capinbuf[17]) == SERIALPORT_UUID) || ((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000 && (l2capinbuf[18] << 8 | l2capinbuf[19]) == SERIALPORT_UUID)) { // Check if it's sending the full UUID, see: https://www.bluetooth.org/Technical/AssignedNumbers/service_discovery.htm, we will just check the first four bytes if(((l2capinbuf[16] << 8 | l2capinbuf[17]) == SERIALPORT_UUID) || ((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000 && (l2capinbuf[18] << 8 | l2capinbuf[19]) == SERIALPORT_UUID)) { // Check if it's sending the full UUID, see: https://www.bluetooth.org/Technical/AssignedNumbers/service_discovery.htm, we will just check the first four bytes
if (firstMessage) { if(firstMessage) {
serialPortResponse1(l2capinbuf[9], l2capinbuf[10]); serialPortResponse1(l2capinbuf[9], l2capinbuf[10]);
firstMessage = false; firstMessage = false;
} else { } else {
serialPortResponse2(l2capinbuf[9], l2capinbuf[10]); // Serialport continuation state serialPortResponse2(l2capinbuf[9], l2capinbuf[10]); // Serialport continuation state
firstMessage = true; firstMessage = true;
} }
} else if (((l2capinbuf[16] << 8 | l2capinbuf[17]) == L2CAP_UUID) || ((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000 && (l2capinbuf[18] << 8 | l2capinbuf[19]) == L2CAP_UUID)) { } else if(((l2capinbuf[16] << 8 | l2capinbuf[17]) == L2CAP_UUID) || ((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000 && (l2capinbuf[18] << 8 | l2capinbuf[19]) == L2CAP_UUID)) {
if (firstMessage) { if(firstMessage) {
l2capResponse1(l2capinbuf[9], l2capinbuf[10]); l2capResponse1(l2capinbuf[9], l2capinbuf[10]);
firstMessage = false; firstMessage = false;
} else { } else {
@ -218,14 +217,14 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
uuid = (l2capinbuf[18] << 8 | l2capinbuf[19]); uuid = (l2capinbuf[18] << 8 | l2capinbuf[19]);
else // Short UUID else // Short UUID
uuid = (l2capinbuf[16] << 8 | l2capinbuf[17]); uuid = (l2capinbuf[16] << 8 | l2capinbuf[17]);
D_PrintHex<uint16_t> (uuid, 0x80); D_PrintHex<uint16_t > (uuid, 0x80);
Notify(PSTR("\r\nLength: "), 0x80); Notify(PSTR("\r\nLength: "), 0x80);
uint16_t length = l2capinbuf[11] << 8 | l2capinbuf[12]; uint16_t length = l2capinbuf[11] << 8 | l2capinbuf[12];
D_PrintHex<uint16_t> (length, 0x80); D_PrintHex<uint16_t > (length, 0x80);
Notify(PSTR("\r\nData: "), 0x80); Notify(PSTR("\r\nData: "), 0x80);
for (uint8_t i = 0; i < length; i++) { for(uint8_t i = 0; i < length; i++) {
D_PrintHex<uint8_t> (l2capinbuf[13+i], 0x80); D_PrintHex<uint8_t > (l2capinbuf[13 + i], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
} }
#endif #endif
@ -236,14 +235,14 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
D_PrintHex<uint8_t > (l2capinbuf[8], 0x80); D_PrintHex<uint8_t > (l2capinbuf[8], 0x80);
} }
#endif #endif
} else if (l2capinbuf[6] == rfcomm_dcid[0] && l2capinbuf[7] == rfcomm_dcid[1]) { // RFCOMM } else if(l2capinbuf[6] == rfcomm_dcid[0] && l2capinbuf[7] == rfcomm_dcid[1]) { // RFCOMM
rfcommChannel = l2capinbuf[8] & 0xF8; rfcommChannel = l2capinbuf[8] & 0xF8;
rfcommDirection = l2capinbuf[8] & 0x04; rfcommDirection = l2capinbuf[8] & 0x04;
rfcommCommandResponse = l2capinbuf[8] & 0x02; rfcommCommandResponse = l2capinbuf[8] & 0x02;
rfcommChannelType = l2capinbuf[9] & 0xEF; rfcommChannelType = l2capinbuf[9] & 0xEF;
rfcommPfBit = l2capinbuf[9] & 0x10; rfcommPfBit = l2capinbuf[9] & 0x10;
if (rfcommChannel >> 3 != 0x00) if(rfcommChannel >> 3 != 0x00)
rfcommChannelConnection = rfcommChannel; rfcommChannelConnection = rfcommChannel;
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
@ -258,7 +257,7 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
Notify(PSTR(" PF_BIT: "), 0x80); Notify(PSTR(" PF_BIT: "), 0x80);
D_PrintHex<uint8_t > (rfcommPfBit, 0x80); D_PrintHex<uint8_t > (rfcommPfBit, 0x80);
#endif #endif
if (rfcommChannelType == RFCOMM_DISC) { if(rfcommChannelType == RFCOMM_DISC) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nReceived Disconnect RFCOMM Command on channel: "), 0x80); Notify(PSTR("\r\nReceived Disconnect RFCOMM Command on channel: "), 0x80);
D_PrintHex<uint8_t > (rfcommChannel >> 3, 0x80); D_PrintHex<uint8_t > (rfcommChannel >> 3, 0x80);
@ -266,15 +265,15 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
connected = false; connected = false;
sendRfcomm(rfcommChannel, rfcommDirection, rfcommCommandResponse, RFCOMM_UA, rfcommPfBit, rfcommbuf, 0x00); // UA Command sendRfcomm(rfcommChannel, rfcommDirection, rfcommCommandResponse, RFCOMM_UA, rfcommPfBit, rfcommbuf, 0x00); // UA Command
} }
if (connected) { if(connected) {
/* Read the incoming message */ /* Read the incoming message */
if (rfcommChannelType == RFCOMM_UIH && rfcommChannel == rfcommChannelConnection) { if(rfcommChannelType == RFCOMM_UIH && rfcommChannel == rfcommChannelConnection) {
uint8_t length = l2capinbuf[10] >> 1; // Get length uint8_t length = l2capinbuf[10] >> 1; // Get length
uint8_t offset = l2capinbuf[4] - length - 4; // Check if there is credit uint8_t offset = l2capinbuf[4] - length - 4; // Check if there is credit
if (checkFcs(&l2capinbuf[8], l2capinbuf[11 + length + offset])) { if(checkFcs(&l2capinbuf[8], l2capinbuf[11 + length + offset])) {
uint8_t i = 0; uint8_t i = 0;
for (; i < length; i++) { for(; i < length; i++) {
if (rfcommAvailable + i >= sizeof (rfcommDataBuffer)) { if(rfcommAvailable + i >= sizeof (rfcommDataBuffer)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nWarning: Buffer is full!"), 0x80); Notify(PSTR("\r\nWarning: Buffer is full!"), 0x80);
#endif #endif
@ -286,7 +285,7 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
Notify(PSTR("\r\nRFCOMM Data Available: "), 0x80); Notify(PSTR("\r\nRFCOMM Data Available: "), 0x80);
Notify(rfcommAvailable, 0x80); Notify(rfcommAvailable, 0x80);
if (offset) { if(offset) {
Notify(PSTR(" - Credit: 0x"), 0x80); Notify(PSTR(" - Credit: 0x"), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[11], 0x80); D_PrintHex<uint8_t > (l2capinbuf[11], 0x80);
} }
@ -297,10 +296,10 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
Notify(PSTR("\r\nError in FCS checksum!"), 0x80); Notify(PSTR("\r\nError in FCS checksum!"), 0x80);
#endif #endif
#ifdef PRINTREPORT // Uncomment "#define PRINTREPORT" to print the report send to the Arduino via Bluetooth #ifdef PRINTREPORT // Uncomment "#define PRINTREPORT" to print the report send to the Arduino via Bluetooth
for (uint8_t i = 0; i < length; i++) for(uint8_t i = 0; i < length; i++)
Notifyc(l2capinbuf[i + 11 + offset], 0x80); Notifyc(l2capinbuf[i + 11 + offset], 0x80);
#endif #endif
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command"), 0x80); Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command"), 0x80);
#endif #endif
@ -315,7 +314,7 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
rfcommbuf[8] = l2capinbuf[19]; // MaxRatransm. rfcommbuf[8] = l2capinbuf[19]; // MaxRatransm.
rfcommbuf[9] = l2capinbuf[20]; // Number of Frames rfcommbuf[9] = l2capinbuf[20]; // Number of Frames
sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A); // UIH Remote Port Negotiation Response sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A); // UIH Remote Port Negotiation Response
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSend UIH Modem Status Response"), 0x80); Notify(PSTR("\r\nSend UIH Modem Status Response"), 0x80);
#endif #endif
@ -326,12 +325,12 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04); sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04);
} }
} else { } else {
if (rfcommChannelType == RFCOMM_SABM) { // SABM Command - this is sent twice: once for channel 0 and then for the channel to establish if(rfcommChannelType == RFCOMM_SABM) { // SABM Command - this is sent twice: once for channel 0 and then for the channel to establish
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nReceived SABM Command"), 0x80); Notify(PSTR("\r\nReceived SABM Command"), 0x80);
#endif #endif
sendRfcomm(rfcommChannel, rfcommDirection, rfcommCommandResponse, RFCOMM_UA, rfcommPfBit, rfcommbuf, 0x00); // UA Command sendRfcomm(rfcommChannel, rfcommDirection, rfcommCommandResponse, RFCOMM_UA, rfcommPfBit, rfcommbuf, 0x00); // UA Command
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_PN_CMD) { // UIH Parameter Negotiation Command } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_PN_CMD) { // UIH Parameter Negotiation Command
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nReceived UIH Parameter Negotiation Command"), 0x80); Notify(PSTR("\r\nReceived UIH Parameter Negotiation Command"), 0x80);
#endif #endif
@ -346,7 +345,7 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
rfcommbuf[8] = 0x00; // MaxRatransm. rfcommbuf[8] = 0x00; // MaxRatransm.
rfcommbuf[9] = 0x00; // Number of Frames rfcommbuf[9] = 0x00; // Number of Frames
sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A); sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A);
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSend UIH Modem Status Response"), 0x80); Notify(PSTR("\r\nSend UIH Modem Status Response"), 0x80);
#endif #endif
@ -366,8 +365,8 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
rfcommbuf[3] = 0x8D; // Can receive frames (YES), Ready to Communicate (YES), Ready to Receive (YES), Incomig Call (NO), Data is Value (YES) rfcommbuf[3] = 0x8D; // Can receive frames (YES), Ready to Communicate (YES), Ready to Receive (YES), Incomig Call (NO), Data is Value (YES)
sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04); sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04);
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_RSP) { // UIH Modem Status Response } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_RSP) { // UIH Modem Status Response
if (!creditSent) { if(!creditSent) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSend UIH Command with credit"), 0x80); Notify(PSTR("\r\nSend UIH Command with credit"), 0x80);
#endif #endif
@ -376,11 +375,11 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
timer = millis(); timer = millis();
waitForLastCommand = true; waitForLastCommand = true;
} }
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[10] == 0x01) { // UIH Command with credit } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[10] == 0x01) { // UIH Command with credit
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nReceived UIH Command with credit"), 0x80); Notify(PSTR("\r\nReceived UIH Command with credit"), 0x80);
#endif #endif
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command"), 0x80); Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command"), 0x80);
#endif #endif
@ -403,8 +402,8 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
connected = true; // The RFCOMM channel is now established connected = true; // The RFCOMM channel is now established
sppIndex = 0; sppIndex = 0;
} }
#ifdef DEBUG_USB_HOST #ifdef EXTRADEBUG
else if (rfcommChannelType != RFCOMM_DISC) { else if(rfcommChannelType != RFCOMM_DISC) {
Notify(PSTR("\r\nUnsupported RFCOMM Data - ChannelType: "), 0x80); Notify(PSTR("\r\nUnsupported RFCOMM Data - ChannelType: "), 0x80);
D_PrintHex<uint8_t > (rfcommChannelType, 0x80); D_PrintHex<uint8_t > (rfcommChannelType, 0x80);
Notify(PSTR(" Command: "), 0x80); Notify(PSTR(" Command: "), 0x80);
@ -427,7 +426,7 @@ void SPP::ACLData(uint8_t* l2capinbuf) {
} }
void SPP::Run() { void SPP::Run() {
if (waitForLastCommand && (millis() - timer) > 100) { // We will only wait 100ms and see if the UIH Remote Port Negotiation Command is send, as some deviced don't send it if(waitForLastCommand && (millis() - timer) > 100) { // We will only wait 100ms and see if the UIH Remote Port Negotiation Command is send, as some deviced don't send it
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nRFCOMM Connection is now established - Automatic\r\n"), 0x80); Notify(PSTR("\r\nRFCOMM Connection is now established - Automatic\r\n"), 0x80);
#endif #endif
@ -440,10 +439,10 @@ void SPP::Run() {
} }
void SPP::SDP_task() { void SPP::SDP_task() {
switch (l2cap_sdp_state) { switch(l2cap_sdp_state) {
case L2CAP_SDP_WAIT: case L2CAP_SDP_WAIT:
if (l2cap_connection_request_sdp_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONNECTION_SDP_REQUEST)) {
l2cap_event_flag &= ~L2CAP_FLAG_CONNECTION_SDP_REQUEST; // Clear flag l2cap_clear_flag(L2CAP_FLAG_CONNECTION_SDP_REQUEST); // Clear flag
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSDP Incoming Connection Request"), 0x80); Notify(PSTR("\r\nSDP Incoming Connection Request"), 0x80);
#endif #endif
@ -453,64 +452,46 @@ void SPP::SDP_task() {
identifier++; identifier++;
delay(1); delay(1);
pBtd->l2cap_config_request(hci_handle, identifier, sdp_scid); pBtd->l2cap_config_request(hci_handle, identifier, sdp_scid);
l2cap_sdp_state = L2CAP_SDP_REQUEST;
}
break;
case L2CAP_SDP_REQUEST:
if (l2cap_config_request_sdp_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_CONFIG_SDP_REQUEST; // Clear flag
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSDP Configuration Request"), 0x80);
#endif
pBtd->l2cap_config_response(hci_handle, identifier, sdp_scid);
l2cap_sdp_state = L2CAP_SDP_SUCCESS; l2cap_sdp_state = L2CAP_SDP_SUCCESS;
} } else if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_SDP_REQUEST)) {
break; l2cap_clear_flag(L2CAP_FLAG_DISCONNECT_SDP_REQUEST); // Clear flag
case L2CAP_SDP_SUCCESS:
if (l2cap_config_success_sdp_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_CONFIG_SDP_SUCCESS; // Clear flag
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSDP Successfully Configured"), 0x80);
#endif
firstMessage = true; // Reset bool
SDPConnected = true;
l2cap_sdp_state = L2CAP_SDP_DONE;
}
break;
case L2CAP_SDP_DONE:
if (l2cap_disconnect_request_sdp_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_DISCONNECT_SDP_REQUEST; // Clear flag
SDPConnected = false; SDPConnected = false;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnected SDP Channel"), 0x80); Notify(PSTR("\r\nDisconnected SDP Channel"), 0x80);
#endif #endif
pBtd->l2cap_disconnection_response(hci_handle, identifier, sdp_dcid, sdp_scid); pBtd->l2cap_disconnection_response(hci_handle, identifier, sdp_dcid, sdp_scid);
l2cap_sdp_state = L2CAP_SDP_WAIT; }
} else if (l2cap_connection_request_sdp_flag)
l2cap_rfcomm_state = L2CAP_SDP_WAIT;
break; break;
case L2CAP_SDP_SUCCESS:
if(l2cap_check_flag(L2CAP_FLAG_CONFIG_SDP_SUCCESS)) {
l2cap_clear_flag(L2CAP_FLAG_CONFIG_SDP_SUCCESS); // Clear flag
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSDP Successfully Configured"), 0x80);
#endif
firstMessage = true; // Reset bool
SDPConnected = true;
l2cap_sdp_state = L2CAP_SDP_WAIT;
}
break;
case L2CAP_DISCONNECT_RESPONSE: // This is for both disconnection response from the RFCOMM and SDP channel if they were connected case L2CAP_DISCONNECT_RESPONSE: // This is for both disconnection response from the RFCOMM and SDP channel if they were connected
if (l2cap_disconnect_response_flag) { if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_RESPONSE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnected L2CAP Connection"), 0x80); Notify(PSTR("\r\nDisconnected L2CAP Connection"), 0x80);
#endif #endif
RFCOMMConnected = false;
SDPConnected = false;
pBtd->hci_disconnect(hci_handle); pBtd->hci_disconnect(hci_handle);
hci_handle = -1; // Reset handle hci_handle = -1; // Reset handle
l2cap_event_flag = 0; // Reset flags Reset();
l2cap_sdp_state = L2CAP_SDP_WAIT;
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
} }
break; break;
} }
} }
void SPP::RFCOMM_task() { void SPP::RFCOMM_task() {
switch (l2cap_rfcomm_state) { switch(l2cap_rfcomm_state) {
case L2CAP_RFCOMM_WAIT: case L2CAP_RFCOMM_WAIT:
if (l2cap_connection_request_rfcomm_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST)) {
l2cap_event_flag &= ~L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST; // Clear flag l2cap_clear_flag(L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST); // Clear flag
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nRFCOMM Incoming Connection Request"), 0x80); Notify(PSTR("\r\nRFCOMM Incoming Connection Request"), 0x80);
#endif #endif
@ -520,43 +501,28 @@ void SPP::RFCOMM_task() {
identifier++; identifier++;
delay(1); delay(1);
pBtd->l2cap_config_request(hci_handle, identifier, rfcomm_scid); pBtd->l2cap_config_request(hci_handle, identifier, rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_REQUEST;
}
break;
case L2CAP_RFCOMM_REQUEST:
if (l2cap_config_request_rfcomm_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_CONFIG_RFCOMM_REQUEST; // Clear flag
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nRFCOMM Configuration Request"), 0x80);
#endif
pBtd->l2cap_config_response(hci_handle, identifier, rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_SUCCESS; l2cap_rfcomm_state = L2CAP_RFCOMM_SUCCESS;
} } else if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST)) {
break; l2cap_clear_flag(L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST); // Clear flag
case L2CAP_RFCOMM_SUCCESS:
if (l2cap_config_success_rfcomm_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS; // Clear flag
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nRFCOMM Successfully Configured"), 0x80);
#endif
rfcommAvailable = 0; // Reset number of bytes available
bytesRead = 0; // Reset number of bytes received
RFCOMMConnected = true;
l2cap_rfcomm_state = L2CAP_RFCOMM_DONE;
}
break;
case L2CAP_RFCOMM_DONE:
if (l2cap_disconnect_request_rfcomm_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST; // Clear flag
RFCOMMConnected = false; RFCOMMConnected = false;
connected = false; connected = false;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnected RFCOMM Channel"), 0x80); Notify(PSTR("\r\nDisconnected RFCOMM Channel"), 0x80);
#endif #endif
pBtd->l2cap_disconnection_response(hci_handle, identifier, rfcomm_dcid, rfcomm_scid); pBtd->l2cap_disconnection_response(hci_handle, identifier, rfcomm_dcid, rfcomm_scid);
}
break;
case L2CAP_RFCOMM_SUCCESS:
if(l2cap_check_flag(L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS)) {
l2cap_clear_flag(L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS); // Clear flag
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nRFCOMM Successfully Configured"), 0x80);
#endif
rfcommAvailable = 0; // Reset number of bytes available
bytesRead = 0; // Reset number of bytes received
RFCOMMConnected = true;
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT; l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
} else if (l2cap_connection_request_rfcomm_flag) }
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
break; break;
} }
} }
@ -572,15 +538,15 @@ void SPP::serviceNotSupported(uint8_t transactionIDHigh, uint8_t transactionIDLo
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU; l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh; l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow; l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length l2capoutbuf[3] = 0x00; // MSB Parameter Length
l2capoutbuf[4] = 0x05; // Parameter Length l2capoutbuf[4] = 0x05; // LSB Parameter Length = 5
l2capoutbuf[5] = 0x00; // AttributeListsByteCount l2capoutbuf[5] = 0x00; // MSB AttributeListsByteCount
l2capoutbuf[6] = 0x02; // AttributeListsByteCount l2capoutbuf[6] = 0x02; // LSB AttributeListsByteCount = 2
/* Attribute ID/Value Sequence: */ /* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x35; l2capoutbuf[7] = 0x35; // Data element sequence - length in next byte
l2capoutbuf[8] = 0x00; l2capoutbuf[8] = 0x00; // Length = 0
l2capoutbuf[9] = 0x00; l2capoutbuf[9] = 0x00; // No continuation state
SDP_Command(l2capoutbuf, 10); SDP_Command(l2capoutbuf, 10);
} }
@ -589,56 +555,60 @@ void SPP::serialPortResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLo
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU; l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh; l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow; l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length l2capoutbuf[3] = 0x00; // MSB Parameter Length
l2capoutbuf[4] = 0x2B; // Parameter Length l2capoutbuf[4] = 0x2B; // LSB Parameter Length = 43
l2capoutbuf[5] = 0x00; // AttributeListsByteCount l2capoutbuf[5] = 0x00; // MSB AttributeListsByteCount
l2capoutbuf[6] = 0x26; // AttributeListsByteCount l2capoutbuf[6] = 0x26; // LSB AttributeListsByteCount = 38
/* Attribute ID/Value Sequence: */ /* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x36; l2capoutbuf[7] = 0x36; // Data element sequence - length in next two bytes
l2capoutbuf[8] = 0x00; l2capoutbuf[8] = 0x00; // MSB Length
l2capoutbuf[9] = 0x3C; l2capoutbuf[9] = 0x3C; // LSB Length = 60
l2capoutbuf[10] = 0x36;
l2capoutbuf[11] = 0x00;
l2capoutbuf[12] = 0x39; l2capoutbuf[10] = 0x36; // Data element sequence - length in next two bytes
l2capoutbuf[13] = 0x09; l2capoutbuf[11] = 0x00; // MSB Length
l2capoutbuf[14] = 0x00; l2capoutbuf[12] = 0x39; // LSB Length = 57
l2capoutbuf[15] = 0x00;
l2capoutbuf[16] = 0x0A; l2capoutbuf[13] = 0x09; // Unsigned Integer - length 2 bytes
l2capoutbuf[17] = 0x00; l2capoutbuf[14] = 0x00; // MSB ServiceRecordHandle
l2capoutbuf[15] = 0x00; // LSB ServiceRecordHandle
l2capoutbuf[16] = 0x0A; // Unsigned int - length 4 bytes
l2capoutbuf[17] = 0x00; // ServiceRecordHandle value - TODO: Is this related to HCI_Handle?
l2capoutbuf[18] = 0x01; l2capoutbuf[18] = 0x01;
l2capoutbuf[19] = 0x00; l2capoutbuf[19] = 0x00;
l2capoutbuf[20] = 0x06; l2capoutbuf[20] = 0x06;
l2capoutbuf[21] = 0x09;
l2capoutbuf[22] = 0x00;
l2capoutbuf[23] = 0x01;
l2capoutbuf[24] = 0x35;
l2capoutbuf[25] = 0x03;
l2capoutbuf[26] = 0x19;
l2capoutbuf[27] = 0x11;
l2capoutbuf[28] = 0x01; l2capoutbuf[21] = 0x09; // Unsigned Integer - length 2 bytes
l2capoutbuf[29] = 0x09; l2capoutbuf[22] = 0x00; // MSB ServiceClassIDList
l2capoutbuf[30] = 0x00; l2capoutbuf[23] = 0x01; // LSB ServiceClassIDList
l2capoutbuf[31] = 0x04; l2capoutbuf[24] = 0x35; // Data element sequence - length in next byte
l2capoutbuf[32] = 0x35; l2capoutbuf[25] = 0x03; // Length = 3
l2capoutbuf[33] = 0x0C; l2capoutbuf[26] = 0x19; // UUID (universally unique identifier) - length = 2 bytes
l2capoutbuf[34] = 0x35; l2capoutbuf[27] = 0x11; // MSB SerialPort
l2capoutbuf[35] = 0x03; l2capoutbuf[28] = 0x01; // LSB SerialPort
l2capoutbuf[36] = 0x19;
l2capoutbuf[37] = 0x01;
l2capoutbuf[38] = 0x00;
l2capoutbuf[39] = 0x35;
l2capoutbuf[40] = 0x05;
l2capoutbuf[41] = 0x19;
l2capoutbuf[42] = 0x00;
l2capoutbuf[43] = 0x03;
l2capoutbuf[44] = 0x08; l2capoutbuf[29] = 0x09; // Unsigned Integer - length 2 bytes
l2capoutbuf[45] = 0x02; // Two extra bytes l2capoutbuf[30] = 0x00; // MSB ProtocolDescriptorList
l2capoutbuf[46] = 0x00; // 25 (0x19) more bytes to come l2capoutbuf[31] = 0x04; // LSB ProtocolDescriptorList
l2capoutbuf[47] = 0x19; l2capoutbuf[32] = 0x35; // Data element sequence - length in next byte
l2capoutbuf[33] = 0x0C; // Length = 12
l2capoutbuf[34] = 0x35; // Data element sequence - length in next byte
l2capoutbuf[35] = 0x03; // Length = 3
l2capoutbuf[36] = 0x19; // UUID (universally unique identifier) - length = 2 bytes
l2capoutbuf[37] = 0x01; // MSB L2CAP
l2capoutbuf[38] = 0x00; // LSB L2CAP
l2capoutbuf[39] = 0x35; // Data element sequence - length in next byte
l2capoutbuf[40] = 0x05; // Length = 5
l2capoutbuf[41] = 0x19; // UUID (universally unique identifier) - length = 2 bytes
l2capoutbuf[42] = 0x00; // MSB RFCOMM
l2capoutbuf[43] = 0x03; // LSB RFCOMM
l2capoutbuf[44] = 0x08; // Unsigned Integer - length 1 byte
l2capoutbuf[45] = 0x02; // ContinuationState - Two more bytes
l2capoutbuf[46] = 0x00; // MSB length
l2capoutbuf[47] = 0x19; // LSB length = 25 more bytes to come
SDP_Command(l2capoutbuf, 48); SDP_Command(l2capoutbuf, 48);
} }
@ -647,40 +617,49 @@ void SPP::serialPortResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLo
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU; l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh; l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow; l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length l2capoutbuf[3] = 0x00; // MSB Parameter Length
l2capoutbuf[4] = 0x1C; // Parameter Length l2capoutbuf[4] = 0x1C; // LSB Parameter Length = 28
l2capoutbuf[5] = 0x00; // AttributeListsByteCount l2capoutbuf[5] = 0x00; // MSB AttributeListsByteCount
l2capoutbuf[6] = 0x19; // AttributeListsByteCount l2capoutbuf[6] = 0x19; // LSB AttributeListsByteCount = 25
/* Attribute ID/Value Sequence: */ /* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x01; l2capoutbuf[7] = 0x01; // Channel 1 - TODO: Try different values, so multiple servers can be used at once
l2capoutbuf[8] = 0x09;
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x06;
l2capoutbuf[11] = 0x35;
l2capoutbuf[12] = 0x09; l2capoutbuf[8] = 0x09; // Unsigned Integer - length 2 bytes
l2capoutbuf[13] = 0x09; l2capoutbuf[9] = 0x00; // MSB LanguageBaseAttributeIDList
l2capoutbuf[14] = 0x65; l2capoutbuf[10] = 0x06; // LSB LanguageBaseAttributeIDList
l2capoutbuf[15] = 0x6E; l2capoutbuf[11] = 0x35; // Data element sequence - length in next byte
l2capoutbuf[16] = 0x09; l2capoutbuf[12] = 0x09; // Length = 9
l2capoutbuf[17] = 0x00;
l2capoutbuf[18] = 0x6A; // Identifier representing the natural language = en = English - see: "ISO 639:1988"
l2capoutbuf[19] = 0x09; l2capoutbuf[13] = 0x09; // Unsigned Integer - length 2 bytes
l2capoutbuf[14] = 0x65; // 'e'
l2capoutbuf[15] = 0x6E; // 'n'
// "The second element of each triplet contains an identifier that specifies a character encoding used for the language"
// Encoding is set to 106 (UTF-8) - see: http://www.iana.org/assignments/character-sets/character-sets.xhtml
l2capoutbuf[16] = 0x09; // Unsigned Integer - length 2 bytes
l2capoutbuf[17] = 0x00; // MSB of character encoding
l2capoutbuf[18] = 0x6A; // LSB of character encoding (106)
// Attribute ID that serves as the base attribute ID for the natural language in the service record
// "To facilitate the retrieval of human-readable universal attributes in a principal language, the base attribute ID value for the primary language supported by a service record shall be 0x0100"
l2capoutbuf[19] = 0x09; // Unsigned Integer - length 2 bytes
l2capoutbuf[20] = 0x01; l2capoutbuf[20] = 0x01;
l2capoutbuf[21] = 0x00; l2capoutbuf[21] = 0x00;
l2capoutbuf[22] = 0x09;
l2capoutbuf[23] = 0x01;
l2capoutbuf[24] = 0x00;
l2capoutbuf[25] = 0x25;
l2capoutbuf[22] = 0x09; // Unsigned Integer - length 2 bytes
l2capoutbuf[23] = 0x01; // MSB ServiceDescription
l2capoutbuf[24] = 0x00; // LSB ServiceDescription
l2capoutbuf[25] = 0x25; // Text string - length in next byte
l2capoutbuf[26] = 0x05; // Name length l2capoutbuf[26] = 0x05; // Name length
l2capoutbuf[27] = 'T'; l2capoutbuf[27] = 'T';
l2capoutbuf[28] = 'K'; l2capoutbuf[28] = 'K';
l2capoutbuf[29] = 'J'; l2capoutbuf[29] = 'J';
l2capoutbuf[30] = 'S'; l2capoutbuf[30] = 'S';
l2capoutbuf[31] = 'P'; l2capoutbuf[31] = 'P';
l2capoutbuf[32] = 0x00; // No more data l2capoutbuf[32] = 0x00; // No continuation state
SDP_Command(l2capoutbuf, 33); SDP_Command(l2capoutbuf, 33);
} }
@ -705,12 +684,12 @@ void SPP::sendRfcomm(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t cha
l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control
l2capoutbuf[2] = length << 1 | 0x01; // Length and format (always 0x01 bytes format) l2capoutbuf[2] = length << 1 | 0x01; // Length and format (always 0x01 bytes format)
uint8_t i = 0; uint8_t i = 0;
for (; i < length; i++) for(; i < length; i++)
l2capoutbuf[i + 3] = data[i]; l2capoutbuf[i + 3] = data[i];
l2capoutbuf[i + 3] = calcFcs(l2capoutbuf); l2capoutbuf[i + 3] = calcFcs(l2capoutbuf);
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
Notify(PSTR(" - RFCOMM Data: "), 0x80); Notify(PSTR(" - RFCOMM Data: "), 0x80);
for (i = 0; i < length + 4; i++) { for(i = 0; i < length + 4; i++) {
D_PrintHex<uint8_t > (l2capoutbuf[i], 0x80); D_PrintHex<uint8_t > (l2capoutbuf[i], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
} }
@ -726,7 +705,7 @@ void SPP::sendRfcommCredit(uint8_t channel, uint8_t direction, uint8_t CR, uint8
l2capoutbuf[4] = calcFcs(l2capoutbuf); l2capoutbuf[4] = calcFcs(l2capoutbuf);
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
Notify(PSTR(" - RFCOMM Credit Data: "), 0x80); Notify(PSTR(" - RFCOMM Credit Data: "), 0x80);
for (uint8_t i = 0; i < 5; i++) { for(uint8_t i = 0; i < 5; i++) {
D_PrintHex<uint8_t > (l2capoutbuf[i], 0x80); D_PrintHex<uint8_t > (l2capoutbuf[i], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
} }
@ -741,36 +720,53 @@ uint8_t SPP::crc(uint8_t *data) {
/* Calculate FCS */ /* Calculate FCS */
uint8_t SPP::calcFcs(uint8_t *data) { uint8_t SPP::calcFcs(uint8_t *data) {
if ((data[1] & 0xEF) == RFCOMM_UIH) uint8_t temp = crc(data);
return (0xFF - crc(data)); // FCS on 2 bytes if((data[1] & 0xEF) == RFCOMM_UIH)
return (0xFF - temp); // FCS on 2 bytes
else else
return (0xFF - pgm_read_byte(&rfcomm_crc_table[crc(data) ^ data[2]])); // FCS on 3 bytes return (0xFF - pgm_read_byte(&rfcomm_crc_table[temp ^ data[2]])); // FCS on 3 bytes
} }
/* Check FCS */ /* Check FCS */
bool SPP::checkFcs(uint8_t *data, uint8_t fcs) { bool SPP::checkFcs(uint8_t *data, uint8_t fcs) {
uint8_t temp = crc(data); uint8_t temp = crc(data);
if ((data[1] & 0xEF) != RFCOMM_UIH) if((data[1] & 0xEF) != RFCOMM_UIH)
temp = pgm_read_byte(&rfcomm_crc_table[temp ^ data[2]]); // FCS on 3 bytes temp = pgm_read_byte(&rfcomm_crc_table[temp ^ data[2]]); // FCS on 3 bytes
return (pgm_read_byte(&rfcomm_crc_table[temp ^ fcs]) == 0xCF); return (pgm_read_byte(&rfcomm_crc_table[temp ^ fcs]) == 0xCF);
} }
/* Serial commands */ /* Serial commands */
#if defined(ARDUINO) && ARDUINO >=100
size_t SPP::write(uint8_t data) { size_t SPP::write(uint8_t data) {
return write(&data,1); return write(&data, 1);
} }
#else
void SPP::write(uint8_t data) {
write(&data, 1);
}
#endif
#if defined(ARDUINO) && ARDUINO >=100
size_t SPP::write(const uint8_t *data, size_t size) { size_t SPP::write(const uint8_t *data, size_t size) {
#else
void SPP::write(const uint8_t *data, size_t size) {
#endif
for(uint8_t i = 0; i < size; i++) { for(uint8_t i = 0; i < size; i++) {
if(sppIndex >= sizeof(sppOutputBuffer)/sizeof(sppOutputBuffer[0])) if(sppIndex >= sizeof (sppOutputBuffer) / sizeof (sppOutputBuffer[0]))
send(); // Send the current data in the buffer send(); // Send the current data in the buffer
sppOutputBuffer[sppIndex++] = data[i]; // All the bytes are put into a buffer and then send using the send() function sppOutputBuffer[sppIndex++] = data[i]; // All the bytes are put into a buffer and then send using the send() function
} }
#if defined(ARDUINO) && ARDUINO >=100
return size; return size;
#endif
} }
void SPP::send() { void SPP::send() {
if (!connected || !sppIndex) if(!connected || !sppIndex)
return; return;
uint8_t length; // This is the length of the string we are sending uint8_t length; // This is the length of the string we are sending
uint8_t offset = 0; // This is used to keep track of where we are in the string uint8_t offset = 0; // This is used to keep track of where we are in the string
@ -778,15 +774,15 @@ void SPP::send() {
l2capoutbuf[0] = rfcommChannelConnection | 0 | 0 | extendAddress; // RFCOMM Address l2capoutbuf[0] = rfcommChannelConnection | 0 | 0 | extendAddress; // RFCOMM Address
l2capoutbuf[1] = RFCOMM_UIH; // RFCOMM Control l2capoutbuf[1] = RFCOMM_UIH; // RFCOMM Control
while (sppIndex) { // We will run this while loop until this variable is 0 while(sppIndex) { // We will run this while loop until this variable is 0
if (sppIndex > (sizeof (l2capoutbuf) - 4)) // Check if the string is larger than the outgoing buffer if(sppIndex > (sizeof (l2capoutbuf) - 4)) // Check if the string is larger than the outgoing buffer
length = sizeof (l2capoutbuf) - 4; length = sizeof (l2capoutbuf) - 4;
else else
length = sppIndex; length = sppIndex;
l2capoutbuf[2] = length << 1 | 1; // Length l2capoutbuf[2] = length << 1 | 1; // Length
uint8_t i = 0; uint8_t i = 0;
for (; i < length; i++) for(; i < length; i++)
l2capoutbuf[i + 3] = sppOutputBuffer[i + offset]; l2capoutbuf[i + 3] = sppOutputBuffer[i + offset];
l2capoutbuf[i + 3] = calcFcs(l2capoutbuf); // Calculate checksum l2capoutbuf[i + 3] = calcFcs(l2capoutbuf); // Calculate checksum
@ -806,20 +802,20 @@ void SPP::discard(void) {
} }
int SPP::peek(void) { int SPP::peek(void) {
if (rfcommAvailable == 0) // Don't read if there is nothing in the buffer if(rfcommAvailable == 0) // Don't read if there is nothing in the buffer
return -1; return -1;
return rfcommDataBuffer[0]; return rfcommDataBuffer[0];
} }
int SPP::read(void) { int SPP::read(void) {
if (rfcommAvailable == 0) // Don't read if there is nothing in the buffer if(rfcommAvailable == 0) // Don't read if there is nothing in the buffer
return -1; return -1;
uint8_t output = rfcommDataBuffer[0]; uint8_t output = rfcommDataBuffer[0];
for (uint8_t i = 1; i < rfcommAvailable; i++) for(uint8_t i = 1; i < rfcommAvailable; i++)
rfcommDataBuffer[i - 1] = rfcommDataBuffer[i]; // Shift the buffer one left rfcommDataBuffer[i - 1] = rfcommDataBuffer[i]; // Shift the buffer one left
rfcommAvailable--; rfcommAvailable--;
bytesRead++; bytesRead++;
if (bytesRead > (sizeof (rfcommDataBuffer) - 5)) { // We will send the command just before it runs out of credit if(bytesRead > (sizeof (rfcommDataBuffer) - 5)) { // We will send the command just before it runs out of credit
bytesRead = 0; bytesRead = 0;
sendRfcommCredit(rfcommChannelConnection, rfcommDirection, 0, RFCOMM_UIH, 0x10, sizeof (rfcommDataBuffer)); // Send more credit sendRfcommCredit(rfcommChannelConnection, rfcommDirection, 0, RFCOMM_UIH, 0x10, sizeof (rfcommDataBuffer)); // Send more credit
#ifdef EXTRADEBUG #ifdef EXTRADEBUG

58
SPP.h
View file

@ -20,41 +20,6 @@
#include "BTD.h" #include "BTD.h"
/* Bluetooth L2CAP states for SDP_task() */
#define L2CAP_SDP_WAIT 0
#define L2CAP_SDP_REQUEST 1
#define L2CAP_SDP_SUCCESS 2
#define L2CAP_SDP_DONE 3
#define L2CAP_DISCONNECT_RESPONSE 4
/* Bluetooth L2CAP states for RFCOMM_task() */
#define L2CAP_RFCOMM_WAIT 0
#define L2CAP_RFCOMM_REQUEST 1
#define L2CAP_RFCOMM_SUCCESS 2
#define L2CAP_RFCOMM_DONE 3
/* L2CAP event flags */
#define L2CAP_FLAG_CONNECTION_SDP_REQUEST 0x001
#define L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST 0x002
#define L2CAP_FLAG_CONFIG_SDP_REQUEST 0x004
#define L2CAP_FLAG_CONFIG_RFCOMM_REQUEST 0x008
#define L2CAP_FLAG_CONFIG_SDP_SUCCESS 0x010
#define L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS 0x020
#define L2CAP_FLAG_DISCONNECT_SDP_REQUEST 0x040
#define L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST 0x080
#define L2CAP_FLAG_DISCONNECT_RESPONSE 0x100
/* Macros for L2CAP event flag tests */
#define l2cap_connection_request_sdp_flag (l2cap_event_flag & L2CAP_FLAG_CONNECTION_SDP_REQUEST)
#define l2cap_connection_request_rfcomm_flag (l2cap_event_flag & L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST)
#define l2cap_config_request_sdp_flag (l2cap_event_flag & L2CAP_FLAG_CONFIG_SDP_REQUEST)
#define l2cap_config_request_rfcomm_flag (l2cap_event_flag & L2CAP_FLAG_CONFIG_RFCOMM_REQUEST)
#define l2cap_config_success_sdp_flag (l2cap_event_flag & L2CAP_FLAG_CONFIG_SDP_SUCCESS)
#define l2cap_config_success_rfcomm_flag (l2cap_event_flag & L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS)
#define l2cap_disconnect_request_sdp_flag (l2cap_event_flag & L2CAP_FLAG_DISCONNECT_SDP_REQUEST)
#define l2cap_disconnect_request_rfcomm_flag (l2cap_event_flag & L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST)
#define l2cap_disconnect_response_flag (l2cap_event_flag & L2CAP_FLAG_DISCONNECT_RESPONSE)
/* Used for SDP */ /* Used for SDP */
#define SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST_PDU 0x06 // See the RFCOMM specs #define SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST_PDU 0x06 // See the RFCOMM specs
#define SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU 0x07 // See the RFCOMM specs #define SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU 0x07 // See the RFCOMM specs
@ -91,7 +56,7 @@
/** /**
* This BluetoothService class implements the Serial Port Protocol (SPP). * This BluetoothService class implements the Serial Port Protocol (SPP).
* It inherits the Arduino Stream class. This allows it to use all the standard Arduino print functions. * It inherits the Arduino Stream class. This allows it to use all the standard Arduino print and stream functions.
*/ */
class SPP : public BluetoothService, public Stream { class SPP : public BluetoothService, public Stream {
public: public:
@ -133,6 +98,7 @@ public:
* @return Return the number of bytes ready to be read. * @return Return the number of bytes ready to be read.
*/ */
virtual int available(void); virtual int available(void);
/** Send out all bytes in the buffer. */ /** Send out all bytes in the buffer. */
virtual void flush(void) { virtual void flush(void) {
send(); send();
@ -147,6 +113,8 @@ public:
* @return Return the byte. Will return -1 if no bytes are available. * @return Return the byte. Will return -1 if no bytes are available.
*/ */
virtual int read(void); virtual int read(void);
#if defined(ARDUINO) && ARDUINO >=100
/** /**
* Writes the byte to send to a buffer. The message is send when either send() or after Usb.Task() is called. * Writes the byte to send to a buffer. The message is send when either send() or after Usb.Task() is called.
* @param data The byte to write. * @param data The byte to write.
@ -162,6 +130,20 @@ public:
virtual size_t write(const uint8_t* data, size_t size); virtual size_t write(const uint8_t* data, size_t size);
/** Pull in write(const char *str) from Print */ /** Pull in write(const char *str) from Print */
using Print::write; using Print::write;
#else
/**
* Writes the byte to send to a buffer. The message is send when either send() or after Usb.Task() is called.
* @param data The byte to write.
*/
virtual void write(uint8_t data);
/**
* Writes the bytes to send to a buffer. The message is send when either send() or after Usb.Task() is called.
* @param data The data array to send.
* @param size Size of the data.
*/
virtual void write(const uint8_t* data, size_t size);
#endif
/** Discard all the bytes in the buffer. */ /** Discard all the bytes in the buffer. */
void discard(void); void discard(void);
/** /**
@ -185,7 +167,7 @@ private:
/* Variables used by L2CAP state machines */ /* Variables used by L2CAP state machines */
uint8_t l2cap_sdp_state; uint8_t l2cap_sdp_state;
uint8_t l2cap_rfcomm_state; uint8_t l2cap_rfcomm_state;
uint16_t l2cap_event_flag; // l2cap flags of received Bluetooth events uint32_t l2cap_event_flag; // l2cap flags of received Bluetooth events
uint8_t l2capoutbuf[BULK_MAXPKTSIZE]; // General purpose buffer for l2cap out data uint8_t l2capoutbuf[BULK_MAXPKTSIZE]; // General purpose buffer for l2cap out data
uint8_t rfcommbuf[10]; // Buffer for RFCOMM Commands uint8_t rfcommbuf[10]; // Buffer for RFCOMM Commands
@ -237,4 +219,4 @@ private:
bool checkFcs(uint8_t *data, uint8_t fcs); bool checkFcs(uint8_t *data, uint8_t fcs);
uint8_t crc(uint8_t *data); uint8_t crc(uint8_t *data);
}; };
#endif #endif

202
Usb.cpp
View file

@ -44,13 +44,13 @@ void USB::setUsbTaskState(uint8_t state) {
EpInfo* USB::getEpInfoEntry(uint8_t addr, uint8_t ep) { EpInfo* USB::getEpInfoEntry(uint8_t addr, uint8_t ep) {
UsbDevice *p = addrPool.GetUsbDevicePtr(addr); UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
if (!p || !p->epinfo) if(!p || !p->epinfo)
return NULL; return NULL;
EpInfo *pep = p->epinfo; EpInfo *pep = p->epinfo;
for (uint8_t i = 0; i < p->epcount; i++) { for(uint8_t i = 0; i < p->epcount; i++) {
if ((pep)->epAddr == ep) if((pep)->epAddr == ep)
return pep; return pep;
pep++; pep++;
@ -62,15 +62,15 @@ EpInfo* USB::getEpInfoEntry(uint8_t addr, uint8_t ep) {
/* each device is different and has different number of endpoints. This function plugs endpoint record structure, defined in application, to devtable */ /* each device is different and has different number of endpoints. This function plugs endpoint record structure, defined in application, to devtable */
uint8_t USB::setEpInfoEntry(uint8_t addr, uint8_t epcount, EpInfo* eprecord_ptr) { uint8_t USB::setEpInfoEntry(uint8_t addr, uint8_t epcount, EpInfo* eprecord_ptr) {
if (!eprecord_ptr) if(!eprecord_ptr)
return USB_ERROR_INVALID_ARGUMENT; return USB_ERROR_INVALID_ARGUMENT;
UsbDevice *p = addrPool.GetUsbDevicePtr(addr); UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->address = addr; p->address.devAddress = addr;
p->epinfo = eprecord_ptr; p->epinfo = eprecord_ptr;
p->epcount = epcount; p->epcount = epcount;
@ -80,15 +80,15 @@ uint8_t USB::setEpInfoEntry(uint8_t addr, uint8_t epcount, EpInfo* eprecord_ptr)
uint8_t USB::SetAddress(uint8_t addr, uint8_t ep, EpInfo **ppep, uint16_t &nak_limit) { uint8_t USB::SetAddress(uint8_t addr, uint8_t ep, EpInfo **ppep, uint16_t &nak_limit) {
UsbDevice *p = addrPool.GetUsbDevicePtr(addr); UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if (!p->epinfo) if(!p->epinfo)
return USB_ERROR_EPINFO_IS_NULL; return USB_ERROR_EPINFO_IS_NULL;
*ppep = getEpInfoEntry(addr, ep); *ppep = getEpInfoEntry(addr, ep);
if (!*ppep) if(!*ppep)
return USB_ERROR_EP_NOT_FOUND_IN_TBL; return USB_ERROR_EP_NOT_FOUND_IN_TBL;
nak_limit = (0x0001UL << (((*ppep)->bmNakPower > USB_NAK_MAX_POWER) ? USB_NAK_MAX_POWER : (*ppep)->bmNakPower)); nak_limit = (0x0001UL << (((*ppep)->bmNakPower > USB_NAK_MAX_POWER) ? USB_NAK_MAX_POWER : (*ppep)->bmNakPower));
@ -134,7 +134,7 @@ uint8_t USB::ctrlReq(uint8_t addr, uint8_t ep, uint8_t bmReqType, uint8_t bReque
rcode = SetAddress(addr, ep, &pep, nak_limit); rcode = SetAddress(addr, ep, &pep, nak_limit);
if (rcode) if(rcode)
return rcode; return rcode;
direction = ((bmReqType & 0x80) > 0); direction = ((bmReqType & 0x80) > 0);
@ -151,39 +151,39 @@ uint8_t USB::ctrlReq(uint8_t addr, uint8_t ep, uint8_t bmReqType, uint8_t bReque
rcode = dispatchPkt(tokSETUP, ep, nak_limit); //dispatch packet rcode = dispatchPkt(tokSETUP, ep, nak_limit); //dispatch packet
if (rcode) //return HRSLT if not zero if(rcode) //return HRSLT if not zero
return ( rcode); return ( rcode);
if (dataptr != NULL) //data stage, if present if(dataptr != NULL) //data stage, if present
{ {
if (direction) //IN transfer if(direction) //IN transfer
{ {
uint16_t left = total; uint16_t left = total;
pep->bmRcvToggle = 1; //bmRCVTOG1; pep->bmRcvToggle = 1; //bmRCVTOG1;
while (left) { while(left) {
// Bytes read into buffer // Bytes read into buffer
uint16_t read = nbytes; uint16_t read = nbytes;
//uint16_t read = (left<nbytes) ? left : nbytes; //uint16_t read = (left<nbytes) ? left : nbytes;
rcode = InTransfer(pep, nak_limit, &read, dataptr); rcode = InTransfer(pep, nak_limit, &read, dataptr);
if (rcode == hrTOGERR) { if(rcode == hrTOGERR) {
// yes, we flip it wrong here so that next time it is actually correct! // yes, we flip it wrong here so that next time it is actually correct!
pep->bmRcvToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 0 : 1; pep->bmRcvToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 0 : 1;
continue; continue;
} }
if (rcode) if(rcode)
return rcode; return rcode;
// Invoke callback function if inTransfer completed successfully and callback function pointer is specified // Invoke callback function if inTransfer completed successfully and callback function pointer is specified
if (!rcode && p) if(!rcode && p)
((USBReadParser*)p)->Parse(read, dataptr, total - left); ((USBReadParser*)p)->Parse(read, dataptr, total - left);
left -= read; left -= read;
if (read < nbytes) if(read < nbytes)
break; break;
} }
} else //OUT transfer } else //OUT transfer
@ -191,7 +191,7 @@ uint8_t USB::ctrlReq(uint8_t addr, uint8_t ep, uint8_t bmReqType, uint8_t bReque
pep->bmSndToggle = 1; //bmSNDTOG1; pep->bmSndToggle = 1; //bmSNDTOG1;
rcode = OutTransfer(pep, nak_limit, nbytes, dataptr); rcode = OutTransfer(pep, nak_limit, nbytes, dataptr);
} }
if (rcode) //return error if(rcode) //return error
return ( rcode); return ( rcode);
} }
// Status stage // Status stage
@ -209,8 +209,10 @@ uint8_t USB::inTransfer(uint8_t addr, uint8_t ep, uint16_t *nbytesptr, uint8_t*
uint8_t rcode = SetAddress(addr, ep, &pep, nak_limit); uint8_t rcode = SetAddress(addr, ep, &pep, nak_limit);
if (rcode) { if(rcode) {
//printf("SetAddress Failed"); USBTRACE3("(USB::InTransfer) SetAddress Failed ", rcode, 0x81);
USBTRACE3("(USB::InTransfer) addr requested ", addr, 0x81);
USBTRACE3("(USB::InTransfer) ep requested ", ep, 0x81);
return rcode; return rcode;
} }
return InTransfer(pep, nak_limit, nbytesptr, data); return InTransfer(pep, nak_limit, nbytesptr, data);
@ -227,22 +229,22 @@ uint8_t USB::InTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t *nbytesptr, ui
*nbytesptr = 0; *nbytesptr = 0;
regWr(rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0); //set toggle value regWr(rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0); //set toggle value
while (1) // use a 'return' to exit this loop // use a 'break' to exit this loop
{ while(1) {
rcode = dispatchPkt(tokIN, pep->epAddr, nak_limit); //IN packet to EP-'endpoint'. Function takes care of NAKS. rcode = dispatchPkt(tokIN, pep->epAddr, nak_limit); //IN packet to EP-'endpoint'. Function takes care of NAKS.
if (rcode == hrTOGERR) { if(rcode == hrTOGERR) {
// yes, we flip it wrong here so that next time it is actually correct! // yes, we flip it wrong here so that next time it is actually correct!
pep->bmRcvToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 0 : 1; pep->bmRcvToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 0 : 1;
regWr(rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0); //set toggle value regWr(rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0); //set toggle value
continue; continue;
} }
if (rcode) { if(rcode) {
//printf(">>>>>>>> Problem! dispatchPkt %2.2x\r\n", rcode); //printf(">>>>>>>> Problem! dispatchPkt %2.2x\r\n", rcode);
break; //should be 0, indicating ACK. Else return error code. break; //should be 0, indicating ACK. Else return error code.
} }
/* check for RCVDAVIRQ and generate error if not present */ /* check for RCVDAVIRQ and generate error if not present */
/* the only case when absence of RCVDAVIRQ makes sense is when toggle error occurred. Need to add handling for that */ /* the only case when absence of RCVDAVIRQ makes sense is when toggle error occurred. Need to add handling for that */
if ((regRd(rHIRQ) & bmRCVDAVIRQ) == 0) { if((regRd(rHIRQ) & bmRCVDAVIRQ) == 0) {
//printf(">>>>>>>> Problem! NO RCVDAVIRQ!\r\n"); //printf(">>>>>>>> Problem! NO RCVDAVIRQ!\r\n");
rcode = 0xf0; //receive error rcode = 0xf0; //receive error
break; break;
@ -251,7 +253,7 @@ uint8_t USB::InTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t *nbytesptr, ui
//printf("Got %i bytes \r\n", pktsize); //printf("Got %i bytes \r\n", pktsize);
// This would be OK, but... // This would be OK, but...
//assert(pktsize <= nbytes); //assert(pktsize <= nbytes);
if (pktsize > nbytes) { if(pktsize > nbytes) {
// This can happen. Use of assert on Arduino locks up the Arduino. // This can happen. Use of assert on Arduino locks up the Arduino.
// So I will trim the value, and hope for the best. // So I will trim the value, and hope for the best.
//printf(">>>>>>>> Problem! Wanted %i bytes but got %i.\r\n", nbytes, pktsize); //printf(">>>>>>>> Problem! Wanted %i bytes but got %i.\r\n", nbytes, pktsize);
@ -260,7 +262,7 @@ uint8_t USB::InTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t *nbytesptr, ui
int16_t mem_left = (int16_t)nbytes - *((int16_t*)nbytesptr); int16_t mem_left = (int16_t)nbytes - *((int16_t*)nbytesptr);
if (mem_left < 0) if(mem_left < 0)
mem_left = 0; mem_left = 0;
data = bytesRd(rRCVFIFO, ((pktsize > mem_left) ? mem_left : pktsize), data); data = bytesRd(rRCVFIFO, ((pktsize > mem_left) ? mem_left : pktsize), data);
@ -271,7 +273,7 @@ uint8_t USB::InTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t *nbytesptr, ui
/* The transfer is complete under two conditions: */ /* The transfer is complete under two conditions: */
/* 1. The device sent a short packet (L.T. maxPacketSize) */ /* 1. The device sent a short packet (L.T. maxPacketSize) */
/* 2. 'nbytes' have been transferred. */ /* 2. 'nbytes' have been transferred. */
if ((pktsize < maxpktsize) || (*nbytesptr >= nbytes)) // have we transferred 'nbytes' bytes? if((pktsize < maxpktsize) || (*nbytesptr >= nbytes)) // have we transferred 'nbytes' bytes?
{ {
// Save toggle value // Save toggle value
pep->bmRcvToggle = ((regRd(rHRSL) & bmRCVTOGRD)) ? 1 : 0; pep->bmRcvToggle = ((regRd(rHRSL) & bmRCVTOGRD)) ? 1 : 0;
@ -293,7 +295,7 @@ uint8_t USB::outTransfer(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* dat
uint8_t rcode = SetAddress(addr, ep, &pep, nak_limit); uint8_t rcode = SetAddress(addr, ep, &pep, nak_limit);
if (rcode) if(rcode)
return rcode; return rcode;
return OutTransfer(pep, nak_limit, nbytes, data); return OutTransfer(pep, nak_limit, nbytes, data);
@ -307,35 +309,35 @@ uint8_t USB::OutTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t nbytes, uint8
uint8_t maxpktsize = pep->maxPktSize; uint8_t maxpktsize = pep->maxPktSize;
if (maxpktsize < 1 || maxpktsize > 64) if(maxpktsize < 1 || maxpktsize > 64)
return USB_ERROR_INVALID_MAX_PKT_SIZE; return USB_ERROR_INVALID_MAX_PKT_SIZE;
unsigned long timeout = millis() + USB_XFER_TIMEOUT; unsigned long timeout = millis() + USB_XFER_TIMEOUT;
regWr(rHCTL, (pep->bmSndToggle) ? bmSNDTOG1 : bmSNDTOG0); //set toggle value regWr(rHCTL, (pep->bmSndToggle) ? bmSNDTOG1 : bmSNDTOG0); //set toggle value
while (bytes_left) { while(bytes_left) {
retry_count = 0; retry_count = 0;
nak_count = 0; nak_count = 0;
bytes_tosend = (bytes_left >= maxpktsize) ? maxpktsize : bytes_left; bytes_tosend = (bytes_left >= maxpktsize) ? maxpktsize : bytes_left;
bytesWr(rSNDFIFO, bytes_tosend, data_p); //filling output FIFO bytesWr(rSNDFIFO, bytes_tosend, data_p); //filling output FIFO
regWr(rSNDBC, bytes_tosend); //set number of bytes regWr(rSNDBC, bytes_tosend); //set number of bytes
regWr(rHXFR, (tokOUT | pep->epAddr)); //dispatch packet regWr(rHXFR, (tokOUT | pep->epAddr)); //dispatch packet
while (!(regRd(rHIRQ) & bmHXFRDNIRQ)); //wait for the completion IRQ while(!(regRd(rHIRQ) & bmHXFRDNIRQ)); //wait for the completion IRQ
regWr(rHIRQ, bmHXFRDNIRQ); //clear IRQ regWr(rHIRQ, bmHXFRDNIRQ); //clear IRQ
rcode = (regRd(rHRSL) & 0x0f); rcode = (regRd(rHRSL) & 0x0f);
while (rcode && (timeout > millis())) { while(rcode && ((long)(millis() - timeout) < 0L)) {
switch (rcode) { switch(rcode) {
case hrNAK: case hrNAK:
nak_count++; nak_count++;
if (nak_limit && (nak_count == nak_limit)) if(nak_limit && (nak_count == nak_limit))
goto breakout; goto breakout;
//return ( rcode); //return ( rcode);
break; break;
case hrTIMEOUT: case hrTIMEOUT:
retry_count++; retry_count++;
if (retry_count == USB_RETRY_LIMIT) if(retry_count == USB_RETRY_LIMIT)
goto breakout; goto breakout;
//return ( rcode); //return ( rcode);
break; break;
@ -353,7 +355,7 @@ uint8_t USB::OutTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t nbytes, uint8
regWr(rSNDFIFO, *data_p); regWr(rSNDFIFO, *data_p);
regWr(rSNDBC, bytes_tosend); regWr(rSNDBC, bytes_tosend);
regWr(rHXFR, (tokOUT | pep->epAddr)); //dispatch packet regWr(rHXFR, (tokOUT | pep->epAddr)); //dispatch packet
while (!(regRd(rHIRQ) & bmHXFRDNIRQ)); //wait for the completion IRQ while(!(regRd(rHIRQ) & bmHXFRDNIRQ)); //wait for the completion IRQ
regWr(rHIRQ, bmHXFRDNIRQ); //clear IRQ regWr(rHIRQ, bmHXFRDNIRQ); //clear IRQ
rcode = (regRd(rHRSL) & 0x0f); rcode = (regRd(rHRSL) & 0x0f);
}//while( rcode && .... }//while( rcode && ....
@ -378,15 +380,15 @@ uint8_t USB::dispatchPkt(uint8_t token, uint8_t ep, uint16_t nak_limit) {
uint8_t retry_count = 0; uint8_t retry_count = 0;
uint16_t nak_count = 0; uint16_t nak_count = 0;
while (timeout > millis()) { while((long)(millis() - timeout) < 0L) {
regWr(rHXFR, (token | ep)); //launch the transfer regWr(rHXFR, (token | ep)); //launch the transfer
rcode = USB_ERROR_TRANSFER_TIMEOUT; rcode = USB_ERROR_TRANSFER_TIMEOUT;
while (timeout > millis()) //wait for transfer completion while((long)(millis() - timeout) < 0L) //wait for transfer completion
{ {
tmpdata = regRd(rHIRQ); tmpdata = regRd(rHIRQ);
if (tmpdata & bmHXFRDNIRQ) { if(tmpdata & bmHXFRDNIRQ) {
regWr(rHIRQ, bmHXFRDNIRQ); //clear the interrupt regWr(rHIRQ, bmHXFRDNIRQ); //clear the interrupt
rcode = 0x00; rcode = 0x00;
break; break;
@ -399,15 +401,15 @@ uint8_t USB::dispatchPkt(uint8_t token, uint8_t ep, uint16_t nak_limit) {
rcode = (regRd(rHRSL) & 0x0f); //analyze transfer result rcode = (regRd(rHRSL) & 0x0f); //analyze transfer result
switch (rcode) { switch(rcode) {
case hrNAK: case hrNAK:
nak_count++; nak_count++;
if (nak_limit && (nak_count == nak_limit)) if(nak_limit && (nak_count == nak_limit))
return (rcode); return (rcode);
break; break;
case hrTIMEOUT: case hrTIMEOUT:
retry_count++; retry_count++;
if (retry_count == USB_RETRY_LIMIT) if(retry_count == USB_RETRY_LIMIT)
return (rcode); return (rcode);
break; break;
default: default:
@ -432,38 +434,38 @@ void USB::Task(void) //USB state machine
tmpdata = getVbusState(); tmpdata = getVbusState();
/* modify USB task state if Vbus changed */ /* modify USB task state if Vbus changed */
switch (tmpdata) { switch(tmpdata) {
case SE1: //illegal state case SE1: //illegal state
usb_task_state = USB_DETACHED_SUBSTATE_ILLEGAL; usb_task_state = USB_DETACHED_SUBSTATE_ILLEGAL;
lowspeed = false; lowspeed = false;
break; break;
case SE0: //disconnected case SE0: //disconnected
if ((usb_task_state & USB_STATE_MASK) != USB_STATE_DETACHED) if((usb_task_state & USB_STATE_MASK) != USB_STATE_DETACHED)
usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE; usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE;
lowspeed = false; lowspeed = false;
break; break;
case LSHOST: case LSHOST:
lowspeed = true; lowspeed = true;
//intentional fallthrough //intentional fallthrough
case FSHOST: //attached case FSHOST: //attached
if ((usb_task_state & USB_STATE_MASK) == USB_STATE_DETACHED) { if((usb_task_state & USB_STATE_MASK) == USB_STATE_DETACHED) {
delay = millis() + USB_SETTLE_DELAY; delay = millis() + USB_SETTLE_DELAY;
usb_task_state = USB_ATTACHED_SUBSTATE_SETTLE; usb_task_state = USB_ATTACHED_SUBSTATE_SETTLE;
} }
break; break;
}// switch( tmpdata }// switch( tmpdata
for (uint8_t i = 0; i < USB_NUMDEVICES; i++) for(uint8_t i = 0; i < USB_NUMDEVICES; i++)
if (devConfig[i]) if(devConfig[i])
rcode = devConfig[i]->Poll(); rcode = devConfig[i]->Poll();
switch (usb_task_state) { switch(usb_task_state) {
case USB_DETACHED_SUBSTATE_INITIALIZE: case USB_DETACHED_SUBSTATE_INITIALIZE:
init(); init();
for (uint8_t i = 0; i < USB_NUMDEVICES; i++) for(uint8_t i = 0; i < USB_NUMDEVICES; i++)
if (devConfig[i]) if(devConfig[i])
rcode = devConfig[i]->Release(); rcode = devConfig[i]->Release();
usb_task_state = USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE; usb_task_state = USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE;
@ -473,7 +475,7 @@ void USB::Task(void) //USB state machine
case USB_DETACHED_SUBSTATE_ILLEGAL: //just sit here case USB_DETACHED_SUBSTATE_ILLEGAL: //just sit here
break; break;
case USB_ATTACHED_SUBSTATE_SETTLE: //settle time for just attached device case USB_ATTACHED_SUBSTATE_SETTLE: //settle time for just attached device
if (delay < millis()) if((long)(millis() - delay) >= 0L)
usb_task_state = USB_ATTACHED_SUBSTATE_RESET_DEVICE; usb_task_state = USB_ATTACHED_SUBSTATE_RESET_DEVICE;
else break; // don't fall through else break; // don't fall through
case USB_ATTACHED_SUBSTATE_RESET_DEVICE: case USB_ATTACHED_SUBSTATE_RESET_DEVICE:
@ -481,7 +483,7 @@ void USB::Task(void) //USB state machine
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE; usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE;
break; break;
case USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE: case USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE:
if ((regRd(rHCTL) & bmBUSRST) == 0) { if((regRd(rHCTL) & bmBUSRST) == 0) {
tmpdata = regRd(rMODE) | bmSOFKAENAB; //start SOF generation tmpdata = regRd(rMODE) | bmSOFKAENAB; //start SOF generation
regWr(rMODE, tmpdata); regWr(rMODE, tmpdata);
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_SOF; usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_SOF;
@ -489,7 +491,7 @@ void USB::Task(void) //USB state machine
} }
break; break;
case USB_ATTACHED_SUBSTATE_WAIT_SOF: //todo: change check order case USB_ATTACHED_SUBSTATE_WAIT_SOF: //todo: change check order
if (regRd(rHIRQ) & bmFRAMEIRQ) { if(regRd(rHIRQ) & bmFRAMEIRQ) {
//when first SOF received _and_ 20ms has passed we can continue //when first SOF received _and_ 20ms has passed we can continue
/* /*
if (delay < millis()) //20ms passed if (delay < millis()) //20ms passed
@ -500,17 +502,17 @@ void USB::Task(void) //USB state machine
} }
break; break;
case USB_ATTACHED_SUBSTATE_WAIT_RESET: case USB_ATTACHED_SUBSTATE_WAIT_RESET:
if (delay < millis()) usb_task_state = USB_STATE_CONFIGURING; if((long)(millis() - delay) >= 0L) usb_task_state = USB_STATE_CONFIGURING;
else break; // don't fall through else break; // don't fall through
case USB_STATE_CONFIGURING: case USB_STATE_CONFIGURING:
//Serial.print("\r\nConf.LS: "); //Serial.print("\r\nConf.LS: ");
//Serial.println(lowspeed, HEX); //Serial.println(lowspeed, HEX);
rcode = Configuring(0, 0, lowspeed); rcode = Configuring(0, 0, lowspeed);
if (rcode) { if(rcode) {
if (rcode != USB_DEV_CONFIG_ERROR_DEVICE_INIT_INCOMPLETE) { if(rcode != USB_DEV_CONFIG_ERROR_DEVICE_INIT_INCOMPLETE) {
usb_error = rcode; usb_error = rcode;
usb_task_state = USB_STATE_ERROR; usb_task_state = USB_STATE_ERROR;
} }
@ -533,10 +535,10 @@ uint8_t USB::DefaultAddressing(uint8_t parent, uint8_t port, bool lowspeed) {
// Get pointer to pseudo device with address 0 assigned // Get pointer to pseudo device with address 0 assigned
p0 = addrPool.GetUsbDevicePtr(0); p0 = addrPool.GetUsbDevicePtr(0);
if (!p0) if(!p0)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if (!p0->epinfo) if(!p0->epinfo)
return USB_ERROR_EPINFO_IS_NULL; return USB_ERROR_EPINFO_IS_NULL;
p0->lowspeed = (lowspeed) ? true : false; p0->lowspeed = (lowspeed) ? true : false;
@ -544,12 +546,12 @@ uint8_t USB::DefaultAddressing(uint8_t parent, uint8_t port, bool lowspeed) {
// Allocate new address according to device class // Allocate new address according to device class
uint8_t bAddress = addrPool.AllocAddress(parent, false, port); uint8_t bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress) if(!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
p = addrPool.GetUsbDevicePtr(bAddress); p = addrPool.GetUsbDevicePtr(bAddress);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
@ -557,7 +559,7 @@ uint8_t USB::DefaultAddressing(uint8_t parent, uint8_t port, bool lowspeed) {
// Assign new address to the device // Assign new address to the device
rcode = setAddr(0, 0, bAddress); rcode = setAddr(0, 0, bAddress);
if (rcode) { if(rcode) {
addrPool.FreeAddress(bAddress); addrPool.FreeAddress(bAddress);
bAddress = 0; bAddress = 0;
return rcode; return rcode;
@ -571,8 +573,8 @@ uint8_t USB::AttemptConfig(uint8_t driver, uint8_t parent, uint8_t port, bool lo
again: again:
uint8_t rcode = devConfig[driver]->ConfigureDevice(parent, port, lowspeed); uint8_t rcode = devConfig[driver]->ConfigureDevice(parent, port, lowspeed);
if (rcode == USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET) { if(rcode == USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET) {
if (parent == 0) { if(parent == 0) {
// Send a bus reset on the root interface. // Send a bus reset on the root interface.
regWr(rHCTL, bmBUSRST); //issue bus reset regWr(rHCTL, bmBUSRST); //issue bus reset
delay(102); // delay 102ms, compensate for clock inaccuracy. delay(102); // delay 102ms, compensate for clock inaccuracy.
@ -580,22 +582,22 @@ again:
// reset parent port // reset parent port
devConfig[parent]->ResetHubPort(port); devConfig[parent]->ResetHubPort(port);
} }
} else if (rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works } else if(rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works
delay(100); delay(100);
retries++; retries++;
goto again; goto again;
} else if (rcode) } else if(rcode)
return rcode; return rcode;
rcode = devConfig[driver]->Init(parent, port, lowspeed); rcode = devConfig[driver]->Init(parent, port, lowspeed);
if (rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works if(rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works
delay(100); delay(100);
retries++; retries++;
goto again; goto again;
} }
if (rcode) { if(rcode) {
// Issue a bus reset, because the device may be in a limbo state // Issue a bus reset, because the device may be in a limbo state
if (parent == 0) { if(parent == 0) {
// Send a bus reset on the root interface. // Send a bus reset on the root interface.
regWr(rHCTL, bmBUSRST); //issue bus reset regWr(rHCTL, bmBUSRST); //issue bus reset
delay(102); // delay 102ms, compensate for clock inaccuracy. delay(102); // delay 102ms, compensate for clock inaccuracy.
@ -653,6 +655,7 @@ uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed) {
uint8_t devConfigIndex; uint8_t devConfigIndex;
uint8_t rcode = 0; uint8_t rcode = 0;
uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)]; uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)];
USB_DEVICE_DESCRIPTOR *udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR *>(buf);
UsbDevice *p = NULL; UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL; EpInfo *oldep_ptr = NULL;
EpInfo epInfo; EpInfo epInfo;
@ -666,7 +669,7 @@ uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed) {
AddressPool &addrPool = GetAddressPool(); AddressPool &addrPool = GetAddressPool();
// Get pointer to pseudo device with address 0 assigned // Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0); p = addrPool.GetUsbDevicePtr(0);
if (!p) { if(!p) {
//printf("Configuring error: USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL\r\n"); //printf("Configuring error: USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL\r\n");
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
} }
@ -686,7 +689,7 @@ uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed) {
// Restore p->epinfo // Restore p->epinfo
p->epinfo = oldep_ptr; p->epinfo = oldep_ptr;
if (rcode) { if(rcode) {
//printf("Configuring error: Can't get USB_DEVICE_DESCRIPTOR\r\n"); //printf("Configuring error: Can't get USB_DEVICE_DESCRIPTOR\r\n");
return rcode; return rcode;
} }
@ -697,36 +700,35 @@ uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed) {
//if (!bAddress) //if (!bAddress)
// return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; // return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
uint16_t vid = udd->idVendor;
uint16_t vid = (uint16_t)((USB_DEVICE_DESCRIPTOR*)buf)->idVendor; uint16_t pid = udd->idProduct;
uint16_t pid = (uint16_t)((USB_DEVICE_DESCRIPTOR*)buf)->idProduct; uint8_t klass = udd->bDeviceClass;
uint8_t klass = ((USB_DEVICE_DESCRIPTOR*)buf)->bDeviceClass;
// Attempt to configure if VID/PID or device class matches with a driver // Attempt to configure if VID/PID or device class matches with a driver
for (devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) { for(devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) {
if (!devConfig[devConfigIndex]) continue; // no driver if(!devConfig[devConfigIndex]) continue; // no driver
if (devConfig[devConfigIndex]->GetAddress()) continue; // consumed if(devConfig[devConfigIndex]->GetAddress()) continue; // consumed
if (devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass)) { if(devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass)) {
rcode = AttemptConfig(devConfigIndex, parent, port, lowspeed); rcode = AttemptConfig(devConfigIndex, parent, port, lowspeed);
if (rcode != USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED) if(rcode != USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED)
break; break;
} }
} }
if (devConfigIndex < USB_NUMDEVICES) { if(devConfigIndex < USB_NUMDEVICES) {
return rcode; return rcode;
} }
// blindly attempt to configure // blindly attempt to configure
for (devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) { for(devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) {
if (!devConfig[devConfigIndex]) continue; if(!devConfig[devConfigIndex]) continue;
if (devConfig[devConfigIndex]->GetAddress()) continue; // consumed if(devConfig[devConfigIndex]->GetAddress()) continue; // consumed
if (devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass)) continue; // If this is true it means it must have returned USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED above if(devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass)) continue; // If this is true it means it must have returned USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED above
rcode = AttemptConfig(devConfigIndex, parent, port, lowspeed); rcode = AttemptConfig(devConfigIndex, parent, port, lowspeed);
//printf("ERROR ENUMERATING %2.2x\r\n", rcode); //printf("ERROR ENUMERATING %2.2x\r\n", rcode);
if (!(rcode == USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED || rcode == USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE)) { if(!(rcode == USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED || rcode == USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE)) {
// in case of an error dev_index should be reset to 0 // in case of an error dev_index should be reset to 0
// in order to start from the very beginning the // in order to start from the very beginning the
// next time the program gets here // next time the program gets here
@ -742,12 +744,12 @@ uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed) {
} }
uint8_t USB::ReleaseDevice(uint8_t addr) { uint8_t USB::ReleaseDevice(uint8_t addr) {
if (!addr) if(!addr)
return 0; return 0;
for (uint8_t i = 0; i < USB_NUMDEVICES; i++) { for(uint8_t i = 0; i < USB_NUMDEVICES; i++) {
if(!devConfig[i]) continue; if(!devConfig[i]) continue;
if (devConfig[i]->GetAddress() == addr) if(devConfig[i]->GetAddress() == addr)
return devConfig[i]->Release(); return devConfig[i]->Release();
} }
return 0; return 0;
@ -770,13 +772,14 @@ uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t con
uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint8_t conf, USBReadParser *p) { uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint8_t conf, USBReadParser *p) {
const uint8_t bufSize = 64; const uint8_t bufSize = 64;
uint8_t buf[bufSize]; uint8_t buf[bufSize];
USB_CONFIGURATION_DESCRIPTOR *ucd = reinterpret_cast<USB_CONFIGURATION_DESCRIPTOR *>(buf);
uint8_t ret = getConfDescr(addr, ep, 9, conf, buf); uint8_t ret = getConfDescr(addr, ep, 9, conf, buf);
if (ret) if(ret)
return ret; return ret;
uint16_t total = ((USB_CONFIGURATION_DESCRIPTOR*)buf)->wTotalLength; uint16_t total = ucd->wTotalLength;
//USBTRACE2("\r\ntotal conf.size:", total); //USBTRACE2("\r\ntotal conf.size:", total);
@ -791,7 +794,11 @@ uint8_t USB::getStrDescr(uint8_t addr, uint8_t ep, uint16_t ns, uint8_t index, u
//set address //set address
uint8_t USB::setAddr(uint8_t oldaddr, uint8_t ep, uint8_t newaddr) { uint8_t USB::setAddr(uint8_t oldaddr, uint8_t ep, uint8_t newaddr) {
return ( ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL)); uint8_t rcode = ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL);
//delay(2); //per USB 2.0 sect.9.2.6.3
delay(300); // Older spec says you should wait at least 200ms
return rcode;
//return ( ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL));
} }
//set configuration //set configuration
@ -800,4 +807,3 @@ uint8_t USB::setConf(uint8_t addr, uint8_t ep, uint8_t conf_value) {
} }
#endif // defined(USB_METHODS_INLINE) #endif // defined(USB_METHODS_INLINE)

1
Usb.h
View file

@ -28,6 +28,7 @@ e-mail : support@circuitsathome.com
#include "printhex.h" #include "printhex.h"
#include "message.h" #include "message.h"
#include "hexdump.h" #include "hexdump.h"
#include "sink_parser.h"
#include "max3421e.h" #include "max3421e.h"
#include "address.h" #include "address.h"
#include "avrpins.h" #include "avrpins.h"

View file

@ -1,8 +1,18 @@
/* /* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved.
* File: UsbCore.h
* Author: xxxajk This software may be distributed and modified under the terms of the GNU
* General Public License version 2 (GPL2) as published by the Free Software
* Created on September 29, 2013, 9:25 PM Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Circuits At Home, LTD
Web : http://www.circuitsathome.com
e-mail : support@circuitsathome.com
*/ */
#if !defined(_usb_h_) || defined(USBCORE_H) #if !defined(_usb_h_) || defined(USBCORE_H)
@ -18,13 +28,17 @@
#ifdef BOARD_BLACK_WIDDOW #ifdef BOARD_BLACK_WIDDOW
typedef MAX3421e<P6, P3> MAX3421E; // Black Widow typedef MAX3421e<P6, P3> MAX3421E; // Black Widow
#elif defined(CORE_TEENSY) && (defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)) #elif defined(CORE_TEENSY) && (defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__))
#if EXT_RAM
typedef MAX3421e<P20, P7> MAX3421E; // Teensy++ 2.0 with XMEM2
#else
typedef MAX3421e<P9, P8> MAX3421E; // Teensy++ 1.0 and 2.0 typedef MAX3421e<P9, P8> MAX3421E; // Teensy++ 1.0 and 2.0
#endif
#elif defined(BOARD_MEGA_ADK) #elif defined(BOARD_MEGA_ADK)
typedef MAX3421e<P53, P54> MAX3421E; // Arduino Mega ADK typedef MAX3421e<P53, P54> MAX3421E; // Arduino Mega ADK
#elif defined(ARDUINO_AVR_BALANDUINO) #elif defined(ARDUINO_AVR_BALANDUINO)
typedef MAX3421e<P20, P19> MAX3421E; // Balanduino typedef MAX3421e<P20, P19> MAX3421E; // Balanduino
#else #else
typedef MAX3421e<P10, P9> MAX3421E; // Official Arduinos (UNO, Duemilanove, Mega, 2560, Leonardo etc.) or Teensy 2.0 and 3.0 typedef MAX3421e<P10, P9> MAX3421E; // Official Arduinos (UNO, Duemilanove, Mega, 2560, Leonardo, Due etc.) or Teensy 2.0 and 3.0
#endif #endif
/* Common setup data constant combinations */ /* Common setup data constant combinations */
@ -104,14 +118,38 @@ typedef MAX3421e<P10, P9> MAX3421E; // Official Arduinos (UNO, Duemilanove, Mega
class USBDeviceConfig { class USBDeviceConfig {
public: public:
virtual uint8_t Init(uint8_t parent, uint8_t port, bool lowspeed) { return 0; }
virtual uint8_t ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {return 0; } virtual uint8_t Init(uint8_t parent, uint8_t port, bool lowspeed) {
virtual uint8_t Release() { return 0; } return 0;
virtual uint8_t Poll() { return 0; } }
virtual uint8_t GetAddress() { return 0; }
virtual void ResetHubPort(uint8_t port) { return; } // Note used for hubs only! virtual uint8_t ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
virtual boolean VIDPIDOK(uint16_t vid, uint16_t pid) { return false; } return 0;
virtual boolean DEVCLASSOK(uint8_t klass) { return false; } }
virtual uint8_t Release() {
return 0;
}
virtual uint8_t Poll() {
return 0;
}
virtual uint8_t GetAddress() {
return 0;
}
virtual void ResetHubPort(uint8_t port) {
return;
} // Note used for hubs only!
virtual boolean VIDPIDOK(uint16_t vid, uint16_t pid) {
return false;
}
virtual boolean DEVCLASSOK(uint8_t klass) {
return false;
}
}; };
/* USB Setup Packet Structure */ /* USB Setup Packet Structure */
@ -138,7 +176,7 @@ typedef struct {
} wVal_u; } wVal_u;
uint16_t wIndex; // 4 Depends on bRequest uint16_t wIndex; // 4 Depends on bRequest
uint16_t wLength; // 6 Depends on bRequest uint16_t wLength; // 6 Depends on bRequest
}__attribute__((packed)) SETUP_PKT, *PSETUP_PKT; } __attribute__((packed)) SETUP_PKT, *PSETUP_PKT;
@ -166,7 +204,7 @@ public:
}; };
AddressPool& GetAddressPool() { AddressPool& GetAddressPool() {
return(AddressPool&) addrPool; return (AddressPool&)addrPool;
}; };
uint8_t RegisterDeviceClass(USBDeviceConfig *pdev) { uint8_t RegisterDeviceClass(USBDeviceConfig *pdev) {
@ -225,30 +263,29 @@ private:
//get device descriptor //get device descriptor
inline uint8_t USB::getDevDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* dataptr) { inline uint8_t USB::getDevDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* dataptr) {
return( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, 0x00, USB_DESCRIPTOR_DEVICE, 0x0000, nbytes, dataptr)); return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, 0x00, USB_DESCRIPTOR_DEVICE, 0x0000, nbytes, dataptr));
} }
//get configuration descriptor //get configuration descriptor
inline uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t conf, uint8_t* dataptr) { inline uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t conf, uint8_t* dataptr) {
return( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, nbytes, dataptr)); return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, nbytes, dataptr));
} }
//get string descriptor //get string descriptor
inline uint8_t USB::getStrDescr(uint8_t addr, uint8_t ep, uint16_t nuint8_ts, uint8_t index, uint16_t langid, uint8_t* dataptr) { inline uint8_t USB::getStrDescr(uint8_t addr, uint8_t ep, uint16_t nuint8_ts, uint8_t index, uint16_t langid, uint8_t* dataptr) {
return( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, index, USB_DESCRIPTOR_STRING, langid, nuint8_ts, dataptr)); return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, index, USB_DESCRIPTOR_STRING, langid, nuint8_ts, dataptr));
} }
//set address //set address
inline uint8_t USB::setAddr(uint8_t oldaddr, uint8_t ep, uint8_t newaddr) { inline uint8_t USB::setAddr(uint8_t oldaddr, uint8_t ep, uint8_t newaddr) {
return( ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, NULL)); return ( ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, NULL));
} }
//set configuration //set configuration
inline uint8_t USB::setConf(uint8_t addr, uint8_t ep, uint8_t conf_value) { inline uint8_t USB::setConf(uint8_t addr, uint8_t ep, uint8_t conf_value) {
return( ctrlReq(addr, ep, bmREQ_SET, USB_REQUEST_SET_CONFIGURATION, conf_value, 0x00, 0x0000, 0x0000, NULL)); return ( ctrlReq(addr, ep, bmREQ_SET, USB_REQUEST_SET_CONFIGURATION, conf_value, 0x00, 0x0000, 0x0000, NULL));
} }
#endif // defined(USB_METHODS_INLINE) #endif // defined(USB_METHODS_INLINE)
#endif /* USBCORE_H */ #endif /* USBCORE_H */

379
Wii.cpp
View file

@ -22,7 +22,8 @@
//#define EXTRADEBUG // Uncomment to get even more debugging data //#define EXTRADEBUG // Uncomment to get even more debugging data
//#define PRINTREPORT // Uncomment to print the report send by the Wii controllers //#define PRINTREPORT // Uncomment to print the report send by the Wii controllers
const uint8_t LEDS[] PROGMEM = { const uint8_t WII_LEDS[] PROGMEM = {
0x00, // OFF
0x10, // LED1 0x10, // LED1
0x20, // LED2 0x20, // LED2
0x40, // LED3 0x40, // LED3
@ -33,10 +34,10 @@ const uint8_t LEDS[] PROGMEM = {
0xC0, // LED7 0xC0, // LED7
0xD0, // LED8 0xD0, // LED8
0xE0, // LED9 0xE0, // LED9
0xF0 // LED10 0xF0, // LED10
}; };
const uint32_t BUTTONS[] PROGMEM = { const uint32_t WII_BUTTONS[] PROGMEM = {
0x00008, // UP 0x00008, // UP
0x00002, // RIGHT 0x00002, // RIGHT
0x00004, // DOWN 0x00004, // DOWN
@ -53,9 +54,9 @@ const uint32_t BUTTONS[] PROGMEM = {
0x20000, // C 0x20000, // C
0x00400, // B 0x00400, // B
0x00800 // A 0x00800, // A
}; };
const uint32_t PROCONTROLLERBUTTONS[] PROGMEM = { const uint32_t WII_PROCONTROLLER_BUTTONS[] PROGMEM = {
0x00100, // UP 0x00100, // UP
0x00080, // RIGHT 0x00080, // RIGHT
0x00040, // DOWN 0x00040, // DOWN
@ -78,13 +79,13 @@ const uint32_t PROCONTROLLERBUTTONS[] PROGMEM = {
0x00020, // L 0x00020, // L
0x00002, // R 0x00002, // R
0x08000, // ZL 0x08000, // ZL
0x00400 // ZR 0x00400, // ZR
}; };
WII::WII(BTD *p, bool pair) : WII::WII(BTD *p, bool pair) :
pBtd(p) // pointer to USB class instance - mandatory pBtd(p) // pointer to USB class instance - mandatory
{ {
if (pBtd) if(pBtd)
pBtd->registerServiceClass(this); // Register it as a Bluetooth service pBtd->registerServiceClass(this); // Register it as a Bluetooth service
pBtd->pairWithWii = pair; pBtd->pairWithWii = pair;
@ -115,8 +116,8 @@ void WII::Reset() {
} }
void WII::disconnect() { // Use this void to disconnect any of the controllers void WII::disconnect() { // Use this void to disconnect any of the controllers
if (!motionPlusInside) { // The old Wiimote needs a delay after the first command or it will automatically reconnect if(!motionPlusInside) { // The old Wiimote needs a delay after the first command or it will automatically reconnect
if (motionPlusConnected) { if(motionPlusConnected) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDeactivating Motion Plus"), 0x80); Notify(PSTR("\r\nDeactivating Motion Plus"), 0x80);
#endif #endif
@ -126,15 +127,15 @@ void WII::disconnect() { // Use this void to disconnect any of the controllers
} else } else
timer = millis(); // Don't wait timer = millis(); // Don't wait
// First the HID interrupt channel has to be disconnected, then the HID control channel and finally the HCI connection // First the HID interrupt channel has to be disconnected, then the HID control channel and finally the HCI connection
pBtd->l2cap_disconnection_request(hci_handle, 0x0A, interrupt_scid, interrupt_dcid); pBtd->l2cap_disconnection_request(hci_handle, ++identifier, interrupt_scid, interrupt_dcid);
Reset(); Reset();
l2cap_state = L2CAP_INTERRUPT_DISCONNECT; l2cap_state = L2CAP_INTERRUPT_DISCONNECT;
} }
void WII::ACLData(uint8_t* l2capinbuf) { void WII::ACLData(uint8_t* l2capinbuf) {
if (!pBtd->l2capConnectionClaimed && pBtd->incomingWii && !wiimoteConnected && !activeConnection) { if(!pBtd->l2capConnectionClaimed && pBtd->incomingWii && !wiimoteConnected && !activeConnection) {
if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) { if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_CTRL_PSM) { if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_CTRL_PSM) {
motionPlusInside = pBtd->motionPlusInside; motionPlusInside = pBtd->motionPlusInside;
pBtd->incomingWii = false; pBtd->incomingWii = false;
pBtd->l2capConnectionClaimed = true; // Claim that the incoming connection belongs to this service pBtd->l2capConnectionClaimed = true; // Claim that the incoming connection belongs to this service
@ -144,9 +145,10 @@ void WII::ACLData(uint8_t* l2capinbuf) {
} }
} }
} }
if ((l2capinbuf[0] | (l2capinbuf[1] << 8)) == (hci_handle | 0x2000)) { // acl_handle_ok or it's a new connection //if((l2capinbuf[0] | (uint16_t)l2capinbuf[1] << 8) == (hci_handle | 0x2000U)) { // acl_handle_ok or it's a new connection
if ((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001) { //l2cap_control - Channel ID for ACL-U if(UHS_ACL_HANDLE_OK(l2capinbuf, hci_handle)) { // acl_handle_ok or it's a new connection
if (l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) { if((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001U) { //l2cap_control - Channel ID for ACL-U
if(l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "), 0x80); Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[13], 0x80); D_PrintHex<uint8_t > (l2capinbuf[13], 0x80);
@ -161,23 +163,23 @@ void WII::ACLData(uint8_t* l2capinbuf) {
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[14], 0x80); D_PrintHex<uint8_t > (l2capinbuf[14], 0x80);
#endif #endif
} else if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_RESPONSE) { } else if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_RESPONSE) {
if (((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) && ((l2capinbuf[18] | (l2capinbuf[19] << 8)) == SUCCESSFUL)) { // Success if(((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) && ((l2capinbuf[18] | (l2capinbuf[19] << 8)) == SUCCESSFUL)) { // Success
if (l2capinbuf[14] == control_dcid[0] && l2capinbuf[15] == control_dcid[1]) { if(l2capinbuf[14] == control_dcid[0] && l2capinbuf[15] == control_dcid[1]) {
//Notify(PSTR("\r\nHID Control Connection Complete"), 0x80); //Notify(PSTR("\r\nHID Control Connection Complete"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
control_scid[0] = l2capinbuf[12]; control_scid[0] = l2capinbuf[12];
control_scid[1] = l2capinbuf[13]; control_scid[1] = l2capinbuf[13];
l2cap_event_flag |= L2CAP_FLAG_CONTROL_CONNECTED; l2cap_set_flag(L2CAP_FLAG_CONTROL_CONNECTED);
} else if (l2capinbuf[14] == interrupt_dcid[0] && l2capinbuf[15] == interrupt_dcid[1]) { } else if(l2capinbuf[14] == interrupt_dcid[0] && l2capinbuf[15] == interrupt_dcid[1]) {
//Notify(PSTR("\r\nHID Interrupt Connection Complete"), 0x80); //Notify(PSTR("\r\nHID Interrupt Connection Complete"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
interrupt_scid[0] = l2capinbuf[12]; interrupt_scid[0] = l2capinbuf[12];
interrupt_scid[1] = l2capinbuf[13]; interrupt_scid[1] = l2capinbuf[13];
l2cap_event_flag |= L2CAP_FLAG_INTERRUPT_CONNECTED; l2cap_set_flag(L2CAP_FLAG_INTERRUPT_CONNECTED);
} }
} }
} else if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
Notify(PSTR("\r\nL2CAP Connection Request - PSM: "), 0x80); Notify(PSTR("\r\nL2CAP Connection Request - PSM: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[13], 0x80); D_PrintHex<uint8_t > (l2capinbuf[13], 0x80);
@ -190,46 +192,46 @@ void WII::ACLData(uint8_t* l2capinbuf) {
Notify(PSTR(" Identifier: "), 0x80); Notify(PSTR(" Identifier: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[9], 0x80); D_PrintHex<uint8_t > (l2capinbuf[9], 0x80);
#endif #endif
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_CTRL_PSM) { if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_CTRL_PSM) {
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
control_scid[0] = l2capinbuf[14]; control_scid[0] = l2capinbuf[14];
control_scid[1] = l2capinbuf[15]; control_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_CONTROL_REQUEST; l2cap_set_flag(L2CAP_FLAG_CONNECTION_CONTROL_REQUEST);
} else if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_INTR_PSM) { } else if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == HID_INTR_PSM) {
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
interrupt_scid[0] = l2capinbuf[14]; interrupt_scid[0] = l2capinbuf[14];
interrupt_scid[1] = l2capinbuf[15]; interrupt_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST; l2cap_set_flag(L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST);
} }
} else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) { } else if(l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) {
if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success if((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success
if (l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) { if(l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) {
//Notify(PSTR("\r\nHID Control Configuration Complete"), 0x80); //Notify(PSTR("\r\nHID Control Configuration Complete"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_CONFIG_CONTROL_SUCCESS; l2cap_set_flag(L2CAP_FLAG_CONFIG_CONTROL_SUCCESS);
} else if (l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) { } else if(l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) {
//Notify(PSTR("\r\nHID Interrupt Configuration Complete"), 0x80); //Notify(PSTR("\r\nHID Interrupt Configuration Complete"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS; l2cap_set_flag(L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS);
} }
} }
} else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) {
if (l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) { if(l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) {
//Notify(PSTR("\r\nHID Control Configuration Request"), 0x80); //Notify(PSTR("\r\nHID Control Configuration Request"), 0x80);
pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], control_scid); pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], control_scid);
} else if (l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) { } else if(l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) {
//Notify(PSTR("\r\nHID Interrupt Configuration Request"), 0x80); //Notify(PSTR("\r\nHID Interrupt Configuration Request"), 0x80);
pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], interrupt_scid); pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], interrupt_scid);
} }
} else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) { } else if(l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) {
if (l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) { if(l2capinbuf[12] == control_dcid[0] && l2capinbuf[13] == control_dcid[1]) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnect Request: Control Channel"), 0x80); Notify(PSTR("\r\nDisconnect Request: Control Channel"), 0x80);
#endif #endif
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
pBtd->l2cap_disconnection_response(hci_handle, identifier, control_dcid, control_scid); pBtd->l2cap_disconnection_response(hci_handle, identifier, control_dcid, control_scid);
Reset(); Reset();
} else if (l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) { } else if(l2capinbuf[12] == interrupt_dcid[0] && l2capinbuf[13] == interrupt_dcid[1]) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnect Request: Interrupt Channel"), 0x80); Notify(PSTR("\r\nDisconnect Request: Interrupt Channel"), 0x80);
#endif #endif
@ -237,15 +239,15 @@ void WII::ACLData(uint8_t* l2capinbuf) {
pBtd->l2cap_disconnection_response(hci_handle, identifier, interrupt_dcid, interrupt_scid); pBtd->l2cap_disconnection_response(hci_handle, identifier, interrupt_dcid, interrupt_scid);
Reset(); Reset();
} }
} else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) { } else if(l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) {
if (l2capinbuf[12] == control_scid[0] && l2capinbuf[13] == control_scid[1]) { if(l2capinbuf[12] == control_scid[0] && l2capinbuf[13] == control_scid[1]) {
//Notify(PSTR("\r\nDisconnect Response: Control Channel"), 0x80); //Notify(PSTR("\r\nDisconnect Response: Control Channel"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE);
} else if (l2capinbuf[12] == interrupt_scid[0] && l2capinbuf[13] == interrupt_scid[1]) { } else if(l2capinbuf[12] == interrupt_scid[0] && l2capinbuf[13] == interrupt_scid[1]) {
//Notify(PSTR("\r\nDisconnect Response: Interrupt Channel"), 0x80); //Notify(PSTR("\r\nDisconnect Response: Interrupt Channel"), 0x80);
identifier = l2capinbuf[9]; identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE);
} }
} }
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
@ -255,41 +257,41 @@ void WII::ACLData(uint8_t* l2capinbuf) {
D_PrintHex<uint8_t > (l2capinbuf[8], 0x80); D_PrintHex<uint8_t > (l2capinbuf[8], 0x80);
} }
#endif #endif
} else if (l2capinbuf[6] == interrupt_dcid[0] && l2capinbuf[7] == interrupt_dcid[1]) { // l2cap_interrupt } else if(l2capinbuf[6] == interrupt_dcid[0] && l2capinbuf[7] == interrupt_dcid[1]) { // l2cap_interrupt
//Notify(PSTR("\r\nL2CAP Interrupt"), 0x80); //Notify(PSTR("\r\nL2CAP Interrupt"), 0x80);
if (l2capinbuf[8] == 0xA1) { // HID_THDR_DATA_INPUT if(l2capinbuf[8] == 0xA1) { // HID_THDR_DATA_INPUT
if ((l2capinbuf[9] >= 0x20 && l2capinbuf[9] <= 0x22) || (l2capinbuf[9] >= 0x30 && l2capinbuf[9] <= 0x37) || l2capinbuf[9] == 0x3e || l2capinbuf[9] == 0x3f) { // These reports include the buttons if((l2capinbuf[9] >= 0x20 && l2capinbuf[9] <= 0x22) || (l2capinbuf[9] >= 0x30 && l2capinbuf[9] <= 0x37) || l2capinbuf[9] == 0x3e || l2capinbuf[9] == 0x3f) { // These reports include the buttons
if ((l2capinbuf[9] >= 0x20 && l2capinbuf[9] <= 0x22) || l2capinbuf[9] == 0x31 || l2capinbuf[9] == 0x33) // These reports have no extensions bytes if((l2capinbuf[9] >= 0x20 && l2capinbuf[9] <= 0x22) || l2capinbuf[9] == 0x31 || l2capinbuf[9] == 0x33) // These reports have no extensions bytes
ButtonState = (uint32_t)((l2capinbuf[10] & 0x1F) | ((uint16_t)(l2capinbuf[11] & 0x9F) << 8)); ButtonState = (uint32_t)((l2capinbuf[10] & 0x1F) | ((uint16_t)(l2capinbuf[11] & 0x9F) << 8));
else if (wiiUProControllerConnected) else if(wiiUProControllerConnected)
ButtonState = (uint32_t)(((~l2capinbuf[23]) & 0xFE) | ((uint16_t)(~l2capinbuf[24]) << 8) | ((uint32_t)((~l2capinbuf[25]) & 0x03) << 16)); ButtonState = (uint32_t)(((~l2capinbuf[23]) & 0xFE) | ((uint16_t)(~l2capinbuf[24]) << 8) | ((uint32_t)((~l2capinbuf[25]) & 0x03) << 16));
else if (motionPlusConnected) { else if(motionPlusConnected) {
if (l2capinbuf[20] & 0x02) // Only update the wiimote buttons, since the extension bytes are from the Motion Plus if(l2capinbuf[20] & 0x02) // Only update the wiimote buttons, since the extension bytes are from the Motion Plus
ButtonState = (uint32_t)((l2capinbuf[10] & 0x1F) | ((uint16_t)(l2capinbuf[11] & 0x9F) << 8) | ((uint32_t)(ButtonState & 0xFFFF0000))); ButtonState = (uint32_t)((l2capinbuf[10] & 0x1F) | ((uint16_t)(l2capinbuf[11] & 0x9F) << 8) | ((uint32_t)(ButtonState & 0xFFFF0000)));
else if (nunchuckConnected) // Update if it's a report from the Nunchuck else if(nunchuckConnected) // Update if it's a report from the Nunchuck
ButtonState = (uint32_t)((l2capinbuf[10] & 0x1F) | ((uint16_t)(l2capinbuf[11] & 0x9F) << 8) | ((uint32_t)((~l2capinbuf[20]) & 0x0C) << 14)); ButtonState = (uint32_t)((l2capinbuf[10] & 0x1F) | ((uint16_t)(l2capinbuf[11] & 0x9F) << 8) | ((uint32_t)((~l2capinbuf[20]) & 0x0C) << 14));
//else if(classicControllerConnected) // Update if it's a report from the Classic Controller //else if(classicControllerConnected) // Update if it's a report from the Classic Controller
} else if (nunchuckConnected) // The Nunchuck is directly connected } else if(nunchuckConnected) // The Nunchuck is directly connected
ButtonState = (uint32_t)((l2capinbuf[10] & 0x1F) | ((uint16_t)(l2capinbuf[11] & 0x9F) << 8) | ((uint32_t)((~l2capinbuf[20]) & 0x03) << 16)); ButtonState = (uint32_t)((l2capinbuf[10] & 0x1F) | ((uint16_t)(l2capinbuf[11] & 0x9F) << 8) | ((uint32_t)((~l2capinbuf[20]) & 0x03) << 16));
//else if(classicControllerConnected) // The Classic Controller is directly connected //else if(classicControllerConnected) // The Classic Controller is directly connected
else if (!unknownExtensionConnected) else if(!unknownExtensionConnected)
ButtonState = (uint32_t)((l2capinbuf[10] & 0x1F) | ((uint16_t)(l2capinbuf[11] & 0x9F) << 8)); ButtonState = (uint32_t)((l2capinbuf[10] & 0x1F) | ((uint16_t)(l2capinbuf[11] & 0x9F) << 8));
#ifdef PRINTREPORT #ifdef PRINTREPORT
Notify(PSTR("ButtonState: "), 0x80); Notify(PSTR("ButtonState: "), 0x80);
D_PrintHex<uint32_t > (ButtonState, 0x80); D_PrintHex<uint32_t > (ButtonState, 0x80);
Notify(PSTR("\r\n"), 0x80); Notify(PSTR("\r\n"), 0x80);
#endif #endif
if (ButtonState != OldButtonState) { if(ButtonState != OldButtonState) {
ButtonClickState = ButtonState & ~OldButtonState; // Update click state variable ButtonClickState = ButtonState & ~OldButtonState; // Update click state variable
OldButtonState = ButtonState; OldButtonState = ButtonState;
} }
} }
if (l2capinbuf[9] == 0x31 || l2capinbuf[9] == 0x33 || l2capinbuf[9] == 0x35 || l2capinbuf[9] == 0x37) { // Read the accelerometer if(l2capinbuf[9] == 0x31 || l2capinbuf[9] == 0x33 || l2capinbuf[9] == 0x35 || l2capinbuf[9] == 0x37) { // Read the accelerometer
accXwiimote = ((l2capinbuf[12] << 2) | (l2capinbuf[10] & 0x60 >> 5)) - 500; accXwiimote = ((l2capinbuf[12] << 2) | (l2capinbuf[10] & 0x60 >> 5)) - 500;
accYwiimote = ((l2capinbuf[13] << 2) | (l2capinbuf[11] & 0x20 >> 4)) - 500; accYwiimote = ((l2capinbuf[13] << 2) | (l2capinbuf[11] & 0x20 >> 4)) - 500;
accZwiimote = ((l2capinbuf[14] << 2) | (l2capinbuf[11] & 0x40 >> 5)) - 500; accZwiimote = ((l2capinbuf[14] << 2) | (l2capinbuf[11] & 0x40 >> 5)) - 500;
} }
switch (l2capinbuf[9]) { switch(l2capinbuf[9]) {
case 0x20: // Status Information - (a1) 20 BB BB LF 00 00 VV case 0x20: // Status Information - (a1) 20 BB BB LF 00 00 VV
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
Notify(PSTR("\r\nStatus report was received"), 0x80); Notify(PSTR("\r\nStatus report was received"), 0x80);
@ -297,38 +299,38 @@ void WII::ACLData(uint8_t* l2capinbuf) {
wiiState = l2capinbuf[12]; // (0x01: Battery is nearly empty), (0x02: An Extension Controller is connected), (0x04: Speaker enabled), (0x08: IR enabled), (0x10: LED1, 0x20: LED2, 0x40: LED3, 0x80: LED4) wiiState = l2capinbuf[12]; // (0x01: Battery is nearly empty), (0x02: An Extension Controller is connected), (0x04: Speaker enabled), (0x08: IR enabled), (0x10: LED1, 0x20: LED2, 0x40: LED3, 0x80: LED4)
batteryLevel = l2capinbuf[15]; // Update battery level batteryLevel = l2capinbuf[15]; // Update battery level
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (l2capinbuf[12] & 0x01) if(l2capinbuf[12] & 0x01)
Notify(PSTR("\r\nWARNING: Battery is nearly empty"), 0x80); Notify(PSTR("\r\nWARNING: Battery is nearly empty"), 0x80);
#endif #endif
if (checkExtension) { // If this is false it means that the user must have called getBatteryLevel() if(checkExtension) { // If this is false it means that the user must have called getBatteryLevel()
if (l2capinbuf[12] & 0x02) { // Check if a extension is connected if(l2capinbuf[12] & 0x02) { // Check if a extension is connected
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (!unknownExtensionConnected) if(!unknownExtensionConnected)
Notify(PSTR("\r\nExtension connected"), 0x80); Notify(PSTR("\r\nExtension connected"), 0x80);
#endif #endif
unknownExtensionConnected = true; unknownExtensionConnected = true;
#ifdef WIICAMERA #ifdef WIICAMERA
if (!isIRCameraEnabled()) // Don't activate the Motion Plus if we are trying to initialize the IR camera if(!isIRCameraEnabled()) // Don't activate the Motion Plus if we are trying to initialize the IR camera
#endif #endif
setReportMode(false, 0x35); // Also read the extension setReportMode(false, 0x35); // Also read the extension
} else { } else {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nExtension disconnected"), 0x80); Notify(PSTR("\r\nExtension disconnected"), 0x80);
#endif #endif
if (motionPlusConnected) { if(motionPlusConnected) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR(" - from Motion Plus"), 0x80); Notify(PSTR(" - from Motion Plus"), 0x80);
#endif #endif
l2cap_event_flag &= ~WII_FLAG_NUNCHUCK_CONNECTED; wii_clear_flag(WII_FLAG_NUNCHUCK_CONNECTED);
if (!activateNunchuck) // If it's already trying to initialize the Nunchuck don't set it to false if(!activateNunchuck) // If it's already trying to initialize the Nunchuck don't set it to false
nunchuckConnected = false; nunchuckConnected = false;
//else if(classicControllerConnected) //else if(classicControllerConnected)
} else if (nunchuckConnected) { } else if(nunchuckConnected) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR(" - Nunchuck"), 0x80); Notify(PSTR(" - Nunchuck"), 0x80);
#endif #endif
nunchuckConnected = false; // It must be the Nunchuck controller then nunchuckConnected = false; // It must be the Nunchuck controller then
l2cap_event_flag &= ~WII_FLAG_NUNCHUCK_CONNECTED; wii_clear_flag(WII_FLAG_NUNCHUCK_CONNECTED);
onInit(); onInit();
setReportMode(false, 0x31); // If there is no extension connected we will read the buttons and accelerometer setReportMode(false, 0x31); // If there is no extension connected we will read the buttons and accelerometer
} else } else
@ -338,28 +340,28 @@ void WII::ACLData(uint8_t* l2capinbuf) {
checkExtension = true; // Check for extensions by default checkExtension = true; // Check for extensions by default
break; break;
case 0x21: // Read Memory Data case 0x21: // Read Memory Data
if ((l2capinbuf[12] & 0x0F) == 0) { // No error if((l2capinbuf[12] & 0x0F) == 0) { // No error
// See: http://wiibrew.org/wiki/Wiimote/Extension_Controllers // See: http://wiibrew.org/wiki/Wiimote/Extension_Controllers
if (l2capinbuf[16] == 0x00 && l2capinbuf[17] == 0xA4 && l2capinbuf[18] == 0x20 && l2capinbuf[19] == 0x00 && l2capinbuf[20] == 0x00) { if(l2capinbuf[16] == 0x00 && l2capinbuf[17] == 0xA4 && l2capinbuf[18] == 0x20 && l2capinbuf[19] == 0x00 && l2capinbuf[20] == 0x00) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nNunchuck connected"), 0x80); Notify(PSTR("\r\nNunchuck connected"), 0x80);
#endif #endif
l2cap_event_flag |= WII_FLAG_NUNCHUCK_CONNECTED; wii_set_flag(WII_FLAG_NUNCHUCK_CONNECTED);
} else if (l2capinbuf[16] == 0x00 && (l2capinbuf[17] == 0xA6 || l2capinbuf[17] == 0xA4) && l2capinbuf[18] == 0x20 && l2capinbuf[19] == 0x00 && l2capinbuf[20] == 0x05) { } else if(l2capinbuf[16] == 0x00 && (l2capinbuf[17] == 0xA6 || l2capinbuf[17] == 0xA4) && l2capinbuf[18] == 0x20 && l2capinbuf[19] == 0x00 && l2capinbuf[20] == 0x05) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nMotion Plus connected"), 0x80); Notify(PSTR("\r\nMotion Plus connected"), 0x80);
#endif #endif
l2cap_event_flag |= WII_FLAG_MOTION_PLUS_CONNECTED; wii_set_flag(WII_FLAG_MOTION_PLUS_CONNECTED);
} else if (l2capinbuf[16] == 0x00 && l2capinbuf[17] == 0xA4 && l2capinbuf[18] == 0x20 && l2capinbuf[19] == 0x04 && l2capinbuf[20] == 0x05) { } else if(l2capinbuf[16] == 0x00 && l2capinbuf[17] == 0xA4 && l2capinbuf[18] == 0x20 && l2capinbuf[19] == 0x04 && l2capinbuf[20] == 0x05) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nMotion Plus activated in normal mode"), 0x80); Notify(PSTR("\r\nMotion Plus activated in normal mode"), 0x80);
#endif #endif
motionPlusConnected = true; motionPlusConnected = true;
#ifdef WIICAMERA #ifdef WIICAMERA
if (!isIRCameraEnabled()) // Don't activate the Motion Plus if we are trying to initialize the IR camera if(!isIRCameraEnabled()) // Don't activate the Motion Plus if we are trying to initialize the IR camera
#endif #endif
setReportMode(false, 0x35); // Also read the extension setReportMode(false, 0x35); // Also read the extension
} else if (l2capinbuf[16] == 0x00 && l2capinbuf[17] == 0xA4 && l2capinbuf[18] == 0x20 && l2capinbuf[19] == 0x05 && l2capinbuf[20] == 0x05) { } else if(l2capinbuf[16] == 0x00 && l2capinbuf[17] == 0xA4 && l2capinbuf[18] == 0x20 && l2capinbuf[19] == 0x05 && l2capinbuf[20] == 0x05) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nMotion Plus activated in Nunchuck pass-through mode"), 0x80); Notify(PSTR("\r\nMotion Plus activated in Nunchuck pass-through mode"), 0x80);
#endif #endif
@ -367,16 +369,16 @@ void WII::ACLData(uint8_t* l2capinbuf) {
motionPlusConnected = true; motionPlusConnected = true;
nunchuckConnected = true; nunchuckConnected = true;
#ifdef WIICAMERA #ifdef WIICAMERA
if (!isIRCameraEnabled()) // Don't activate the Motion Plus if we are trying to initialize the IR camera if(!isIRCameraEnabled()) // Don't activate the Motion Plus if we are trying to initialize the IR camera
#endif #endif
setReportMode(false, 0x35); // Also read the extension setReportMode(false, 0x35); // Also read the extension
} else if (l2capinbuf[16] == 0x00 && l2capinbuf[17] == 0xA6 && l2capinbuf[18] == 0x20 && (l2capinbuf[19] == 0x00 || l2capinbuf[19] == 0x04 || l2capinbuf[19] == 0x05 || l2capinbuf[19] == 0x07) && l2capinbuf[20] == 0x05) { } else if(l2capinbuf[16] == 0x00 && l2capinbuf[17] == 0xA6 && l2capinbuf[18] == 0x20 && (l2capinbuf[19] == 0x00 || l2capinbuf[19] == 0x04 || l2capinbuf[19] == 0x05 || l2capinbuf[19] == 0x07) && l2capinbuf[20] == 0x05) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nInactive Wii Motion Plus"), 0x80); Notify(PSTR("\r\nInactive Wii Motion Plus"), 0x80);
Notify(PSTR("\r\nPlease unplug the Motion Plus, disconnect the Wiimote and then replug the Motion Plus Extension"), 0x80); Notify(PSTR("\r\nPlease unplug the Motion Plus, disconnect the Wiimote and then replug the Motion Plus Extension"), 0x80);
#endif #endif
stateCounter = 300; // Skip the rest in "L2CAP_CHECK_MOTION_PLUS_STATE" stateCounter = 300; // Skip the rest in "WII_CHECK_MOTION_PLUS_STATE"
} else if (l2capinbuf[16] == 0x00 && l2capinbuf[17] == 0xA4 && l2capinbuf[18] == 0x20 && l2capinbuf[19] == 0x01 && l2capinbuf[20] == 0x20) { } else if(l2capinbuf[16] == 0x00 && l2capinbuf[17] == 0xA4 && l2capinbuf[18] == 0x20 && l2capinbuf[19] == 0x01 && l2capinbuf[20] == 0x20) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nWii U Pro Controller connected"), 0x80); Notify(PSTR("\r\nWii U Pro Controller connected"), 0x80);
#endif #endif
@ -388,7 +390,7 @@ void WII::ACLData(uint8_t* l2capinbuf) {
D_PrintHex<uint8_t > (l2capinbuf[13], 0x80); D_PrintHex<uint8_t > (l2capinbuf[13], 0x80);
D_PrintHex<uint8_t > (l2capinbuf[14], 0x80); D_PrintHex<uint8_t > (l2capinbuf[14], 0x80);
Notify(PSTR("\r\nData: "), 0x80); Notify(PSTR("\r\nData: "), 0x80);
for (uint8_t i = 0; i < ((l2capinbuf[12] >> 4) + 1); i++) { // bit 4-7 is the length-1 for(uint8_t i = 0; i < ((l2capinbuf[12] >> 4) + 1); i++) { // bit 4-7 is the length-1
D_PrintHex<uint8_t > (l2capinbuf[15 + i], 0x80); D_PrintHex<uint8_t > (l2capinbuf[15 + i], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
} }
@ -405,7 +407,7 @@ void WII::ACLData(uint8_t* l2capinbuf) {
break; break;
case 0x22: // Acknowledge output report, return function result case 0x22: // Acknowledge output report, return function result
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (l2capinbuf[13] != 0x00) { // Check if there is an error if(l2capinbuf[13] != 0x00) { // Check if there is an error
Notify(PSTR("\r\nCommand failed: "), 0x80); Notify(PSTR("\r\nCommand failed: "), 0x80);
D_PrintHex<uint8_t > (l2capinbuf[12], 0x80); D_PrintHex<uint8_t > (l2capinbuf[12], 0x80);
} }
@ -461,9 +463,9 @@ void WII::ACLData(uint8_t* l2capinbuf) {
break; break;
case 0x35: // Core Buttons and Accelerometer with 16 Extension Bytes case 0x35: // Core Buttons and Accelerometer with 16 Extension Bytes
// (a1) 35 BB BB AA AA AA EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE // (a1) 35 BB BB AA AA AA EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
if (motionPlusConnected) { if(motionPlusConnected) {
if (l2capinbuf[20] & 0x02) { // Check if it's a report from the Motion controller or the extension if(l2capinbuf[20] & 0x02) { // Check if it's a report from the Motion controller or the extension
if (motionValuesReset) { // We will only use the values when the gyro value has been set if(motionValuesReset) { // We will only use the values when the gyro value has been set
gyroYawRaw = ((l2capinbuf[15] | ((l2capinbuf[18] & 0xFC) << 6)) - gyroYawZero); gyroYawRaw = ((l2capinbuf[15] | ((l2capinbuf[18] & 0xFC) << 6)) - gyroYawZero);
gyroRollRaw = ((l2capinbuf[16] | ((l2capinbuf[19] & 0xFC) << 6)) - gyroRollZero); gyroRollRaw = ((l2capinbuf[16] | ((l2capinbuf[19] & 0xFC) << 6)) - gyroRollZero);
gyroPitchRaw = ((l2capinbuf[17] | ((l2capinbuf[20] & 0xFC) << 6)) - gyroPitchZero); gyroPitchRaw = ((l2capinbuf[17] | ((l2capinbuf[20] & 0xFC) << 6)) - gyroPitchZero);
@ -473,11 +475,11 @@ void WII::ACLData(uint8_t* l2capinbuf) {
pitchGyroSpeed = (double)gyroPitchRaw / ((double)gyroPitchZero / pitchGyroScale); pitchGyroSpeed = (double)gyroPitchRaw / ((double)gyroPitchZero / pitchGyroScale);
/* The onboard gyro has two ranges for slow and fast mode */ /* The onboard gyro has two ranges for slow and fast mode */
if (!(l2capinbuf[18] & 0x02)) // Check if fast mode is used if(!(l2capinbuf[18] & 0x02)) // Check if fast mode is used
yawGyroSpeed *= 4.545; yawGyroSpeed *= 4.545;
if (!(l2capinbuf[18] & 0x01)) // Check if fast mode is used if(!(l2capinbuf[18] & 0x01)) // Check if fast mode is used
pitchGyroSpeed *= 4.545; pitchGyroSpeed *= 4.545;
if (!(l2capinbuf[19] & 0x02)) // Check if fast mode is used if(!(l2capinbuf[19] & 0x02)) // Check if fast mode is used
rollGyroSpeed *= 4.545; rollGyroSpeed *= 4.545;
compPitch = (0.93 * (compPitch + (pitchGyroSpeed * (double)(micros() - timer) / 1000000)))+(0.07 * getWiimotePitch()); // Use a complimentary filter to calculate the angle compPitch = (0.93 * (compPitch + (pitchGyroSpeed * (double)(micros() - timer) / 1000000)))+(0.07 * getWiimotePitch()); // Use a complimentary filter to calculate the angle
@ -495,15 +497,15 @@ void WII::ACLData(uint8_t* l2capinbuf) {
Notify(gyroRoll, 0x80); Notify(gyroRoll, 0x80);
Notify(PSTR("\tgyroPitch: "), 0x80); Notify(PSTR("\tgyroPitch: "), 0x80);
Notify(gyroPitch, 0x80); Notify(gyroPitch, 0x80);
*/ */
/* /*
Notify(PSTR("\twiimoteRoll: "), 0x80); Notify(PSTR("\twiimoteRoll: "), 0x80);
Notify(wiimoteRoll, 0x80); Notify(wiimoteRoll, 0x80);
Notify(PSTR("\twiimotePitch: "), 0x80); Notify(PSTR("\twiimotePitch: "), 0x80);
Notify(wiimotePitch, 0x80); Notify(wiimotePitch, 0x80);
*/ */
} else { } else {
if ((micros() - timer) > 1000000) { // Loop for 1 sec before resetting the values if((micros() - timer) > 1000000) { // Loop for 1 sec before resetting the values
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nThe gyro values has been reset"), 0x80); Notify(PSTR("\r\nThe gyro values has been reset"), 0x80);
#endif #endif
@ -524,7 +526,7 @@ void WII::ACLData(uint8_t* l2capinbuf) {
} }
} }
} else { } else {
if (nunchuckConnected) { if(nunchuckConnected) {
hatValues[HatX] = l2capinbuf[15]; hatValues[HatX] = l2capinbuf[15];
hatValues[HatY] = l2capinbuf[16]; hatValues[HatY] = l2capinbuf[16];
accXnunchuck = ((l2capinbuf[17] << 2) | (l2capinbuf[20] & 0x10 >> 3)) - 416; accXnunchuck = ((l2capinbuf[17] << 2) | (l2capinbuf[20] & 0x10 >> 3)) - 416;
@ -533,8 +535,8 @@ void WII::ACLData(uint8_t* l2capinbuf) {
} }
//else if(classicControllerConnected) { } //else if(classicControllerConnected) { }
} }
if (l2capinbuf[19] & 0x01) { if(l2capinbuf[19] & 0x01) {
if (!extensionConnected) { if(!extensionConnected) {
extensionConnected = true; extensionConnected = true;
unknownExtensionConnected = true; unknownExtensionConnected = true;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
@ -542,7 +544,7 @@ void WII::ACLData(uint8_t* l2capinbuf) {
#endif #endif
} }
} else { } else {
if (extensionConnected && !unknownExtensionConnected) { if(extensionConnected && !unknownExtensionConnected) {
extensionConnected = false; extensionConnected = false;
unknownExtensionConnected = true; unknownExtensionConnected = true;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
@ -552,13 +554,13 @@ void WII::ACLData(uint8_t* l2capinbuf) {
} }
} }
} else if (nunchuckConnected) { } else if(nunchuckConnected) {
hatValues[HatX] = l2capinbuf[15]; hatValues[HatX] = l2capinbuf[15];
hatValues[HatY] = l2capinbuf[16]; hatValues[HatY] = l2capinbuf[16];
accXnunchuck = ((l2capinbuf[17] << 2) | (l2capinbuf[20] & 0x0C >> 2)) - 416; accXnunchuck = ((l2capinbuf[17] << 2) | (l2capinbuf[20] & 0x0C >> 2)) - 416;
accYnunchuck = ((l2capinbuf[18] << 2) | (l2capinbuf[20] & 0x30 >> 4)) - 416; accYnunchuck = ((l2capinbuf[18] << 2) | (l2capinbuf[20] & 0x30 >> 4)) - 416;
accZnunchuck = ((l2capinbuf[19] << 2) | (l2capinbuf[20] & 0xC0 >> 6)) - 416; accZnunchuck = ((l2capinbuf[19] << 2) | (l2capinbuf[20] & 0xC0 >> 6)) - 416;
} else if (wiiUProControllerConnected) { } else if(wiiUProControllerConnected) {
hatValues[LeftHatX] = (l2capinbuf[15] | l2capinbuf[16] << 8); hatValues[LeftHatX] = (l2capinbuf[15] | l2capinbuf[16] << 8);
hatValues[RightHatX] = (l2capinbuf[17] | l2capinbuf[18] << 8); hatValues[RightHatX] = (l2capinbuf[17] | l2capinbuf[18] << 8);
hatValues[LeftHatY] = (l2capinbuf[19] | l2capinbuf[20] << 8); hatValues[LeftHatY] = (l2capinbuf[19] | l2capinbuf[20] << 8);
@ -579,10 +581,10 @@ void WII::ACLData(uint8_t* l2capinbuf) {
} }
void WII::L2CAP_task() { void WII::L2CAP_task() {
switch (l2cap_state) { switch(l2cap_state) {
/* These states are used if the Wiimote is the host */ /* These states are used if the Wiimote is the host */
case L2CAP_CONTROL_SUCCESS: case L2CAP_CONTROL_SUCCESS:
if (l2cap_config_success_control_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONFIG_CONTROL_SUCCESS)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Control Successfully Configured"), 0x80); Notify(PSTR("\r\nHID Control Successfully Configured"), 0x80);
#endif #endif
@ -591,7 +593,7 @@ void WII::L2CAP_task() {
break; break;
case L2CAP_INTERRUPT_SETUP: case L2CAP_INTERRUPT_SETUP:
if (l2cap_connection_request_interrupt_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Interrupt Incoming Connection Request"), 0x80); Notify(PSTR("\r\nHID Interrupt Incoming Connection Request"), 0x80);
#endif #endif
@ -608,7 +610,7 @@ void WII::L2CAP_task() {
/* These states are used if the Arduino is the host */ /* These states are used if the Arduino is the host */
case L2CAP_CONTROL_CONNECT_REQUEST: case L2CAP_CONTROL_CONNECT_REQUEST:
if (l2cap_connected_control_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONTROL_CONNECTED)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSend HID Control Config Request"), 0x80); Notify(PSTR("\r\nSend HID Control Config Request"), 0x80);
#endif #endif
@ -619,7 +621,7 @@ void WII::L2CAP_task() {
break; break;
case L2CAP_CONTROL_CONFIG_REQUEST: case L2CAP_CONTROL_CONFIG_REQUEST:
if (l2cap_config_success_control_flag) { if(l2cap_check_flag(L2CAP_FLAG_CONFIG_CONTROL_SUCCESS)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSend HID Interrupt Connection Request"), 0x80); Notify(PSTR("\r\nSend HID Interrupt Connection Request"), 0x80);
#endif #endif
@ -630,7 +632,7 @@ void WII::L2CAP_task() {
break; break;
case L2CAP_INTERRUPT_CONNECT_REQUEST: case L2CAP_INTERRUPT_CONNECT_REQUEST:
if (l2cap_connected_interrupt_flag) { if(l2cap_check_flag(L2CAP_FLAG_INTERRUPT_CONNECTED)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nSend HID Interrupt Config Request"), 0x80); Notify(PSTR("\r\nSend HID Interrupt Config Request"), 0x80);
#endif #endif
@ -641,21 +643,21 @@ void WII::L2CAP_task() {
break; break;
case L2CAP_INTERRUPT_CONFIG_REQUEST: case L2CAP_INTERRUPT_CONFIG_REQUEST:
if (l2cap_config_success_interrupt_flag) { // Now the HID channels is established if(l2cap_check_flag(L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS)) { // Now the HID channels is established
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Channels Established"), 0x80); Notify(PSTR("\r\nHID Channels Established"), 0x80);
#endif #endif
pBtd->connectToWii = false; pBtd->connectToWii = false;
pBtd->pairWithWii = false; pBtd->pairWithWii = false;
stateCounter = 0; stateCounter = 0;
l2cap_state = L2CAP_CHECK_MOTION_PLUS_STATE; l2cap_state = WII_CHECK_MOTION_PLUS_STATE;
} }
break; break;
/* The next states are in run() */ /* The next states are in run() */
case L2CAP_INTERRUPT_DISCONNECT: case L2CAP_INTERRUPT_DISCONNECT:
if (l2cap_disconnect_response_interrupt_flag && millis() > timer) { if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE) && ((long)(millis() - timer) >= 0L)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnected Interrupt Channel"), 0x80); Notify(PSTR("\r\nDisconnected Interrupt Channel"), 0x80);
#endif #endif
@ -666,7 +668,7 @@ void WII::L2CAP_task() {
break; break;
case L2CAP_CONTROL_DISCONNECT: case L2CAP_CONTROL_DISCONNECT:
if (l2cap_disconnect_response_control_flag) { if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nDisconnected Control Channel"), 0x80); Notify(PSTR("\r\nDisconnected Control Channel"), 0x80);
#endif #endif
@ -680,12 +682,12 @@ void WII::L2CAP_task() {
} }
void WII::Run() { void WII::Run() {
if (l2cap_state == L2CAP_INTERRUPT_DISCONNECT && millis() > timer) if(l2cap_state == L2CAP_INTERRUPT_DISCONNECT && ((long)(millis() - timer) >= 0L))
L2CAP_task(); // Call the rest of the disconnection routine after we have waited long enough L2CAP_task(); // Call the rest of the disconnection routine after we have waited long enough
switch (l2cap_state) { switch(l2cap_state) {
case L2CAP_WAIT: case L2CAP_WAIT:
if (pBtd->connectToWii && !pBtd->l2capConnectionClaimed && !wiimoteConnected && !activeConnection) { if(pBtd->connectToWii && !pBtd->l2capConnectionClaimed && !wiimoteConnected && !activeConnection) {
pBtd->l2capConnectionClaimed = true; pBtd->l2capConnectionClaimed = true;
activeConnection = true; activeConnection = true;
motionPlusInside = pBtd->motionPlusInside; motionPlusInside = pBtd->motionPlusInside;
@ -697,7 +699,7 @@ void WII::Run() {
identifier = 0; identifier = 0;
pBtd->l2cap_connection_request(hci_handle, identifier, control_dcid, HID_CTRL_PSM); pBtd->l2cap_connection_request(hci_handle, identifier, control_dcid, HID_CTRL_PSM);
l2cap_state = L2CAP_CONTROL_CONNECT_REQUEST; l2cap_state = L2CAP_CONTROL_CONNECT_REQUEST;
} else if (l2cap_connection_request_control_flag) { } else if(l2cap_check_flag(L2CAP_FLAG_CONNECTION_CONTROL_REQUEST)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHID Control Incoming Connection Request"), 0x80); Notify(PSTR("\r\nHID Control Incoming Connection Request"), 0x80);
#endif #endif
@ -711,76 +713,76 @@ void WII::Run() {
} }
break; break;
case L2CAP_CHECK_MOTION_PLUS_STATE: case WII_CHECK_MOTION_PLUS_STATE:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (stateCounter == 0) // Only print onnce if(stateCounter == 0) // Only print onnce
Notify(PSTR("\r\nChecking if a Motion Plus is connected"), 0x80); Notify(PSTR("\r\nChecking if a Motion Plus is connected"), 0x80);
#endif #endif
stateCounter++; stateCounter++;
if (stateCounter % 200 == 0) if(stateCounter % 200 == 0)
checkMotionPresent(); // Check if there is a motion plus connected checkMotionPresent(); // Check if there is a motion plus connected
if (motion_plus_connected_flag) { if(wii_check_flag(WII_FLAG_MOTION_PLUS_CONNECTED)) {
stateCounter = 0; stateCounter = 0;
l2cap_state = L2CAP_INIT_MOTION_PLUS_STATE; l2cap_state = WII_INIT_MOTION_PLUS_STATE;
timer = micros(); timer = micros();
if (unknownExtensionConnected) { if(unknownExtensionConnected) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nA extension is also connected"), 0x80); Notify(PSTR("\r\nA extension is also connected"), 0x80);
#endif #endif
activateNunchuck = true; // For we will just set this to true as this the only extension supported so far activateNunchuck = true; // For we will just set this to true as this the only extension supported so far
} }
} else if (stateCounter == 601) { // We will try three times to check for the motion plus } else if(stateCounter == 601) { // We will try three times to check for the motion plus
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nNo Motion Plus was detected"), 0x80); Notify(PSTR("\r\nNo Motion Plus was detected"), 0x80);
#endif #endif
stateCounter = 0; stateCounter = 0;
l2cap_state = L2CAP_CHECK_EXTENSION_STATE; l2cap_state = WII_CHECK_EXTENSION_STATE;
} }
break; break;
case L2CAP_CHECK_EXTENSION_STATE: // This is used to check if there is anything plugged in to the extension port case WII_CHECK_EXTENSION_STATE: // This is used to check if there is anything plugged in to the extension port
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (stateCounter == 0) // Only print onnce if(stateCounter == 0) // Only print onnce
Notify(PSTR("\r\nChecking if there is any extension connected"), 0x80); Notify(PSTR("\r\nChecking if there is any extension connected"), 0x80);
#endif #endif
stateCounter++; // We use this counter as there has to be a short delay between the commands stateCounter++; // We use this counter as there has to be a short delay between the commands
if (stateCounter == 1) if(stateCounter == 1)
statusRequest(); // See if a new device has connected statusRequest(); // See if a new device has connected
if (stateCounter == 100) { if(stateCounter == 100) {
if (unknownExtensionConnected) // Check if there is a extension is connected to the port if(unknownExtensionConnected) // Check if there is a extension is connected to the port
initExtension1(); initExtension1();
else else
stateCounter = 399; stateCounter = 399;
} else if (stateCounter == 200) } else if(stateCounter == 200)
initExtension2(); initExtension2();
else if (stateCounter == 300) { else if(stateCounter == 300) {
readExtensionType(); readExtensionType();
unknownExtensionConnected = false; unknownExtensionConnected = false;
} else if (stateCounter == 400) { } else if(stateCounter == 400) {
stateCounter = 0; stateCounter = 0;
l2cap_state = L2CAP_LED_STATE; l2cap_state = TURN_ON_LED;
} }
break; break;
case L2CAP_INIT_MOTION_PLUS_STATE: case WII_INIT_MOTION_PLUS_STATE:
stateCounter++; stateCounter++;
if (stateCounter == 1) if(stateCounter == 1)
initMotionPlus(); initMotionPlus();
else if (stateCounter == 100) else if(stateCounter == 100)
activateMotionPlus(); activateMotionPlus();
else if (stateCounter == 200) else if(stateCounter == 200)
readExtensionType(); // Check if it has been activated readExtensionType(); // Check if it has been activated
else if (stateCounter == 300) { else if(stateCounter == 300) {
stateCounter = 0; stateCounter = 0;
unknownExtensionConnected = false; // The motion plus will send a status report when it's activated, we will set this to false so it doesn't reinitialize the Motion Plus unknownExtensionConnected = false; // The motion plus will send a status report when it's activated, we will set this to false so it doesn't reinitialize the Motion Plus
l2cap_state = L2CAP_LED_STATE; l2cap_state = TURN_ON_LED;
} }
break; break;
case L2CAP_LED_STATE: case TURN_ON_LED:
if (nunchuck_connected_flag) if(wii_check_flag(WII_FLAG_NUNCHUCK_CONNECTED))
nunchuckConnected = true; nunchuckConnected = true;
wiimoteConnected = true; wiimoteConnected = true;
onInit(); onInit();
@ -788,46 +790,46 @@ void WII::Run() {
break; break;
case L2CAP_DONE: case L2CAP_DONE:
if (unknownExtensionConnected) { if(unknownExtensionConnected) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
if (stateCounter == 0) // Only print once if(stateCounter == 0) // Only print once
Notify(PSTR("\r\nChecking extension port"), 0x80); Notify(PSTR("\r\nChecking extension port"), 0x80);
#endif #endif
stateCounter++; // We will use this counter as there has to be a short delay between the commands stateCounter++; // We will use this counter as there has to be a short delay between the commands
if (stateCounter == 50) if(stateCounter == 50)
statusRequest(); statusRequest();
else if (stateCounter == 100) else if(stateCounter == 100)
initExtension1(); initExtension1();
else if (stateCounter == 150) else if(stateCounter == 150)
if ((extensionConnected && motionPlusConnected) || (unknownExtensionConnected && !motionPlusConnected)) if((extensionConnected && motionPlusConnected) || (unknownExtensionConnected && !motionPlusConnected))
initExtension2(); initExtension2();
else else
stateCounter = 299; // There is no extension connected stateCounter = 299; // There is no extension connected
else if (stateCounter == 200) else if(stateCounter == 200)
readExtensionType(); readExtensionType();
else if (stateCounter == 250) { else if(stateCounter == 250) {
if (nunchuck_connected_flag) { if(wii_check_flag(WII_FLAG_NUNCHUCK_CONNECTED)) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nNunchuck was reconnected"), 0x80); Notify(PSTR("\r\nNunchuck was reconnected"), 0x80);
#endif #endif
activateNunchuck = true; activateNunchuck = true;
nunchuckConnected = true; nunchuckConnected = true;
} }
if (!motionPlusConnected) if(!motionPlusConnected)
stateCounter = 449; stateCounter = 449;
} else if (stateCounter == 300) { } else if(stateCounter == 300) {
if (motionPlusConnected) { if(motionPlusConnected) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nReactivating the Motion Plus"), 0x80); Notify(PSTR("\r\nReactivating the Motion Plus"), 0x80);
#endif #endif
initMotionPlus(); initMotionPlus();
} else } else
stateCounter = 449; stateCounter = 449;
} else if (stateCounter == 350) } else if(stateCounter == 350)
activateMotionPlus(); activateMotionPlus();
else if (stateCounter == 400) else if(stateCounter == 400)
readExtensionType(); // Check if it has been activated readExtensionType(); // Check if it has been activated
else if (stateCounter == 450) { else if(stateCounter == 450) {
onInit(); onInit();
stateCounter = 0; stateCounter = 0;
unknownExtensionConnected = false; unknownExtensionConnected = false;
@ -843,8 +845,8 @@ void WII::Run() {
/************************************************************/ /************************************************************/
void WII::HID_Command(uint8_t* data, uint8_t nbytes) { void WII::HID_Command(uint8_t* data, uint8_t nbytes) {
if (motionPlusInside) if(motionPlusInside)
pBtd->L2CAP_Command(hci_handle, data, nbytes, interrupt_scid[0], interrupt_scid[1]); // It's the new wiimote with the Motion Plus Inside pBtd->L2CAP_Command(hci_handle, data, nbytes, interrupt_scid[0], interrupt_scid[1]); // It's the new Wiimote with the Motion Plus Inside or Wii U Pro controller
else else
pBtd->L2CAP_Command(hci_handle, data, nbytes, control_scid[0], control_scid[1]); pBtd->L2CAP_Command(hci_handle, data, nbytes, control_scid[0], control_scid[1]);
} }
@ -878,32 +880,37 @@ void WII::setLedRaw(uint8_t value) {
HIDBuffer[2] = value | (HIDBuffer[2] & 0x01); // Keep the rumble bit HIDBuffer[2] = value | (HIDBuffer[2] & 0x01); // Keep the rumble bit
HID_Command(HIDBuffer, 3); HID_Command(HIDBuffer, 3);
} }
void WII::setLedOff(LED a) {
void WII::setLedOff(LEDEnum a) {
HIDBuffer[1] = 0x11; HIDBuffer[1] = 0x11;
HIDBuffer[2] &= ~(pgm_read_byte(&LEDS[(uint8_t)a])); HIDBuffer[2] &= ~(pgm_read_byte(&WII_LEDS[(uint8_t)a]));
HID_Command(HIDBuffer, 3); HID_Command(HIDBuffer, 3);
} }
void WII::setLedOn(LED a) { void WII::setLedOn(LEDEnum a) {
HIDBuffer[1] = 0x11; if(a == OFF)
HIDBuffer[2] |= pgm_read_byte(&LEDS[(uint8_t)a]); setLedRaw(0);
HID_Command(HIDBuffer, 3); else {
HIDBuffer[1] = 0x11;
HIDBuffer[2] |= pgm_read_byte(&WII_LEDS[(uint8_t)a]);
HID_Command(HIDBuffer, 3);
}
} }
void WII::setLedToggle(LED a) { void WII::setLedToggle(LEDEnum a) {
HIDBuffer[1] = 0x11; HIDBuffer[1] = 0x11;
HIDBuffer[2] ^= pgm_read_byte(&LEDS[(uint8_t)a]); HIDBuffer[2] ^= pgm_read_byte(&WII_LEDS[(uint8_t)a]);
HID_Command(HIDBuffer, 3); HID_Command(HIDBuffer, 3);
} }
void WII::setLedStatus() { void WII::setLedStatus() {
HIDBuffer[1] = 0x11; HIDBuffer[1] = 0x11;
HIDBuffer[2] = (HIDBuffer[2] & 0x01); // Keep the rumble bit HIDBuffer[2] = (HIDBuffer[2] & 0x01); // Keep the rumble bit
if (wiimoteConnected) if(wiimoteConnected)
HIDBuffer[2] |= 0x10; // If it's connected LED1 will light up HIDBuffer[2] |= 0x10; // If it's connected LED1 will light up
if (motionPlusConnected) if(motionPlusConnected)
HIDBuffer[2] |= 0x20; // If it's connected LED2 will light up HIDBuffer[2] |= 0x20; // If it's connected LED2 will light up
if (nunchuckConnected) if(nunchuckConnected)
HIDBuffer[2] |= 0x40; // If it's connected LED3 will light up HIDBuffer[2] |= 0x40; // If it's connected LED3 will light up
HID_Command(HIDBuffer, 3); HID_Command(HIDBuffer, 3);
@ -919,7 +926,7 @@ void WII::setReportMode(bool continuous, uint8_t mode) {
uint8_t cmd_buf[4]; uint8_t cmd_buf[4];
cmd_buf[0] = 0xA2; // HID BT DATA_request (0xA0) | Report Type (Output 0x02) cmd_buf[0] = 0xA2; // HID BT DATA_request (0xA0) | Report Type (Output 0x02)
cmd_buf[1] = 0x12; cmd_buf[1] = 0x12;
if (continuous) if(continuous)
cmd_buf[2] = 0x04 | (HIDBuffer[2] & 0x01); // Keep the rumble bit cmd_buf[2] = 0x04 | (HIDBuffer[2] & 0x01); // Keep the rumble bit
else else
cmd_buf[2] = 0x00 | (HIDBuffer[2] & 0x01); // Keep the rumble bit cmd_buf[2] = 0x00 | (HIDBuffer[2] & 0x01); // Keep the rumble bit
@ -949,9 +956,9 @@ void WII::writeData(uint32_t offset, uint8_t size, uint8_t* data) {
cmd_buf[5] = (uint8_t)(offset & 0xFF); cmd_buf[5] = (uint8_t)(offset & 0xFF);
cmd_buf[6] = size; cmd_buf[6] = size;
uint8_t i = 0; uint8_t i = 0;
for (; i < size; i++) for(; i < size; i++)
cmd_buf[7 + i] = data[i]; cmd_buf[7 + i] = data[i];
for (; i < 16; i++) // Set the rest to zero for(; i < 16; i++) // Set the rest to zero
cmd_buf[7 + i] = 0x00; cmd_buf[7 + i] = 0x00;
HID_Command(cmd_buf, 23); HID_Command(cmd_buf, 23);
} }
@ -976,17 +983,17 @@ void WII::initMotionPlus() {
void WII::activateMotionPlus() { void WII::activateMotionPlus() {
uint8_t buf[1]; uint8_t buf[1];
if (pBtd->wiiUProController) { if(pBtd->wiiUProController) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nActivating Wii U Pro Controller"), 0x80); Notify(PSTR("\r\nActivating Wii U Pro Controller"), 0x80);
#endif #endif
buf[0] = 0x00; // It seems like you can send anything but 0x04, 0x05, and 0x07 buf[0] = 0x00; // It seems like you can send anything but 0x04, 0x05, and 0x07
} else if (activateNunchuck) { } else if(activateNunchuck) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nActivating Motion Plus in pass-through mode"), 0x80); Notify(PSTR("\r\nActivating Motion Plus in pass-through mode"), 0x80);
#endif #endif
buf[0] = 0x05; // Activate nunchuck pass-through mode buf[0] = 0x05; // Activate nunchuck pass-through mode
} //else if(classicControllerConnected && extensionConnected) }//else if(classicControllerConnected && extensionConnected)
//buf[0] = 0x07; //buf[0] = 0x07;
else { else {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
@ -1001,7 +1008,7 @@ void WII::readData(uint32_t offset, uint16_t size, bool EEPROM) {
uint8_t cmd_buf[8]; uint8_t cmd_buf[8];
cmd_buf[0] = 0xA2; // HID BT DATA_request (0xA0) | Report Type (Output 0x02) cmd_buf[0] = 0xA2; // HID BT DATA_request (0xA0) | Report Type (Output 0x02)
cmd_buf[1] = 0x17; // Read data cmd_buf[1] = 0x17; // Read data
if (EEPROM) if(EEPROM)
cmd_buf[2] = 0x00 | (HIDBuffer[2] & 0x01); // Read from EEPROM cmd_buf[2] = 0x00 | (HIDBuffer[2] & 0x01); // Read from EEPROM
else else
cmd_buf[2] = 0x04 | (HIDBuffer[2] & 0x01); // Read from memory cmd_buf[2] = 0x04 | (HIDBuffer[2] & 0x01); // Read from memory
@ -1031,42 +1038,42 @@ void WII::checkMotionPresent() {
/************************************************************/ /************************************************************/
bool WII::getButtonPress(Button b) { // Return true when a button is pressed bool WII::getButtonPress(ButtonEnum b) { // Return true when a button is pressed
if (wiiUProControllerConnected) if(wiiUProControllerConnected)
return (ButtonState & pgm_read_dword(&PROCONTROLLERBUTTONS[(uint8_t)b])); return (ButtonState & pgm_read_dword(&WII_PROCONTROLLER_BUTTONS[(uint8_t)b]));
else else
return (ButtonState & pgm_read_dword(&BUTTONS[(uint8_t)b])); return (ButtonState & pgm_read_dword(&WII_BUTTONS[(uint8_t)b]));
} }
bool WII::getButtonClick(Button b) { // Only return true when a button is clicked bool WII::getButtonClick(ButtonEnum b) { // Only return true when a button is clicked
uint32_t button; uint32_t button;
if (wiiUProControllerConnected) if(wiiUProControllerConnected)
button = pgm_read_dword(&PROCONTROLLERBUTTONS[(uint8_t)b]); button = pgm_read_dword(&WII_PROCONTROLLER_BUTTONS[(uint8_t)b]);
else else
button = pgm_read_dword(&BUTTONS[(uint8_t)b]); button = pgm_read_dword(&WII_BUTTONS[(uint8_t)b]);
bool click = (ButtonClickState & button); bool click = (ButtonClickState & button);
ButtonClickState &= ~button; // clear "click" event ButtonClickState &= ~button; // clear "click" event
return click; return click;
} }
uint8_t WII::getAnalogHat(Hat a) { uint8_t WII::getAnalogHat(HatEnum a) {
if (!nunchuckConnected) if(!nunchuckConnected)
return 127; // Return center position return 127; // Return center position
else { else {
uint8_t output = hatValues[(uint8_t)a]; uint8_t output = hatValues[(uint8_t)a];
if (output == 0xFF || output == 0x00) // The joystick will only read 255 or 0 when the cable is unplugged or initializing, so we will just return the center position if(output == 0xFF || output == 0x00) // The joystick will only read 255 or 0 when the cable is unplugged or initializing, so we will just return the center position
return 127; return 127;
else else
return output; return output;
} }
} }
uint16_t WII::getAnalogHat(AnalogHat a) { uint16_t WII::getAnalogHat(AnalogHatEnum a) {
if (!wiiUProControllerConnected) if(!wiiUProControllerConnected)
return 2000; return 2000;
else { else {
uint16_t output = hatValues[(uint8_t)a]; uint16_t output = hatValues[(uint8_t)a];
if (output == 0x00) // The joystick will only read 0 when it is first initializing, so we will just return the center position if(output == 0x00) // The joystick will only read 0 when it is first initializing, so we will just return the center position
return 2000; return 2000;
else else
return output; return output;
@ -1074,7 +1081,7 @@ uint16_t WII::getAnalogHat(AnalogHat a) {
} }
void WII::onInit() { void WII::onInit() {
if (pFuncOnInit) if(pFuncOnInit)
pFuncOnInit(); // Call the user function pFuncOnInit(); // Call the user function
else else
setLedStatus(); setLedStatus();

121
Wii.h
View file

@ -23,61 +23,16 @@
#include "BTD.h" #include "BTD.h"
#include "controllerEnums.h" #include "controllerEnums.h"
/** You will have to uncomment this to use the IR camera */
//#define WIICAMERA
/* Bluetooth L2CAP states for L2CAP_task() */
#define L2CAP_WAIT 0
// These states are used if the Wiimote is the host
#define L2CAP_CONTROL_SUCCESS 1
#define L2CAP_INTERRUPT_SETUP 2
// These states are used if the Arduino is the host
#define L2CAP_CONTROL_CONNECT_REQUEST 3
#define L2CAP_CONTROL_CONFIG_REQUEST 4
#define L2CAP_INTERRUPT_CONNECT_REQUEST 5
#define L2CAP_INTERRUPT_CONFIG_REQUEST 6
#define L2CAP_CHECK_MOTION_PLUS_STATE 7
#define L2CAP_CHECK_EXTENSION_STATE 8
#define L2CAP_INIT_MOTION_PLUS_STATE 9
#define L2CAP_LED_STATE 10
#define L2CAP_DONE 11
#define L2CAP_INTERRUPT_DISCONNECT 12
#define L2CAP_CONTROL_DISCONNECT 13
/* L2CAP event flags */
#define L2CAP_FLAG_CONTROL_CONNECTED 0x001
#define L2CAP_FLAG_INTERRUPT_CONNECTED 0x002
#define L2CAP_FLAG_CONFIG_CONTROL_SUCCESS 0x004
#define L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS 0x008
#define L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE 0x040
#define L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE 0x080
#define L2CAP_FLAG_CONNECTION_CONTROL_REQUEST 0x100
#define L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST 0x200
/* Macros for L2CAP event flag tests */
#define l2cap_connected_control_flag (l2cap_event_flag & L2CAP_FLAG_CONTROL_CONNECTED)
#define l2cap_connected_interrupt_flag (l2cap_event_flag & L2CAP_FLAG_INTERRUPT_CONNECTED)
#define l2cap_config_success_control_flag (l2cap_event_flag & L2CAP_FLAG_CONFIG_CONTROL_SUCCESS)
#define l2cap_config_success_interrupt_flag (l2cap_event_flag & L2CAP_FLAG_CONFIG_INTERRUPT_SUCCESS)
#define l2cap_disconnect_response_control_flag (l2cap_event_flag & L2CAP_FLAG_DISCONNECT_CONTROL_RESPONSE)
#define l2cap_disconnect_response_interrupt_flag (l2cap_event_flag & L2CAP_FLAG_DISCONNECT_INTERRUPT_RESPONSE)
#define l2cap_connection_request_control_flag (l2cap_event_flag & L2CAP_FLAG_CONNECTION_CONTROL_REQUEST)
#define l2cap_connection_request_interrupt_flag (l2cap_event_flag & L2CAP_FLAG_CONNECTION_INTERRUPT_REQUEST)
/* Wii event flags */ /* Wii event flags */
#define WII_FLAG_MOTION_PLUS_CONNECTED 0x400 #define WII_FLAG_MOTION_PLUS_CONNECTED 0x01
#define WII_FLAG_NUNCHUCK_CONNECTED 0x800 #define WII_FLAG_NUNCHUCK_CONNECTED 0x02
#define motion_plus_connected_flag (l2cap_event_flag & WII_FLAG_MOTION_PLUS_CONNECTED) #define wii_check_flag(flag) (wii_event_flag & (flag))
#define nunchuck_connected_flag (l2cap_event_flag & WII_FLAG_NUNCHUCK_CONNECTED) #define wii_set_flag(flag) (wii_event_flag |= (flag))
#define wii_clear_flag(flag) (wii_event_flag &= ~(flag))
/** Enum used to read the joystick on the Nunchuck. */ /** Enum used to read the joystick on the Nunchuck. */
enum Hat { enum HatEnum {
/** Read the x-axis on the Nunchuck joystick. */ /** Read the x-axis on the Nunchuck joystick. */
HatX = 0, HatX = 0,
/** Read the y-axis on the Nunchuck joystick. */ /** Read the y-axis on the Nunchuck joystick. */
@ -105,7 +60,7 @@ public:
* @param ACLData Incoming acldata. * @param ACLData Incoming acldata.
*/ */
virtual void ACLData(uint8_t* ACLData); virtual void ACLData(uint8_t* ACLData);
/** Used to run part of the state maschine. */ /** Used to run part of the state machine. */
virtual void Run(); virtual void Run();
/** Use this to reset the service. */ /** Use this to reset the service. */
virtual void Reset(); virtual void Reset();
@ -121,36 +76,39 @@ public:
* *
* So you instance if you need to increase a variable once you would use getButtonClick(Button b), * So you instance if you need to increase a variable once you would use getButtonClick(Button b),
* but if you need to drive a robot forward you would use getButtonPress(Button b). * but if you need to drive a robot forward you would use getButtonPress(Button b).
* @param b ::ButtonEnum to read.
* @return getButtonPress(ButtonEnum b) will return a true as long as a button is held down, while getButtonClick(ButtonEnum b) will return true once for each button press.
*/ */
bool getButtonPress(Button b); bool getButtonPress(ButtonEnum b);
bool getButtonClick(Button b); bool getButtonClick(ButtonEnum b);
/**@}*/ /**@}*/
/** @name Wii Controller functions */ /** @name Wii Controller functions */
/** Call this to start the paring sequence with a controller */ /** Call this to start the paring sequence with a controller */
void pair(void) { void pair(void) {
if(pBtd) if(pBtd)
pBtd->pairWithWiimote(); pBtd->pairWithWiimote();
} };
/** /**
* Used to read the joystick of the Nunchuck. * Used to read the joystick of the Nunchuck.
* @param a Either ::HatX or ::HatY. * @param a Either ::HatX or ::HatY.
* @return Return the analog value in the range from approximately 25-230. * @return Return the analog value in the range from approximately 25-230.
*/ */
uint8_t getAnalogHat(Hat a); uint8_t getAnalogHat(HatEnum a);
/** /**
* Used to read the joystick of the Wii U Pro Controller. * Used to read the joystick of the Wii U Pro Controller.
* @param a Either ::LeftHatX, ::LeftHatY, ::RightHatX or ::RightHatY. * @param a Either ::LeftHatX, ::LeftHatY, ::RightHatX or ::RightHatY.
* @return Return the analog value in the range from approximately 800-3200. * @return Return the analog value in the range from approximately 800-3200.
*/ */
uint16_t getAnalogHat(AnalogHat a); uint16_t getAnalogHat(AnalogHatEnum a);
/** /**
* Pitch calculated from the Wiimote. A complimentary filter is used if the Motion Plus is connected. * Pitch calculated from the Wiimote. A complimentary filter is used if the Motion Plus is connected.
* @return Pitch in the range from 0-360. * @return Pitch in the range from 0-360.
*/ */
double getPitch() { double getPitch() {
if (motionPlusConnected) if(motionPlusConnected)
return compPitch; return compPitch;
return getWiimotePitch(); return getWiimotePitch();
}; };
@ -160,7 +118,7 @@ public:
* @return Roll in the range from 0-360. * @return Roll in the range from 0-360.
*/ */
double getRoll() { double getRoll() {
if (motionPlusConnected) if(motionPlusConnected)
return compRoll; return compRoll;
return getWiimoteRoll(); return getWiimoteRoll();
}; };
@ -185,35 +143,36 @@ public:
void setRumbleToggle(); void setRumbleToggle();
/** /**
* Set LED value without using the ::LED enum. * Set LED value without using the ::LEDEnum.
* @param value See: ::LED enum. * @param value See: ::LEDEnum.
*/ */
void setLedRaw(uint8_t value); void setLedRaw(uint8_t value);
/** Turn all LEDs off. */ /** Turn all LEDs off. */
void setLedOff() { void setLedOff() {
setLedRaw(0); setLedRaw(0);
} };
/** /**
* Turn the specific ::LED off. * Turn the specific ::LEDEnum off.
* @param a The ::LED to turn off. * @param a The ::LEDEnum to turn off.
*/ */
void setLedOff(LED a); void setLedOff(LEDEnum a);
/** /**
* Turn the specific ::LED on. * Turn the specific ::LEDEnum on.
* @param a The ::LED to turn on. * @param a The ::LEDEnum to turn on.
*/ */
void setLedOn(LED a); void setLedOn(LEDEnum a);
/** /**
* Toggle the specific ::LED. * Toggle the specific ::LEDEnum.
* @param a The ::LED to toggle. * @param a The ::LEDEnum to toggle.
*/ */
void setLedToggle(LED a); void setLedToggle(LEDEnum a);
/** /**
* This will set the LEDs, so the user can see which connections are active. * This will set the LEDs, so the user can see which connections are active.
* *
* The first ::LED indicate that the Wiimote is connected, * The first ::LEDEnum indicate that the Wiimote is connected,
* the second ::LED indicate indicate that a Motion Plus is also connected * the second ::LEDEnum indicate indicate that a Motion Plus is also connected
* the third ::LED will indicate that a Nunchuck controller is also connected. * the third ::LEDEnum will indicate that a Nunchuck controller is also connected.
*/ */
void setLedStatus(); void setLedStatus();
@ -222,6 +181,7 @@ public:
* @return The battery level in the range 0-255. * @return The battery level in the range 0-255.
*/ */
uint8_t getBatteryLevel(); uint8_t getBatteryLevel();
/** /**
* Return the Wiimote state. * Return the Wiimote state.
* @return See: http://wiibrew.org/wiki/Wiimote#0x20:_Status. * @return See: http://wiibrew.org/wiki/Wiimote#0x20:_Status.
@ -253,20 +213,24 @@ public:
/* IMU Data, might be usefull if you need to do something more advanced than just calculating the angle */ /* IMU Data, might be usefull if you need to do something more advanced than just calculating the angle */
/**@{*/ /**@{*/
/** Pitch and roll calculated from the accelerometer inside the Wiimote. */ /** Pitch and roll calculated from the accelerometer inside the Wiimote. */
double getWiimotePitch() { double getWiimotePitch() {
return (atan2(accYwiimote, accZwiimote) + PI) * RAD_TO_DEG; return (atan2(accYwiimote, accZwiimote) + PI) * RAD_TO_DEG;
}; };
double getWiimoteRoll() { double getWiimoteRoll() {
return (atan2(accXwiimote, accZwiimote) + PI) * RAD_TO_DEG; return (atan2(accXwiimote, accZwiimote) + PI) * RAD_TO_DEG;
}; };
/**@}*/ /**@}*/
/**@{*/ /**@{*/
/** Pitch and roll calculated from the accelerometer inside the Nunchuck. */ /** Pitch and roll calculated from the accelerometer inside the Nunchuck. */
double getNunchuckPitch() { double getNunchuckPitch() {
return (atan2(accYnunchuck, accZnunchuck) + PI) * RAD_TO_DEG; return (atan2(accYnunchuck, accZnunchuck) + PI) * RAD_TO_DEG;
}; };
double getNunchuckRoll() { double getNunchuckRoll() {
return (atan2(accXnunchuck, accZnunchuck) + PI) * RAD_TO_DEG; return (atan2(accXnunchuck, accZnunchuck) + PI) * RAD_TO_DEG;
}; };
@ -316,7 +280,7 @@ public:
#ifdef WIICAMERA #ifdef WIICAMERA
/** @name Wiimote IR camera functions /** @name Wiimote IR camera functions
* You will have to uncomment #WIICAMERA in Wii.h to use the IR camera. * You will have to set ::ENABLE_WII_IR_CAMERA in settings.h to 1 in order use the IR camera.
*/ */
/** Initialises the camera as per the steps from: http://wiibrew.org/wiki/Wiimote#IR_Camera */ /** Initialises the camera as per the steps from: http://wiibrew.org/wiki/Wiimote#IR_Camera */
void IRinitialize(); void IRinitialize();
@ -423,7 +387,7 @@ public:
* @return True if it's enabled, false if not. * @return True if it's enabled, false if not.
*/ */
bool isIRCameraEnabled() { bool isIRCameraEnabled() {
return(wiiState & 0x08); return (wiiState & 0x08);
}; };
/**@}*/ /**@}*/
#endif #endif
@ -447,7 +411,8 @@ private:
/* Variables used by high level L2CAP task */ /* Variables used by high level L2CAP task */
uint8_t l2cap_state; uint8_t l2cap_state;
uint16_t l2cap_event_flag; // l2cap flags of received Bluetooth events uint32_t l2cap_event_flag; // L2CAP flags of received Bluetooth events
uint8_t wii_event_flag; // Used for Wii flags
uint32_t ButtonState; uint32_t ButtonState;
uint32_t OldButtonState; uint32_t OldButtonState;
@ -520,4 +485,4 @@ private:
uint8_t IR_object_s4; uint8_t IR_object_s4;
#endif #endif
}; };
#endif #endif

View file

@ -2,7 +2,7 @@ Please see <http://wiibrew.org/wiki/Wiimote#IR_Camera> for the complete capabili
This library is large, if you run into memory problems when uploading to the Arduino, disable serial debugging. This library is large, if you run into memory problems when uploading to the Arduino, disable serial debugging.
To enable the IR camera code, uncomment \#define WIICAMERA in Wii.h. To enable the IR camera code, simply set ```ENABLE_WII_IR_CAMERA``` to 1 in [settings.h](settings.h).
This library implements the following settings: This library implements the following settings:

View file

@ -21,7 +21,7 @@
//#define PRINTREPORT // Uncomment to print the report send by the Xbox controller //#define PRINTREPORT // Uncomment to print the report send by the Xbox controller
/** Buttons on the controllers */ /** Buttons on the controllers */
const uint8_t XBOXOLDBUTTONS[] PROGMEM = { const uint8_t XBOXOLD_BUTTONS[] PROGMEM = {
0x01, // UP 0x01, // UP
0x08, // RIGHT 0x08, // RIGHT
0x02, // DOWN 0x02, // DOWN
@ -48,19 +48,20 @@ XBOXOLD::XBOXOLD(USB *p) :
pUsb(p), // pointer to USB class instance - mandatory pUsb(p), // pointer to USB class instance - mandatory
bAddress(0), // device address - mandatory bAddress(0), // device address - mandatory
bPollEnable(false) { // don't start polling before dongle is connected bPollEnable(false) { // don't start polling before dongle is connected
for (uint8_t i = 0; i < XBOX_MAX_ENDPOINTS; i++) { for(uint8_t i = 0; i < XBOX_MAX_ENDPOINTS; i++) {
epInfo[i].epAddr = 0; epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0; epInfo[i].epAttribs = 0;
epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER; epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER;
} }
if (pUsb) // register in USB subsystem if(pUsb) // register in USB subsystem
pUsb->RegisterDeviceClass(this); //set devConfig[] entry pUsb->RegisterDeviceClass(this); //set devConfig[] entry
} }
uint8_t XBOXOLD::Init(uint8_t parent, uint8_t port, bool lowspeed) { uint8_t XBOXOLD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)]; uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)];
USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf);
uint8_t rcode; uint8_t rcode;
UsbDevice *p = NULL; UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL; EpInfo *oldep_ptr = NULL;
@ -73,7 +74,7 @@ uint8_t XBOXOLD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
Notify(PSTR("\r\nXBOXUSB Init"), 0x80); Notify(PSTR("\r\nXBOXUSB Init"), 0x80);
#endif #endif
// check if address has already been assigned to an instance // check if address has already been assigned to an instance
if (bAddress) { if(bAddress) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress in use"), 0x80); Notify(PSTR("\r\nAddress in use"), 0x80);
#endif #endif
@ -83,14 +84,14 @@ uint8_t XBOXOLD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Get pointer to pseudo device with address 0 assigned // Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0); p = addrPool.GetUsbDevicePtr(0);
if (!p) { if(!p) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress not found"), 0x80); Notify(PSTR("\r\nAddress not found"), 0x80);
#endif #endif
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
} }
if (!p->epinfo) { if(!p->epinfo) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nepinfo is null"), 0x80); Notify(PSTR("\r\nepinfo is null"), 0x80);
#endif #endif
@ -110,27 +111,27 @@ uint8_t XBOXOLD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Restore p->epinfo // Restore p->epinfo
p->epinfo = oldep_ptr; p->epinfo = oldep_ptr;
if (rcode) if(rcode)
goto FailGetDevDescr; goto FailGetDevDescr;
VID = ((USB_DEVICE_DESCRIPTOR*)buf)->idVendor; VID = udd->idVendor;
PID = ((USB_DEVICE_DESCRIPTOR*)buf)->idProduct; PID = udd->idProduct;
if ((VID != XBOX_VID && VID != MADCATZ_VID && VID != JOYTECH_VID) || (PID != XBOX_OLD_PID1 && PID != XBOX_OLD_PID2 && PID != XBOX_OLD_PID3 && PID != XBOX_OLD_PID4)) // Check if VID and PID match if((VID != XBOX_VID && VID != MADCATZ_VID && VID != JOYTECH_VID) || (PID != XBOX_OLD_PID1 && PID != XBOX_OLD_PID2 && PID != XBOX_OLD_PID3 && PID != XBOX_OLD_PID4)) // Check if VID and PID match
goto FailUnknownDevice; goto FailUnknownDevice;
// Allocate new address according to device class // Allocate new address according to device class
bAddress = addrPool.AllocAddress(parent, false, port); bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress) if(!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from device descriptor // Extract Max Packet Size from device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; epInfo[0].maxPktSize = udd->bMaxPacketSize0;
// Assign new address to the device // Assign new address to the device
rcode = pUsb->setAddr(0, 0, bAddress); rcode = pUsb->setAddr(0, 0, bAddress);
if (rcode) { if(rcode) {
p->lowspeed = false; p->lowspeed = false;
addrPool.FreeAddress(bAddress); addrPool.FreeAddress(bAddress);
bAddress = 0; bAddress = 0;
@ -144,20 +145,20 @@ uint8_t XBOXOLD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
Notify(PSTR("\r\nAddr: "), 0x80); Notify(PSTR("\r\nAddr: "), 0x80);
D_PrintHex<uint8_t > (bAddress, 0x80); D_PrintHex<uint8_t > (bAddress, 0x80);
#endif #endif
delay(300); // Spec says you should wait at least 200ms //delay(300); // Spec says you should wait at least 200ms
p->lowspeed = false; p->lowspeed = false;
//get pointer to assigned address record //get pointer to assigned address record
p = addrPool.GetUsbDevicePtr(bAddress); p = addrPool.GetUsbDevicePtr(bAddress);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
// Assign epInfo to epinfo pointer - only EP0 is known // Assign epInfo to epinfo pointer - only EP0 is known
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
/* The application will work in reduced host mode, so we can save program and data /* The application will work in reduced host mode, so we can save program and data
@ -169,29 +170,29 @@ uint8_t XBOXOLD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
epInfo[ XBOX_INPUT_PIPE ].epAttribs = EP_INTERRUPT; epInfo[ XBOX_INPUT_PIPE ].epAttribs = EP_INTERRUPT;
epInfo[ XBOX_INPUT_PIPE ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ XBOX_INPUT_PIPE ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ XBOX_INPUT_PIPE ].maxPktSize = EP_MAXPKTSIZE; epInfo[ XBOX_INPUT_PIPE ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ XBOX_INPUT_PIPE ].bmSndToggle = bmSNDTOG0; epInfo[ XBOX_INPUT_PIPE ].bmSndToggle = 0;
epInfo[ XBOX_INPUT_PIPE ].bmRcvToggle = bmRCVTOG0; epInfo[ XBOX_INPUT_PIPE ].bmRcvToggle = 0;
epInfo[ XBOX_OUTPUT_PIPE ].epAddr = 0x02; // XBOX output endpoint epInfo[ XBOX_OUTPUT_PIPE ].epAddr = 0x02; // XBOX output endpoint
epInfo[ XBOX_OUTPUT_PIPE ].epAttribs = EP_INTERRUPT; epInfo[ XBOX_OUTPUT_PIPE ].epAttribs = EP_INTERRUPT;
epInfo[ XBOX_OUTPUT_PIPE ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ XBOX_OUTPUT_PIPE ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ XBOX_OUTPUT_PIPE ].maxPktSize = EP_MAXPKTSIZE; epInfo[ XBOX_OUTPUT_PIPE ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ XBOX_OUTPUT_PIPE ].bmSndToggle = bmSNDTOG0; epInfo[ XBOX_OUTPUT_PIPE ].bmSndToggle = 0;
epInfo[ XBOX_OUTPUT_PIPE ].bmRcvToggle = bmRCVTOG0; epInfo[ XBOX_OUTPUT_PIPE ].bmRcvToggle = 0;
rcode = pUsb->setEpInfoEntry(bAddress, 3, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 3, epInfo);
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
delay(200); // Give time for address change delay(200); // Give time for address change
rcode = pUsb->setConf(bAddress, epInfo[ XBOX_CONTROL_PIPE ].epAddr, 1); rcode = pUsb->setConf(bAddress, epInfo[ XBOX_CONTROL_PIPE ].epAddr, 1);
if (rcode) if(rcode)
goto FailSetConfDescr; goto FailSetConfDescr;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nXbox Controller Connected\r\n"), 0x80); Notify(PSTR("\r\nXbox Controller Connected\r\n"), 0x80);
#endif #endif
if (pFuncOnInit) if(pFuncOnInit)
pFuncOnInit(); // Call the user function pFuncOnInit(); // Call the user function
XboxConnected = true; XboxConnected = true;
bPollEnable = true; bPollEnable = true;
@ -213,8 +214,9 @@ FailSetDevTblEntry:
FailSetConfDescr: FailSetConfDescr:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailSetConfDescr(); NotifyFailSetConfDescr();
goto Fail;
#endif #endif
goto Fail;
FailUnknownDevice: FailUnknownDevice:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailUnknownDevice(VID, PID); NotifyFailUnknownDevice(VID, PID);
@ -240,7 +242,7 @@ uint8_t XBOXOLD::Release() {
} }
uint8_t XBOXOLD::Poll() { uint8_t XBOXOLD::Poll() {
if (!bPollEnable) if(!bPollEnable)
return 0; return 0;
uint16_t BUFFER_SIZE = EP_MAXPKTSIZE; uint16_t BUFFER_SIZE = EP_MAXPKTSIZE;
pUsb->inTransfer(bAddress, epInfo[ XBOX_INPUT_PIPE ].epAddr, &BUFFER_SIZE, readBuf); // input on endpoint 1 pUsb->inTransfer(bAddress, epInfo[ XBOX_INPUT_PIPE ].epAddr, &BUFFER_SIZE, readBuf); // input on endpoint 1
@ -254,8 +256,8 @@ uint8_t XBOXOLD::Poll() {
void XBOXOLD::readReport() { void XBOXOLD::readReport() {
ButtonState = readBuf[2]; ButtonState = readBuf[2];
for (uint8_t i = 0; i < sizeof(buttonValues); i++) for(uint8_t i = 0; i < sizeof (buttonValues); i++)
buttonValues[i] = readBuf[i + 4]; // A, B, X, Y, BLACK, WHITE, L1, and R1 buttonValues[i] = readBuf[i + 4]; // A, B, X, Y, BLACK, WHITE, L1, and R1
hatValue[LeftHatX] = (int16_t)(((uint16_t)readBuf[12] << 8) | readBuf[13]); hatValue[LeftHatX] = (int16_t)(((uint16_t)readBuf[12] << 8) | readBuf[13]);
hatValue[LeftHatY] = (int16_t)(((uint16_t)readBuf[14] << 8) | readBuf[15]); hatValue[LeftHatY] = (int16_t)(((uint16_t)readBuf[14] << 8) | readBuf[15]);
@ -265,23 +267,23 @@ void XBOXOLD::readReport() {
//Notify(PSTR("\r\nButtonState"), 0x80); //Notify(PSTR("\r\nButtonState"), 0x80);
//PrintHex<uint8_t>(ButtonState, 0x80); //PrintHex<uint8_t>(ButtonState, 0x80);
if (ButtonState != OldButtonState || memcmp(buttonValues, oldButtonValues, sizeof(buttonValues)) != 0) { if(ButtonState != OldButtonState || memcmp(buttonValues, oldButtonValues, sizeof (buttonValues)) != 0) {
ButtonClickState = ButtonState & ~OldButtonState; // Update click state variable ButtonClickState = ButtonState & ~OldButtonState; // Update click state variable
OldButtonState = ButtonState; OldButtonState = ButtonState;
for (uint8_t i = 0; i < sizeof(buttonValues); i++) { for(uint8_t i = 0; i < sizeof (buttonValues); i++) {
if (oldButtonValues[i] == 0 && buttonValues[i] != 0) if(oldButtonValues[i] == 0 && buttonValues[i] != 0)
buttonClicked[i] = true; // Update A, B, X, Y, BLACK, WHITE, L1, and R1 click state buttonClicked[i] = true; // Update A, B, X, Y, BLACK, WHITE, L1, and R1 click state
oldButtonValues[i] = buttonValues[i]; oldButtonValues[i] = buttonValues[i];
} }
} }
} }
void XBOXOLD::printReport(uint16_t length) { //Uncomment "#define PRINTREPORT" to print the report send by the Xbox controller void XBOXOLD::printReport(uint16_t length) { //Uncomment "#define PRINTREPORT" to print the report send by the Xbox controller
#ifdef PRINTREPORT #ifdef PRINTREPORT
if (readBuf == NULL) if(readBuf == NULL)
return; return;
for (uint8_t i = 0; i < length; i++) { for(uint8_t i = 0; i < length; i++) {
D_PrintHex<uint8_t > (readBuf[i], 0x80); D_PrintHex<uint8_t > (readBuf[i], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
} }
@ -289,21 +291,21 @@ void XBOXOLD::printReport(uint16_t length) { //Uncomment "#define PRINTREPORT" t
#endif #endif
} }
uint8_t XBOXOLD::getButtonPress(Button b) { uint8_t XBOXOLD::getButtonPress(ButtonEnum b) {
uint8_t button = pgm_read_byte(&XBOXOLDBUTTONS[(uint8_t)b]); uint8_t button = pgm_read_byte(&XBOXOLD_BUTTONS[(uint8_t)b]);
if (b == A || b == B || b == X || b == Y || b == BLACK || b == WHITE || b == L1 || b == R1) // A, B, X, Y, BLACK, WHITE, L1, and R1 are analog buttons if(b == A || b == B || b == X || b == Y || b == BLACK || b == WHITE || b == L1 || b == R1) // A, B, X, Y, BLACK, WHITE, L1, and R1 are analog buttons
return buttonValues[button]; // Analog buttons return buttonValues[button]; // Analog buttons
return (ButtonState & button); // Digital buttons return (ButtonState & button); // Digital buttons
} }
bool XBOXOLD::getButtonClick(Button b) { bool XBOXOLD::getButtonClick(ButtonEnum b) {
uint8_t button = pgm_read_byte(&XBOXOLDBUTTONS[(uint8_t)b]); uint8_t button = pgm_read_byte(&XBOXOLD_BUTTONS[(uint8_t)b]);
if (b == A || b == B || b == X || b == Y || b == BLACK || b == WHITE || b == L1 || b == R1) { // A, B, X, Y, BLACK, WHITE, L1, and R1 are analog buttons if(b == A || b == B || b == X || b == Y || b == BLACK || b == WHITE || b == L1 || b == R1) { // A, B, X, Y, BLACK, WHITE, L1, and R1 are analog buttons
if (buttonClicked[button]) { if(buttonClicked[button]) {
buttonClicked[button] = false; buttonClicked[button] = false;
return true; return true;
} }
return false; return false;
} }
bool click = (ButtonClickState & button); bool click = (ButtonClickState & button);
@ -311,7 +313,7 @@ bool XBOXOLD::getButtonClick(Button b) {
return click; return click;
} }
int16_t XBOXOLD::getAnalogHat(AnalogHat a) { int16_t XBOXOLD::getAnalogHat(AnalogHatEnum a) {
return hatValue[a]; return hatValue[a];
} }
@ -332,4 +334,4 @@ void XBOXOLD::setRumbleOn(uint8_t lValue, uint8_t rValue) {
writeBuf[5] = lValue; // big weight writeBuf[5] = lValue; // big weight
XboxCommand(writeBuf, 6); XboxCommand(writeBuf, 6);
} }

View file

@ -106,18 +106,17 @@ public:
/** @name Xbox Controller functions */ /** @name Xbox Controller functions */
/** /**
* getButtonPress(Button b) will return true as long as the button is held down. * getButtonPress(ButtonEnum b) will return true as long as the button is held down.
* *
* While getButtonClick(Button b) will only return it once. * While getButtonClick(ButtonEnum b) will only return it once.
* *
* So you instance if you need to increase a variable once you would use getButtonClick(Button b), * So you instance if you need to increase a variable once you would use getButtonClick(ButtonEnum b),
* but if you need to drive a robot forward you would use getButtonPress(Button b). * but if you need to drive a robot forward you would use getButtonPress(ButtonEnum b).
* @param b ::Button to read. * @param b ::ButtonEnum to read.
* @return getButtonClick(Button b) will return a bool, but getButtonPress(Button b) * @return getButtonClick(ButtonEnum b) will return a bool, while getButtonPress(ButtonEnum b) will return a byte if reading ::L2 or ::R2.
* will return a byte if reading ::L2 or ::R2.
*/ */
uint8_t getButtonPress(Button b); uint8_t getButtonPress(ButtonEnum b);
bool getButtonClick(Button b); bool getButtonClick(ButtonEnum b);
/**@}*/ /**@}*/
/** @name Xbox Controller functions */ /** @name Xbox Controller functions */
@ -126,7 +125,7 @@ public:
* @param a Either ::LeftHatX, ::LeftHatY, ::RightHatX or ::RightHatY. * @param a Either ::LeftHatX, ::LeftHatY, ::RightHatX or ::RightHatY.
* @return Returns a signed 16-bit integer. * @return Returns a signed 16-bit integer.
*/ */
int16_t getAnalogHat(AnalogHat a); int16_t getAnalogHat(AnalogHatEnum a);
/** Turn rumble off the controller. */ /** Turn rumble off the controller. */
void setRumbleOff() { void setRumbleOff() {
@ -189,4 +188,4 @@ private:
/* Private commands */ /* Private commands */
void XboxCommand(uint8_t* data, uint16_t nbytes); void XboxCommand(uint8_t* data, uint16_t nbytes);
}; };
#endif #endif

View file

@ -26,20 +26,21 @@ XBOXRECV::XBOXRECV(USB *p) :
pUsb(p), // pointer to USB class instance - mandatory pUsb(p), // pointer to USB class instance - mandatory
bAddress(0), // device address - mandatory bAddress(0), // device address - mandatory
bPollEnable(false) { // don't start polling before dongle is connected bPollEnable(false) { // don't start polling before dongle is connected
for (uint8_t i = 0; i < XBOX_MAX_ENDPOINTS; i++) { for(uint8_t i = 0; i < XBOX_MAX_ENDPOINTS; i++) {
epInfo[i].epAddr = 0; epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0; epInfo[i].epAttribs = 0;
epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER; epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER;
} }
if (pUsb) // register in USB subsystem if(pUsb) // register in USB subsystem
pUsb->RegisterDeviceClass(this); //set devConfig[] entry pUsb->RegisterDeviceClass(this); //set devConfig[] entry
} }
uint8_t XBOXRECV::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) { uint8_t XBOXRECV::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR); const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR);
uint8_t buf[constBufSize]; uint8_t buf[constBufSize];
USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf);
uint8_t rcode; uint8_t rcode;
UsbDevice *p = NULL; UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL; EpInfo *oldep_ptr = NULL;
@ -50,7 +51,7 @@ uint8_t XBOXRECV::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
Notify(PSTR("\r\nXBOXRECV Init"), 0x80); Notify(PSTR("\r\nXBOXRECV Init"), 0x80);
#endif #endif
if (bAddress) { // Check if address has already been assigned to an instance if(bAddress) { // Check if address has already been assigned to an instance
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress in use"), 0x80); Notify(PSTR("\r\nAddress in use"), 0x80);
#endif #endif
@ -59,14 +60,14 @@ uint8_t XBOXRECV::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
p = addrPool.GetUsbDevicePtr(0); // Get pointer to pseudo device with address 0 assigned p = addrPool.GetUsbDevicePtr(0); // Get pointer to pseudo device with address 0 assigned
if (!p) { if(!p) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress not found"), 0x80); Notify(PSTR("\r\nAddress not found"), 0x80);
#endif #endif
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
} }
if (!p->epinfo) { if(!p->epinfo) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nepinfo is null"), 0x80); Notify(PSTR("\r\nepinfo is null"), 0x80);
#endif #endif
@ -81,13 +82,13 @@ uint8_t XBOXRECV::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
p->epinfo = oldep_ptr; // Restore p->epinfo p->epinfo = oldep_ptr; // Restore p->epinfo
if (rcode) if(rcode)
goto FailGetDevDescr; goto FailGetDevDescr;
VID = ((USB_DEVICE_DESCRIPTOR*)buf)->idVendor; VID = udd->idVendor;
PID = ((USB_DEVICE_DESCRIPTOR*)buf)->idProduct; PID = udd->idProduct;
if ((VID != XBOX_VID && VID != MADCATZ_VID) || (PID != XBOX_WIRELESS_RECEIVER_PID && PID != XBOX_WIRELESS_RECEIVER_THIRD_PARTY_PID)) { // Check if it's a Xbox receiver using the Vendor ID and Product ID if((VID != XBOX_VID && VID != MADCATZ_VID && VID != JOYTECH_VID) || (PID != XBOX_WIRELESS_RECEIVER_PID && PID != XBOX_WIRELESS_RECEIVER_THIRD_PARTY_PID)) { // Check if it's a Xbox receiver using the Vendor ID and Product ID
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nYou'll need a wireless receiver for this libary to work"), 0x80); Notify(PSTR("\r\nYou'll need a wireless receiver for this libary to work"), 0x80);
#endif #endif
@ -96,15 +97,14 @@ uint8_t XBOXRECV::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
bAddress = addrPool.AllocAddress(parent, false, port); // Allocate new address according to device class bAddress = addrPool.AllocAddress(parent, false, port); // Allocate new address according to device class
if (!bAddress) { if(!bAddress) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nOut of address space"), 0x80); Notify(PSTR("\r\nOut of address space"), 0x80);
#endif #endif
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
} }
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; // Extract Max Packet Size from device descriptor epInfo[0].maxPktSize = udd->bMaxPacketSize0; // Extract Max Packet Size from device descriptor
epInfo[1].epAddr = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations; // Steal and abuse from epInfo structure to save memory
delay(20); // Wait a little before resetting device delay(20); // Wait a little before resetting device
@ -115,13 +115,13 @@ FailGetDevDescr:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailGetDevDescr(rcode); NotifyFailGetDevDescr(rcode);
#endif #endif
if (rcode != hrJERR) if(rcode != hrJERR)
rcode = USB_ERROR_FailGetDevDescr; rcode = USB_ERROR_FailGetDevDescr;
goto Fail; goto Fail;
FailUnknownDevice: FailUnknownDevice:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailUnknownDevice(VID,PID); NotifyFailUnknownDevice(VID, PID);
#endif #endif
rcode = USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; rcode = USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;
@ -136,8 +136,6 @@ Fail:
uint8_t XBOXRECV::Init(uint8_t parent, uint8_t port, bool lowspeed) { uint8_t XBOXRECV::Init(uint8_t parent, uint8_t port, bool lowspeed) {
uint8_t rcode; uint8_t rcode;
uint8_t num_of_conf = epInfo[1].epAddr; // Number of configurations
epInfo[1].epAddr = 0;
AddressPool &addrPool = pUsb->GetAddressPool(); AddressPool &addrPool = pUsb->GetAddressPool();
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
@ -145,7 +143,7 @@ uint8_t XBOXRECV::Init(uint8_t parent, uint8_t port, bool lowspeed) {
#endif #endif
UsbDevice *p = addrPool.GetUsbDevicePtr(bAddress); // Get pointer to assigned address record UsbDevice *p = addrPool.GetUsbDevicePtr(bAddress); // Get pointer to assigned address record
if (!p) { if(!p) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress not found"), 0x80); Notify(PSTR("\r\nAddress not found"), 0x80);
#endif #endif
@ -155,7 +153,7 @@ uint8_t XBOXRECV::Init(uint8_t parent, uint8_t port, bool lowspeed) {
delay(300); // Assign new address to the device delay(300); // Assign new address to the device
rcode = pUsb->setAddr(0, 0, bAddress); // Assign new address to the device rcode = pUsb->setAddr(0, 0, bAddress); // Assign new address to the device
if (rcode) { if(rcode) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nsetAddr: "), 0x80); Notify(PSTR("\r\nsetAddr: "), 0x80);
D_PrintHex<uint8_t > (rcode, 0x80); D_PrintHex<uint8_t > (rcode, 0x80);
@ -171,7 +169,7 @@ uint8_t XBOXRECV::Init(uint8_t parent, uint8_t port, bool lowspeed) {
p->lowspeed = false; p->lowspeed = false;
p = addrPool.GetUsbDevicePtr(bAddress); // Get pointer to assigned address record p = addrPool.GetUsbDevicePtr(bAddress); // Get pointer to assigned address record
if (!p) { if(!p) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress not found"), 0x80); Notify(PSTR("\r\nAddress not found"), 0x80);
#endif #endif
@ -181,7 +179,7 @@ uint8_t XBOXRECV::Init(uint8_t parent, uint8_t port, bool lowspeed) {
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); // Assign epInfo to epinfo pointer - only EP0 is known rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); // Assign epInfo to epinfo pointer - only EP0 is known
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
/* The application will work in reduced host mode, so we can save program and data /* The application will work in reduced host mode, so we can save program and data
@ -193,62 +191,62 @@ uint8_t XBOXRECV::Init(uint8_t parent, uint8_t port, bool lowspeed) {
epInfo[ XBOX_INPUT_PIPE_1 ].epAttribs = EP_INTERRUPT; epInfo[ XBOX_INPUT_PIPE_1 ].epAttribs = EP_INTERRUPT;
epInfo[ XBOX_INPUT_PIPE_1 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ XBOX_INPUT_PIPE_1 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ XBOX_INPUT_PIPE_1 ].maxPktSize = EP_MAXPKTSIZE; epInfo[ XBOX_INPUT_PIPE_1 ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ XBOX_INPUT_PIPE_1 ].bmSndToggle = bmSNDTOG0; epInfo[ XBOX_INPUT_PIPE_1 ].bmSndToggle = 0;
epInfo[ XBOX_INPUT_PIPE_1 ].bmRcvToggle = bmRCVTOG0; epInfo[ XBOX_INPUT_PIPE_1 ].bmRcvToggle = 0;
epInfo[ XBOX_OUTPUT_PIPE_1 ].epAddr = 0x01; // XBOX 360 output endpoint - poll interval 8ms epInfo[ XBOX_OUTPUT_PIPE_1 ].epAddr = 0x01; // XBOX 360 output endpoint - poll interval 8ms
epInfo[ XBOX_OUTPUT_PIPE_1 ].epAttribs = EP_INTERRUPT; epInfo[ XBOX_OUTPUT_PIPE_1 ].epAttribs = EP_INTERRUPT;
epInfo[ XBOX_OUTPUT_PIPE_1 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ XBOX_OUTPUT_PIPE_1 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ XBOX_OUTPUT_PIPE_1 ].maxPktSize = EP_MAXPKTSIZE; epInfo[ XBOX_OUTPUT_PIPE_1 ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ XBOX_OUTPUT_PIPE_1 ].bmSndToggle = bmSNDTOG0; epInfo[ XBOX_OUTPUT_PIPE_1 ].bmSndToggle = 0;
epInfo[ XBOX_OUTPUT_PIPE_1 ].bmRcvToggle = bmRCVTOG0; epInfo[ XBOX_OUTPUT_PIPE_1 ].bmRcvToggle = 0;
epInfo[ XBOX_INPUT_PIPE_2 ].epAddr = 0x03; // XBOX 360 report endpoint - poll interval 1ms epInfo[ XBOX_INPUT_PIPE_2 ].epAddr = 0x03; // XBOX 360 report endpoint - poll interval 1ms
epInfo[ XBOX_INPUT_PIPE_2 ].epAttribs = EP_INTERRUPT; epInfo[ XBOX_INPUT_PIPE_2 ].epAttribs = EP_INTERRUPT;
epInfo[ XBOX_INPUT_PIPE_2 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ XBOX_INPUT_PIPE_2 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ XBOX_INPUT_PIPE_2 ].maxPktSize = EP_MAXPKTSIZE; epInfo[ XBOX_INPUT_PIPE_2 ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ XBOX_INPUT_PIPE_2 ].bmSndToggle = bmSNDTOG0; epInfo[ XBOX_INPUT_PIPE_2 ].bmSndToggle = 0;
epInfo[ XBOX_INPUT_PIPE_2 ].bmRcvToggle = bmRCVTOG0; epInfo[ XBOX_INPUT_PIPE_2 ].bmRcvToggle = 0;
epInfo[ XBOX_OUTPUT_PIPE_2 ].epAddr = 0x03; // XBOX 360 output endpoint - poll interval 8ms epInfo[ XBOX_OUTPUT_PIPE_2 ].epAddr = 0x03; // XBOX 360 output endpoint - poll interval 8ms
epInfo[ XBOX_OUTPUT_PIPE_2 ].epAttribs = EP_INTERRUPT; epInfo[ XBOX_OUTPUT_PIPE_2 ].epAttribs = EP_INTERRUPT;
epInfo[ XBOX_OUTPUT_PIPE_2 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ XBOX_OUTPUT_PIPE_2 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ XBOX_OUTPUT_PIPE_2 ].maxPktSize = EP_MAXPKTSIZE; epInfo[ XBOX_OUTPUT_PIPE_2 ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ XBOX_OUTPUT_PIPE_2 ].bmSndToggle = bmSNDTOG0; epInfo[ XBOX_OUTPUT_PIPE_2 ].bmSndToggle = 0;
epInfo[ XBOX_OUTPUT_PIPE_2 ].bmRcvToggle = bmRCVTOG0; epInfo[ XBOX_OUTPUT_PIPE_2 ].bmRcvToggle = 0;
epInfo[ XBOX_INPUT_PIPE_3 ].epAddr = 0x05; // XBOX 360 report endpoint - poll interval 1ms epInfo[ XBOX_INPUT_PIPE_3 ].epAddr = 0x05; // XBOX 360 report endpoint - poll interval 1ms
epInfo[ XBOX_INPUT_PIPE_3 ].epAttribs = EP_INTERRUPT; epInfo[ XBOX_INPUT_PIPE_3 ].epAttribs = EP_INTERRUPT;
epInfo[ XBOX_INPUT_PIPE_3 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ XBOX_INPUT_PIPE_3 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ XBOX_INPUT_PIPE_3 ].maxPktSize = EP_MAXPKTSIZE; epInfo[ XBOX_INPUT_PIPE_3 ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ XBOX_INPUT_PIPE_3 ].bmSndToggle = bmSNDTOG0; epInfo[ XBOX_INPUT_PIPE_3 ].bmSndToggle = 0;
epInfo[ XBOX_INPUT_PIPE_3 ].bmRcvToggle = bmRCVTOG0; epInfo[ XBOX_INPUT_PIPE_3 ].bmRcvToggle = 0;
epInfo[ XBOX_OUTPUT_PIPE_3 ].epAddr = 0x05; // XBOX 360 output endpoint - poll interval 8ms epInfo[ XBOX_OUTPUT_PIPE_3 ].epAddr = 0x05; // XBOX 360 output endpoint - poll interval 8ms
epInfo[ XBOX_OUTPUT_PIPE_3 ].epAttribs = EP_INTERRUPT; epInfo[ XBOX_OUTPUT_PIPE_3 ].epAttribs = EP_INTERRUPT;
epInfo[ XBOX_OUTPUT_PIPE_3 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ XBOX_OUTPUT_PIPE_3 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ XBOX_OUTPUT_PIPE_3 ].maxPktSize = EP_MAXPKTSIZE; epInfo[ XBOX_OUTPUT_PIPE_3 ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ XBOX_OUTPUT_PIPE_3 ].bmSndToggle = bmSNDTOG0; epInfo[ XBOX_OUTPUT_PIPE_3 ].bmSndToggle = 0;
epInfo[ XBOX_OUTPUT_PIPE_3 ].bmRcvToggle = bmRCVTOG0; epInfo[ XBOX_OUTPUT_PIPE_3 ].bmRcvToggle = 0;
epInfo[ XBOX_INPUT_PIPE_4 ].epAddr = 0x07; // XBOX 360 report endpoint - poll interval 1ms epInfo[ XBOX_INPUT_PIPE_4 ].epAddr = 0x07; // XBOX 360 report endpoint - poll interval 1ms
epInfo[ XBOX_INPUT_PIPE_4 ].epAttribs = EP_INTERRUPT; epInfo[ XBOX_INPUT_PIPE_4 ].epAttribs = EP_INTERRUPT;
epInfo[ XBOX_INPUT_PIPE_4 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ XBOX_INPUT_PIPE_4 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ XBOX_INPUT_PIPE_4 ].maxPktSize = EP_MAXPKTSIZE; epInfo[ XBOX_INPUT_PIPE_4 ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ XBOX_INPUT_PIPE_4 ].bmSndToggle = bmSNDTOG0; epInfo[ XBOX_INPUT_PIPE_4 ].bmSndToggle = 0;
epInfo[ XBOX_INPUT_PIPE_4 ].bmRcvToggle = bmRCVTOG0; epInfo[ XBOX_INPUT_PIPE_4 ].bmRcvToggle = 0;
epInfo[ XBOX_OUTPUT_PIPE_4 ].epAddr = 0x07; // XBOX 360 output endpoint - poll interval 8ms epInfo[ XBOX_OUTPUT_PIPE_4 ].epAddr = 0x07; // XBOX 360 output endpoint - poll interval 8ms
epInfo[ XBOX_OUTPUT_PIPE_4 ].epAttribs = EP_INTERRUPT; epInfo[ XBOX_OUTPUT_PIPE_4 ].epAttribs = EP_INTERRUPT;
epInfo[ XBOX_OUTPUT_PIPE_4 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ XBOX_OUTPUT_PIPE_4 ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ XBOX_OUTPUT_PIPE_4 ].maxPktSize = EP_MAXPKTSIZE; epInfo[ XBOX_OUTPUT_PIPE_4 ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ XBOX_OUTPUT_PIPE_4 ].bmSndToggle = bmSNDTOG0; epInfo[ XBOX_OUTPUT_PIPE_4 ].bmSndToggle = 0;
epInfo[ XBOX_OUTPUT_PIPE_4 ].bmRcvToggle = bmRCVTOG0; epInfo[ XBOX_OUTPUT_PIPE_4 ].bmRcvToggle = 0;
rcode = pUsb->setEpInfoEntry(bAddress, 9, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 9, epInfo);
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
delay(200); //Give time for address change delay(200); //Give time for address change
rcode = pUsb->setConf(bAddress, epInfo[ XBOX_CONTROL_PIPE ].epAddr, 1); rcode = pUsb->setConf(bAddress, epInfo[ XBOX_CONTROL_PIPE ].epAddr, 1);
if (rcode) if(rcode)
goto FailSetConfDescr; goto FailSetConfDescr;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
@ -260,12 +258,6 @@ uint8_t XBOXRECV::Init(uint8_t parent, uint8_t port, bool lowspeed) {
return 0; // Successful configuration return 0; // Successful configuration
/* Diagnostic messages */ /* Diagnostic messages */
FailGetDevDescr:
#ifdef DEBUG_USB_HOST
NotifyFailGetDevDescr();
goto Fail;
#endif
FailSetDevTblEntry: FailSetDevTblEntry:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailSetDevTblEntry(); NotifyFailSetDevTblEntry();
@ -276,7 +268,6 @@ FailSetConfDescr:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailSetConfDescr(); NotifyFailSetConfDescr();
#endif #endif
goto Fail;
Fail: Fail:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
@ -290,7 +281,7 @@ Fail:
/* Performs a cleanup after failed Init() attempt */ /* Performs a cleanup after failed Init() attempt */
uint8_t XBOXRECV::Release() { uint8_t XBOXRECV::Release() {
XboxReceiverConnected = false; XboxReceiverConnected = false;
for (uint8_t i = 0; i < 4; i++) for(uint8_t i = 0; i < 4; i++)
Xbox360Connected[i] = 0x00; Xbox360Connected[i] = 0x00;
pUsb->GetAddressPool().FreeAddress(bAddress); pUsb->GetAddressPool().FreeAddress(bAddress);
bAddress = 0; bAddress = 0;
@ -299,28 +290,28 @@ uint8_t XBOXRECV::Release() {
} }
uint8_t XBOXRECV::Poll() { uint8_t XBOXRECV::Poll() {
if (!bPollEnable) if(!bPollEnable)
return 0; return 0;
if (!checkStatusTimer || ((millis() - checkStatusTimer) > 3000)) { // Run checkStatus every 3 seconds if(!checkStatusTimer || ((millis() - checkStatusTimer) > 3000)) { // Run checkStatus every 3 seconds
checkStatusTimer = millis(); checkStatusTimer = millis();
checkStatus(); checkStatus();
} }
uint8_t inputPipe; uint8_t inputPipe;
uint16_t bufferSize; uint16_t bufferSize;
for (uint8_t i = 0; i < 4; i++) { for(uint8_t i = 0; i < 4; i++) {
if (i == 0) if(i == 0)
inputPipe = XBOX_INPUT_PIPE_1; inputPipe = XBOX_INPUT_PIPE_1;
else if (i == 1) else if(i == 1)
inputPipe = XBOX_INPUT_PIPE_2; inputPipe = XBOX_INPUT_PIPE_2;
else if (i == 2) else if(i == 2)
inputPipe = XBOX_INPUT_PIPE_3; inputPipe = XBOX_INPUT_PIPE_3;
else else
inputPipe = XBOX_INPUT_PIPE_4; inputPipe = XBOX_INPUT_PIPE_4;
bufferSize = EP_MAXPKTSIZE; // This is the maximum number of bytes we want to receive bufferSize = EP_MAXPKTSIZE; // This is the maximum number of bytes we want to receive
pUsb->inTransfer(bAddress, epInfo[ inputPipe ].epAddr, &bufferSize, readBuf); pUsb->inTransfer(bAddress, epInfo[ inputPipe ].epAddr, &bufferSize, readBuf);
if (bufferSize > 0) { // The number of received bytes if(bufferSize > 0) { // The number of received bytes
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
Notify(PSTR("Bytes Received: "), 0x80); Notify(PSTR("Bytes Received: "), 0x80);
D_PrintHex<uint16_t > (bufferSize, 0x80); D_PrintHex<uint16_t > (bufferSize, 0x80);
@ -336,19 +327,19 @@ uint8_t XBOXRECV::Poll() {
} }
void XBOXRECV::readReport(uint8_t controller) { void XBOXRECV::readReport(uint8_t controller) {
if (readBuf == NULL) if(readBuf == NULL)
return; return;
// This report is send when a controller is connected and disconnected // This report is send when a controller is connected and disconnected
if (readBuf[0] == 0x08 && readBuf[1] != Xbox360Connected[controller]) { if(readBuf[0] == 0x08 && readBuf[1] != Xbox360Connected[controller]) {
Xbox360Connected[controller] = readBuf[1]; Xbox360Connected[controller] = readBuf[1];
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("Controller "), 0x80); Notify(PSTR("Controller "), 0x80);
Notify(controller, 0x80); Notify(controller, 0x80);
#endif #endif
if (Xbox360Connected[controller]) { if(Xbox360Connected[controller]) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
const char* str = 0; const char* str = 0;
switch (readBuf[1]) { switch(readBuf[1]) {
case 0x80: str = PSTR(" as controller\r\n"); case 0x80: str = PSTR(" as controller\r\n");
break; break;
case 0x40: str = PSTR(" as headset\r\n"); case 0x40: str = PSTR(" as headset\r\n");
@ -368,15 +359,15 @@ void XBOXRECV::readReport(uint8_t controller) {
return; return;
} }
// Controller status report // Controller status report
if (readBuf[1] == 0x00 && readBuf[3] & 0x13 && readBuf[4] >= 0x22) { if(readBuf[1] == 0x00 && readBuf[3] & 0x13 && readBuf[4] >= 0x22) {
controllerStatus[controller] = ((uint16_t)readBuf[3] << 8) | readBuf[4]; controllerStatus[controller] = ((uint16_t)readBuf[3] << 8) | readBuf[4];
return; return;
} }
if (readBuf[1] != 0x01) // Check if it's the correct report - the receiver also sends different status reports if(readBuf[1] != 0x01) // Check if it's the correct report - the receiver also sends different status reports
return; return;
// A controller must be connected if it's sending data // A controller must be connected if it's sending data
if (!Xbox360Connected[controller]) if(!Xbox360Connected[controller])
Xbox360Connected[controller] |= 0x80; Xbox360Connected[controller] |= 0x80;
ButtonState[controller] = (uint32_t)(readBuf[9] | ((uint16_t)readBuf[8] << 8) | ((uint32_t)readBuf[7] << 16) | ((uint32_t)readBuf[6] << 24)); ButtonState[controller] = (uint32_t)(readBuf[9] | ((uint16_t)readBuf[8] << 8) | ((uint32_t)readBuf[7] << 16) | ((uint32_t)readBuf[6] << 24));
@ -389,12 +380,12 @@ void XBOXRECV::readReport(uint8_t controller) {
//Notify(PSTR("\r\nButtonState: "), 0x80); //Notify(PSTR("\r\nButtonState: "), 0x80);
//PrintHex<uint32_t>(ButtonState[controller], 0x80); //PrintHex<uint32_t>(ButtonState[controller], 0x80);
if (ButtonState[controller] != OldButtonState[controller]) { if(ButtonState[controller] != OldButtonState[controller]) {
buttonStateChanged[controller] = true; buttonStateChanged[controller] = true;
ButtonClickState[controller] = (ButtonState[controller] >> 16) & ((~OldButtonState[controller]) >> 16); // Update click state variable, but don't include the two trigger buttons L2 and R2 ButtonClickState[controller] = (ButtonState[controller] >> 16) & ((~OldButtonState[controller]) >> 16); // Update click state variable, but don't include the two trigger buttons L2 and R2
if (((uint8_t)OldButtonState[controller]) == 0 && ((uint8_t)ButtonState[controller]) != 0) // The L2 and R2 buttons are special as they are analog buttons if(((uint8_t)OldButtonState[controller]) == 0 && ((uint8_t)ButtonState[controller]) != 0) // The L2 and R2 buttons are special as they are analog buttons
R2Clicked[controller] = true; R2Clicked[controller] = true;
if ((uint8_t)(OldButtonState[controller] >> 8) == 0 && (uint8_t)(ButtonState[controller] >> 8) != 0) if((uint8_t)(OldButtonState[controller] >> 8) == 0 && (uint8_t)(ButtonState[controller] >> 8) != 0)
L2Clicked[controller] = true; L2Clicked[controller] = true;
OldButtonState[controller] = ButtonState[controller]; OldButtonState[controller] = ButtonState[controller];
} }
@ -402,12 +393,12 @@ void XBOXRECV::readReport(uint8_t controller) {
void XBOXRECV::printReport(uint8_t controller, uint8_t nBytes) { //Uncomment "#define PRINTREPORT" to print the report send by the Xbox 360 Controller void XBOXRECV::printReport(uint8_t controller, uint8_t nBytes) { //Uncomment "#define PRINTREPORT" to print the report send by the Xbox 360 Controller
#ifdef PRINTREPORT #ifdef PRINTREPORT
if (readBuf == NULL) if(readBuf == NULL)
return; return;
Notify(PSTR("Controller "), 0x80); Notify(PSTR("Controller "), 0x80);
Notify(controller, 0x80); Notify(controller, 0x80);
Notify(PSTR(": "), 0x80); Notify(PSTR(": "), 0x80);
for (uint8_t i = 0; i < nBytes; i++) { for(uint8_t i = 0; i < nBytes; i++) {
D_PrintHex<uint8_t > (readBuf[i], 0x80); D_PrintHex<uint8_t > (readBuf[i], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
} }
@ -415,35 +406,35 @@ void XBOXRECV::printReport(uint8_t controller, uint8_t nBytes) { //Uncomment "#d
#endif #endif
} }
uint8_t XBOXRECV::getButtonPress(Button b, uint8_t controller) { uint8_t XBOXRECV::getButtonPress(ButtonEnum b, uint8_t controller) {
if (b == L2) // These are analog buttons if(b == L2) // These are analog buttons
return (uint8_t)(ButtonState[controller] >> 8); return (uint8_t)(ButtonState[controller] >> 8);
else if (b == R2) else if(b == R2)
return (uint8_t)ButtonState[controller]; return (uint8_t)ButtonState[controller];
return (bool)(ButtonState[controller] & ((uint32_t)pgm_read_word(&XBOXBUTTONS[(uint8_t)b]) << 16)); return (bool)(ButtonState[controller] & ((uint32_t)pgm_read_word(&XBOX_BUTTONS[(uint8_t)b]) << 16));
} }
bool XBOXRECV::getButtonClick(Button b, uint8_t controller) { bool XBOXRECV::getButtonClick(ButtonEnum b, uint8_t controller) {
if (b == L2) { if(b == L2) {
if (L2Clicked[controller]) { if(L2Clicked[controller]) {
L2Clicked[controller] = false; L2Clicked[controller] = false;
return true; return true;
} }
return false; return false;
} else if (b == R2) { } else if(b == R2) {
if (R2Clicked[controller]) { if(R2Clicked[controller]) {
R2Clicked[controller] = false; R2Clicked[controller] = false;
return true; return true;
} }
return false; return false;
} }
uint16_t button = pgm_read_word(&XBOXBUTTONS[(uint8_t)b]); uint16_t button = pgm_read_word(&XBOX_BUTTONS[(uint8_t)b]);
bool click = (ButtonClickState[controller] & button); bool click = (ButtonClickState[controller] & button);
ButtonClickState[controller] &= ~button; // clear "click" event ButtonClickState[controller] &= ~button; // clear "click" event
return click; return click;
} }
int16_t XBOXRECV::getAnalogHat(AnalogHat a, uint8_t controller) { int16_t XBOXRECV::getAnalogHat(AnalogHatEnum a, uint8_t controller) {
return hatValue[controller][a]; return hatValue[controller][a];
} }
@ -477,19 +468,28 @@ uint8_t XBOXRECV::getBatteryLevel(uint8_t controller) {
} }
void XBOXRECV::XboxCommand(uint8_t controller, uint8_t* data, uint16_t nbytes) { void XBOXRECV::XboxCommand(uint8_t controller, uint8_t* data, uint16_t nbytes) {
uint8_t outputPipe;
if (controller == 0)
outputPipe = XBOX_OUTPUT_PIPE_1;
else if (controller == 1)
outputPipe = XBOX_OUTPUT_PIPE_2;
else if (controller == 2)
outputPipe = XBOX_OUTPUT_PIPE_3;
else
outputPipe = XBOX_OUTPUT_PIPE_4;
uint8_t rcode = pUsb->outTransfer(bAddress, epInfo[ outputPipe ].epAddr, nbytes, data);
#ifdef EXTRADEBUG #ifdef EXTRADEBUG
if (rcode) uint8_t rcode;
#endif
uint8_t outputPipe;
switch(controller) {
case 0: outputPipe = XBOX_OUTPUT_PIPE_1;
break;
case 1: outputPipe = XBOX_OUTPUT_PIPE_2;
break;
case 2: outputPipe = XBOX_OUTPUT_PIPE_3;
break;
case 3: outputPipe = XBOX_OUTPUT_PIPE_4;
break;
default:
return;
}
#ifdef EXTRADEBUG
rcode =
#endif
pUsb->outTransfer(bAddress, epInfo[ outputPipe ].epAddr, nbytes, data);
#ifdef EXTRADEBUG
if(rcode)
Notify(PSTR("Error sending Xbox message\r\n"), 0x80); Notify(PSTR("Error sending Xbox message\r\n"), 0x80);
#endif #endif
} }
@ -512,16 +512,18 @@ void XBOXRECV::setLedRaw(uint8_t value, uint8_t controller) {
XboxCommand(controller, writeBuf, 4); XboxCommand(controller, writeBuf, 4);
} }
void XBOXRECV::setLedOn(LED led, uint8_t controller) { void XBOXRECV::setLedOn(LEDEnum led, uint8_t controller) {
if (led != ALL) // All LEDs can't be on a the same time if(led == OFF)
setLedRaw(pgm_read_byte(&XBOXLEDS[(uint8_t)led]) + 4, controller); setLedRaw(0, controller);
else if(led != ALL) // All LEDs can't be on a the same time
setLedRaw(pgm_read_byte(&XBOX_LEDS[(uint8_t)led]) + 4, controller);
} }
void XBOXRECV::setLedBlink(LED led, uint8_t controller) { void XBOXRECV::setLedBlink(LEDEnum led, uint8_t controller) {
setLedRaw(pgm_read_byte(&XBOXLEDS[(uint8_t)led]), controller); setLedRaw(pgm_read_byte(&XBOX_LEDS[(uint8_t)led]), controller);
} }
void XBOXRECV::setLedMode(LEDMode ledMode, uint8_t controller) { // This function is used to do some speciel LED stuff the controller supports void XBOXRECV::setLedMode(LEDModeEnum ledMode, uint8_t controller) { // This function is used to do some speciel LED stuff the controller supports
setLedRaw((uint8_t)ledMode, controller); setLedRaw((uint8_t)ledMode, controller);
} }
@ -530,14 +532,14 @@ Thanks to BusHound from Perisoft.net for the Windows USB Analysis output
Found by timstamp.co.uk Found by timstamp.co.uk
*/ */
void XBOXRECV::checkStatus() { void XBOXRECV::checkStatus() {
if (!bPollEnable) if(!bPollEnable)
return; return;
// Get controller info // Get controller info
writeBuf[0] = 0x08; writeBuf[0] = 0x08;
writeBuf[1] = 0x00; writeBuf[1] = 0x00;
writeBuf[2] = 0x0f; writeBuf[2] = 0x0f;
writeBuf[3] = 0xc0; writeBuf[3] = 0xc0;
for (uint8_t i = 0; i < 4; i++) { for(uint8_t i = 0; i < 4; i++) {
XboxCommand(i, writeBuf, 4); XboxCommand(i, writeBuf, 4);
} }
// Get battery status // Get battery status
@ -545,8 +547,8 @@ void XBOXRECV::checkStatus() {
writeBuf[1] = 0x00; writeBuf[1] = 0x00;
writeBuf[2] = 0x00; writeBuf[2] = 0x00;
writeBuf[3] = 0x40; writeBuf[3] = 0x40;
for (uint8_t i = 0; i < 4; i++) { for(uint8_t i = 0; i < 4; i++) {
if (Xbox360Connected[i]) if(Xbox360Connected[i])
XboxCommand(i, writeBuf, 4); XboxCommand(i, writeBuf, 4);
} }
} }
@ -564,18 +566,18 @@ void XBOXRECV::setRumbleOn(uint8_t lValue, uint8_t rValue, uint8_t controller) {
} }
void XBOXRECV::onInit(uint8_t controller) { void XBOXRECV::onInit(uint8_t controller) {
if (pFuncOnInit) if(pFuncOnInit)
pFuncOnInit(); // Call the user function pFuncOnInit(); // Call the user function
else { else {
LED led; LEDEnum led;
if (controller == 0) if(controller == 0)
led = LED1; led = LED1;
else if (controller == 1) else if(controller == 1)
led = LED2; led = LED2;
else if (controller == 2) else if(controller == 2)
led = LED3; led = LED3;
else else
led = LED4; led = LED4;
setLedOn(led, controller); setLedOn(led, controller);
} }
} }

View file

@ -120,19 +120,18 @@ public:
/** @name Xbox Controller functions */ /** @name Xbox Controller functions */
/** /**
* getButtonPress(uint8_t controller, Button b) will return true as long as the button is held down. * getButtonPress(uint8_t controller, ButtonEnum b) will return true as long as the button is held down.
* *
* While getButtonClick(uint8_t controller, Button b) will only return it once. * While getButtonClick(uint8_t controller, ButtonEnum b) will only return it once.
* *
* So you instance if you need to increase a variable once you would use getButtonClick(uint8_t controller, Button b), * So you instance if you need to increase a variable once you would use getButtonClick(uint8_t controller, ButtonEnum b),
* but if you need to drive a robot forward you would use getButtonPress(uint8_t controller, Button b). * but if you need to drive a robot forward you would use getButtonPress(uint8_t controller, ButtonEnum b).
* @param b ::Button to read. * @param b ::ButtonEnum to read.
* @param controller The controller to read from. Default to 0. * @param controller The controller to read from. Default to 0.
* @return getButtonClick(uint8_t controller, Button b) will return a bool, but getButtonPress(uint8_t controller, Button b) * @return getButtonClick(uint8_t controller, ButtonEnum b) will return a bool, while getButtonPress(uint8_t controller, ButtonEnum b) will return a byte if reading ::L2 or ::R2.
* will return a byte if reading ::L2 or ::R2.
*/ */
uint8_t getButtonPress(Button b, uint8_t controller = 0); uint8_t getButtonPress(ButtonEnum b, uint8_t controller = 0);
bool getButtonClick(Button b, uint8_t controller = 0); bool getButtonClick(ButtonEnum b, uint8_t controller = 0);
/**@}*/ /**@}*/
/** @name Xbox Controller functions */ /** @name Xbox Controller functions */
@ -142,7 +141,7 @@ public:
* @param controller The controller to read from. Default to 0. * @param controller The controller to read from. Default to 0.
* @return Returns a signed 16-bit integer. * @return Returns a signed 16-bit integer.
*/ */
int16_t getAnalogHat(AnalogHat a, uint8_t controller = 0); int16_t getAnalogHat(AnalogHatEnum a, uint8_t controller = 0);
/** /**
* Used to disconnect any of the controllers. * Used to disconnect any of the controllers.
@ -174,7 +173,7 @@ public:
*/ */
void setRumbleOn(uint8_t lValue, uint8_t rValue, uint8_t controller = 0); void setRumbleOn(uint8_t lValue, uint8_t rValue, uint8_t controller = 0);
/** /**
* Set LED value. Without using the ::LED or ::LEDMode enum. * Set LED value. Without using the ::LEDEnum or ::LEDModeEnum.
* @param value See: * @param value See:
* setLedOff(uint8_t controller), setLedOn(uint8_t controller, LED l), * setLedOff(uint8_t controller), setLedOn(uint8_t controller, LED l),
* setLedBlink(uint8_t controller, LED l), and setLedMode(uint8_t controller, LEDMode lm). * setLedBlink(uint8_t controller, LED l), and setLedMode(uint8_t controller, LEDMode lm).
@ -190,23 +189,23 @@ public:
setLedRaw(0, controller); setLedRaw(0, controller);
}; };
/** /**
* Turn on a LED by using the ::LED enum. * Turn on a LED by using ::LEDEnum.
* @param l ::LED1, ::LED2, ::LED3 and ::LED4 is supported by the Xbox controller. * @param l ::OFF, ::LED1, ::LED2, ::LED3 and ::LED4 is supported by the Xbox controller.
* @param controller The controller to write to. Default to 0. * @param controller The controller to write to. Default to 0.
*/ */
void setLedOn(LED l, uint8_t controller = 0); void setLedOn(LEDEnum l, uint8_t controller = 0);
/** /**
* Turn on a LED by using the ::LED enum. * Turn on a LED by using ::LEDEnum.
* @param l ::ALL, ::LED1, ::LED2, ::LED3 and ::LED4 is supported by the Xbox controller. * @param l ::ALL, ::LED1, ::LED2, ::LED3 and ::LED4 is supported by the Xbox controller.
* @param controller The controller to write to. Default to 0. * @param controller The controller to write to. Default to 0.
*/ */
void setLedBlink(LED l, uint8_t controller = 0); void setLedBlink(LEDEnum l, uint8_t controller = 0);
/** /**
* Used to set special LED modes supported by the Xbox controller. * Used to set special LED modes supported by the Xbox controller.
* @param lm See ::LEDMode. * @param lm See ::LEDModeEnum.
* @param controller The controller to write to. Default to 0. * @param controller The controller to write to. Default to 0.
*/ */
void setLedMode(LEDMode lm, uint8_t controller = 0); void setLedMode(LEDModeEnum lm, uint8_t controller = 0);
/** /**
* Used to get the battery level from the controller. * Used to get the battery level from the controller.
* @param controller The controller to read from. Default to 0. * @param controller The controller to read from. Default to 0.
@ -277,4 +276,4 @@ private:
void XboxCommand(uint8_t controller, uint8_t* data, uint16_t nbytes); void XboxCommand(uint8_t controller, uint8_t* data, uint16_t nbytes);
void checkStatus(); void checkStatus();
}; };
#endif #endif

View file

@ -24,19 +24,20 @@ XBOXUSB::XBOXUSB(USB *p) :
pUsb(p), // pointer to USB class instance - mandatory pUsb(p), // pointer to USB class instance - mandatory
bAddress(0), // device address - mandatory bAddress(0), // device address - mandatory
bPollEnable(false) { // don't start polling before dongle is connected bPollEnable(false) { // don't start polling before dongle is connected
for (uint8_t i = 0; i < XBOX_MAX_ENDPOINTS; i++) { for(uint8_t i = 0; i < XBOX_MAX_ENDPOINTS; i++) {
epInfo[i].epAddr = 0; epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0; epInfo[i].epAttribs = 0;
epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER; epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER;
} }
if (pUsb) // register in USB subsystem if(pUsb) // register in USB subsystem
pUsb->RegisterDeviceClass(this); //set devConfig[] entry pUsb->RegisterDeviceClass(this); //set devConfig[] entry
} }
uint8_t XBOXUSB::Init(uint8_t parent, uint8_t port, bool lowspeed) { uint8_t XBOXUSB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)]; uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)];
USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf);
uint8_t rcode; uint8_t rcode;
UsbDevice *p = NULL; UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL; EpInfo *oldep_ptr = NULL;
@ -49,7 +50,7 @@ uint8_t XBOXUSB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
Notify(PSTR("\r\nXBOXUSB Init"), 0x80); Notify(PSTR("\r\nXBOXUSB Init"), 0x80);
#endif #endif
// check if address has already been assigned to an instance // check if address has already been assigned to an instance
if (bAddress) { if(bAddress) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress in use"), 0x80); Notify(PSTR("\r\nAddress in use"), 0x80);
#endif #endif
@ -59,14 +60,14 @@ uint8_t XBOXUSB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Get pointer to pseudo device with address 0 assigned // Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0); p = addrPool.GetUsbDevicePtr(0);
if (!p) { if(!p) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress not found"), 0x80); Notify(PSTR("\r\nAddress not found"), 0x80);
#endif #endif
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
} }
if (!p->epinfo) { if(!p->epinfo) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nepinfo is null"), 0x80); Notify(PSTR("\r\nepinfo is null"), 0x80);
#endif #endif
@ -86,39 +87,39 @@ uint8_t XBOXUSB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Restore p->epinfo // Restore p->epinfo
p->epinfo = oldep_ptr; p->epinfo = oldep_ptr;
if (rcode) if(rcode)
goto FailGetDevDescr; goto FailGetDevDescr;
VID = ((USB_DEVICE_DESCRIPTOR*)buf)->idVendor; VID = udd->idVendor;
PID = ((USB_DEVICE_DESCRIPTOR*)buf)->idProduct; PID = udd->idProduct;
if (VID != XBOX_VID && VID != MADCATZ_VID && VID != JOYTECH_VID && VID != GAMESTOP_VID) // Check VID if(VID != XBOX_VID && VID != MADCATZ_VID && VID != JOYTECH_VID && VID != GAMESTOP_VID) // Check VID
goto FailUnknownDevice; goto FailUnknownDevice;
if (PID == XBOX_WIRELESS_PID) { if(PID == XBOX_WIRELESS_PID) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nYou have plugged in a wireless Xbox 360 controller - it doesn't support USB communication"), 0x80); Notify(PSTR("\r\nYou have plugged in a wireless Xbox 360 controller - it doesn't support USB communication"), 0x80);
#endif #endif
goto FailUnknownDevice; goto FailUnknownDevice;
} else if (PID == XBOX_WIRELESS_RECEIVER_PID || PID == XBOX_WIRELESS_RECEIVER_THIRD_PARTY_PID) { } else if(PID == XBOX_WIRELESS_RECEIVER_PID || PID == XBOX_WIRELESS_RECEIVER_THIRD_PARTY_PID) {
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nThis library only supports Xbox 360 controllers via USB"), 0x80); Notify(PSTR("\r\nThis library only supports Xbox 360 controllers via USB"), 0x80);
#endif #endif
goto FailUnknownDevice; goto FailUnknownDevice;
} else if (PID != XBOX_WIRED_PID && PID != GAMESTOP_WIRED_PID) // Check PID } else if(PID != XBOX_WIRED_PID && PID != MADCATZ_WIRED_PID && PID != GAMESTOP_WIRED_PID && PID != AFTERGLOW_WIRED_PID) // Check PID
goto FailUnknownDevice; goto FailUnknownDevice;
// Allocate new address according to device class // Allocate new address according to device class
bAddress = addrPool.AllocAddress(parent, false, port); bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress) if(!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from device descriptor // Extract Max Packet Size from device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; epInfo[0].maxPktSize = udd->bMaxPacketSize0;
// Assign new address to the device // Assign new address to the device
rcode = pUsb->setAddr(0, 0, bAddress); rcode = pUsb->setAddr(0, 0, bAddress);
if (rcode) { if(rcode) {
p->lowspeed = false; p->lowspeed = false;
addrPool.FreeAddress(bAddress); addrPool.FreeAddress(bAddress);
bAddress = 0; bAddress = 0;
@ -132,20 +133,20 @@ uint8_t XBOXUSB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
Notify(PSTR("\r\nAddr: "), 0x80); Notify(PSTR("\r\nAddr: "), 0x80);
D_PrintHex<uint8_t > (bAddress, 0x80); D_PrintHex<uint8_t > (bAddress, 0x80);
#endif #endif
delay(300); // Spec says you should wait at least 200ms //delay(300); // Spec says you should wait at least 200ms
p->lowspeed = false; p->lowspeed = false;
//get pointer to assigned address record //get pointer to assigned address record
p = addrPool.GetUsbDevicePtr(bAddress); p = addrPool.GetUsbDevicePtr(bAddress);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
// Assign epInfo to epinfo pointer - only EP0 is known // Assign epInfo to epinfo pointer - only EP0 is known
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
/* The application will work in reduced host mode, so we can save program and data /* The application will work in reduced host mode, so we can save program and data
@ -157,23 +158,23 @@ uint8_t XBOXUSB::Init(uint8_t parent, uint8_t port, bool lowspeed) {
epInfo[ XBOX_INPUT_PIPE ].epAttribs = EP_INTERRUPT; epInfo[ XBOX_INPUT_PIPE ].epAttribs = EP_INTERRUPT;
epInfo[ XBOX_INPUT_PIPE ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ XBOX_INPUT_PIPE ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ XBOX_INPUT_PIPE ].maxPktSize = EP_MAXPKTSIZE; epInfo[ XBOX_INPUT_PIPE ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ XBOX_INPUT_PIPE ].bmSndToggle = bmSNDTOG0; epInfo[ XBOX_INPUT_PIPE ].bmSndToggle = 0;
epInfo[ XBOX_INPUT_PIPE ].bmRcvToggle = bmRCVTOG0; epInfo[ XBOX_INPUT_PIPE ].bmRcvToggle = 0;
epInfo[ XBOX_OUTPUT_PIPE ].epAddr = 0x02; // XBOX 360 output endpoint epInfo[ XBOX_OUTPUT_PIPE ].epAddr = 0x02; // XBOX 360 output endpoint
epInfo[ XBOX_OUTPUT_PIPE ].epAttribs = EP_INTERRUPT; epInfo[ XBOX_OUTPUT_PIPE ].epAttribs = EP_INTERRUPT;
epInfo[ XBOX_OUTPUT_PIPE ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints epInfo[ XBOX_OUTPUT_PIPE ].bmNakPower = USB_NAK_NOWAIT; // Only poll once for interrupt endpoints
epInfo[ XBOX_OUTPUT_PIPE ].maxPktSize = EP_MAXPKTSIZE; epInfo[ XBOX_OUTPUT_PIPE ].maxPktSize = EP_MAXPKTSIZE;
epInfo[ XBOX_OUTPUT_PIPE ].bmSndToggle = bmSNDTOG0; epInfo[ XBOX_OUTPUT_PIPE ].bmSndToggle = 0;
epInfo[ XBOX_OUTPUT_PIPE ].bmRcvToggle = bmRCVTOG0; epInfo[ XBOX_OUTPUT_PIPE ].bmRcvToggle = 0;
rcode = pUsb->setEpInfoEntry(bAddress, 3, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 3, epInfo);
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
delay(200); // Give time for address change delay(200); // Give time for address change
rcode = pUsb->setConf(bAddress, epInfo[ XBOX_CONTROL_PIPE ].epAddr, 1); rcode = pUsb->setConf(bAddress, epInfo[ XBOX_CONTROL_PIPE ].epAddr, 1);
if (rcode) if(rcode)
goto FailSetConfDescr; goto FailSetConfDescr;
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
@ -200,8 +201,9 @@ FailSetDevTblEntry:
FailSetConfDescr: FailSetConfDescr:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailSetConfDescr(); NotifyFailSetConfDescr();
goto Fail;
#endif #endif
goto Fail;
FailUnknownDevice: FailUnknownDevice:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFailUnknownDevice(VID, PID); NotifyFailUnknownDevice(VID, PID);
@ -227,7 +229,7 @@ uint8_t XBOXUSB::Release() {
} }
uint8_t XBOXUSB::Poll() { uint8_t XBOXUSB::Poll() {
if (!bPollEnable) if(!bPollEnable)
return 0; return 0;
uint16_t BUFFER_SIZE = EP_MAXPKTSIZE; uint16_t BUFFER_SIZE = EP_MAXPKTSIZE;
pUsb->inTransfer(bAddress, epInfo[ XBOX_INPUT_PIPE ].epAddr, &BUFFER_SIZE, readBuf); // input on endpoint 1 pUsb->inTransfer(bAddress, epInfo[ XBOX_INPUT_PIPE ].epAddr, &BUFFER_SIZE, readBuf); // input on endpoint 1
@ -239,9 +241,9 @@ uint8_t XBOXUSB::Poll() {
} }
void XBOXUSB::readReport() { void XBOXUSB::readReport() {
if (readBuf == NULL) if(readBuf == NULL)
return; return;
if (readBuf[0] != 0x00 || readBuf[1] != 0x14) { // Check if it's the correct report - the controller also sends different status reports if(readBuf[0] != 0x00 || readBuf[1] != 0x14) { // Check if it's the correct report - the controller also sends different status reports
return; return;
} }
@ -255,11 +257,11 @@ void XBOXUSB::readReport() {
//Notify(PSTR("\r\nButtonState"), 0x80); //Notify(PSTR("\r\nButtonState"), 0x80);
//PrintHex<uint32_t>(ButtonState, 0x80); //PrintHex<uint32_t>(ButtonState, 0x80);
if (ButtonState != OldButtonState) { if(ButtonState != OldButtonState) {
ButtonClickState = (ButtonState >> 16) & ((~OldButtonState) >> 16); // Update click state variable, but don't include the two trigger buttons L2 and R2 ButtonClickState = (ButtonState >> 16) & ((~OldButtonState) >> 16); // Update click state variable, but don't include the two trigger buttons L2 and R2
if (((uint8_t)OldButtonState) == 0 && ((uint8_t)ButtonState) != 0) // The L2 and R2 buttons are special as they are analog buttons if(((uint8_t)OldButtonState) == 0 && ((uint8_t)ButtonState) != 0) // The L2 and R2 buttons are special as they are analog buttons
R2Clicked = true; R2Clicked = true;
if ((uint8_t)(OldButtonState >> 8) == 0 && (uint8_t)(ButtonState >> 8) != 0) if((uint8_t)(OldButtonState >> 8) == 0 && (uint8_t)(ButtonState >> 8) != 0)
L2Clicked = true; L2Clicked = true;
OldButtonState = ButtonState; OldButtonState = ButtonState;
} }
@ -267,9 +269,9 @@ void XBOXUSB::readReport() {
void XBOXUSB::printReport() { //Uncomment "#define PRINTREPORT" to print the report send by the Xbox 360 Controller void XBOXUSB::printReport() { //Uncomment "#define PRINTREPORT" to print the report send by the Xbox 360 Controller
#ifdef PRINTREPORT #ifdef PRINTREPORT
if (readBuf == NULL) if(readBuf == NULL)
return; return;
for (uint8_t i = 0; i < XBOX_REPORT_BUFFER_SIZE; i++) { for(uint8_t i = 0; i < XBOX_REPORT_BUFFER_SIZE; i++) {
D_PrintHex<uint8_t > (readBuf[i], 0x80); D_PrintHex<uint8_t > (readBuf[i], 0x80);
Notify(PSTR(" "), 0x80); Notify(PSTR(" "), 0x80);
} }
@ -277,35 +279,35 @@ void XBOXUSB::printReport() { //Uncomment "#define PRINTREPORT" to print the rep
#endif #endif
} }
uint8_t XBOXUSB::getButtonPress(Button b) { uint8_t XBOXUSB::getButtonPress(ButtonEnum b) {
if (b == L2) // These are analog buttons if(b == L2) // These are analog buttons
return (uint8_t)(ButtonState >> 8); return (uint8_t)(ButtonState >> 8);
else if (b == R2) else if(b == R2)
return (uint8_t)ButtonState; return (uint8_t)ButtonState;
return (bool)(ButtonState & ((uint32_t)pgm_read_word(&XBOXBUTTONS[(uint8_t)b]) << 16)); return (bool)(ButtonState & ((uint32_t)pgm_read_word(&XBOX_BUTTONS[(uint8_t)b]) << 16));
} }
bool XBOXUSB::getButtonClick(Button b) { bool XBOXUSB::getButtonClick(ButtonEnum b) {
if (b == L2) { if(b == L2) {
if (L2Clicked) { if(L2Clicked) {
L2Clicked = false; L2Clicked = false;
return true; return true;
} }
return false; return false;
} else if (b == R2) { } else if(b == R2) {
if (R2Clicked) { if(R2Clicked) {
R2Clicked = false; R2Clicked = false;
return true; return true;
} }
return false; return false;
} }
uint16_t button = pgm_read_word(&XBOXBUTTONS[(uint8_t)b]); uint16_t button = pgm_read_word(&XBOX_BUTTONS[(uint8_t)b]);
bool click = (ButtonClickState & button); bool click = (ButtonClickState & button);
ButtonClickState &= ~button; // clear "click" event ButtonClickState &= ~button; // clear "click" event
return click; return click;
} }
int16_t XBOXUSB::getAnalogHat(AnalogHat a) { int16_t XBOXUSB::getAnalogHat(AnalogHatEnum a) {
return hatValue[a]; return hatValue[a];
} }
@ -323,16 +325,18 @@ void XBOXUSB::setLedRaw(uint8_t value) {
XboxCommand(writeBuf, 3); XboxCommand(writeBuf, 3);
} }
void XBOXUSB::setLedOn(LED led) { void XBOXUSB::setLedOn(LEDEnum led) {
if (led != ALL) // All LEDs can't be on a the same time if(led == OFF)
setLedRaw((pgm_read_byte(&XBOXLEDS[(uint8_t)led])) + 4); setLedRaw(0);
else if(led != ALL) // All LEDs can't be on a the same time
setLedRaw(pgm_read_byte(&XBOX_LEDS[(uint8_t)led]) + 4);
} }
void XBOXUSB::setLedBlink(LED led) { void XBOXUSB::setLedBlink(LEDEnum led) {
setLedRaw(pgm_read_byte(&XBOXLEDS[(uint8_t)led])); setLedRaw(pgm_read_byte(&XBOX_LEDS[(uint8_t)led]));
} }
void XBOXUSB::setLedMode(LEDMode ledMode) { // This function is used to do some speciel LED stuff the controller supports void XBOXUSB::setLedMode(LEDModeEnum ledMode) { // This function is used to do some special LED stuff the controller supports
setLedRaw((uint8_t)ledMode); setLedRaw((uint8_t)ledMode);
} }
@ -350,7 +354,7 @@ void XBOXUSB::setRumbleOn(uint8_t lValue, uint8_t rValue) {
} }
void XBOXUSB::onInit() { void XBOXUSB::onInit() {
if (pFuncOnInit) if(pFuncOnInit)
pFuncOnInit(); // Call the user function pFuncOnInit(); // Call the user function
else else
setLedOn(LED1); setLedOn(LED1);

View file

@ -33,16 +33,18 @@
#define XBOX_OUTPUT_PIPE 2 #define XBOX_OUTPUT_PIPE 2
// PID and VID of the different devices // PID and VID of the different devices
#define XBOX_VID 0x045E // Microsoft Corporation #define XBOX_VID 0x045E // Microsoft Corporation
#define MADCATZ_VID 0x1BAD // For unofficial Mad Catz controllers #define MADCATZ_VID 0x1BAD // For unofficial Mad Catz controllers
#define JOYTECH_VID 0x162E // For unofficial Joytech controllers #define JOYTECH_VID 0x162E // For unofficial Joytech controllers
#define GAMESTOP_VID 0x0E6F // Gamestop controller #define GAMESTOP_VID 0x0E6F // Gamestop controller
#define XBOX_WIRED_PID 0x028E // Microsoft 360 Wired controller #define XBOX_WIRED_PID 0x028E // Microsoft 360 Wired controller
#define XBOX_WIRELESS_PID 0x028F // Wireless controller only support charging #define XBOX_WIRELESS_PID 0x028F // Wireless controller only support charging
#define XBOX_WIRELESS_RECEIVER_PID 0x0719 // Microsoft Wireless Gaming Receiver #define XBOX_WIRELESS_RECEIVER_PID 0x0719 // Microsoft Wireless Gaming Receiver
#define XBOX_WIRELESS_RECEIVER_THIRD_PARTY_PID 0x0291 // Third party Wireless Gaming Receiver #define XBOX_WIRELESS_RECEIVER_THIRD_PARTY_PID 0x0291 // Third party Wireless Gaming Receiver
#define GAMESTOP_WIRED_PID 0x0401 // Gamestop wired controller #define MADCATZ_WIRED_PID 0xF016 // Mad Catz wired controller
#define GAMESTOP_WIRED_PID 0x0401 // Gamestop wired controller
#define AFTERGLOW_WIRED_PID 0x0213 // Afterglow wired controller - it uses the same VID as a Gamestop controller
#define XBOX_REPORT_BUFFER_SIZE 14 // Size of the input report buffer #define XBOX_REPORT_BUFFER_SIZE 14 // Size of the input report buffer
@ -104,24 +106,23 @@ public:
* @return Returns true if the device's VID and PID matches this driver. * @return Returns true if the device's VID and PID matches this driver.
*/ */
virtual boolean VIDPIDOK(uint16_t vid, uint16_t pid) { virtual boolean VIDPIDOK(uint16_t vid, uint16_t pid) {
return ((vid == XBOX_VID || vid == MADCATZ_VID || vid == JOYTECH_VID || vid == GAMESTOP_VID) && (pid == XBOX_WIRED_PID || pid == GAMESTOP_WIRED_PID)); return ((vid == XBOX_VID || vid == MADCATZ_VID || vid == JOYTECH_VID || vid == GAMESTOP_VID) && (pid == XBOX_WIRED_PID || pid == MADCATZ_WIRED_PID || pid == GAMESTOP_WIRED_PID || pid == AFTERGLOW_WIRED_PID));
}; };
/**@}*/ /**@}*/
/** @name Xbox Controller functions */ /** @name Xbox Controller functions */
/** /**
* getButtonPress(Button b) will return true as long as the button is held down. * getButtonPress(ButtonEnum b) will return true as long as the button is held down.
* *
* While getButtonClick(Button b) will only return it once. * While getButtonClick(ButtonEnum b) will only return it once.
* *
* So you instance if you need to increase a variable once you would use getButtonClick(Button b), * So you instance if you need to increase a variable once you would use getButtonClick(ButtonEnum b),
* but if you need to drive a robot forward you would use getButtonPress(Button b). * but if you need to drive a robot forward you would use getButtonPress(ButtonEnum b).
* @param b ::Button to read. * @param b ::ButtonEnum to read.
* @return getButtonClick(Button b) will return a bool, but getButtonPress(Button b) * @return getButtonClick(ButtonEnum b) will return a bool, while getButtonPress(ButtonEnum b) will return a byte if reading ::L2 or ::R2.
* will return a byte if reading ::L2 or ::R2.
*/ */
uint8_t getButtonPress(Button b); uint8_t getButtonPress(ButtonEnum b);
bool getButtonClick(Button b); bool getButtonClick(ButtonEnum b);
/**@}*/ /**@}*/
/** @name Xbox Controller functions */ /** @name Xbox Controller functions */
@ -130,7 +131,7 @@ public:
* @param a Either ::LeftHatX, ::LeftHatY, ::RightHatX or ::RightHatY. * @param a Either ::LeftHatX, ::LeftHatY, ::RightHatX or ::RightHatY.
* @return Returns a signed 16-bit integer. * @return Returns a signed 16-bit integer.
*/ */
int16_t getAnalogHat(AnalogHat a); int16_t getAnalogHat(AnalogHatEnum a);
/** Turn rumble off and all the LEDs on the controller. */ /** Turn rumble off and all the LEDs on the controller. */
void setAllOff() { void setAllOff() {
@ -149,10 +150,10 @@ public:
*/ */
void setRumbleOn(uint8_t lValue, uint8_t rValue); void setRumbleOn(uint8_t lValue, uint8_t rValue);
/** /**
* Set LED value. Without using the ::LED or ::LEDMode enum. * Set LED value. Without using the ::LEDEnum or ::LEDModeEnum.
* @param value See: * @param value See:
* setLedOff(), setLedOn(LED l), * setLedOff(), setLedOn(LEDEnum l),
* setLedBlink(LED l), and setLedMode(LEDMode lm). * setLedBlink(LEDEnum l), and setLedMode(LEDModeEnum lm).
*/ */
void setLedRaw(uint8_t value); void setLedRaw(uint8_t value);
@ -161,20 +162,20 @@ public:
setLedRaw(0); setLedRaw(0);
}; };
/** /**
* Turn on a LED by using the ::LED enum. * Turn on a LED by using ::LEDEnum.
* @param l ::LED1, ::LED2, ::LED3 and ::LED4 is supported by the Xbox controller. * @param l ::OFF, ::LED1, ::LED2, ::LED3 and ::LED4 is supported by the Xbox controller.
*/ */
void setLedOn(LED l); void setLedOn(LEDEnum l);
/** /**
* Turn on a LED by using the ::LED enum. * Turn on a LED by using ::LEDEnum.
* @param l ::ALL, ::LED1, ::LED2, ::LED3 and ::LED4 is supported by the Xbox controller. * @param l ::ALL, ::LED1, ::LED2, ::LED3 and ::LED4 is supported by the Xbox controller.
*/ */
void setLedBlink(LED l); void setLedBlink(LEDEnum l);
/** /**
* Used to set special LED modes supported by the Xbox controller. * Used to set special LED modes supported by the Xbox controller.
* @param lm See ::LEDMode. * @param lm See ::LEDModeEnum.
*/ */
void setLedMode(LEDMode lm); void setLedMode(LEDModeEnum lm);
/** /**
* Used to call your own function when the controller is successfully initialized. * Used to call your own function when the controller is successfully initialized.

View file

@ -62,7 +62,7 @@ struct UsbDeviceAddress {
uint8_t bmAddress : 3; // device address/port number uint8_t bmAddress : 3; // device address/port number
uint8_t bmParent : 3; // parent hub address uint8_t bmParent : 3; // parent hub address
uint8_t bmHub : 1; // hub flag uint8_t bmHub : 1; // hub flag
uint8_t bmReserved : 1; // reserved, must be zerro uint8_t bmReserved : 1; // reserved, must be zero
} __attribute__((packed)); } __attribute__((packed));
uint8_t devAddress; uint8_t devAddress;
}; };
@ -74,7 +74,7 @@ struct UsbDeviceAddress {
struct UsbDevice { struct UsbDevice {
EpInfo *epinfo; // endpoint info pointer EpInfo *epinfo; // endpoint info pointer
uint8_t address; // address UsbDeviceAddress address;
uint8_t epcount; // number of endpoints uint8_t epcount; // number of endpoints
bool lowspeed; // indicates if a device is the low speed one bool lowspeed; // indicates if a device is the low speed one
// uint8_t devclass; // device class // uint8_t devclass; // device class
@ -104,47 +104,52 @@ class AddressPoolImpl : public AddressPool {
// Initializes address pool entry // Initializes address pool entry
void InitEntry(uint8_t index) { void InitEntry(uint8_t index) {
thePool[index].address = 0; thePool[index].address.devAddress = 0;
thePool[index].epcount = 1; thePool[index].epcount = 1;
thePool[index].lowspeed = 0; thePool[index].lowspeed = 0;
thePool[index].epinfo = &dev0ep; thePool[index].epinfo = &dev0ep;
}; };
// Returns thePool index for a given address // Returns thePool index for a given address
uint8_t FindAddressIndex(uint8_t address = 0) { uint8_t FindAddressIndex(uint8_t address = 0) {
for(uint8_t i = 1; i < MAX_DEVICES_ALLOWED; i++) { for(uint8_t i = 1; i < MAX_DEVICES_ALLOWED; i++) {
if(thePool[i].address == address) if(thePool[i].address.devAddress == address)
return i; return i;
} }
return 0; return 0;
}; };
// Returns thePool child index for a given parent // Returns thePool child index for a given parent
uint8_t FindChildIndex(UsbDeviceAddress addr, uint8_t start = 1) { uint8_t FindChildIndex(UsbDeviceAddress addr, uint8_t start = 1) {
for(uint8_t i = (start < 1 || start >= MAX_DEVICES_ALLOWED) ? 1 : start; i < MAX_DEVICES_ALLOWED; i++) { for(uint8_t i = (start < 1 || start >= MAX_DEVICES_ALLOWED) ? 1 : start; i < MAX_DEVICES_ALLOWED; i++) {
if(((UsbDeviceAddress*) & thePool[i].address)->bmParent == addr.bmAddress) if(thePool[i].address.bmParent == addr.bmAddress)
return i; return i;
} }
return 0; return 0;
}; };
// Frees address entry specified by index parameter // Frees address entry specified by index parameter
void FreeAddressByIndex(uint8_t index) { void FreeAddressByIndex(uint8_t index) {
// Zerro field is reserved and should not be affected // Zero field is reserved and should not be affected
if(index == 0) if(index == 0)
return; return;
UsbDeviceAddress uda = thePool[index].address;
// If a hub was switched off all port addresses should be freed // If a hub was switched off all port addresses should be freed
if(((UsbDeviceAddress*) & thePool[index].address)->bmHub == 1) { if(uda.bmHub == 1) {
for(uint8_t i = 1; (i = FindChildIndex(*((UsbDeviceAddress*) & thePool[index].address), i));) for(uint8_t i = 1; (i = FindChildIndex(uda, i));)
FreeAddressByIndex(i); FreeAddressByIndex(i);
// If the hub had the last allocated address, hubCounter should be decremented // If the hub had the last allocated address, hubCounter should be decremented
if(hubCounter == ((UsbDeviceAddress*) & thePool[index].address)->bmAddress) if(hubCounter == uda.bmAddress)
hubCounter--; hubCounter--;
} }
InitEntry(index); InitEntry(index);
} }
// Initializes the whole address pool at once // Initializes the whole address pool at once
void InitAllAddresses() { void InitAllAddresses() {
@ -160,7 +165,7 @@ public:
// Zero address is reserved // Zero address is reserved
InitEntry(0); InitEntry(0);
thePool[0].address = 0; thePool[0].address.devAddress = 0;
thePool[0].epinfo = &dev0ep; thePool[0].epinfo = &dev0ep;
dev0ep.epAddr = 0; dev0ep.epAddr = 0;
dev0ep.maxPktSize = 8; dev0ep.maxPktSize = 8;
@ -169,6 +174,7 @@ public:
InitAllAddresses(); InitAllAddresses();
}; };
// Returns a pointer to a specified address entry // Returns a pointer to a specified address entry
virtual UsbDevice* GetUsbDevicePtr(uint8_t addr) { virtual UsbDevice* GetUsbDevicePtr(uint8_t addr) {
@ -177,7 +183,7 @@ public:
uint8_t index = FindAddressIndex(addr); uint8_t index = FindAddressIndex(addr);
return(!index) ? NULL : thePool + index; return (!index) ? NULL : thePool + index;
}; };
// Performs an operation specified by pfunc for each addressed device // Performs an operation specified by pfunc for each addressed device
@ -187,16 +193,19 @@ public:
return; return;
for(uint8_t i = 1; i < MAX_DEVICES_ALLOWED; i++) for(uint8_t i = 1; i < MAX_DEVICES_ALLOWED; i++)
if(thePool[i].address) if(thePool[i].address.devAddress)
pfunc(thePool + i); pfunc(thePool + i);
}; };
// Allocates new address // Allocates new address
virtual uint8_t AllocAddress(uint8_t parent, bool is_hub = false, uint8_t port = 0) { virtual uint8_t AllocAddress(uint8_t parent, bool is_hub = false, uint8_t port = 0) {
/* if (parent != 0 && port == 0) /* if (parent != 0 && port == 0)
USB_HOST_SERIAL.println("PRT:0"); */ USB_HOST_SERIAL.println("PRT:0"); */
UsbDeviceAddress _parent;
if(parent > 127 || port > 7) _parent.devAddress = parent;
if(_parent.bmReserved || port > 7)
//if(parent > 127 || port > 7)
return 0; return 0;
if(is_hub && hubCounter == 7) if(is_hub && hubCounter == 7)
@ -208,21 +217,19 @@ public:
if(!index) // if empty entry is not found if(!index) // if empty entry is not found
return 0; return 0;
if(parent == 0) { if(_parent.devAddress == 0) {
if(is_hub) { if(is_hub) {
thePool[index].address = 0x41; thePool[index].address.devAddress = 0x41;
hubCounter++; hubCounter++;
} else } else
thePool[index].address = 1; thePool[index].address.devAddress = 1;
return thePool[index].address; return thePool[index].address.devAddress;
} }
UsbDeviceAddress addr; UsbDeviceAddress addr;
addr.devAddress = 0; // Ensure all bits are zero addr.devAddress = 0; // Ensure all bits are zero
addr.bmParent = _parent.bmAddress;
addr.bmParent = ((UsbDeviceAddress*) & parent)->bmAddress;
if(is_hub) { if(is_hub) {
addr.bmHub = 1; addr.bmHub = 1;
addr.bmAddress = ++hubCounter; addr.bmAddress = ++hubCounter;
@ -230,7 +237,7 @@ public:
addr.bmHub = 0; addr.bmHub = 0;
addr.bmAddress = port; addr.bmAddress = port;
} }
thePool[index].address = *((uint8_t*) & addr); thePool[index].address = addr;
/* /*
USB_HOST_SERIAL.print("Addr:"); USB_HOST_SERIAL.print("Addr:");
USB_HOST_SERIAL.print(addr.bmHub, HEX); USB_HOST_SERIAL.print(addr.bmHub, HEX);
@ -239,8 +246,9 @@ public:
USB_HOST_SERIAL.print("."); USB_HOST_SERIAL.print(".");
USB_HOST_SERIAL.println(addr.bmAddress, HEX); USB_HOST_SERIAL.println(addr.bmAddress, HEX);
*/ */
return thePool[index].address; return thePool[index].address.devAddress;
}; };
// Empties pool entry // Empties pool entry
virtual void FreeAddress(uint8_t addr) { virtual void FreeAddress(uint8_t addr) {
@ -252,6 +260,7 @@ public:
uint8_t index = FindAddressIndex(addr); uint8_t index = FindAddressIndex(addr);
FreeAddressByIndex(index); FreeAddressByIndex(index);
}; };
// Returns number of hubs attached // Returns number of hubs attached
// It can be rather helpfull to find out if there are hubs attached than getting the exact number of hubs. // It can be rather helpfull to find out if there are hubs attached than getting the exact number of hubs.
//uint8_t GetNumHubs() //uint8_t GetNumHubs()

77
adk.cpp
View file

@ -13,7 +13,7 @@ Contact information
Circuits At Home, LTD Circuits At Home, LTD
Web : http://www.circuitsathome.com Web : http://www.circuitsathome.com
e-mail : support@circuitsathome.com e-mail : support@circuitsathome.com
*/ */
/* Google ADK interface */ /* Google ADK interface */
@ -42,7 +42,7 @@ bConfNum(0), //configuration number
bNumEP(1), //if config descriptor needs to be parsed bNumEP(1), //if config descriptor needs to be parsed
ready(false) { ready(false) {
// initialize endpoint data structures // initialize endpoint data structures
for (uint8_t i = 0; i < ADK_MAX_ENDPOINTS; i++) { for(uint8_t i = 0; i < ADK_MAX_ENDPOINTS; i++) {
epInfo[i].epAddr = 0; epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0; epInfo[i].epAttribs = 0;
@ -50,7 +50,7 @@ ready(false) {
}//for(uint8_t i=0; i<ADK_MAX_ENDPOINTS; i++... }//for(uint8_t i=0; i<ADK_MAX_ENDPOINTS; i++...
// register in USB subsystem // register in USB subsystem
if (pUsb) { if(pUsb) {
pUsb->RegisterDeviceClass(this); //set devConfig[] entry pUsb->RegisterDeviceClass(this); //set devConfig[] entry
} }
} }
@ -62,6 +62,7 @@ uint8_t ADK::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
/* Connection initialization of an Android phone */ /* Connection initialization of an Android phone */
uint8_t ADK::Init(uint8_t parent, uint8_t port, bool lowspeed) { uint8_t ADK::Init(uint8_t parent, uint8_t port, bool lowspeed) {
uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)]; uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)];
USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf);
uint8_t rcode; uint8_t rcode;
uint8_t num_of_conf; // number of configurations uint8_t num_of_conf; // number of configurations
UsbDevice *p = NULL; UsbDevice *p = NULL;
@ -73,7 +74,7 @@ uint8_t ADK::Init(uint8_t parent, uint8_t port, bool lowspeed) {
USBTRACE("\r\nADK Init"); USBTRACE("\r\nADK Init");
// check if address has already been assigned to an instance // check if address has already been assigned to an instance
if (bAddress) { if(bAddress) {
USBTRACE("\r\nAddress in use"); USBTRACE("\r\nAddress in use");
return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE; return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;
} }
@ -81,12 +82,12 @@ uint8_t ADK::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Get pointer to pseudo device with address 0 assigned // Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0); p = addrPool.GetUsbDevicePtr(0);
if (!p) { if(!p) {
USBTRACE("\r\nAddress not found"); USBTRACE("\r\nAddress not found");
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
} }
if (!p->epinfo) { if(!p->epinfo) {
USBTRACE("epinfo is null\r\n"); USBTRACE("epinfo is null\r\n");
return USB_ERROR_EPINFO_IS_NULL; return USB_ERROR_EPINFO_IS_NULL;
} }
@ -105,7 +106,7 @@ uint8_t ADK::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Restore p->epinfo // Restore p->epinfo
p->epinfo = oldep_ptr; p->epinfo = oldep_ptr;
if (rcode) { if(rcode) {
goto FailGetDevDescr; goto FailGetDevDescr;
} }
@ -113,11 +114,11 @@ uint8_t ADK::Init(uint8_t parent, uint8_t port, bool lowspeed) {
bAddress = addrPool.AllocAddress(parent, false, port); bAddress = addrPool.AllocAddress(parent, false, port);
// Extract Max Packet Size from device descriptor // Extract Max Packet Size from device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; epInfo[0].maxPktSize = udd->bMaxPacketSize0;
// Assign new address to the device // Assign new address to the device
rcode = pUsb->setAddr(0, 0, bAddress); rcode = pUsb->setAddr(0, 0, bAddress);
if (rcode) { if(rcode) {
p->lowspeed = false; p->lowspeed = false;
addrPool.FreeAddress(bAddress); addrPool.FreeAddress(bAddress);
bAddress = 0; bAddress = 0;
@ -127,13 +128,13 @@ uint8_t ADK::Init(uint8_t parent, uint8_t port, bool lowspeed) {
//USBTRACE2("\r\nAddr:", bAddress); //USBTRACE2("\r\nAddr:", bAddress);
// Spec says you should wait at least 200ms. // Spec says you should wait at least 200ms.
delay(300); //delay(300);
p->lowspeed = false; p->lowspeed = false;
//get pointer to assigned address record //get pointer to assigned address record
p = addrPool.GetUsbDevicePtr(bAddress); p = addrPool.GetUsbDevicePtr(bAddress);
if (!p) { if(!p) {
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
} }
@ -141,49 +142,49 @@ uint8_t ADK::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Assign epInfo to epinfo pointer - only EP0 is known // Assign epInfo to epinfo pointer - only EP0 is known
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode) { if(rcode) {
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
} }
//check if ADK device is already in accessory mode; if yes, configure and exit //check if ADK device is already in accessory mode; if yes, configure and exit
if (((USB_DEVICE_DESCRIPTOR*)buf)->idVendor == ADK_VID && if(udd->idVendor == ADK_VID &&
(((USB_DEVICE_DESCRIPTOR*)buf)->idProduct == ADK_PID || ((USB_DEVICE_DESCRIPTOR*)buf)->idProduct == ADB_PID)) { (udd->idProduct == ADK_PID || udd->idProduct == ADB_PID)) {
USBTRACE("\r\nAcc.mode device detected"); USBTRACE("\r\nAcc.mode device detected");
/* go through configurations, find first bulk-IN, bulk-OUT EP, fill epInfo and quit */ /* go through configurations, find first bulk-IN, bulk-OUT EP, fill epInfo and quit */
num_of_conf = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations; num_of_conf = udd->bNumConfigurations;
//USBTRACE2("\r\nNC:",num_of_conf); //USBTRACE2("\r\nNC:",num_of_conf);
for (uint8_t i = 0; i < num_of_conf; i++) { for(uint8_t i = 0; i < num_of_conf; i++) {
ConfigDescParser < 0, 0, 0, 0 > confDescrParser(this); ConfigDescParser < 0, 0, 0, 0 > confDescrParser(this);
delay(1); delay(1);
rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser); rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
#if defined(XOOM) #if defined(XOOM)
//added by Jaylen Scott Vanorden //added by Jaylen Scott Vanorden
if (rcode) { if(rcode) {
USBTRACE2("\r\nGot 1st bad code for config: ", rcode); USBTRACE2("\r\nGot 1st bad code for config: ", rcode);
// Try once more // Try once more
rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser); rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
} }
#endif #endif
if (rcode) { if(rcode) {
goto FailGetConfDescr; goto FailGetConfDescr;
} }
if (bNumEP > 2) { if(bNumEP > 2) {
break; break;
} }
} // for (uint8_t i=0; i<num_of_conf; i++... } // for (uint8_t i=0; i<num_of_conf; i++...
if (bNumEP == 3) { if(bNumEP == 3) {
// Assign epInfo to epinfo pointer - this time all 3 endpoins // Assign epInfo to epinfo pointer - this time all 3 endpoins
rcode = pUsb->setEpInfoEntry(bAddress, 3, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 3, epInfo);
if (rcode) { if(rcode) {
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
} }
} }
// Set Configuration Value // Set Configuration Value
rcode = pUsb->setConf(bAddress, 0, bConfNum); rcode = pUsb->setConf(bAddress, 0, bConfNum);
if (rcode) { if(rcode) {
goto FailSetConfDescr; goto FailSetConfDescr;
} }
/* print endpoint structure */ /* print endpoint structure */
@ -201,7 +202,7 @@ uint8_t ADK::Init(uint8_t parent, uint8_t port, bool lowspeed) {
USBTRACE2("\r\nAddr: ", epInfo[epDataInIndex].epAddr); USBTRACE2("\r\nAddr: ", epInfo[epDataInIndex].epAddr);
USBTRACE2("\r\nMax.pkt.size: ", epInfo[epDataInIndex].maxPktSize); USBTRACE2("\r\nMax.pkt.size: ", epInfo[epDataInIndex].maxPktSize);
USBTRACE2("\r\nAttr: ", epInfo[epDataInIndex].epAttribs); USBTRACE2("\r\nAttr: ", epInfo[epDataInIndex].epAttribs);
*/ */
USBTRACE("\r\nConfiguration successful"); USBTRACE("\r\nConfiguration successful");
ready = true; ready = true;
@ -215,34 +216,43 @@ uint8_t ADK::Init(uint8_t parent, uint8_t port, bool lowspeed) {
rcode = getProto((uint8_t*) & adkproto); rcode = getProto((uint8_t*) & adkproto);
#if defined(XOOM) #if defined(XOOM)
//added by Jaylen Scott Vanorden //added by Jaylen Scott Vanorden
if (rcode) { if(rcode) {
USBTRACE2("\r\nGot 1st bad code for proto: ", rcode); USBTRACE2("\r\nGot 1st bad code for proto: ", rcode);
// Try once more // Try once more
rcode = getProto((uint8_t*) & adkproto); rcode = getProto((uint8_t*) & adkproto);
} }
#endif #endif
if (rcode) { if(rcode) {
goto FailGetProto; //init fails goto FailGetProto; //init fails
} }
USBTRACE2("\r\nADK protocol rev. ", adkproto); USBTRACE2("\r\nADK protocol rev. ", adkproto);
} }
delay(100);
//sending ID strings //sending ID strings
sendStr(ACCESSORY_STRING_MANUFACTURER, manufacturer); sendStr(ACCESSORY_STRING_MANUFACTURER, manufacturer);
delay(10);
sendStr(ACCESSORY_STRING_MODEL, model); sendStr(ACCESSORY_STRING_MODEL, model);
delay(10);
sendStr(ACCESSORY_STRING_DESCRIPTION, description); sendStr(ACCESSORY_STRING_DESCRIPTION, description);
delay(10);
sendStr(ACCESSORY_STRING_VERSION, version); sendStr(ACCESSORY_STRING_VERSION, version);
delay(10);
sendStr(ACCESSORY_STRING_URI, uri); sendStr(ACCESSORY_STRING_URI, uri);
delay(10);
sendStr(ACCESSORY_STRING_SERIAL, serial); sendStr(ACCESSORY_STRING_SERIAL, serial);
delay(100);
//switch to accessory mode //switch to accessory mode
//the Android phone will reset //the Android phone will reset
rcode = switchAcc(); rcode = switchAcc();
if (rcode) { if(rcode) {
goto FailSwAcc; //init fails goto FailSwAcc; //init fails
} }
rcode = USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET; rcode = USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET;
delay(1000); // Give Android a chance to do its reset. This is a guess, and possibly could be lower. delay(100); // Give Android a chance to do its reset. This is a guess, and possibly could be lower.
goto SwAttempt; //switch to accessory mode attempted goto SwAttempt; //switch to accessory mode attempted
/* diagnostic messages */ /* diagnostic messages */
@ -282,14 +292,15 @@ FailSwAcc:
goto Fail; goto Fail;
#endif #endif
//FailOnInit:
// USBTRACE("OnInit:");
// goto Fail;
//
SwAttempt: SwAttempt:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
USBTRACE("\r\nAccessory mode switch attempt"); USBTRACE("\r\nAccessory mode switch attempt");
#endif
//FailOnInit:
// USBTRACE("OnInit:");
// goto Fail;
Fail: Fail:
#endif
//USBTRACE2("\r\nADK Init Failed, error code: ", rcode); //USBTRACE2("\r\nADK Init Failed, error code: ", rcode);
//NotifyFail(rcode); //NotifyFail(rcode);
Release(); Release();
@ -303,13 +314,13 @@ void ADK::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto
//ErrorMessage<uint8_t>(PSTR("Alt.Set"), alt); //ErrorMessage<uint8_t>(PSTR("Alt.Set"), alt);
//added by Yuuichi Akagawa //added by Yuuichi Akagawa
if (bNumEP == 3) { if(bNumEP == 3) {
return; return;
} }
bConfNum = conf; bConfNum = conf;
if ((pep->bmAttributes & 0x02) == 2) { if((pep->bmAttributes & 0x02) == 2) {
uint8_t index = ((pep->bEndpointAddress & 0x80) == 0x80) ? epDataInIndex : epDataOutIndex; uint8_t index = ((pep->bEndpointAddress & 0x80) == 0x80) ? epDataInIndex : epDataOutIndex;
// Fill in the endpoint info structure // Fill in the endpoint info structure
epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F); epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F);

12
adk.h
View file

@ -13,7 +13,7 @@ Contact information
Circuits At Home, LTD Circuits At Home, LTD
Web : http://www.circuitsathome.com Web : http://www.circuitsathome.com
e-mail : support@circuitsathome.com e-mail : support@circuitsathome.com
*/ */
/* Google ADK interface support header */ /* Google ADK interface support header */
@ -27,8 +27,8 @@ e-mail : support@circuitsathome.com
#define ADB_PID 0x2D01 #define ADB_PID 0x2D01
#define XOOM //enables repeating getProto() and getConf() attempts #define XOOM //enables repeating getProto() and getConf() attempts
//necessary for slow devices such as Motorola XOOM //necessary for slow devices such as Motorola XOOM
//defined by default, can be commented out to save memory //defined by default, can be commented out to save memory
/* requests */ /* requests */
@ -124,17 +124,17 @@ public:
/* returns 2 bytes in *adkproto */ /* returns 2 bytes in *adkproto */
inline uint8_t ADK::getProto(uint8_t* adkproto) { inline uint8_t ADK::getProto(uint8_t* adkproto) {
return( pUsb->ctrlReq(bAddress, 0, bmREQ_ADK_GET, ADK_GETPROTO, 0, 0, 0, 2, 2, adkproto, NULL)); return ( pUsb->ctrlReq(bAddress, 0, bmREQ_ADK_GET, ADK_GETPROTO, 0, 0, 0, 2, 2, adkproto, NULL));
} }
/* send ADK string */ /* send ADK string */
inline uint8_t ADK::sendStr(uint8_t index, const char* str) { inline uint8_t ADK::sendStr(uint8_t index, const char* str) {
return( pUsb->ctrlReq(bAddress, 0, bmREQ_ADK_SEND, ADK_SENDSTR, 0, 0, index, strlen(str) + 1, strlen(str) + 1, (uint8_t*) str, NULL)); return ( pUsb->ctrlReq(bAddress, 0, bmREQ_ADK_SEND, ADK_SENDSTR, 0, 0, index, strlen(str) + 1, strlen(str) + 1, (uint8_t*)str, NULL));
} }
/* switch to accessory mode */ /* switch to accessory mode */
inline uint8_t ADK::switchAcc(void) { inline uint8_t ADK::switchAcc(void) {
return( pUsb->ctrlReq(bAddress, 0, bmREQ_ADK_SEND, ADK_ACCSTART, 0, 0, 0, 0, 0, NULL, NULL)); return ( pUsb->ctrlReq(bAddress, 0, bmREQ_ADK_SEND, ADK_ACCSTART, 0, 0, 0, 0, 0, NULL, NULL));
} }
#endif // _ADK_H_ #endif // _ADK_H_

165
avrpins.h
View file

@ -218,7 +218,7 @@ public:
} }
static uint8_t IsSet() { static uint8_t IsSet() {
return PORT::PinRead() & (uint8_t) (1 << PIN); return PORT::PinRead() & (uint8_t)(1 << PIN);
} }
static void WaiteForSet() { static void WaiteForSet() {
@ -457,7 +457,7 @@ public:
#define P2 Pe4 #define P2 Pe4
#define P3 Pe5 #define P3 Pe5
#define P4 Pg5 #define P4 Pg5
#define P5 Pe5 #define P5 Pe3
#define P6 Ph3 #define P6 Ph3
#define P7 Ph4 #define P7 Ph4
@ -672,10 +672,19 @@ public:
// http://balanduino.net/ // http://balanduino.net/
#define P0 Pd0 /* 0 - PD0 */ #define P0 Pd0 /* 0 - PD0 */
#define P1 Pd1 /* 1 - PD1 */ #define P1 Pd1 /* 1 - PD1 */
#define P2 Pb2 /* 2 - PB2 */
#define P3 Pd6 /* 3 - PD6 */ #if BALANDUINO_REVISION < 13
#define P4 Pd7 /* 4 - PD7 */ #define P2 Pb2 /* 2 - PB2 */
#define P5 Pb3 /* 5 - PB3 */ #define P3 Pd6 /* 3 - PD6 */
#define P4 Pd7 /* 4 - PD7 */
#define P5 Pb3 /* 5 - PB3 */
#else
#define P2 Pd2 /* 2 - PD2 */
#define P3 Pd3 /* 3 - PD3 */
#define P4 Pd6 /* 4 - PD6 */
#define P5 Pd7 /* 5 - PD7 */
#endif
#define P6 Pb4 /* 6 - PB4 */ #define P6 Pb4 /* 6 - PB4 */
#define P7 Pa0 /* 7 - PA0 */ #define P7 Pa0 /* 7 - PA0 */
#define P8 Pa1 /* 8 - PA1 */ #define P8 Pa1 /* 8 - PA1 */
@ -685,8 +694,15 @@ public:
#define P12 Pa5 /* 12 - PA5 */ #define P12 Pa5 /* 12 - PA5 */
#define P13 Pc1 /* 13 - PC1 */ #define P13 Pc1 /* 13 - PC1 */
#define P14 Pc0 /* 14 - PC0 */ #define P14 Pc0 /* 14 - PC0 */
#define P15 Pd2 /* 15 - PD2 */
#define P16 Pd3 /* 16 - PD3 */ #if BALANDUINO_REVISION < 13
#define P15 Pd2 /* 15 - PD2 */
#define P16 Pd3 /* 16 - PD3 */
#else
#define P15 Pb2 /* 15 - PB2 */
#define P16 Pb3 /* 16 - PB2 */
#endif
#define P17 Pd4 /* 17 - PD4 */ #define P17 Pd4 /* 17 - PD4 */
#define P18 Pd5 /* 18 - PD5 */ #define P18 Pd5 /* 18 - PD5 */
#define P19 Pc2 /* 19 - PC2 */ #define P19 Pc2 /* 19 - PC2 */
@ -749,11 +765,13 @@ public:
#endif // __AVR__ #endif // __AVR__
#if defined(__arm__) && defined(CORE_TEENSY) #if defined(__arm__)
// pointers are 32 bits on ARM // pointers are 32 bits on ARM
#define pgm_read_pointer(p) pgm_read_dword(p) #define pgm_read_pointer(p) pgm_read_dword(p)
#if defined(CORE_TEENSY) && (defined(__MK20DX128__) || defined(__MK20DX256__))
#include "core_pins.h" #include "core_pins.h"
#include "avr_emulation.h" #include "avr_emulation.h"
@ -819,6 +837,135 @@ MAKE_PIN(P33, CORE_PIN33_PORTREG, CORE_PIN33_BIT, CORE_PIN33_CONFIG);
#undef MAKE_PIN #undef MAKE_PIN
#elif defined(ARDUINO_SAM_DUE) && defined(__SAM3X8E__)
// SetDirRead:
// Disable interrupts
// Disable the pull up resistor
// Set to INPUT
// Enable PIO
// SetDirWrite:
// Disable interrupts
// Disable the pull up resistor
// Set to OUTPUT
// Enable PIO
#define MAKE_PIN(className, pio, pinMask) \
class className { \
public: \
static void Set() { \
pio->PIO_SODR = pinMask; \
} \
static void Clear() { \
pio->PIO_CODR = pinMask; \
} \
static void SetDirRead() { \
pio->PIO_IDR = pinMask ; \
pio->PIO_PUDR = pinMask; \
pio->PIO_ODR = pinMask; \
pio->PIO_PER = pinMask; \
} \
static void SetDirWrite() { \
pio->PIO_IDR = pinMask ; \
pio->PIO_PUDR = pinMask; \
pio->PIO_OER = pinMask; \
pio->PIO_PER = pinMask; \
} \
static uint8_t IsSet() { \
return pio->PIO_PDSR & pinMask; \
} \
};
// See: http://arduino.cc/en/Hacking/PinMappingSAM3X and variant.cpp
MAKE_PIN(P0, PIOA, PIO_PA8);
MAKE_PIN(P1, PIOA, PIO_PA9);
MAKE_PIN(P2, PIOB, PIO_PB25);
MAKE_PIN(P3, PIOC, PIO_PC28);
MAKE_PIN(P4, PIOC, PIO_PC26);
MAKE_PIN(P5, PIOC, PIO_PC25);
MAKE_PIN(P6, PIOC, PIO_PC24);
MAKE_PIN(P7, PIOC, PIO_PC23);
MAKE_PIN(P8, PIOC, PIO_PC22);
MAKE_PIN(P9, PIOC, PIO_PC21);
MAKE_PIN(P10, PIOC, PIO_PC29);
MAKE_PIN(P11, PIOD, PIO_PD7);
MAKE_PIN(P12, PIOD, PIO_PD8);
MAKE_PIN(P13, PIOB, PIO_PB27);
MAKE_PIN(P14, PIOD, PIO_PD4);
MAKE_PIN(P15, PIOD, PIO_PD5);
MAKE_PIN(P16, PIOA, PIO_PA13);
MAKE_PIN(P17, PIOA, PIO_PA12);
MAKE_PIN(P18, PIOA, PIO_PA11);
MAKE_PIN(P19, PIOA, PIO_PA10);
MAKE_PIN(P20, PIOB, PIO_PB12);
MAKE_PIN(P21, PIOB, PIO_PB13);
MAKE_PIN(P22, PIOB, PIO_PB26);
MAKE_PIN(P23, PIOA, PIO_PA14);
MAKE_PIN(P24, PIOA, PIO_PA15);
MAKE_PIN(P25, PIOD, PIO_PD0);
MAKE_PIN(P26, PIOD, PIO_PD1);
MAKE_PIN(P27, PIOD, PIO_PD2);
MAKE_PIN(P28, PIOD, PIO_PD3);
MAKE_PIN(P29, PIOD, PIO_PD6);
MAKE_PIN(P30, PIOD, PIO_PD9);
MAKE_PIN(P31, PIOA, PIO_PA7);
MAKE_PIN(P32, PIOD, PIO_PD10);
MAKE_PIN(P33, PIOC, PIO_PC1);
MAKE_PIN(P34, PIOC, PIO_PC2);
MAKE_PIN(P35, PIOC, PIO_PC3);
MAKE_PIN(P36, PIOC, PIO_PC4);
MAKE_PIN(P37, PIOC, PIO_PC5);
MAKE_PIN(P38, PIOC, PIO_PC6);
MAKE_PIN(P39, PIOC, PIO_PC7);
MAKE_PIN(P40, PIOC, PIO_PC8);
MAKE_PIN(P41, PIOC, PIO_PC9);
MAKE_PIN(P42, PIOA, PIO_PA19);
MAKE_PIN(P43, PIOA, PIO_PA20);
MAKE_PIN(P44, PIOC, PIO_PC19);
MAKE_PIN(P45, PIOC, PIO_PC18);
MAKE_PIN(P46, PIOC, PIO_PC17);
MAKE_PIN(P47, PIOC, PIO_PC16);
MAKE_PIN(P48, PIOC, PIO_PC15);
MAKE_PIN(P49, PIOC, PIO_PC14);
MAKE_PIN(P50, PIOC, PIO_PC13);
MAKE_PIN(P51, PIOC, PIO_PC12);
MAKE_PIN(P52, PIOB, PIO_PB21);
MAKE_PIN(P53, PIOB, PIO_PB14);
MAKE_PIN(P54, PIOA, PIO_PA16);
MAKE_PIN(P55, PIOA, PIO_PA24);
MAKE_PIN(P56, PIOA, PIO_PA23);
MAKE_PIN(P57, PIOA, PIO_PA22);
MAKE_PIN(P58, PIOA, PIO_PA6);
MAKE_PIN(P59, PIOA, PIO_PA4);
MAKE_PIN(P60, PIOA, PIO_PA3);
MAKE_PIN(P61, PIOA, PIO_PA2);
MAKE_PIN(P62, PIOB, PIO_PB17);
MAKE_PIN(P63, PIOB, PIO_PB18);
MAKE_PIN(P64, PIOB, PIO_PB19);
MAKE_PIN(P65, PIOB, PIO_PB20);
MAKE_PIN(P66, PIOB, PIO_PB15);
MAKE_PIN(P67, PIOB, PIO_PB16);
MAKE_PIN(P68, PIOA, PIO_PA1);
MAKE_PIN(P69, PIOA, PIO_PA0);
MAKE_PIN(P70, PIOA, PIO_PA17);
MAKE_PIN(P71, PIOA, PIO_PA18);
MAKE_PIN(P72, PIOC, PIO_PC30);
MAKE_PIN(P73, PIOA, PIO_PA21);
MAKE_PIN(P74, PIOA, PIO_PA25); // MISO
MAKE_PIN(P75, PIOA, PIO_PA26); // MOSI
MAKE_PIN(P76, PIOA, PIO_PA27); // CLK
MAKE_PIN(P77, PIOA, PIO_PA28);
MAKE_PIN(P78, PIOB, PIO_PB23); // Unconnected
#undef MAKE_PIN
#else
#error "Please define board in avrpins.h"
#endif
#endif // __arm__ #endif // __arm__
#endif //_avrpins_h_ #endif //_avrpins_h_

View file

@ -28,9 +28,9 @@ bControlIface(0),
bDataIface(0), bDataIface(0),
bNumEP(1), bNumEP(1),
qNextPollTime(0), qNextPollTime(0),
ready(false), bPollEnable(false),
bPollEnable(false) { ready(false) {
for (uint8_t i = 0; i < ACM_MAX_ENDPOINTS; i++) { for(uint8_t i = 0; i < ACM_MAX_ENDPOINTS; i++) {
epInfo[i].epAddr = 0; epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0; epInfo[i].epAttribs = 0;
@ -40,7 +40,7 @@ bPollEnable(false) {
//if (!i) //if (!i)
epInfo[i].bmNakPower = USB_NAK_MAX_POWER; epInfo[i].bmNakPower = USB_NAK_MAX_POWER;
} }
if (pUsb) if(pUsb)
pUsb->RegisterDeviceClass(this); pUsb->RegisterDeviceClass(this);
} }
@ -48,6 +48,8 @@ uint8_t ACM::Init(uint8_t parent, uint8_t port, bool lowspeed) {
const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR); const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR);
uint8_t buf[constBufSize]; uint8_t buf[constBufSize];
USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf);
uint8_t rcode; uint8_t rcode;
UsbDevice *p = NULL; UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL; EpInfo *oldep_ptr = NULL;
@ -57,16 +59,16 @@ uint8_t ACM::Init(uint8_t parent, uint8_t port, bool lowspeed) {
USBTRACE("ACM Init\r\n"); USBTRACE("ACM Init\r\n");
if (bAddress) if(bAddress)
return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE; return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;
// Get pointer to pseudo device with address 0 assigned // Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0); p = addrPool.GetUsbDevicePtr(0);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if (!p->epinfo) { if(!p->epinfo) {
USBTRACE("epinfo\r\n"); USBTRACE("epinfo\r\n");
return USB_ERROR_EPINFO_IS_NULL; return USB_ERROR_EPINFO_IS_NULL;
} }
@ -85,22 +87,22 @@ uint8_t ACM::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Restore p->epinfo // Restore p->epinfo
p->epinfo = oldep_ptr; p->epinfo = oldep_ptr;
if (rcode) if(rcode)
goto FailGetDevDescr; goto FailGetDevDescr;
// Allocate new address according to device class // Allocate new address according to device class
bAddress = addrPool.AllocAddress(parent, false, port); bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress) if(!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from the device descriptor // Extract Max Packet Size from the device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; epInfo[0].maxPktSize = udd->bMaxPacketSize0;
// Assign new address to the device // Assign new address to the device
rcode = pUsb->setAddr(0, 0, bAddress); rcode = pUsb->setAddr(0, 0, bAddress);
if (rcode) { if(rcode) {
p->lowspeed = false; p->lowspeed = false;
addrPool.FreeAddress(bAddress); addrPool.FreeAddress(bAddress);
bAddress = 0; bAddress = 0;
@ -114,22 +116,22 @@ uint8_t ACM::Init(uint8_t parent, uint8_t port, bool lowspeed) {
p = addrPool.GetUsbDevicePtr(bAddress); p = addrPool.GetUsbDevicePtr(bAddress);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
num_of_conf = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations; num_of_conf = udd->bNumConfigurations;
// Assign epInfo to epinfo pointer // Assign epInfo to epinfo pointer
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
USBTRACE2("NC:", num_of_conf); USBTRACE2("NC:", num_of_conf);
for (uint8_t i = 0; i < num_of_conf; i++) { for(uint8_t i = 0; i < num_of_conf; i++) {
ConfigDescParser< USB_CLASS_COM_AND_CDC_CTRL, ConfigDescParser< USB_CLASS_COM_AND_CDC_CTRL,
CDC_SUBCLASS_ACM, CDC_SUBCLASS_ACM,
CDC_PROTOCOL_ITU_T_V_250, CDC_PROTOCOL_ITU_T_V_250,
@ -142,19 +144,19 @@ uint8_t ACM::Init(uint8_t parent, uint8_t port, bool lowspeed) {
rcode = pUsb->getConfDescr(bAddress, 0, i, &CdcControlParser); rcode = pUsb->getConfDescr(bAddress, 0, i, &CdcControlParser);
if (rcode) if(rcode)
goto FailGetConfDescr; goto FailGetConfDescr;
rcode = pUsb->getConfDescr(bAddress, 0, i, &CdcDataParser); rcode = pUsb->getConfDescr(bAddress, 0, i, &CdcDataParser);
if (rcode) if(rcode)
goto FailGetConfDescr; goto FailGetConfDescr;
if (bNumEP > 1) if(bNumEP > 1)
break; break;
} // for } // for
if (bNumEP < 4) if(bNumEP < 4)
return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;
// Assign epInfo to epinfo pointer // Assign epInfo to epinfo pointer
@ -165,12 +167,12 @@ uint8_t ACM::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Set Configuration Value // Set Configuration Value
rcode = pUsb->setConf(bAddress, 0, bConfNum); rcode = pUsb->setConf(bAddress, 0, bConfNum);
if (rcode) if(rcode)
goto FailSetConfDescr; goto FailSetConfDescr;
rcode = pAsync->OnInit(this); rcode = pAsync->OnInit(this);
if (rcode) if(rcode)
goto FailOnInit; goto FailOnInit;
USBTRACE("ACM configured\r\n"); USBTRACE("ACM configured\r\n");
@ -211,8 +213,8 @@ FailOnInit:
USBTRACE("OnInit:"); USBTRACE("OnInit:");
#endif #endif
Fail:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Fail:
NotifyFail(rcode); NotifyFail(rcode);
#endif #endif
Release(); Release();
@ -228,10 +230,10 @@ void ACM::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto
uint8_t index; uint8_t index;
if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) if((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80)
index = epInterruptInIndex; index = epInterruptInIndex;
else else
if ((pep->bmAttributes & 0x02) == 2) if((pep->bmAttributes & 0x02) == 2)
index = ((pep->bEndpointAddress & 0x80) == 0x80) ? epDataInIndex : epDataOutIndex; index = ((pep->bEndpointAddress & 0x80) == 0x80) ? epDataInIndex : epDataOutIndex;
else else
return; return;
@ -262,7 +264,7 @@ uint8_t ACM::Release() {
uint8_t ACM::Poll() { uint8_t ACM::Poll() {
uint8_t rcode = 0; uint8_t rcode = 0;
if (!bPollEnable) if(!bPollEnable)
return 0; return 0;
//uint32_t time_now = millis(); //uint32_t time_now = millis();

127
cdcacm.h
View file

@ -19,67 +19,67 @@ e-mail : support@circuitsathome.com
#include "Usb.h" #include "Usb.h"
#define bmREQ_CDCOUT USB_SETUP_HOST_TO_DEVICE|USB_SETUP_TYPE_CLASS|USB_SETUP_RECIPIENT_INTERFACE #define bmREQ_CDCOUT USB_SETUP_HOST_TO_DEVICE|USB_SETUP_TYPE_CLASS|USB_SETUP_RECIPIENT_INTERFACE
#define bmREQ_CDCIN USB_SETUP_DEVICE_TO_HOST|USB_SETUP_TYPE_CLASS|USB_SETUP_RECIPIENT_INTERFACE #define bmREQ_CDCIN USB_SETUP_DEVICE_TO_HOST|USB_SETUP_TYPE_CLASS|USB_SETUP_RECIPIENT_INTERFACE
// CDC Subclass Constants // CDC Subclass Constants
#define CDC_SUBCLASS_DLCM 0x01 // Direct Line Control Model #define CDC_SUBCLASS_DLCM 0x01 // Direct Line Control Model
#define CDC_SUBCLASS_ACM 0x02 // Abstract Control Model #define CDC_SUBCLASS_ACM 0x02 // Abstract Control Model
#define CDC_SUBCLASS_TCM 0x03 // Telephone Control Model #define CDC_SUBCLASS_TCM 0x03 // Telephone Control Model
#define CDC_SUBCLASS_MCCM 0x04 // Multi Channel Control Model #define CDC_SUBCLASS_MCCM 0x04 // Multi Channel Control Model
#define CDC_SUBCLASS_CAPI 0x05 // CAPI Control Model #define CDC_SUBCLASS_CAPI 0x05 // CAPI Control Model
#define CDC_SUBCLASS_ETHERNET 0x06 // Ethernet Network Control Model #define CDC_SUBCLASS_ETHERNET 0x06 // Ethernet Network Control Model
#define CDC_SUBCLASS_ATM 0x07 // ATM Network Control Model #define CDC_SUBCLASS_ATM 0x07 // ATM Network Control Model
#define CDC_SUBCLASS_WIRELESS_HANDSET 0x08 // Wireless Handset Control Model #define CDC_SUBCLASS_WIRELESS_HANDSET 0x08 // Wireless Handset Control Model
#define CDC_SUBCLASS_DEVICE_MANAGEMENT 0x09 // Device Management #define CDC_SUBCLASS_DEVICE_MANAGEMENT 0x09 // Device Management
#define CDC_SUBCLASS_MOBILE_DIRECT_LINE 0x0A // Mobile Direct Line Model #define CDC_SUBCLASS_MOBILE_DIRECT_LINE 0x0A // Mobile Direct Line Model
#define CDC_SUBCLASS_OBEX 0x0B // OBEX #define CDC_SUBCLASS_OBEX 0x0B // OBEX
#define CDC_SUBCLASS_ETHERNET_EMU 0x0C // Ethernet Emulation Model #define CDC_SUBCLASS_ETHERNET_EMU 0x0C // Ethernet Emulation Model
// Communication Interface Class Control Protocol Codes // Communication Interface Class Control Protocol Codes
#define CDC_PROTOCOL_ITU_T_V_250 0x01 // AT Commands defined by ITU-T V.250 #define CDC_PROTOCOL_ITU_T_V_250 0x01 // AT Commands defined by ITU-T V.250
#define CDC_PROTOCOL_PCCA_101 0x02 // AT Commands defined by PCCA-101 #define CDC_PROTOCOL_PCCA_101 0x02 // AT Commands defined by PCCA-101
#define CDC_PROTOCOL_PCCA_101_O 0x03 // AT Commands defined by PCCA-101 & Annex O #define CDC_PROTOCOL_PCCA_101_O 0x03 // AT Commands defined by PCCA-101 & Annex O
#define CDC_PROTOCOL_GSM_7_07 0x04 // AT Commands defined by GSM 7.07 #define CDC_PROTOCOL_GSM_7_07 0x04 // AT Commands defined by GSM 7.07
#define CDC_PROTOCOL_3GPP_27_07 0x05 // AT Commands defined by 3GPP 27.007 #define CDC_PROTOCOL_3GPP_27_07 0x05 // AT Commands defined by 3GPP 27.007
#define CDC_PROTOCOL_C_S0017_0 0x06 // AT Commands defined by TIA for CDMA #define CDC_PROTOCOL_C_S0017_0 0x06 // AT Commands defined by TIA for CDMA
#define CDC_PROTOCOL_USB_EEM 0x07 // Ethernet Emulation Model #define CDC_PROTOCOL_USB_EEM 0x07 // Ethernet Emulation Model
// CDC Commands defined by CDC 1.2 // CDC Commands defined by CDC 1.2
#define CDC_SEND_ENCAPSULATED_COMMAND 0x00 #define CDC_SEND_ENCAPSULATED_COMMAND 0x00
#define CDC_GET_ENCAPSULATED_RESPONSE 0x01 #define CDC_GET_ENCAPSULATED_RESPONSE 0x01
// CDC Commands defined by PSTN 1.2 // CDC Commands defined by PSTN 1.2
#define CDC_SET_COMM_FEATURE 0x02 #define CDC_SET_COMM_FEATURE 0x02
#define CDC_GET_COMM_FEATURE 0x03 #define CDC_GET_COMM_FEATURE 0x03
#define CDC_CLEAR_COMM_FEATURE 0x04 #define CDC_CLEAR_COMM_FEATURE 0x04
#define CDC_SET_AUX_LINE_STATE 0x10 #define CDC_SET_AUX_LINE_STATE 0x10
#define CDC_SET_HOOK_STATE 0x11 #define CDC_SET_HOOK_STATE 0x11
#define CDC_PULSE_SETUP 0x12 #define CDC_PULSE_SETUP 0x12
#define CDC_SEND_PULSE 0x13 #define CDC_SEND_PULSE 0x13
#define CDC_SET_PULSE_TIME 0x14 #define CDC_SET_PULSE_TIME 0x14
#define CDC_RING_AUX_JACK 0x15 #define CDC_RING_AUX_JACK 0x15
#define CDC_SET_LINE_CODING 0x20 #define CDC_SET_LINE_CODING 0x20
#define CDC_GET_LINE_CODING 0x21 #define CDC_GET_LINE_CODING 0x21
#define CDC_SET_CONTROL_LINE_STATE 0x22 #define CDC_SET_CONTROL_LINE_STATE 0x22
#define CDC_SEND_BREAK 0x23 #define CDC_SEND_BREAK 0x23
#define CDC_SET_RINGER_PARMS 0x30 #define CDC_SET_RINGER_PARMS 0x30
#define CDC_GET_RINGER_PARMS 0x31 #define CDC_GET_RINGER_PARMS 0x31
#define CDC_SET_OPERATION_PARMS 0x32 #define CDC_SET_OPERATION_PARMS 0x32
#define CDC_GET_OPERATION_PARMS 0x33 #define CDC_GET_OPERATION_PARMS 0x33
#define CDC_SET_LINE_PARMS 0x34 #define CDC_SET_LINE_PARMS 0x34
#define CDC_GET_LINE_PARMS 0x35 #define CDC_GET_LINE_PARMS 0x35
#define CDC_DIAL_DIGITS 0x36 #define CDC_DIAL_DIGITS 0x36
//Class-Specific Notification Codes //Class-Specific Notification Codes
#define NETWORK_CONNECTION 0x00 #define NETWORK_CONNECTION 0x00
#define RESPONSE_AVAILABLE 0x01 #define RESPONSE_AVAILABLE 0x01
#define AUX_JACK_HOOK_STATE 0x08 #define AUX_JACK_HOOK_STATE 0x08
#define RING_DETECT 0x09 #define RING_DETECT 0x09
#define SERIAL_STATE 0x20 #define SERIAL_STATE 0x20
#define CALL_STATE_CHANGE 0x28 #define CALL_STATE_CHANGE 0x28
#define LINE_STATE_CHANGE 0x29 #define LINE_STATE_CHANGE 0x29
#define CONNECTION_SPEED_CHANGE 0x2a #define CONNECTION_SPEED_CHANGE 0x2a
// CDC Functional Descriptor Structures // CDC Functional Descriptor Structures
@ -114,14 +114,13 @@ typedef struct {
uint8_t bDataBits; // Data bits (5, 6, 7, 8 or 16) uint8_t bDataBits; // Data bits (5, 6, 7, 8 or 16)
} LINE_CODING; } LINE_CODING;
typedef struct typedef struct {
{ uint8_t bmRequestType; // 0xa1 for class-specific notifications
uint8_t bmRequestType; // 0xa1 for class-specific notifications uint8_t bNotification;
uint8_t bNotification; uint16_t wValue;
uint16_t wValue; uint16_t wIndex;
uint16_t wIndex; uint16_t wLength;
uint16_t wLength; uint16_t bmState; //UART state bitmap for SERIAL_STATE, other notifications variable length
uint16_t bmState; //UART state bitmap for SERIAL_STATE, other notifications variable length
} CLASS_NOTIFICATION; } CLASS_NOTIFICATION;
class ACM; class ACM;
@ -151,7 +150,7 @@ protected:
uint8_t bNumEP; // total number of EP in the configuration uint8_t bNumEP; // total number of EP in the configuration
uint32_t qNextPollTime; // next poll time uint32_t qNextPollTime; // next poll time
bool bPollEnable; // poll enable flag bool bPollEnable; // poll enable flag
bool ready; //device ready indicator bool ready; //device ready indicator
EpInfo epInfo[ACM_MAX_ENDPOINTS]; EpInfo epInfo[ACM_MAX_ENDPOINTS];
@ -167,7 +166,7 @@ public:
uint8_t GetLineCoding(LINE_CODING *dataptr); uint8_t GetLineCoding(LINE_CODING *dataptr);
uint8_t SetControlLineState(uint8_t state); uint8_t SetControlLineState(uint8_t state);
uint8_t SendBreak(uint16_t duration); uint8_t SendBreak(uint16_t duration);
uint8_t GetNotif( uint16_t *bytes_rcvd, uint8_t *dataptr ); uint8_t GetNotif(uint16_t *bytes_rcvd, uint8_t *dataptr);
// Methods for recieving and sending data // Methods for recieving and sending data
uint8_t RcvData(uint16_t *nbytesptr, uint8_t *dataptr); uint8_t RcvData(uint16_t *nbytesptr, uint8_t *dataptr);
@ -182,9 +181,9 @@ public:
return bAddress; return bAddress;
}; };
virtual bool isReady() { virtual bool isReady() {
return ready; return ready;
}; };
// UsbConfigXtracter implementation // UsbConfigXtracter implementation
virtual void EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *ep); virtual void EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *ep);

View file

@ -26,7 +26,7 @@ pUsb(p),
bAddress(0), bAddress(0),
bNumEP(1), bNumEP(1),
wFTDIType(0) { wFTDIType(0) {
for (uint8_t i = 0; i < FTDI_MAX_ENDPOINTS; i++) { for(uint8_t i = 0; i < FTDI_MAX_ENDPOINTS; i++) {
epInfo[i].epAddr = 0; epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0; epInfo[i].epAttribs = 0;
@ -34,7 +34,7 @@ wFTDIType(0) {
//if (!i) //if (!i)
epInfo[i].bmNakPower = USB_NAK_MAX_POWER; epInfo[i].bmNakPower = USB_NAK_MAX_POWER;
} }
if (pUsb) if(pUsb)
pUsb->RegisterDeviceClass(this); pUsb->RegisterDeviceClass(this);
} }
@ -42,6 +42,7 @@ uint8_t FTDI::Init(uint8_t parent, uint8_t port, bool lowspeed) {
const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR); const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR);
uint8_t buf[constBufSize]; uint8_t buf[constBufSize];
USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf);
uint8_t rcode; uint8_t rcode;
UsbDevice *p = NULL; UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL; EpInfo *oldep_ptr = NULL;
@ -55,16 +56,16 @@ uint8_t FTDI::Init(uint8_t parent, uint8_t port, bool lowspeed) {
USBTRACE("FTDI Init\r\n"); USBTRACE("FTDI Init\r\n");
if (bAddress) if(bAddress)
return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE; return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;
// Get pointer to pseudo device with address 0 assigned // Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0); p = addrPool.GetUsbDevicePtr(0);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if (!p->epinfo) { if(!p->epinfo) {
USBTRACE("epinfo\r\n"); USBTRACE("epinfo\r\n");
return USB_ERROR_EPINFO_IS_NULL; return USB_ERROR_EPINFO_IS_NULL;
} }
@ -78,33 +79,32 @@ uint8_t FTDI::Init(uint8_t parent, uint8_t port, bool lowspeed) {
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
// Get device descriptor // Get device descriptor
rcode = pUsb->getDevDescr(0, 0, sizeof (USB_DEVICE_DESCRIPTOR), (uint8_t*)buf); rcode = pUsb->getDevDescr(0, 0, sizeof (USB_DEVICE_DESCRIPTOR), buf);
// Restore p->epinfo // Restore p->epinfo
p->epinfo = oldep_ptr; p->epinfo = oldep_ptr;
if (rcode) if(rcode)
goto FailGetDevDescr; goto FailGetDevDescr;
if(udd->idVendor != FTDI_VID || udd->idProduct != FTDI_PID)
if (((USB_DEVICE_DESCRIPTOR*)buf)->idVendor != FTDI_VID || ((USB_DEVICE_DESCRIPTOR*)buf)->idProduct != FTDI_PID)
return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;
// Save type of FTDI chip // Save type of FTDI chip
wFTDIType = ((USB_DEVICE_DESCRIPTOR*)buf)->bcdDevice; wFTDIType = udd->bcdDevice;
// Allocate new address according to device class // Allocate new address according to device class
bAddress = addrPool.AllocAddress(parent, false, port); bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress) if(!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from the device descriptor // Extract Max Packet Size from the device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; epInfo[0].maxPktSize = udd->bMaxPacketSize0;
// Assign new address to the device // Assign new address to the device
rcode = pUsb->setAddr(0, 0, bAddress); rcode = pUsb->setAddr(0, 0, bAddress);
if (rcode) { if(rcode) {
p->lowspeed = false; p->lowspeed = false;
addrPool.FreeAddress(bAddress); addrPool.FreeAddress(bAddress);
bAddress = 0; bAddress = 0;
@ -118,40 +118,40 @@ uint8_t FTDI::Init(uint8_t parent, uint8_t port, bool lowspeed) {
p = addrPool.GetUsbDevicePtr(bAddress); p = addrPool.GetUsbDevicePtr(bAddress);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
num_of_conf = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations; num_of_conf = udd->bNumConfigurations;
// Assign epInfo to epinfo pointer // Assign epInfo to epinfo pointer
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
USBTRACE2("NC:", num_of_conf); USBTRACE2("NC:", num_of_conf);
for (uint8_t i = 0; i < num_of_conf; i++) { for(uint8_t i = 0; i < num_of_conf; i++) {
HexDumper<USBReadParser, uint16_t, uint16_t> HexDump; HexDumper<USBReadParser, uint16_t, uint16_t> HexDump;
ConfigDescParser < 0xFF, 0xFF, 0xFF, CP_MASK_COMPARE_ALL> confDescrParser(this); ConfigDescParser < 0xFF, 0xFF, 0xFF, CP_MASK_COMPARE_ALL> confDescrParser(this);
rcode = pUsb->getConfDescr(bAddress, 0, i, &HexDump); rcode = pUsb->getConfDescr(bAddress, 0, i, &HexDump);
if (rcode) if(rcode)
goto FailGetConfDescr; goto FailGetConfDescr;
rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser); rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
if (rcode) if(rcode)
goto FailGetConfDescr; goto FailGetConfDescr;
if (bNumEP > 1) if(bNumEP > 1)
break; break;
} // for } // for
if (bNumEP < 2) if(bNumEP < 2)
return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;
USBTRACE2("NumEP:", bNumEP); USBTRACE2("NumEP:", bNumEP);
@ -164,12 +164,12 @@ uint8_t FTDI::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Set Configuration Value // Set Configuration Value
rcode = pUsb->setConf(bAddress, 0, bConfNum); rcode = pUsb->setConf(bAddress, 0, bConfNum);
if (rcode) if(rcode)
goto FailSetConfDescr; goto FailSetConfDescr;
rcode = pAsync->OnInit(this); rcode = pAsync->OnInit(this);
if (rcode) if(rcode)
goto FailOnInit; goto FailOnInit;
USBTRACE("FTDI configured\r\n"); USBTRACE("FTDI configured\r\n");
@ -204,10 +204,8 @@ FailSetConfDescr:
FailOnInit: FailOnInit:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
USBTRACE("OnInit:"); USBTRACE("OnInit:");
#endif
Fail: Fail:
#ifdef DEBUG_USB_HOST
NotifyFail(rcode); NotifyFail(rcode);
#endif #endif
Release(); Release();
@ -223,10 +221,10 @@ void FTDI::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t prot
uint8_t index; uint8_t index;
if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) if((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80)
index = epInterruptInIndex; index = epInterruptInIndex;
else else
if ((pep->bmAttributes & 0x02) == 2) if((pep->bmAttributes & 0x02) == 2)
index = ((pep->bEndpointAddress & 0x80) == 0x80) ? epDataInIndex : epDataOutIndex; index = ((pep->bEndpointAddress & 0x80) == 0x80) ? epDataInIndex : epDataOutIndex;
else else
return; return;
@ -272,19 +270,19 @@ uint8_t FTDI::SetBaudRate(uint32_t baud) {
divisor3 = 48000000 / 2 / baud; // divisor shifted 3 bits to the left divisor3 = 48000000 / 2 / baud; // divisor shifted 3 bits to the left
if (wFTDIType == FT232AM) { if(wFTDIType == FT232AM) {
if ((divisor3 & 0x7) == 7) if((divisor3 & 0x7) == 7)
divisor3++; // round x.7/8 up to x+1 divisor3++; // round x.7/8 up to x+1
baud_value = divisor3 >> 3; baud_value = divisor3 >> 3;
divisor3 &= 0x7; divisor3 &= 0x7;
if (divisor3 == 1) baud_value |= 0xc000; if(divisor3 == 1) baud_value |= 0xc000;
else // 0.125 else // 0.125
if (divisor3 >= 4) baud_value |= 0x4000; if(divisor3 >= 4) baud_value |= 0x4000;
else // 0.5 else // 0.5
if (divisor3 != 0) baud_value |= 0x8000; // 0.25 if(divisor3 != 0) baud_value |= 0x8000; // 0.25
if (baud_value == 1) baud_value = 0; /* special case for maximum baud rate */ if(baud_value == 1) baud_value = 0; /* special case for maximum baud rate */
} else { } else {
static const unsigned char divfrac [8] = {0, 3, 2, 0, 1, 1, 2, 3}; static const unsigned char divfrac [8] = {0, 3, 2, 0, 1, 1, 2, 3};
static const unsigned char divindex[8] = {0, 0, 0, 1, 0, 1, 1, 1}; static const unsigned char divindex[8] = {0, 0, 0, 1, 0, 1, 1, 1};
@ -294,9 +292,9 @@ uint8_t FTDI::SetBaudRate(uint32_t baud) {
baud_index = divindex[divisor3 & 0x7]; baud_index = divindex[divisor3 & 0x7];
/* Deal with special cases for highest baud rates. */ /* Deal with special cases for highest baud rates. */
if (baud_value == 1) baud_value = 0; if(baud_value == 1) baud_value = 0;
else // 1.0 else // 1.0
if (baud_value == 0x4001) baud_value = 1; // 1.5 if(baud_value == 0x4001) baud_value = 1; // 1.5
} }
USBTRACE2("baud_value:", baud_value); USBTRACE2("baud_value:", baud_value);
USBTRACE2("baud_index:", baud_index); USBTRACE2("baud_index:", baud_index);

View file

@ -130,4 +130,4 @@ public:
virtual void EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *ep); virtual void EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *ep);
}; };
#endif // __CDCFTDI_H__ #endif // __CDCFTDI_H__

View file

@ -25,6 +25,7 @@ uint8_t PL2303::Init(uint8_t parent, uint8_t port, bool lowspeed) {
const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR); const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR);
uint8_t buf[constBufSize]; uint8_t buf[constBufSize];
USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf);
uint8_t rcode; uint8_t rcode;
UsbDevice *p = NULL; UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL; EpInfo *oldep_ptr = NULL;
@ -34,16 +35,16 @@ uint8_t PL2303::Init(uint8_t parent, uint8_t port, bool lowspeed) {
USBTRACE("PL Init\r\n"); USBTRACE("PL Init\r\n");
if (bAddress) if(bAddress)
return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE; return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;
// Get pointer to pseudo device with address 0 assigned // Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0); p = addrPool.GetUsbDevicePtr(0);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if (!p->epinfo) { if(!p->epinfo) {
USBTRACE("epinfo\r\n"); USBTRACE("epinfo\r\n");
return USB_ERROR_EPINFO_IS_NULL; return USB_ERROR_EPINFO_IS_NULL;
} }
@ -62,28 +63,28 @@ uint8_t PL2303::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Restore p->epinfo // Restore p->epinfo
p->epinfo = oldep_ptr; p->epinfo = oldep_ptr;
if (rcode) if(rcode)
goto FailGetDevDescr; goto FailGetDevDescr;
if (((USB_DEVICE_DESCRIPTOR*)buf)->idVendor != PL_VID && ((USB_DEVICE_DESCRIPTOR*)buf)->idProduct != PL_PID) if(udd->idVendor != PL_VID && udd->idProduct != PL_PID)
return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;
// Save type of PL chip // Save type of PL chip
wPLType = ((USB_DEVICE_DESCRIPTOR*)buf)->bcdDevice; wPLType = udd->bcdDevice;
// Allocate new address according to device class // Allocate new address according to device class
bAddress = addrPool.AllocAddress(parent, false, port); bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress) if(!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from the device descriptor // Extract Max Packet Size from the device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; epInfo[0].maxPktSize = udd->bMaxPacketSize0;
// Assign new address to the device // Assign new address to the device
rcode = pUsb->setAddr(0, 0, bAddress); rcode = pUsb->setAddr(0, 0, bAddress);
if (rcode) { if(rcode) {
p->lowspeed = false; p->lowspeed = false;
addrPool.FreeAddress(bAddress); addrPool.FreeAddress(bAddress);
bAddress = 0; bAddress = 0;
@ -97,40 +98,40 @@ uint8_t PL2303::Init(uint8_t parent, uint8_t port, bool lowspeed) {
p = addrPool.GetUsbDevicePtr(bAddress); p = addrPool.GetUsbDevicePtr(bAddress);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
num_of_conf = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations; num_of_conf = udd->bNumConfigurations;
// Assign epInfo to epinfo pointer // Assign epInfo to epinfo pointer
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
USBTRACE2("NC:", num_of_conf); USBTRACE2("NC:", num_of_conf);
for (uint8_t i = 0; i < num_of_conf; i++) { for(uint8_t i = 0; i < num_of_conf; i++) {
HexDumper<USBReadParser, uint16_t, uint16_t> HexDump; HexDumper<USBReadParser, uint16_t, uint16_t> HexDump;
ConfigDescParser < 0xFF, 0, 0, CP_MASK_COMPARE_CLASS> confDescrParser(this); ConfigDescParser < 0xFF, 0, 0, CP_MASK_COMPARE_CLASS> confDescrParser(this);
rcode = pUsb->getConfDescr(bAddress, 0, i, &HexDump); rcode = pUsb->getConfDescr(bAddress, 0, i, &HexDump);
if (rcode) if(rcode)
goto FailGetConfDescr; goto FailGetConfDescr;
rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser); rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
if (rcode) if(rcode)
goto FailGetConfDescr; goto FailGetConfDescr;
if (bNumEP > 1) if(bNumEP > 1)
break; break;
} // for } // for
if (bNumEP < 2) if(bNumEP < 2)
return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;
// Assign epInfo to epinfo pointer // Assign epInfo to epinfo pointer
@ -141,12 +142,12 @@ uint8_t PL2303::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Set Configuration Value // Set Configuration Value
rcode = pUsb->setConf(bAddress, 0, bConfNum); rcode = pUsb->setConf(bAddress, 0, bConfNum);
if (rcode) if(rcode)
goto FailSetConfDescr; goto FailSetConfDescr;
rcode = pAsync->OnInit(this); rcode = pAsync->OnInit(this);
if (rcode) if(rcode)
goto FailOnInit; goto FailOnInit;
USBTRACE("PL configured\r\n"); USBTRACE("PL configured\r\n");
@ -184,8 +185,8 @@ FailOnInit:
USBTRACE("OnInit:"); USBTRACE("OnInit:");
#endif #endif
Fail:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Fail:
NotifyFail(rcode); NotifyFail(rcode);
#endif #endif
Release(); Release();
@ -207,5 +208,3 @@ Fail:
// //} // //}
// return rcode; // return rcode;
//} //}

View file

@ -20,7 +20,6 @@ e-mail : support@circuitsathome.com
#define __CONFDESCPARSER_H__ #define __CONFDESCPARSER_H__
class UsbConfigXtracter { class UsbConfigXtracter {
public: public:
//virtual void ConfigXtract(const USB_CONFIGURATION_DESCRIPTOR *conf) = 0; //virtual void ConfigXtract(const USB_CONFIGURATION_DESCRIPTOR *conf) = 0;
@ -54,11 +53,15 @@ class ConfigDescParser : public USBReadParser {
uint8_t ifaceNumber; // Interface number uint8_t ifaceNumber; // Interface number
uint8_t ifaceAltSet; // Interface alternate settings uint8_t ifaceAltSet; // Interface alternate settings
bool UseOr;
bool ParseDescriptor(uint8_t **pp, uint16_t *pcntdn); bool ParseDescriptor(uint8_t **pp, uint16_t *pcntdn);
void PrintHidDescriptor(const USB_HID_DESCRIPTOR *pDesc); void PrintHidDescriptor(const USB_HID_DESCRIPTOR *pDesc);
public: public:
void SetOR(void) {
UseOr = true;
}
ConfigDescParser(UsbConfigXtracter *xtractor); ConfigDescParser(UsbConfigXtracter *xtractor);
virtual void Parse(const uint16_t len, const uint8_t *pbuf, const uint16_t &offset); virtual void Parse(const uint16_t len, const uint8_t *pbuf, const uint16_t &offset);
}; };
@ -68,7 +71,8 @@ ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::ConfigDescParser(Usb
theXtractor(xtractor), theXtractor(xtractor),
stateParseDescr(0), stateParseDescr(0),
dscrLen(0), dscrLen(0),
dscrType(0) { dscrType(0),
UseOr(false) {
theBuffer.pValue = varBuffer; theBuffer.pValue = varBuffer;
valParser.Initialize(&theBuffer); valParser.Initialize(&theBuffer);
theSkipper.Initialize(&theBuffer); theSkipper.Initialize(&theBuffer);
@ -76,8 +80,8 @@ dscrType(0) {
template <const uint8_t CLASS_ID, const uint8_t SUBCLASS_ID, const uint8_t PROTOCOL_ID, const uint8_t MASK> template <const uint8_t CLASS_ID, const uint8_t SUBCLASS_ID, const uint8_t PROTOCOL_ID, const uint8_t MASK>
void ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::Parse(const uint16_t len, const uint8_t *pbuf, const uint16_t &offset) { void ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::Parse(const uint16_t len, const uint8_t *pbuf, const uint16_t &offset) {
uint16_t cntdn = (uint16_t) len; uint16_t cntdn = (uint16_t)len;
uint8_t *p = (uint8_t*) pbuf; uint8_t *p = (uint8_t*)pbuf;
while(cntdn) while(cntdn)
if(!ParseDescriptor(&p, &cntdn)) if(!ParseDescriptor(&p, &cntdn))
@ -88,6 +92,8 @@ void ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::Parse(const uin
compare masks for them. When the match is found, calls EndpointXtract passing buffer containing endpoint descriptor */ compare masks for them. When the match is found, calls EndpointXtract passing buffer containing endpoint descriptor */
template <const uint8_t CLASS_ID, const uint8_t SUBCLASS_ID, const uint8_t PROTOCOL_ID, const uint8_t MASK> template <const uint8_t CLASS_ID, const uint8_t SUBCLASS_ID, const uint8_t PROTOCOL_ID, const uint8_t MASK>
bool ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::ParseDescriptor(uint8_t **pp, uint16_t *pcntdn) { bool ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::ParseDescriptor(uint8_t **pp, uint16_t *pcntdn) {
USB_CONFIGURATION_DESCRIPTOR* ucd = reinterpret_cast<USB_CONFIGURATION_DESCRIPTOR*>(varBuffer);
USB_INTERFACE_DESCRIPTOR* uid = reinterpret_cast<USB_INTERFACE_DESCRIPTOR*>(varBuffer);
switch(stateParseDescr) { switch(stateParseDescr) {
case 0: case 0:
theBuffer.valueSize = 2; theBuffer.valueSize = 2;
@ -96,8 +102,8 @@ bool ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::ParseDescriptor
case 1: case 1:
if(!valParser.Parse(pp, pcntdn)) if(!valParser.Parse(pp, pcntdn))
return false; return false;
dscrLen = *((uint8_t*) theBuffer.pValue); dscrLen = *((uint8_t*)theBuffer.pValue);
dscrType = *((uint8_t*) theBuffer.pValue + 1); dscrType = *((uint8_t*)theBuffer.pValue + 1);
stateParseDescr = 2; stateParseDescr = 2;
case 2: case 2:
// This is a sort of hack. Assuming that two bytes are all ready in the buffer // This is a sort of hack. Assuming that two bytes are all ready in the buffer
@ -112,10 +118,10 @@ bool ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::ParseDescriptor
case USB_DESCRIPTOR_INTERFACE: case USB_DESCRIPTOR_INTERFACE:
isGoodInterface = false; isGoodInterface = false;
case USB_DESCRIPTOR_CONFIGURATION: case USB_DESCRIPTOR_CONFIGURATION:
theBuffer.valueSize = sizeof(USB_CONFIGURATION_DESCRIPTOR) - 2; theBuffer.valueSize = sizeof (USB_CONFIGURATION_DESCRIPTOR) - 2;
break; break;
case USB_DESCRIPTOR_ENDPOINT: case USB_DESCRIPTOR_ENDPOINT:
theBuffer.valueSize = sizeof(USB_ENDPOINT_DESCRIPTOR) - 2; theBuffer.valueSize = sizeof (USB_ENDPOINT_DESCRIPTOR) - 2;
break; break;
case HID_DESCRIPTOR_HID: case HID_DESCRIPTOR_HID:
theBuffer.valueSize = dscrLen - 2; theBuffer.valueSize = dscrLen - 2;
@ -128,29 +134,33 @@ bool ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::ParseDescriptor
case USB_DESCRIPTOR_CONFIGURATION: case USB_DESCRIPTOR_CONFIGURATION:
if(!valParser.Parse(pp, pcntdn)) if(!valParser.Parse(pp, pcntdn))
return false; return false;
confValue = ((USB_CONFIGURATION_DESCRIPTOR*) varBuffer)->bConfigurationValue; confValue = ucd->bConfigurationValue;
break; break;
case USB_DESCRIPTOR_INTERFACE: case USB_DESCRIPTOR_INTERFACE:
if(!valParser.Parse(pp, pcntdn)) if(!valParser.Parse(pp, pcntdn))
return false; return false;
if((MASK & CP_MASK_COMPARE_CLASS) && ((USB_INTERFACE_DESCRIPTOR*) varBuffer)->bInterfaceClass != CLASS_ID) if((MASK & CP_MASK_COMPARE_CLASS) && uid->bInterfaceClass != CLASS_ID)
break; break;
if((MASK & CP_MASK_COMPARE_SUBCLASS) && ((USB_INTERFACE_DESCRIPTOR*) varBuffer)->bInterfaceSubClass != SUBCLASS_ID) if((MASK & CP_MASK_COMPARE_SUBCLASS) && uid->bInterfaceSubClass != SUBCLASS_ID)
break; break;
if((MASK & CP_MASK_COMPARE_PROTOCOL) && ((USB_INTERFACE_DESCRIPTOR*) varBuffer)->bInterfaceProtocol != PROTOCOL_ID) if(UseOr) {
break; if((!((MASK & CP_MASK_COMPARE_PROTOCOL) && uid->bInterfaceProtocol)))
break;
} else {
if((MASK & CP_MASK_COMPARE_PROTOCOL) && uid->bInterfaceProtocol != PROTOCOL_ID)
break;
}
isGoodInterface = true; isGoodInterface = true;
ifaceNumber = ((USB_INTERFACE_DESCRIPTOR*) varBuffer)->bInterfaceNumber; ifaceNumber = uid->bInterfaceNumber;
ifaceAltSet = ((USB_INTERFACE_DESCRIPTOR*) varBuffer)->bAlternateSetting; ifaceAltSet = uid->bAlternateSetting;
protoValue = ((USB_INTERFACE_DESCRIPTOR*) varBuffer)->bInterfaceProtocol; protoValue = uid->bInterfaceProtocol;
break; break;
case USB_DESCRIPTOR_ENDPOINT: case USB_DESCRIPTOR_ENDPOINT:
if(!valParser.Parse(pp, pcntdn)) if(!valParser.Parse(pp, pcntdn))
return false; return false;
if(isGoodInterface) if(isGoodInterface)
if(theXtractor) if(theXtractor)
theXtractor->EndpointXtract(confValue, ifaceNumber, ifaceAltSet, protoValue, (USB_ENDPOINT_DESCRIPTOR*) varBuffer); theXtractor->EndpointXtract(confValue, ifaceNumber, ifaceAltSet, protoValue, (USB_ENDPOINT_DESCRIPTOR*)varBuffer);
break; break;
//case HID_DESCRIPTOR_HID: //case HID_DESCRIPTOR_HID:
// if (!valParser.Parse(pp, pcntdn)) // if (!valParser.Parse(pp, pcntdn))

View file

@ -18,30 +18,58 @@
#ifndef _controllerenums_h #ifndef _controllerenums_h
#define _controllerenums_h #define _controllerenums_h
/* /**
This header file is used to store different enums for the controllers, * This header file is used to store different enums for the controllers,
This is necessary so all the different libraries can be used at once * This is necessary so all the different libraries can be used at once.
*/ */
/** Enum used to turn on the LEDs on the different controllers. */ /** Enum used to turn on the LEDs on the different controllers. */
enum LED { enum LEDEnum {
LED1 = 0, OFF = 0,
LED2 = 1, LED1 = 1,
LED3 = 2, LED2 = 2,
LED4 = 3, LED3 = 3,
LED4 = 4,
LED5 = 4, LED5 = 5,
LED6 = 5, LED6 = 6,
LED7 = 6, LED7 = 7,
LED8 = 7, LED8 = 8,
LED9 = 8, LED9 = 9,
LED10 = 9, LED10 = 10,
/** Used to blink all LEDs on the Xbox controller */ /** Used to blink all LEDs on the Xbox controller */
ALL = 4, ALL = 5,
};
/** Used to set the colors of the Move and PS4 controller. */
enum ColorsEnum {
/** r = 255, g = 0, b = 0 */
Red = 0xFF0000,
/** r = 0, g = 255, b = 0 */
Green = 0xFF00,
/** r = 0, g = 0, b = 255 */
Blue = 0xFF,
/** r = 255, g = 235, b = 4 */
Yellow = 0xFFEB04,
/** r = 0, g = 255, b = 255 */
Lightblue = 0xFFFF,
/** r = 255, g = 0, b = 255 */
Purble = 0xFF00FF,
/** r = 255, g = 255, b = 255 */
White = 0xFFFFFF,
/** r = 0, g = 0, b = 0 */
Off = 0x00,
};
enum RumbleEnum {
RumbleHigh = 0x10,
RumbleLow = 0x20,
}; };
/** This enum is used to read all the different buttons on the different controllers */ /** This enum is used to read all the different buttons on the different controllers */
enum Button { enum ButtonEnum {
/**@{*/ /**@{*/
/** These buttons are available on all the the controllers */ /** These buttons are available on all the the controllers */
UP = 0, UP = 0,
@ -93,6 +121,12 @@ enum Button {
T = 18, // Covers 12 bits - we only need to read the top 8 T = 18, // Covers 12 bits - we only need to read the top 8
/**@}*/ /**@}*/
/** PS4 controllers buttons - SHARE and OPTIONS are present instead of SELECT and START */
SHARE = 4,
OPTIONS = 5,
TOUCHPAD = 17,
/**@}*/
/**@{*/ /**@{*/
/** Xbox buttons */ /** Xbox buttons */
BACK = 4, BACK = 4,
@ -103,10 +137,18 @@ enum Button {
BLACK = 8, // Available on the original Xbox controller BLACK = 8, // Available on the original Xbox controller
WHITE = 9, // Available on the original Xbox controller WHITE = 9, // Available on the original Xbox controller
/**@}*/ /**@}*/
/** PS Buzz controllers */
RED = 0,
YELLOW = 1,
GREEN = 2,
ORANGE = 3,
BLUE = 4,
/**@}*/
}; };
/** Joysticks on the PS3 and Xbox controllers. */ /** Joysticks on the PS3 and Xbox controllers. */
enum AnalogHat { enum AnalogHatEnum {
/** Left joystick x-axis */ /** Left joystick x-axis */
LeftHatX = 0, LeftHatX = 0,
/** Left joystick y-axis */ /** Left joystick y-axis */
@ -117,4 +159,46 @@ enum AnalogHat {
RightHatY = 3, RightHatY = 3,
}; };
#endif /**
* Sensors inside the Sixaxis Dualshock 3, Move controller and PS4 controller.
* <B>Note:</B> that the location is shifted 9 when it's connected via USB on the PS3 controller.
*/
enum SensorEnum {
/** Accelerometer values */
aX = 50, aY = 52, aZ = 54,
/** Gyro z-axis */
gZ = 56,
gX, gY, // These are not available on the PS3 controller
/** Accelerometer x-axis */
aXmove = 28,
/** Accelerometer z-axis */
aZmove = 30,
/** Accelerometer y-axis */
aYmove = 32,
/** Gyro x-axis */
gXmove = 40,
/** Gyro z-axis */
gZmove = 42,
/** Gyro y-axis */
gYmove = 44,
/** Temperature sensor */
tempMove = 46,
/** Magnetometer x-axis */
mXmove = 47,
/** Magnetometer z-axis */
mZmove = 49,
/** Magnetometer y-axis */
mYmove = 50,
};
/** Used to get the angle calculated using the PS3 controller and PS4 controller. */
enum AngleEnum {
Pitch = 0x01,
Roll = 0x02,
};
#endif

View file

@ -8,6 +8,10 @@
#include <usbhub.h> #include <usbhub.h>
#include "KeyboardParser.h" #include "KeyboardParser.h"
#include "MouseParser.h" #include "MouseParser.h"
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
//USBHub Hub1(&Usb); // Some dongles have a hub inside //USBHub Hub1(&Usb); // Some dongles have a hub inside
@ -16,7 +20,7 @@ BTD Btd(&Usb); // You have to create the Bluetooth Dongle instance like so
/* You can create the instance of the class in two ways */ /* You can create the instance of the class in two ways */
// This will start an inquiry and then pair with your device - you only have to do this once // This will start an inquiry and then pair with your device - you only have to do this once
// If you are using a Bluetooth keyboard, then you should type in the password on the keypad and then press enter // If you are using a Bluetooth keyboard, then you should type in the password on the keypad and then press enter
BTHID hid(&Btd, PAIR, "0000"); BTHID bthid(&Btd, PAIR, "0000");
// After that you can simply create the instance like so and then press any button on the device // After that you can simply create the instance like so and then press any button on the device
//BTHID hid(&Btd); //BTHID hid(&Btd);
@ -32,13 +36,13 @@ void setup() {
while (1); // Halt while (1); // Halt
} }
hid.SetReportParser(KEYBOARD_PARSER_ID, (HIDReportParser*)&keyboardPrs); bthid.SetReportParser(KEYBOARD_PARSER_ID, (HIDReportParser*)&keyboardPrs);
hid.SetReportParser(MOUSE_PARSER_ID, (HIDReportParser*)&mousePrs); bthid.SetReportParser(MOUSE_PARSER_ID, (HIDReportParser*)&mousePrs);
// If "Boot Protocol Mode" does not work, then try "Report Protocol Mode" // If "Boot Protocol Mode" does not work, then try "Report Protocol Mode"
// If that does not work either, then uncomment PRINTREPORT in BTHID.cpp to see the raw report // If that does not work either, then uncomment PRINTREPORT in BTHID.cpp to see the raw report
hid.setProtocolMode(HID_BOOT_PROTOCOL); // Boot Protocol Mode bthid.setProtocolMode(HID_BOOT_PROTOCOL); // Boot Protocol Mode
//hid.setProtocolMode(HID_RPT_PROTOCOL); // Report Protocol Mode //bthid.setProtocolMode(HID_RPT_PROTOCOL); // Report Protocol Mode
Serial.print(F("\r\nHID Bluetooth Library Started")); Serial.print(F("\r\nHID Bluetooth Library Started"));
} }

View file

@ -17,15 +17,15 @@ uint8_t KbdRptParser::HandleLockingKeys(HID *hid, uint8_t key) {
uint8_t old_keys = kbdLockingKeys.bLeds; uint8_t old_keys = kbdLockingKeys.bLeds;
switch (key) { switch (key) {
case KEY_NUM_LOCK: case UHS_HID_BOOT_KEY_NUM_LOCK:
Serial.println(F("Num lock")); Serial.println(F("Num lock"));
kbdLockingKeys.kbdLeds.bmNumLock = ~kbdLockingKeys.kbdLeds.bmNumLock; kbdLockingKeys.kbdLeds.bmNumLock = ~kbdLockingKeys.kbdLeds.bmNumLock;
break; break;
case KEY_CAPS_LOCK: case UHS_HID_BOOT_KEY_CAPS_LOCK:
Serial.println(F("Caps lock")); Serial.println(F("Caps lock"));
kbdLockingKeys.kbdLeds.bmCapsLock = ~kbdLockingKeys.kbdLeds.bmCapsLock; kbdLockingKeys.kbdLeds.bmCapsLock = ~kbdLockingKeys.kbdLeds.bmCapsLock;
break; break;
case KEY_SCROLL_LOCK: case UHS_HID_BOOT_KEY_SCROLL_LOCK:
Serial.println(F("Scroll lock")); Serial.println(F("Scroll lock"));
kbdLockingKeys.kbdLeds.bmScrollLock = ~kbdLockingKeys.kbdLeds.bmScrollLock; kbdLockingKeys.kbdLeds.bmScrollLock = ~kbdLockingKeys.kbdLeds.bmScrollLock;
break; break;

View file

@ -6,6 +6,10 @@
#include <PS3BT.h> #include <PS3BT.h>
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
//USBHub Hub1(&Usb); // Some dongles have a hub inside //USBHub Hub1(&Usb); // Some dongles have a hub inside
@ -13,7 +17,7 @@ USB Usb;
BTD Btd(&Usb); // You have to create the Bluetooth Dongle instance like so BTD Btd(&Usb); // You have to create the Bluetooth Dongle instance like so
/* You can create the instance of the class in two ways */ /* You can create the instance of the class in two ways */
PS3BT PS3(&Btd); // This will just create the instance PS3BT PS3(&Btd); // This will just create the instance
//PS3BT PS3(&Btd,0x00,0x15,0x83,0x3D,0x0A,0x57); // This will also store the bluetooth address - this can be obtained from the dongle when running the sketch //PS3BT PS3(&Btd, 0x00, 0x15, 0x83, 0x3D, 0x0A, 0x57); // This will also store the bluetooth address - this can be obtained from the dongle when running the sketch
boolean printTemperature; boolean printTemperature;
boolean printAngle; boolean printAngle;
@ -48,7 +52,7 @@ void loop() {
if (PS3.getAnalogButton(L2) || PS3.getAnalogButton(R2)) { if (PS3.getAnalogButton(L2) || PS3.getAnalogButton(R2)) {
Serial.print(F("\r\nL2: ")); Serial.print(F("\r\nL2: "));
Serial.print(PS3.getAnalogButton(L2)); Serial.print(PS3.getAnalogButton(L2));
if (!PS3.PS3NavigationConnected) { if (PS3.PS3Connected) {
Serial.print(F("\tR2: ")); Serial.print(F("\tR2: "));
Serial.print(PS3.getAnalogButton(R2)); Serial.print(PS3.getAnalogButton(R2));
} }
@ -107,7 +111,7 @@ void loop() {
if (PS3.getButtonClick(SELECT)) { if (PS3.getButtonClick(SELECT)) {
Serial.print(F("\r\nSelect - ")); Serial.print(F("\r\nSelect - "));
Serial.print(PS3.getStatusString()); PS3.printStatusString();
} }
if (PS3.getButtonClick(START)) { if (PS3.getButtonClick(START)) {
Serial.print(F("\r\nStart")); Serial.print(F("\r\nStart"));
@ -159,7 +163,7 @@ void loop() {
PS3.moveSetBulb(Off); PS3.moveSetBulb(Off);
Serial.print(F("\r\nMove")); Serial.print(F("\r\nMove"));
Serial.print(F(" - ")); Serial.print(F(" - "));
Serial.print(PS3.getStatusString()); PS3.printStatusString();
} }
} }
if (printAngle) { if (printAngle) {

View file

@ -7,6 +7,10 @@
#include <PS3BT.h> #include <PS3BT.h>
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
//USBHub Hub1(&Usb); // Some dongles have a hub inside //USBHub Hub1(&Usb); // Some dongles have a hub inside
@ -52,7 +56,7 @@ void loop() {
if (PS3[i]->getAnalogButton(L2) || PS3[i]->getAnalogButton(R2)) { if (PS3[i]->getAnalogButton(L2) || PS3[i]->getAnalogButton(R2)) {
Serial.print(F("\r\nL2: ")); Serial.print(F("\r\nL2: "));
Serial.print(PS3[i]->getAnalogButton(L2)); Serial.print(PS3[i]->getAnalogButton(L2));
if (!PS3[i]->PS3NavigationConnected) { if (PS3[i]->PS3Connected) {
Serial.print(F("\tR2: ")); Serial.print(F("\tR2: "));
Serial.print(PS3[i]->getAnalogButton(R2)); Serial.print(PS3[i]->getAnalogButton(R2));
} }
@ -112,7 +116,7 @@ void loop() {
if (PS3[i]->getButtonClick(SELECT)) { if (PS3[i]->getButtonClick(SELECT)) {
Serial.print(F("\r\nSelect - ")); Serial.print(F("\r\nSelect - "));
Serial.print(PS3[i]->getStatusString()); PS3[i]->printStatusString();
} }
if (PS3[i]->getButtonClick(START)) { if (PS3[i]->getButtonClick(START)) {
Serial.print(F("\r\nStart")); Serial.print(F("\r\nStart"));
@ -135,7 +139,7 @@ void onInit() {
for (uint8_t i = 0; i < length; i++) { for (uint8_t i = 0; i < length; i++) {
if ((PS3[i]->PS3Connected || PS3[i]->PS3NavigationConnected) && !oldControllerState[i]) { if ((PS3[i]->PS3Connected || PS3[i]->PS3NavigationConnected) && !oldControllerState[i]) {
oldControllerState[i] = true; // Used to check which is the new controller oldControllerState[i] = true; // Used to check which is the new controller
PS3[i]->setLedOn((LED)i); // Cast directly to LED enum - see: "controllerEnums.h" PS3[i]->setLedOn((LEDEnum)(i + 1)); // Cast directly to LEDEnum - see: "controllerEnums.h"
} }
} }
} }

View file

@ -12,6 +12,10 @@
#include <PS3BT.h> #include <PS3BT.h>
#include <SPP.h> #include <SPP.h>
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
//USBHub Hub1(&Usb); // Some dongles have a hub inside //USBHub Hub1(&Usb); // Some dongles have a hub inside
@ -22,7 +26,7 @@ BTD Btd(&Usb); // You have to create the Bluetooth Dongle instance like so
SPP SerialBT(&Btd); // This will set the name to the defaults: "Arduino" and the pin to "0000" SPP SerialBT(&Btd); // This will set the name to the defaults: "Arduino" and the pin to "0000"
//SPP SerialBTBT(&Btd,"Lauszus's Arduino","0000"); // You can also set the name and pin like so //SPP SerialBTBT(&Btd,"Lauszus's Arduino","0000"); // You can also set the name and pin like so
PS3BT PS3(&Btd); // This will just create the instance PS3BT PS3(&Btd); // This will just create the instance
//PS3BT PS3(&Btd,0x00,0x15,0x83,0x3D,0x0A,0x57); // This will also store the bluetooth address - this can be obtained from the dongle when running the sketch //PS3BT PS3(&Btd, 0x00, 0x15, 0x83, 0x3D, 0x0A, 0x57); // This will also store the bluetooth address - this can be obtained from the dongle when running the sketch
boolean firstMessage = true; boolean firstMessage = true;
String output = ""; // We will store the data in this string String output = ""; // We will store the data in this string
@ -73,7 +77,7 @@ void loop() {
output += "\r\n"; output += "\r\n";
output += "L2: "; output += "L2: ";
output += PS3.getAnalogButton(L2); output += PS3.getAnalogButton(L2);
if (!PS3.PS3NavigationConnected) { if (PS3.PS3Connected) {
output += "\tR2: "; output += "\tR2: ";
output += PS3.getAnalogButton(R2); output += PS3.getAnalogButton(R2);
} }
@ -137,8 +141,7 @@ void loop() {
output += " - R3"; output += " - R3";
if (PS3.getButtonClick(SELECT)) { if (PS3.getButtonClick(SELECT)) {
output += " - Select - "; output += " - Select";
output += PS3.getStatusString();
} }
if (PS3.getButtonClick(START)) if (PS3.getButtonClick(START))
output += " - Start"; output += " - Start";

View file

@ -0,0 +1,143 @@
/*
Example sketch for the PS4 Bluetooth library - developed by Kristian Lauszus
For more information visit my blog: http://blog.tkjelectronics.dk/ or
send me an e-mail: kristianl@tkjelectronics.com
*/
#include <PS4BT.h>
#include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb;
//USBHub Hub1(&Usb); // Some dongles have a hub inside
BTD Btd(&Usb); // You have to create the Bluetooth Dongle instance like so
/* You can create the instance of the PS4BT class in two ways */
// This will start an inquiry and then pair with the PS4 controller - you only have to do this once
// You will need to hold down the PS and Share button at the same time, the PS4 controller will then start to blink rapidly indicating that it is in paring mode
PS4BT PS4(&Btd, PAIR);
// After that you can simply create the instance like so and then press the PS button on the device
//PS4BT PS4(&Btd);
boolean printAngle, printTouch;
uint8_t oldL2Value, oldR2Value;
void setup() {
Serial.begin(115200);
while (!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection
if (Usb.Init() == -1) {
Serial.print(F("\r\nOSC did not start"));
while (1); // Halt
}
Serial.print(F("\r\nPS4 Bluetooth Library Started"));
}
void loop() {
Usb.Task();
if (PS4.connected()) {
if (PS4.getAnalogHat(LeftHatX) > 137 || PS4.getAnalogHat(LeftHatX) < 117 || PS4.getAnalogHat(LeftHatY) > 137 || PS4.getAnalogHat(LeftHatY) < 117 || PS4.getAnalogHat(RightHatX) > 137 || PS4.getAnalogHat(RightHatX) < 117 || PS4.getAnalogHat(RightHatY) > 137 || PS4.getAnalogHat(RightHatY) < 117) {
Serial.print(F("\r\nLeftHatX: "));
Serial.print(PS4.getAnalogHat(LeftHatX));
Serial.print(F("\tLeftHatY: "));
Serial.print(PS4.getAnalogHat(LeftHatY));
Serial.print(F("\tRightHatX: "));
Serial.print(PS4.getAnalogHat(RightHatX));
Serial.print(F("\tRightHatY: "));
Serial.print(PS4.getAnalogHat(RightHatY));
}
if (PS4.getAnalogButton(L2) || PS4.getAnalogButton(R2)) { // These are the only analog buttons on the PS4 controller
Serial.print(F("\r\nL2: "));
Serial.print(PS4.getAnalogButton(L2));
Serial.print(F("\tR2: "));
Serial.print(PS4.getAnalogButton(R2));
}
if (PS4.getAnalogButton(L2) != oldL2Value || PS4.getAnalogButton(R2) != oldR2Value) // Only write value if it's different
PS4.setRumbleOn(PS4.getAnalogButton(L2), PS4.getAnalogButton(R2));
oldL2Value = PS4.getAnalogButton(L2);
oldR2Value = PS4.getAnalogButton(R2);
if (PS4.getButtonClick(PS)) {
Serial.print(F("\r\nPS"));
PS4.disconnect();
}
else {
if (PS4.getButtonClick(TRIANGLE)) {
Serial.print(F("\r\nTraingle"));
PS4.setRumbleOn(RumbleLow);
}
if (PS4.getButtonClick(CIRCLE)) {
Serial.print(F("\r\nCircle"));
PS4.setRumbleOn(RumbleHigh);
}
if (PS4.getButtonClick(CROSS)) {
Serial.print(F("\r\nCross"));
PS4.setLedFlash(10, 10); // Set it to blink rapidly
}
if (PS4.getButtonClick(SQUARE)) {
Serial.print(F("\r\nSquare"));
PS4.setLedFlash(0, 0); // Turn off blinking
}
if (PS4.getButtonClick(UP)) {
Serial.print(F("\r\nUp"));
PS4.setLed(Red);
} if (PS4.getButtonClick(RIGHT)) {
Serial.print(F("\r\nRight"));
PS4.setLed(Blue);
} if (PS4.getButtonClick(DOWN)) {
Serial.print(F("\r\nDown"));
PS4.setLed(Yellow);
} if (PS4.getButtonClick(LEFT)) {
Serial.print(F("\r\nLeft"));
PS4.setLed(Green);
}
if (PS4.getButtonClick(L1))
Serial.print(F("\r\nL1"));
if (PS4.getButtonClick(L3))
Serial.print(F("\r\nL3"));
if (PS4.getButtonClick(R1))
Serial.print(F("\r\nR1"));
if (PS4.getButtonClick(R3))
Serial.print(F("\r\nR3"));
if (PS4.getButtonClick(SHARE))
Serial.print(F("\r\nShare"));
if (PS4.getButtonClick(OPTIONS)) {
Serial.print(F("\r\nOptions"));
printAngle = !printAngle;
}
if (PS4.getButtonClick(TOUCHPAD)) {
Serial.print(F("\r\nTouchpad"));
printTouch = !printTouch;
}
if (printAngle) { // Print angle calculated using the accelerometer only
Serial.print(F("\r\nPitch: "));
Serial.print(PS4.getAngle(Pitch));
Serial.print(F("\tRoll: "));
Serial.print(PS4.getAngle(Roll));
}
if (printTouch) { // Print the x, y coordinates of the touchpad
if (PS4.isTouching(0) || PS4.isTouching(1)) // Print newline and carriage return if any of the fingers are touching the touchpad
Serial.print(F("\r\n"));
for (uint8_t i = 0; i < 2; i++) { // The touchpad track two fingers
if (PS4.isTouching(i)) { // Print the position of the finger if it is touching the touchpad
Serial.print(F("X")); Serial.print(i + 1); Serial.print(F(": "));
Serial.print(PS4.getX(i));
Serial.print(F("\tY")); Serial.print(i + 1); Serial.print(F(": "));
Serial.print(PS4.getY(i));
Serial.print(F("\t"));
}
}
}
}
}
}

View file

@ -6,14 +6,18 @@
#include <SPP.h> #include <SPP.h>
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
//USBHub Hub1(&Usb); // Some dongles have a hub inside //USBHub Hub1(&Usb); // Some dongles have a hub inside
BTD Btd(&Usb); // You have to create the Bluetooth Dongle instance like so BTD Btd(&Usb); // You have to create the Bluetooth Dongle instance like so
/* You can create the instance of the class in two ways */ /* You can create the instance of the class in two ways */
SPP SerialBT(&Btd); // This will set the name to the defaults: "Arduino" and the pin to "1234" SPP SerialBT(&Btd); // This will set the name to the defaults: "Arduino" and the pin to "0000"
//SPP SerialBT(&Btd, "Lauszus's Arduino","0000"); // You can also set the name and pin like so //SPP SerialBT(&Btd, "Lauszus's Arduino", "1234"); // You can also set the name and pin like so
boolean firstMessage = true; boolean firstMessage = true;

View file

@ -6,15 +6,20 @@
#include <SPP.h> #include <SPP.h>
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statement in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
//USBHub Hub1(&Usb); // Some dongles have a hub inside //USBHub Hub1(&Usb); // Some dongles have a hub inside
BTD Btd(&Usb); // You have to create the Bluetooth Dongle instance like so BTD Btd(&Usb); // You have to create the Bluetooth Dongle instance like so
SPP *SerialBT[2]; // We will use this pointer to store the two instance, you can easily make it larger if you like, but it will use a lot of RAM!
const uint8_t length = sizeof(SerialBT) / sizeof(SerialBT[0]); // Get the lenght of the array const uint8_t length = 2; // Set the number of instances here
SPP *SerialBT[length]; // We will use this pointer to store the instances, you can easily make it larger if you like, but it will use a lot of RAM!
boolean firstMessage[length] = { true }; // Set all to true boolean firstMessage[length] = { true }; // Set all to true
uint8_t buffer[50];
void setup() { void setup() {
for (uint8_t i = 0; i < length; i++) for (uint8_t i = 0; i < length; i++)
@ -24,10 +29,11 @@ void setup() {
while (!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection while (!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection
if (Usb.Init() == -1) { if (Usb.Init() == -1) {
Serial.print(F("\r\nOSC did not start")); Serial.print(F("\r\nOSC did not start"));
while (1); //halt while (1); // Halt
} }
Serial.print(F("\r\nSPP Bluetooth Library Started")); Serial.print(F("\r\nSPP Bluetooth Library Started"));
} }
void loop() { void loop() {
Usb.Task(); // The SPP data is actually not send until this is called, one could call SerialBT.send() directly as well Usb.Task(); // The SPP data is actually not send until this is called, one could call SerialBT.send() directly as well
@ -43,22 +49,15 @@ void loop() {
else else
firstMessage[i] = true; firstMessage[i] = true;
} }
// Set the connection you want to send to using the first character
// For instance "0Hello World" would send "Hello World" to connection 0
if (Serial.available()) { if (Serial.available()) {
delay(10); // Wait for the rest of the data to arrive delay(10); // Wait for the rest of the data to arrive
uint8_t i = 0; uint8_t id = Serial.read() - '0'; // Convert from ASCII
while (Serial.available() && i < sizeof(buffer)) // Read the data if (id < length && SerialBT[id]->connected) { // Make sure that the id is valid and make sure that a device is actually connected
buffer[i++] = Serial.read(); while (Serial.available()) // Check if data is available
/* SerialBT[id]->write(Serial.read()); // Send the data
Set the connection you want to send to using the first character
For instace "0Hello World" would send "Hello World" to connection 0
*/
uint8_t id = buffer[0] - '0'; // Convert from ASCII
if (id < length && i > 1) { // And then compare to length and make sure there is any text
if (SerialBT[id]->connected) { // Check if a device is actually connected
for (uint8_t i2 = 0; i2 < i - 1; i2++) // Don't include the first character
buffer[i2] = buffer[i2 + 1];
SerialBT[id]->write(buffer, i - 1); // Send the data
}
} }
} }
} }

View file

@ -6,6 +6,10 @@
#include <Wii.h> #include <Wii.h>
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
//USBHub Hub1(&Usb); // Some dongles have a hub inside //USBHub Hub1(&Usb); // Some dongles have a hub inside

View file

@ -13,9 +13,13 @@ Otherwise, wire up a IR LED yourself.
#include <Wii.h> #include <Wii.h>
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
#ifndef WIICAMERA // Used to check if WIICAMERA is defined #ifndef WIICAMERA // Used to check if WIICAMERA is defined
#error "Uncomment WIICAMERA in Wii.h to use this example" #error "Please set ENABLE_WII_IR_CAMERA to 1 in settings.h"
#endif #endif
USB Usb; USB Usb;

View file

@ -7,6 +7,10 @@
#include <Wii.h> #include <Wii.h>
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
//USBHub Hub1(&Usb); // Some dongles have a hub inside //USBHub Hub1(&Usb); // Some dongles have a hub inside
@ -118,7 +122,7 @@ void onInit() {
for (uint8_t i = 0; i < length; i++) { for (uint8_t i = 0; i < length; i++) {
if (Wii[i]->wiimoteConnected && !oldControllerState[i]) { if (Wii[i]->wiimoteConnected && !oldControllerState[i]) {
oldControllerState[i] = true; // Used to check which is the new controller oldControllerState[i] = true; // Used to check which is the new controller
Wii[i]->setLedOn((LED)i); // Cast directly to LED enum - see: "controllerEnums.h" Wii[i]->setLedOn((LEDEnum)(i + 1)); // Cast directly to LEDEnum - see: "controllerEnums.h"
} }
} }
} }

View file

@ -6,6 +6,10 @@
#include <Wii.h> #include <Wii.h>
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
//USBHub Hub1(&Usb); // Some dongles have a hub inside //USBHub Hub1(&Usb); // Some dongles have a hub inside

View file

@ -1,5 +1,9 @@
#include <hidboot.h> #include <hidboot.h>
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
class KbdRptParser : public KeyboardReportParser class KbdRptParser : public KeyboardReportParser
{ {

View file

@ -1,30 +0,0 @@
#
# These are set for a mega 1280 + quadram plus my serial patch.
# If you lack quadram, or want to disable LFN, just change _FS_TINY=1 _USE_LFN=0
#
# If your board is a mega 2560 uncomment the following two lines
# BOARD = mega2560
# PROGRAMMER = wiring
# ...and then comment out the following two lines
BOARD = mega
PROGRAMMER = arduino
# set your Arduino tty port here
PORT = /dev/ttyUSB0
# uncomment the next line to enable debugging
#EXTRA_FLAGS += -D DEBUG_USB_HOST=1
#
# Advanced debug on Serial3
#
# uncomment the next line to enable debug on Serial3
#EXTRA_FLAGS += -D USB_HOST_SERIAL=Serial3
# The following are the libraries used.
LIB_DIRS =
LIB_DIRS += ../libraries/USB_Host_Shield_2_0
# And finally, the part that brings everything together for you.
include ../Arduino_Makefile_master/_Makefile.master

View file

@ -1,75 +0,0 @@
#!/bin/bash -x
#
# Generated - do not edit!
#
# Macros
TOP=`pwd`
CND_PLATFORM=AVR-Linux-x86
CND_CONF=Default
CND_DISTDIR=dist
CND_BUILDDIR=build
NBTMPDIR=${CND_BUILDDIR}/${CND_CONF}/${CND_PLATFORM}/tmp-packaging
TMPDIRNAME=tmp-packaging
OUTPUT_PATH=MissingOutputInProject
OUTPUT_BASENAME=MissingOutputInProject
PACKAGE_TOP_DIR=USBHIDBootKbdAndMouse/
# Functions
function checkReturnCode
{
rc=$?
if [ $rc != 0 ]
then
exit $rc
fi
}
function makeDirectory
# $1 directory path
# $2 permission (optional)
{
mkdir -p "$1"
checkReturnCode
if [ "$2" != "" ]
then
chmod $2 "$1"
checkReturnCode
fi
}
function copyFileToTmpDir
# $1 from-file path
# $2 to-file path
# $3 permission
{
cp "$1" "$2"
checkReturnCode
if [ "$3" != "" ]
then
chmod $3 "$2"
checkReturnCode
fi
}
# Setup
cd "${TOP}"
mkdir -p ${CND_DISTDIR}/${CND_CONF}/${CND_PLATFORM}/package
rm -rf ${NBTMPDIR}
mkdir -p ${NBTMPDIR}
# Copy files and create directories and links
cd "${TOP}"
makeDirectory "${NBTMPDIR}/USBHIDBootKbdAndMouse"
copyFileToTmpDir "${OUTPUT_PATH}" "${NBTMPDIR}/${PACKAGE_TOP_DIR}bin/${OUTPUT_BASENAME}" 0755
# Generate tar file
cd "${TOP}"
rm -f ${CND_DISTDIR}/${CND_CONF}/${CND_PLATFORM}/package/USBHIDBootKbdAndMouse.tar
cd ${NBTMPDIR}
tar -vcf ../../../../${CND_DISTDIR}/${CND_CONF}/${CND_PLATFORM}/package/USBHIDBootKbdAndMouse.tar *
checkReturnCode
# Cleanup
cd "${TOP}"
rm -rf ${NBTMPDIR}

View file

@ -1,38 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<configurationDescriptor version="80">
<logicalFolder name="root" displayName="root" projectFiles="true" kind="ROOT">
<df name="USBHIDBootKbd" root=".">
<df name="build">
<in>USBHIDBootKbdAndMouse_ino.cpp</in>
</df>
<in>USBHIDBootKbdAndMouse.ino</in>
</df>
<logicalFolder name="ExternalFiles"
displayName="Important Files"
projectFiles="false"
kind="IMPORTANT_FILES_FOLDER">
<itemPath>Makefile</itemPath>
</logicalFolder>
</logicalFolder>
<sourceFolderFilter>^(nbproject)$</sourceFolderFilter>
<sourceRootList>
<Elem>.</Elem>
</sourceRootList>
<projectmakefile>Makefile</projectmakefile>
<confs>
<conf name="Default" type="0">
<toolsSet>
<remote-sources-mode>LOCAL_SOURCES</remote-sources-mode>
<compilerSet>default</compilerSet>
</toolsSet>
<makefileType>
<makeTool>
<buildCommandWorkingDir>.</buildCommandWorkingDir>
<buildCommand>${MAKE} -f Makefile</buildCommand>
<cleanCommand>${MAKE} -f Makefile clean</cleanCommand>
<executablePath></executablePath>
</makeTool>
</makefileType>
</conf>
</confs>
</configurationDescriptor>

View file

@ -1,23 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://www.netbeans.org/ns/project/1">
<type>org.netbeans.modules.cnd.makeproject</type>
<configuration>
<data xmlns="http://www.netbeans.org/ns/make-project/1">
<name>USBHIDBootKbdAndMouse</name>
<c-extensions/>
<cpp-extensions>cpp,ino</cpp-extensions>
<header-extensions/>
<sourceEncoding>UTF-8</sourceEncoding>
<make-dep-projects/>
<sourceRootList>
<sourceRootElem>.</sourceRootElem>
</sourceRootList>
<confList>
<confElem>
<name>Default</name>
<type>0</type>
</confElem>
</confList>
</data>
</configuration>
</project>

View file

@ -1,5 +1,9 @@
#include <hidboot.h> #include <hidboot.h>
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
class MouseRptParser : public MouseReportParser class MouseRptParser : public MouseReportParser
{ {
@ -12,14 +16,14 @@ protected:
virtual void OnMiddleButtonUp (MOUSEINFO *mi); virtual void OnMiddleButtonUp (MOUSEINFO *mi);
virtual void OnMiddleButtonDown (MOUSEINFO *mi); virtual void OnMiddleButtonDown (MOUSEINFO *mi);
}; };
void MouseRptParser::OnMouseMove(MOUSEINFO *mi) void MouseRptParser::OnMouseMove(MOUSEINFO *mi)
{ {
Serial.print("dx="); Serial.print("dx=");
Serial.print(mi->dX, DEC); Serial.print(mi->dX, DEC);
Serial.print(" dy="); Serial.print(" dy=");
Serial.println(mi->dY, DEC); Serial.println(mi->dY, DEC);
}; };
void MouseRptParser::OnLeftButtonUp (MOUSEINFO *mi) void MouseRptParser::OnLeftButtonUp (MOUSEINFO *mi)
{ {
Serial.println("L Butt Up"); Serial.println("L Butt Up");
}; };
@ -60,11 +64,11 @@ void setup()
if (Usb.Init() == -1) if (Usb.Init() == -1)
Serial.println("OSC did not start."); Serial.println("OSC did not start.");
delay( 200 ); delay( 200 );
next_time = millis() + 5000; next_time = millis() + 5000;
HidMouse.SetReportParser(0,(HIDReportParser*)&Prs); HidMouse.SetReportParser(0,(HIDReportParser*)&Prs);
} }

View file

@ -1,30 +0,0 @@
#
# These are set for a mega 1280 + quadram plus my serial patch.
# If you lack quadram, or want to disable LFN, just change _FS_TINY=1 _USE_LFN=0
#
# If your board is a mega 2560 uncomment the following two lines
# BOARD = mega2560
# PROGRAMMER = wiring
# ...and then comment out the following two lines
BOARD = mega
PROGRAMMER = arduino
# set your Arduino tty port here
PORT = /dev/ttyUSB0
# uncomment the next line to enable debugging
#EXTRA_FLAGS += -D DEBUG_USB_HOST=1
#
# Advanced debug on Serial3
#
# uncomment the next line to enable debug on Serial3
#EXTRA_FLAGS += -D USB_HOST_SERIAL=Serial3
# The following are the libraries used.
LIB_DIRS =
LIB_DIRS += ../libraries/USB_Host_Shield_2_0
# And finally, the part that brings everything together for you.
include ../Arduino_Makefile_master/_Makefile.master

View file

@ -1,75 +0,0 @@
#!/bin/bash -x
#
# Generated - do not edit!
#
# Macros
TOP=`pwd`
CND_PLATFORM=AVR-Linux-x86
CND_CONF=Default
CND_DISTDIR=dist
CND_BUILDDIR=build
NBTMPDIR=${CND_BUILDDIR}/${CND_CONF}/${CND_PLATFORM}/tmp-packaging
TMPDIRNAME=tmp-packaging
OUTPUT_PATH=MissingOutputInProject
OUTPUT_BASENAME=MissingOutputInProject
PACKAGE_TOP_DIR=USBHIDJoystick/
# Functions
function checkReturnCode
{
rc=$?
if [ $rc != 0 ]
then
exit $rc
fi
}
function makeDirectory
# $1 directory path
# $2 permission (optional)
{
mkdir -p "$1"
checkReturnCode
if [ "$2" != "" ]
then
chmod $2 "$1"
checkReturnCode
fi
}
function copyFileToTmpDir
# $1 from-file path
# $2 to-file path
# $3 permission
{
cp "$1" "$2"
checkReturnCode
if [ "$3" != "" ]
then
chmod $3 "$2"
checkReturnCode
fi
}
# Setup
cd "${TOP}"
mkdir -p ${CND_DISTDIR}/${CND_CONF}/${CND_PLATFORM}/package
rm -rf ${NBTMPDIR}
mkdir -p ${NBTMPDIR}
# Copy files and create directories and links
cd "${TOP}"
makeDirectory "${NBTMPDIR}/USBHIDJoystick"
copyFileToTmpDir "${OUTPUT_PATH}" "${NBTMPDIR}/${PACKAGE_TOP_DIR}bin/${OUTPUT_BASENAME}" 0755
# Generate tar file
cd "${TOP}"
rm -f ${CND_DISTDIR}/${CND_CONF}/${CND_PLATFORM}/package/USBHIDJoystick.tar
cd ${NBTMPDIR}
tar -vcf ../../../../${CND_DISTDIR}/${CND_CONF}/${CND_PLATFORM}/package/USBHIDJoystick.tar *
checkReturnCode
# Cleanup
cd "${TOP}"
rm -rf ${NBTMPDIR}

View file

@ -1,55 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<configurationDescriptor version="80">
<logicalFolder name="root" displayName="root" projectFiles="true" kind="ROOT">
<df name="USBHIDJoystick" root=".">
<df name="build">
<in>CDC.lst</in>
<in>HID.lst</in>
<in>HardwareSerial.lst</in>
<in>IPAddress.lst</in>
<in>Print.lst</in>
<in>Stream.lst</in>
<in>Tone.lst</in>
<in>USBCore.lst</in>
<in>WInterrupts.lst</in>
<in>WMath.lst</in>
<in>WString.lst</in>
<in>wiring.lst</in>
<in>wiring_analog.lst</in>
<in>wiring_digital.lst</in>
<in>wiring_pulse.lst</in>
<in>wiring_shift.lst</in>
</df>
<in>USBHIDJoystick.ino</in>
<in>hidjoystickrptparser.cpp</in>
<in>hidjoystickrptparser.h</in>
</df>
<logicalFolder name="ExternalFiles"
displayName="Important Files"
projectFiles="false"
kind="IMPORTANT_FILES_FOLDER">
<itemPath>Makefile</itemPath>
</logicalFolder>
</logicalFolder>
<sourceFolderFilter>^(nbproject)$</sourceFolderFilter>
<sourceRootList>
<Elem>.</Elem>
</sourceRootList>
<projectmakefile>Makefile</projectmakefile>
<confs>
<conf name="Default" type="0">
<toolsSet>
<remote-sources-mode>LOCAL_SOURCES</remote-sources-mode>
<compilerSet>default</compilerSet>
</toolsSet>
<makefileType>
<makeTool>
<buildCommandWorkingDir>.</buildCommandWorkingDir>
<buildCommand>${MAKE} -f Makefile</buildCommand>
<cleanCommand>${MAKE} -f Makefile clean</cleanCommand>
<executablePath></executablePath>
</makeTool>
</makefileType>
</conf>
</confs>
</configurationDescriptor>

View file

@ -1,23 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://www.netbeans.org/ns/project/1">
<type>org.netbeans.modules.cnd.makeproject</type>
<configuration>
<data xmlns="http://www.netbeans.org/ns/make-project/1">
<name>USBHIDJoystick</name>
<c-extensions/>
<cpp-extensions>cpp,ino</cpp-extensions>
<header-extensions>h</header-extensions>
<sourceEncoding>UTF-8</sourceEncoding>
<make-dep-projects/>
<sourceRootList>
<sourceRootElem>.</sourceRootElem>
</sourceRootList>
<confList>
<confElem>
<name>Default</name>
<type>0</type>
</confElem>
</confList>
</data>
</configuration>
</project>

View file

@ -2,14 +2,17 @@
#include <hiduniversal.h> #include <hiduniversal.h>
#include <hidescriptorparser.h> #include <hidescriptorparser.h>
#include <usbhub.h> #include <usbhub.h>
#include "pgmstrings.h"
#include "pgmstrings.h" // Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
class HIDUniversal2 : public HIDUniversal class HIDUniversal2 : public HIDUniversal
{ {
public: public:
HIDUniversal2(USB *usb) : HIDUniversal(usb) {}; HIDUniversal2(USB *usb) : HIDUniversal(usb) {};
protected: protected:
virtual uint8_t OnInitSuccessful(); virtual uint8_t OnInitSuccessful();
}; };
@ -17,14 +20,14 @@ protected:
uint8_t HIDUniversal2::OnInitSuccessful() uint8_t HIDUniversal2::OnInitSuccessful()
{ {
uint8_t rcode; uint8_t rcode;
HexDumper<USBReadParser, uint16_t, uint16_t> Hex; HexDumper<USBReadParser, uint16_t, uint16_t> Hex;
ReportDescParser Rpt; ReportDescParser Rpt;
if (rcode = GetReportDescr(0, &Hex)) if ((rcode = GetReportDescr(0, &Hex)))
goto FailGetReportDescr1; goto FailGetReportDescr1;
if (rcode = GetReportDescr(0, &Rpt)) if ((rcode = GetReportDescr(0, &Rpt)))
goto FailGetReportDescr2; goto FailGetReportDescr2;
return 0; return 0;
@ -43,10 +46,10 @@ Fail:
return rcode; return rcode;
} }
USB Usb; USB Usb;
//USBHub Hub(&Usb); //USBHub Hub(&Usb);
HIDUniversal2 Hid(&Usb); HIDUniversal2 Hid(&Usb);
UniversalReportParser Uni; UniversalReportParser Uni;
void setup() void setup()
{ {
@ -56,11 +59,11 @@ void setup()
if (Usb.Init() == -1) if (Usb.Init() == -1)
Serial.println("OSC did not start."); Serial.println("OSC did not start.");
delay( 200 ); delay( 200 );
if (!Hid.SetReportParser(0, &Uni)) if (!Hid.SetReportParser(0, &Uni))
ErrorMessage<uint8_t>(PSTR("SetReportParser"), 1 ); ErrorMessage<uint8_t>(PSTR("SetReportParser"), 1 );
} }
void loop() void loop()

View file

@ -5,6 +5,10 @@
#include <usbhub.h> #include <usbhub.h>
#include "le3dp_rptparser.h" #include "le3dp_rptparser.h"
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
USBHub Hub(&Usb); USBHub Hub(&Usb);
@ -20,11 +24,11 @@ void setup()
if (Usb.Init() == -1) if (Usb.Init() == -1)
Serial.println("OSC did not start."); Serial.println("OSC did not start.");
delay( 200 ); delay( 200 );
if (!Hid.SetReportParser(0, &Joy)) if (!Hid.SetReportParser(0, &Joy))
ErrorMessage<uint8_t>(PSTR("SetReportParser"), 1 ); ErrorMessage<uint8_t>(PSTR("SetReportParser"), 1 );
} }
void loop() void loop()

View file

@ -6,6 +6,10 @@
#include <usbhub.h> #include <usbhub.h>
#include "scale_rptparser.h" #include "scale_rptparser.h"
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
USBHub Hub(&Usb); USBHub Hub(&Usb);
@ -22,18 +26,18 @@ void setup()
if (Usb.Init() == -1) if (Usb.Init() == -1)
Serial.println("OSC did not start."); Serial.println("OSC did not start.");
// set up the LCD's number of rows and columns: // set up the LCD's number of rows and columns:
LCD.begin(16, 2); LCD.begin(16, 2);
LCD.clear(); LCD.clear();
LCD.home(); LCD.home();
LCD.setCursor(0,0); LCD.setCursor(0,0);
LCD.write('R'); LCD.write('R');
delay( 200 ); delay( 200 );
if (!Hid.SetReportParser(0, &Scale)) if (!Hid.SetReportParser(0, &Scale))
ErrorMessage<uint8_t>(PSTR("SetReportParser"), 1 ); ErrorMessage<uint8_t>(PSTR("SetReportParser"), 1 );
} }
void loop() void loop()

View file

@ -5,6 +5,10 @@
*/ */
#include <PS3USB.h> #include <PS3USB.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
/* You can create the instance of the class in two ways */ /* You can create the instance of the class in two ways */
@ -92,7 +96,7 @@ void loop() {
if (PS3.getButtonClick(SELECT)) { if (PS3.getButtonClick(SELECT)) {
Serial.print(F("\r\nSelect - ")); Serial.print(F("\r\nSelect - "));
Serial.print(PS3.getStatusString()); PS3.printStatusString();
} }
if (PS3.getButtonClick(START)) { if (PS3.getButtonClick(START)) {
Serial.print(F("\r\nStart")); Serial.print(F("\r\nStart"));

130
examples/PS4USB/PS4USB.ino Normal file
View file

@ -0,0 +1,130 @@
/*
Example sketch for the PS4 USB library - developed by Kristian Lauszus
For more information visit my blog: http://blog.tkjelectronics.dk/ or
send me an e-mail: kristianl@tkjelectronics.com
*/
#include <PS4USB.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb;
PS4USB PS4(&Usb);
boolean printAngle, printTouch;
uint8_t oldL2Value, oldR2Value;
void setup() {
Serial.begin(115200);
while (!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection
if (Usb.Init() == -1) {
Serial.print(F("\r\nOSC did not start"));
while (1); // Halt
}
Serial.print(F("\r\nPS4 USB Library Started"));
}
void loop() {
Usb.Task();
if (PS4.connected()) {
if (PS4.getAnalogHat(LeftHatX) > 137 || PS4.getAnalogHat(LeftHatX) < 117 || PS4.getAnalogHat(LeftHatY) > 137 || PS4.getAnalogHat(LeftHatY) < 117 || PS4.getAnalogHat(RightHatX) > 137 || PS4.getAnalogHat(RightHatX) < 117 || PS4.getAnalogHat(RightHatY) > 137 || PS4.getAnalogHat(RightHatY) < 117) {
Serial.print(F("\r\nLeftHatX: "));
Serial.print(PS4.getAnalogHat(LeftHatX));
Serial.print(F("\tLeftHatY: "));
Serial.print(PS4.getAnalogHat(LeftHatY));
Serial.print(F("\tRightHatX: "));
Serial.print(PS4.getAnalogHat(RightHatX));
Serial.print(F("\tRightHatY: "));
Serial.print(PS4.getAnalogHat(RightHatY));
}
if (PS4.getAnalogButton(L2) || PS4.getAnalogButton(R2)) { // These are the only analog buttons on the PS4 controller
Serial.print(F("\r\nL2: "));
Serial.print(PS4.getAnalogButton(L2));
Serial.print(F("\tR2: "));
Serial.print(PS4.getAnalogButton(R2));
}
if (PS4.getAnalogButton(L2) != oldL2Value || PS4.getAnalogButton(R2) != oldR2Value) // Only write value if it's different
PS4.setRumbleOn(PS4.getAnalogButton(L2), PS4.getAnalogButton(R2));
oldL2Value = PS4.getAnalogButton(L2);
oldR2Value = PS4.getAnalogButton(R2);
if (PS4.getButtonClick(PS))
Serial.print(F("\r\nPS"));
if (PS4.getButtonClick(TRIANGLE)) {
Serial.print(F("\r\nTraingle"));
PS4.setRumbleOn(RumbleLow);
}
if (PS4.getButtonClick(CIRCLE)) {
Serial.print(F("\r\nCircle"));
PS4.setRumbleOn(RumbleHigh);
}
if (PS4.getButtonClick(CROSS)) {
Serial.print(F("\r\nCross"));
PS4.setLedFlash(10, 10); // Set it to blink rapidly
}
if (PS4.getButtonClick(SQUARE)) {
Serial.print(F("\r\nSquare"));
PS4.setLedFlash(0, 0); // Turn off blinking
}
if (PS4.getButtonClick(UP)) {
Serial.print(F("\r\nUp"));
PS4.setLed(Red);
} if (PS4.getButtonClick(RIGHT)) {
Serial.print(F("\r\nRight"));
PS4.setLed(Blue);
} if (PS4.getButtonClick(DOWN)) {
Serial.print(F("\r\nDown"));
PS4.setLed(Yellow);
} if (PS4.getButtonClick(LEFT)) {
Serial.print(F("\r\nLeft"));
PS4.setLed(Green);
}
if (PS4.getButtonClick(L1))
Serial.print(F("\r\nL1"));
if (PS4.getButtonClick(L3))
Serial.print(F("\r\nL3"));
if (PS4.getButtonClick(R1))
Serial.print(F("\r\nR1"));
if (PS4.getButtonClick(R3))
Serial.print(F("\r\nR3"));
if (PS4.getButtonClick(SHARE))
Serial.print(F("\r\nShare"));
if (PS4.getButtonClick(OPTIONS)) {
Serial.print(F("\r\nOptions"));
printAngle = !printAngle;
}
if (PS4.getButtonClick(TOUCHPAD)) {
Serial.print(F("\r\nTouchpad"));
printTouch = !printTouch;
}
if (printAngle) { // Print angle calculated using the accelerometer only
Serial.print(F("\r\nPitch: "));
Serial.print(PS4.getAngle(Pitch));
Serial.print(F("\tRoll: "));
Serial.print(PS4.getAngle(Roll));
}
if (printTouch) { // Print the x, y coordinates of the touchpad
if (PS4.isTouching(0) || PS4.isTouching(1)) // Print newline and carriage return if any of the fingers are touching the touchpad
Serial.print(F("\r\n"));
for (uint8_t i = 0; i < 2; i++) { // The touchpad track two fingers
if (PS4.isTouching(i)) { // Print the position of the finger if it is touching the touchpad
Serial.print(F("X")); Serial.print(i + 1); Serial.print(F(": "));
Serial.print(PS4.getX(i));
Serial.print(F("\tY")); Serial.print(i + 1); Serial.print(F(": "));
Serial.print(PS4.getY(i));
Serial.print(F("\t"));
}
}
}
}
}

View file

@ -0,0 +1,46 @@
/*
Example sketch for the Playstation Buzz library - developed by Kristian Lauszus
For more information visit my blog: http://blog.tkjelectronics.dk/ or
send me an e-mail: kristianl@tkjelectronics.com
*/
#include <PSBuzz.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb;
PSBuzz Buzz(&Usb);
void setup() {
Serial.begin(115200);
while (!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection
if (Usb.Init() == -1) {
Serial.print(F("\r\nOSC did not start"));
while (1); // Halt
}
Serial.println(F("\r\nPS Buzz Library Started"));
}
void loop() {
Usb.Task();
if (Buzz.connected()) {
for (uint8_t i = 0; i < 4; i++) {
if (Buzz.getButtonClick(RED, i)) {
Buzz.setLedToggle(i); // Toggle the LED
Serial.println(F("RED"));
}
if (Buzz.getButtonClick(YELLOW, i))
Serial.println(F("YELLOW"));
if (Buzz.getButtonClick(GREEN, i))
Serial.println(F("GREEN"));
if (Buzz.getButtonClick(ORANGE, i))
Serial.println(F("ORANGE"));
if (Buzz.getButtonClick(BLUE, i))
Serial.println(F("BLUE"));
}
}
}

View file

@ -1,6 +1,10 @@
#include <usbhub.h> #include <usbhub.h>
#include "pgmstrings.h" #include "pgmstrings.h"
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
//USBHub Hub1(&Usb); //USBHub Hub1(&Usb);
@ -16,7 +20,7 @@ uint32_t next_time;
void PrintAllAddresses(UsbDevice *pdev) void PrintAllAddresses(UsbDevice *pdev)
{ {
UsbDeviceAddress adr; UsbDeviceAddress adr;
adr.devAddress = pdev->address; adr.devAddress = pdev->address.devAddress;
Serial.print("\r\nAddr:"); Serial.print("\r\nAddr:");
Serial.print(adr.devAddress, HEX); Serial.print(adr.devAddress, HEX);
Serial.print("("); Serial.print("(");
@ -50,9 +54,9 @@ void setup()
if (Usb.Init() == -1) if (Usb.Init() == -1)
Serial.println("OSC did not start."); Serial.println("OSC did not start.");
delay( 200 ); delay( 200 );
next_time = millis() + 10000; next_time = millis() + 10000;
} }
@ -62,19 +66,19 @@ void PrintDescriptors(uint8_t addr)
{ {
uint8_t rcode = 0; uint8_t rcode = 0;
byte num_conf = 0; byte num_conf = 0;
rcode = getdevdescr( (byte)addr, num_conf ); rcode = getdevdescr( (byte)addr, num_conf );
if( rcode ) if( rcode )
{ {
printProgStr(Gen_Error_str); printProgStr(Gen_Error_str);
print_hex( rcode, 8 ); print_hex( rcode, 8 );
} }
Serial.print("\r\n"); Serial.print("\r\n");
for (int i=0; i<num_conf; i++) for (int i=0; i<num_conf; i++)
{ {
rcode = getconfdescr( addr, i ); // get configuration descriptor rcode = getconfdescr( addr, i ); // get configuration descriptor
if( rcode ) if( rcode )
{ {
printProgStr(Gen_Error_str); printProgStr(Gen_Error_str);
print_hex(rcode, 8); print_hex(rcode, 8);
@ -86,27 +90,27 @@ void PrintDescriptors(uint8_t addr)
void PrintAllDescriptors(UsbDevice *pdev) void PrintAllDescriptors(UsbDevice *pdev)
{ {
Serial.println("\r\n"); Serial.println("\r\n");
print_hex(pdev->address, 8); print_hex(pdev->address.devAddress, 8);
Serial.println("\r\n--"); Serial.println("\r\n--");
PrintDescriptors( pdev->address ); PrintDescriptors( pdev->address.devAddress );
} }
void loop() void loop()
{ {
Usb.Task(); Usb.Task();
if( Usb.getUsbTaskState() == USB_STATE_RUNNING ) if( Usb.getUsbTaskState() == USB_STATE_RUNNING )
{ {
//if (millis() >= next_time) //if (millis() >= next_time)
{ {
Usb.ForEachUsbDevice(&PrintAllDescriptors); Usb.ForEachUsbDevice(&PrintAllDescriptors);
Usb.ForEachUsbDevice(&PrintAllAddresses); Usb.ForEachUsbDevice(&PrintAllAddresses);
while( 1 ); //stop while( 1 ); //stop
} }
} }
} }
byte getdevdescr( byte addr, byte &num_conf ) byte getdevdescr( byte addr, byte &num_conf )
{ {
USB_DEVICE_DESCRIPTOR buf; USB_DEVICE_DESCRIPTOR buf;
@ -122,7 +126,7 @@ byte getdevdescr( byte addr, byte &num_conf )
print_hex( buf.bDescriptorType, 8 ); print_hex( buf.bDescriptorType, 8 );
printProgStr(Dev_Version_str); printProgStr(Dev_Version_str);
print_hex( buf.bcdUSB, 16 ); print_hex( buf.bcdUSB, 16 );
printProgStr(Dev_Class_str); printProgStr(Dev_Class_str);
print_hex( buf.bDeviceClass, 8 ); print_hex( buf.bDeviceClass, 8 );
printProgStr(Dev_Subclass_str); printProgStr(Dev_Subclass_str);
print_hex( buf.bDeviceSubClass, 8 ); print_hex( buf.bDeviceSubClass, 8 );
@ -147,46 +151,46 @@ byte getdevdescr( byte addr, byte &num_conf )
num_conf = buf.bNumConfigurations; num_conf = buf.bNumConfigurations;
return( 0 ); return( 0 );
} }
void printhubdescr(uint8_t *descrptr, uint8_t addr) void printhubdescr(uint8_t *descrptr, uint8_t addr)
{ {
HubDescriptor *pHub = (HubDescriptor*) descrptr; HubDescriptor *pHub = (HubDescriptor*) descrptr;
uint8_t len = *((uint8_t*)descrptr); uint8_t len = *((uint8_t*)descrptr);
printProgStr(PSTR("\r\n\r\nHub Descriptor:\r\n")); printProgStr(PSTR("\r\n\r\nHub Descriptor:\r\n"));
printProgStr(PSTR("bDescLength:\t\t")); printProgStr(PSTR("bDescLength:\t\t"));
Serial.println(pHub->bDescLength, HEX); Serial.println(pHub->bDescLength, HEX);
printProgStr(PSTR("bDescriptorType:\t")); printProgStr(PSTR("bDescriptorType:\t"));
Serial.println(pHub->bDescriptorType, HEX); Serial.println(pHub->bDescriptorType, HEX);
printProgStr(PSTR("bNbrPorts:\t\t")); printProgStr(PSTR("bNbrPorts:\t\t"));
Serial.println(pHub->bNbrPorts, HEX); Serial.println(pHub->bNbrPorts, HEX);
printProgStr(PSTR("LogPwrSwitchMode:\t")); printProgStr(PSTR("LogPwrSwitchMode:\t"));
Serial.println(pHub->LogPwrSwitchMode, BIN); Serial.println(pHub->LogPwrSwitchMode, BIN);
printProgStr(PSTR("CompoundDevice:\t\t")); printProgStr(PSTR("CompoundDevice:\t\t"));
Serial.println(pHub->CompoundDevice, BIN); Serial.println(pHub->CompoundDevice, BIN);
printProgStr(PSTR("OverCurrentProtectMode:\t")); printProgStr(PSTR("OverCurrentProtectMode:\t"));
Serial.println(pHub->OverCurrentProtectMode, BIN); Serial.println(pHub->OverCurrentProtectMode, BIN);
printProgStr(PSTR("TTThinkTime:\t\t")); printProgStr(PSTR("TTThinkTime:\t\t"));
Serial.println(pHub->TTThinkTime, BIN); Serial.println(pHub->TTThinkTime, BIN);
printProgStr(PSTR("PortIndicatorsSupported:")); printProgStr(PSTR("PortIndicatorsSupported:"));
Serial.println(pHub->PortIndicatorsSupported, BIN); Serial.println(pHub->PortIndicatorsSupported, BIN);
printProgStr(PSTR("Reserved:\t\t")); printProgStr(PSTR("Reserved:\t\t"));
Serial.println(pHub->Reserved, HEX); Serial.println(pHub->Reserved, HEX);
printProgStr(PSTR("bPwrOn2PwrGood:\t\t")); printProgStr(PSTR("bPwrOn2PwrGood:\t\t"));
Serial.println(pHub->bPwrOn2PwrGood, HEX); Serial.println(pHub->bPwrOn2PwrGood, HEX);
printProgStr(PSTR("bHubContrCurrent:\t")); printProgStr(PSTR("bHubContrCurrent:\t"));
Serial.println(pHub->bHubContrCurrent, HEX); Serial.println(pHub->bHubContrCurrent, HEX);
for (uint8_t i=7; i<len; i++) for (uint8_t i=7; i<len; i++)
print_hex(descrptr[i], 8); print_hex(descrptr[i], 8);
@ -229,7 +233,7 @@ byte getconfdescr( byte addr, byte conf )
default: default:
printunkdescr( buf_ptr ); printunkdescr( buf_ptr );
break; break;
}//switch( descr_type }//switch( descr_type
buf_ptr = ( buf_ptr + descr_length ); //advance buffer pointer buf_ptr = ( buf_ptr + descr_length ); //advance buffer pointer
}//while( buf_ptr <=... }//while( buf_ptr <=...
return( 0 ); return( 0 );
@ -240,12 +244,12 @@ byte getconfdescr( byte addr, byte conf )
void print_hex(int v, int num_places) void print_hex(int v, int num_places)
{ {
int mask=0, n, num_nibbles, digit; int mask=0, n, num_nibbles, digit;
for (n=1; n<=num_places; n++) { for (n=1; n<=num_places; n++) {
mask = (mask << 1) | 0x0001; mask = (mask << 1) | 0x0001;
} }
v = v & mask; // truncate v to specified number of places v = v & mask; // truncate v to specified number of places
num_nibbles = num_places / 4; num_nibbles = num_places / 4;
if ((num_places % 4) != 0) { if ((num_places % 4) != 0) {
++num_nibbles; ++num_nibbles;
@ -253,7 +257,7 @@ void print_hex(int v, int num_places)
do { do {
digit = ((v >> (num_nibbles-1) * 4)) & 0x0f; digit = ((v >> (num_nibbles-1) * 4)) & 0x0f;
Serial.print(digit, HEX); Serial.print(digit, HEX);
} }
while(--num_nibbles); while(--num_nibbles);
} }
/* function to print configuration descriptor */ /* function to print configuration descriptor */
@ -309,7 +313,7 @@ void printepdescr( uint8_t* descr_ptr )
print_hex( ep_ptr->wMaxPacketSize, 16 ); print_hex( ep_ptr->wMaxPacketSize, 16 );
printProgStr(End_Interval_str); printProgStr(End_Interval_str);
print_hex( ep_ptr->bInterval, 8 ); print_hex( ep_ptr->bInterval, 8 );
return; return;
} }
/*function to print unknown descriptor */ /*function to print unknown descriptor */
@ -329,8 +333,8 @@ void printunkdescr( uint8_t* descr_ptr )
descr_ptr++; descr_ptr++;
} }
} }
/* Print a string from Program Memory directly to save RAM */ /* Print a string from Program Memory directly to save RAM */
void printProgStr(const prog_char str[]) void printProgStr(const prog_char str[])
{ {

View file

@ -6,6 +6,10 @@
#include <XBOXOLD.h> #include <XBOXOLD.h>
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
USBHub Hub1(&Usb); // The controller has a built in hub, so this instance is needed USBHub Hub1(&Usb); // The controller has a built in hub, so this instance is needed

View file

@ -6,6 +6,10 @@
*/ */
#include <XBOXRECV.h> #include <XBOXRECV.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
XBOXRECV Xbox(&Usb); XBOXRECV Xbox(&Usb);

View file

@ -5,6 +5,10 @@
*/ */
#include <XBOXUSB.h> #include <XBOXUSB.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
XBOXUSB Xbox(&Usb); XBOXUSB Xbox(&Usb);

View file

@ -1,7 +1,12 @@
#include <cdcacm.h> #include <cdcacm.h>
#include <usbhub.h> #include <usbhub.h>
#include "pgmstrings.h" #include "pgmstrings.h"
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
class ACMAsyncOper : public CDCAsyncOper class ACMAsyncOper : public CDCAsyncOper
{ {
@ -22,16 +27,16 @@ uint8_t ACMAsyncOper::OnInit(ACM *pacm)
} }
LINE_CODING lc; LINE_CODING lc;
lc.dwDTERate = 115200; lc.dwDTERate = 115200;
lc.bCharFormat = 0; lc.bCharFormat = 0;
lc.bParityType = 0; lc.bParityType = 0;
lc.bDataBits = 8; lc.bDataBits = 8;
rcode = pacm->SetLineCoding(&lc); rcode = pacm->SetLineCoding(&lc);
if (rcode) if (rcode)
ErrorMessage<uint8_t>(PSTR("SetLineCoding"), rcode); ErrorMessage<uint8_t>(PSTR("SetLineCoding"), rcode);
return rcode; return rcode;
} }
@ -48,17 +53,17 @@ void setup()
if (Usb.Init() == -1) if (Usb.Init() == -1)
Serial.println("OSCOKIRQ failed to assert"); Serial.println("OSCOKIRQ failed to assert");
delay( 200 ); delay( 200 );
} }
void loop() void loop()
{ {
Usb.Task(); Usb.Task();
if( Acm.isReady()) { if( Acm.isReady()) {
uint8_t rcode; uint8_t rcode;
/* reading the keyboard */ /* reading the keyboard */
if(Serial.available()) { if(Serial.available()) {
uint8_t data= Serial.read(); uint8_t data= Serial.read();
@ -69,24 +74,24 @@ void loop()
}//if(Serial.available()... }//if(Serial.available()...
delay(50); delay(50);
/* reading the phone */ /* reading the phone */
/* buffer size must be greater or equal to max.packet size */ /* buffer size must be greater or equal to max.packet size */
/* it it set to 64 (largest possible max.packet size) here, can be tuned down /* it it set to 64 (largest possible max.packet size) here, can be tuned down
for particular endpoint */ for particular endpoint */
uint8_t buf[64]; uint8_t buf[64];
uint16_t rcvd = 64; uint16_t rcvd = 64;
rcode = Acm.RcvData(&rcvd, buf); rcode = Acm.RcvData(&rcvd, buf);
if (rcode && rcode != hrNAK) if (rcode && rcode != hrNAK)
ErrorMessage<uint8_t>(PSTR("Ret"), rcode); ErrorMessage<uint8_t>(PSTR("Ret"), rcode);
if( rcvd ) { //more than zero bytes received if( rcvd ) { //more than zero bytes received
for(uint16_t i=0; i < rcvd; i++ ) { for(uint16_t i=0; i < rcvd; i++ ) {
Serial.print((char)buf[i]); //printing on the screen Serial.print((char)buf[i]); //printing on the screen
} }
} }
delay(10); delay(10);
}//if( Usb.getUsbTaskState() == USB_STATE_RUNNING.. }//if( Usb.getUsbTaskState() == USB_STATE_RUNNING..
} }

View file

@ -13,6 +13,7 @@ ADK adk(&Usb, "TKJElectronics", // Manufacturer Name
#define LED LED_BUILTIN // Use built in LED - note that pin 13 is occupied by the SCK pin on a normal Arduino (Uno, Duemilanove etc.), so use a different pin #define LED LED_BUILTIN // Use built in LED - note that pin 13 is occupied by the SCK pin on a normal Arduino (Uno, Duemilanove etc.), so use a different pin
uint32_t timer; uint32_t timer;
boolean connected;
void setup() { void setup() {
Serial.begin(115200); Serial.begin(115200);
@ -27,7 +28,13 @@ void setup() {
void loop() { void loop() {
Usb.Task(); Usb.Task();
if (adk.isReady()) { if (adk.isReady()) {
if (!connected) {
connected = true;
Serial.print(F("\r\nConnected to accessory"));
}
uint8_t msg[1]; uint8_t msg[1];
uint16_t len = sizeof(msg); uint16_t len = sizeof(msg);
uint8_t rcode = adk.RcvData(&len, msg); uint8_t rcode = adk.RcvData(&len, msg);
@ -51,7 +58,11 @@ void loop() {
Serial.print(timer); Serial.print(timer);
} }
} }
} else {
if (connected) {
connected = false;
Serial.print(F("\r\nDisconnected from accessory"));
digitalWrite(LED, LOW);
}
} }
else
digitalWrite(LED, LOW);
} }

View file

@ -4,6 +4,10 @@
/* otherwise press any key after getting GPIO error to complete the test */ /* otherwise press any key after getting GPIO error to complete the test */
/**/ /**/
#include <usbhub.h> #include <usbhub.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
/* variables */ /* variables */
uint8_t rcode; uint8_t rcode;

View file

@ -1,7 +1,11 @@
#include <cdcftdi.h> #include <cdcftdi.h>
#include <usbhub.h> #include <usbhub.h>
#include "pgmstrings.h" #include "pgmstrings.h"
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
class FTDIAsync : public FTDIAsyncOper class FTDIAsync : public FTDIAsyncOper
{ {
@ -12,7 +16,7 @@ public:
uint8_t FTDIAsync::OnInit(FTDI *pftdi) uint8_t FTDIAsync::OnInit(FTDI *pftdi)
{ {
uint8_t rcode = 0; uint8_t rcode = 0;
rcode = pftdi->SetBaudRate(115200); rcode = pftdi->SetBaudRate(115200);
if (rcode) if (rcode)
@ -21,10 +25,10 @@ uint8_t FTDIAsync::OnInit(FTDI *pftdi)
return rcode; return rcode;
} }
rcode = pftdi->SetFlowControl(FTDI_SIO_DISABLE_FLOW_CTRL); rcode = pftdi->SetFlowControl(FTDI_SIO_DISABLE_FLOW_CTRL);
if (rcode) if (rcode)
ErrorMessage<uint8_t>(PSTR("SetFlowControl"), rcode); ErrorMessage<uint8_t>(PSTR("SetFlowControl"), rcode);
return rcode; return rcode;
} }
@ -43,48 +47,48 @@ void setup()
if (Usb.Init() == -1) if (Usb.Init() == -1)
Serial.println("OSC did not start."); Serial.println("OSC did not start.");
delay( 200 ); delay( 200 );
next_time = millis() + 5000; next_time = millis() + 5000;
} }
void loop() void loop()
{ {
Usb.Task(); Usb.Task();
if( Usb.getUsbTaskState() == USB_STATE_RUNNING ) if( Usb.getUsbTaskState() == USB_STATE_RUNNING )
{ {
uint8_t rcode; uint8_t rcode;
char strbuf[] = "DEADBEEF"; char strbuf[] = "DEADBEEF";
//char strbuf[] = "The quick brown fox jumps over the lazy dog"; //char strbuf[] = "The quick brown fox jumps over the lazy dog";
//char strbuf[] = "This string contains 61 character to demonstrate FTDI buffers"; //add one symbol to it to see some garbage //char strbuf[] = "This string contains 61 character to demonstrate FTDI buffers"; //add one symbol to it to see some garbage
Serial.print("."); Serial.print(".");
rcode = Ftdi.SndData(strlen(strbuf), (uint8_t*)strbuf); rcode = Ftdi.SndData(strlen(strbuf), (uint8_t*)strbuf);
if (rcode) if (rcode)
ErrorMessage<uint8_t>(PSTR("SndData"), rcode); ErrorMessage<uint8_t>(PSTR("SndData"), rcode);
delay(50); delay(50);
uint8_t buf[64]; uint8_t buf[64];
for (uint8_t i=0; i<64; i++) for (uint8_t i=0; i<64; i++)
buf[i] = 0; buf[i] = 0;
uint16_t rcvd = 64; uint16_t rcvd = 64;
rcode = Ftdi.RcvData(&rcvd, buf); rcode = Ftdi.RcvData(&rcvd, buf);
if (rcode && rcode != hrNAK) if (rcode && rcode != hrNAK)
ErrorMessage<uint8_t>(PSTR("Ret"), rcode); ErrorMessage<uint8_t>(PSTR("Ret"), rcode);
// The device reserves the first two bytes of data // The device reserves the first two bytes of data
// to contain the current values of the modem and line status registers. // to contain the current values of the modem and line status registers.
if (rcvd > 2) if (rcvd > 2)
Serial.print((char*)(buf+2)); Serial.print((char*)(buf+2));
delay(10); delay(10);
} }
} }

View file

@ -1,5 +1,9 @@
#include <usbhub.h> #include <usbhub.h>
#include "pgmstrings.h" #include "pgmstrings.h"
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
USB Usb; USB Usb;
USBHub Hub1(&Usb); USBHub Hub1(&Usb);
@ -12,7 +16,7 @@ uint32_t next_time;
void PrintAllAddresses(UsbDevice *pdev) void PrintAllAddresses(UsbDevice *pdev)
{ {
UsbDeviceAddress adr; UsbDeviceAddress adr;
adr.devAddress = pdev->address; adr.devAddress = pdev->address.devAddress;
Serial.print("\r\nAddr:"); Serial.print("\r\nAddr:");
Serial.print(adr.devAddress, HEX); Serial.print(adr.devAddress, HEX);
Serial.print("("); Serial.print("(");
@ -46,9 +50,9 @@ void setup()
if (Usb.Init() == -1) if (Usb.Init() == -1)
Serial.println("OSC did not start."); Serial.println("OSC did not start.");
delay( 200 ); delay( 200 );
next_time = millis() + 10000; next_time = millis() + 10000;
} }
@ -58,19 +62,19 @@ void PrintDescriptors(uint8_t addr)
{ {
uint8_t rcode = 0; uint8_t rcode = 0;
byte num_conf = 0; byte num_conf = 0;
rcode = getdevdescr( (byte)addr, num_conf ); rcode = getdevdescr( (byte)addr, num_conf );
if( rcode ) if( rcode )
{ {
printProgStr(Gen_Error_str); printProgStr(Gen_Error_str);
print_hex( rcode, 8 ); print_hex( rcode, 8 );
} }
Serial.print("\r\n"); Serial.print("\r\n");
for (int i=0; i<num_conf; i++) for (int i=0; i<num_conf; i++)
{ {
rcode = getconfdescr( addr, i ); // get configuration descriptor rcode = getconfdescr( addr, i ); // get configuration descriptor
if( rcode ) if( rcode )
{ {
printProgStr(Gen_Error_str); printProgStr(Gen_Error_str);
print_hex(rcode, 8); print_hex(rcode, 8);
@ -82,27 +86,27 @@ void PrintDescriptors(uint8_t addr)
void PrintAllDescriptors(UsbDevice *pdev) void PrintAllDescriptors(UsbDevice *pdev)
{ {
Serial.println("\r\n"); Serial.println("\r\n");
print_hex(pdev->address, 8); print_hex(pdev->address.devAddress, 8);
Serial.println("\r\n--"); Serial.println("\r\n--");
PrintDescriptors( pdev->address ); PrintDescriptors( pdev->address.devAddress );
} }
void loop() void loop()
{ {
Usb.Task(); Usb.Task();
if( Usb.getUsbTaskState() == USB_STATE_RUNNING ) if( Usb.getUsbTaskState() == USB_STATE_RUNNING )
{ {
if (millis() >= next_time) if ((millis() - next_time) >= 0L)
{ {
Usb.ForEachUsbDevice(&PrintAllDescriptors); Usb.ForEachUsbDevice(&PrintAllDescriptors);
Usb.ForEachUsbDevice(&PrintAllAddresses); Usb.ForEachUsbDevice(&PrintAllAddresses);
while( 1 ); //stop while( 1 ); //stop
} }
} }
} }
byte getdevdescr( byte addr, byte &num_conf ) byte getdevdescr( byte addr, byte &num_conf )
{ {
USB_DEVICE_DESCRIPTOR buf; USB_DEVICE_DESCRIPTOR buf;
@ -118,7 +122,7 @@ byte getdevdescr( byte addr, byte &num_conf )
print_hex( buf.bDescriptorType, 8 ); print_hex( buf.bDescriptorType, 8 );
printProgStr(Dev_Version_str); printProgStr(Dev_Version_str);
print_hex( buf.bcdUSB, 16 ); print_hex( buf.bcdUSB, 16 );
printProgStr(Dev_Class_str); printProgStr(Dev_Class_str);
print_hex( buf.bDeviceClass, 8 ); print_hex( buf.bDeviceClass, 8 );
printProgStr(Dev_Subclass_str); printProgStr(Dev_Subclass_str);
print_hex( buf.bDeviceSubClass, 8 ); print_hex( buf.bDeviceSubClass, 8 );
@ -143,46 +147,46 @@ byte getdevdescr( byte addr, byte &num_conf )
num_conf = buf.bNumConfigurations; num_conf = buf.bNumConfigurations;
return( 0 ); return( 0 );
} }
void printhubdescr(uint8_t *descrptr, uint8_t addr) void printhubdescr(uint8_t *descrptr, uint8_t addr)
{ {
HubDescriptor *pHub = (HubDescriptor*) descrptr; HubDescriptor *pHub = (HubDescriptor*) descrptr;
uint8_t len = *((uint8_t*)descrptr); uint8_t len = *((uint8_t*)descrptr);
printProgStr(PSTR("\r\n\r\nHub Descriptor:\r\n")); printProgStr(PSTR("\r\n\r\nHub Descriptor:\r\n"));
printProgStr(PSTR("bDescLength:\t\t")); printProgStr(PSTR("bDescLength:\t\t"));
Serial.println(pHub->bDescLength, HEX); Serial.println(pHub->bDescLength, HEX);
printProgStr(PSTR("bDescriptorType:\t")); printProgStr(PSTR("bDescriptorType:\t"));
Serial.println(pHub->bDescriptorType, HEX); Serial.println(pHub->bDescriptorType, HEX);
printProgStr(PSTR("bNbrPorts:\t\t")); printProgStr(PSTR("bNbrPorts:\t\t"));
Serial.println(pHub->bNbrPorts, HEX); Serial.println(pHub->bNbrPorts, HEX);
printProgStr(PSTR("LogPwrSwitchMode:\t")); printProgStr(PSTR("LogPwrSwitchMode:\t"));
Serial.println(pHub->LogPwrSwitchMode, BIN); Serial.println(pHub->LogPwrSwitchMode, BIN);
printProgStr(PSTR("CompoundDevice:\t\t")); printProgStr(PSTR("CompoundDevice:\t\t"));
Serial.println(pHub->CompoundDevice, BIN); Serial.println(pHub->CompoundDevice, BIN);
printProgStr(PSTR("OverCurrentProtectMode:\t")); printProgStr(PSTR("OverCurrentProtectMode:\t"));
Serial.println(pHub->OverCurrentProtectMode, BIN); Serial.println(pHub->OverCurrentProtectMode, BIN);
printProgStr(PSTR("TTThinkTime:\t\t")); printProgStr(PSTR("TTThinkTime:\t\t"));
Serial.println(pHub->TTThinkTime, BIN); Serial.println(pHub->TTThinkTime, BIN);
printProgStr(PSTR("PortIndicatorsSupported:")); printProgStr(PSTR("PortIndicatorsSupported:"));
Serial.println(pHub->PortIndicatorsSupported, BIN); Serial.println(pHub->PortIndicatorsSupported, BIN);
printProgStr(PSTR("Reserved:\t\t")); printProgStr(PSTR("Reserved:\t\t"));
Serial.println(pHub->Reserved, HEX); Serial.println(pHub->Reserved, HEX);
printProgStr(PSTR("bPwrOn2PwrGood:\t\t")); printProgStr(PSTR("bPwrOn2PwrGood:\t\t"));
Serial.println(pHub->bPwrOn2PwrGood, HEX); Serial.println(pHub->bPwrOn2PwrGood, HEX);
printProgStr(PSTR("bHubContrCurrent:\t")); printProgStr(PSTR("bHubContrCurrent:\t"));
Serial.println(pHub->bHubContrCurrent, HEX); Serial.println(pHub->bHubContrCurrent, HEX);
for (uint8_t i=7; i<len; i++) for (uint8_t i=7; i<len; i++)
print_hex(descrptr[i], 8); print_hex(descrptr[i], 8);
@ -225,7 +229,7 @@ byte getconfdescr( byte addr, byte conf )
default: default:
printunkdescr( buf_ptr ); printunkdescr( buf_ptr );
break; break;
}//switch( descr_type }//switch( descr_type
buf_ptr = ( buf_ptr + descr_length ); //advance buffer pointer buf_ptr = ( buf_ptr + descr_length ); //advance buffer pointer
}//while( buf_ptr <=... }//while( buf_ptr <=...
return( 0 ); return( 0 );
@ -236,12 +240,12 @@ byte getconfdescr( byte addr, byte conf )
void print_hex(int v, int num_places) void print_hex(int v, int num_places)
{ {
int mask=0, n, num_nibbles, digit; int mask=0, n, num_nibbles, digit;
for (n=1; n<=num_places; n++) { for (n=1; n<=num_places; n++) {
mask = (mask << 1) | 0x0001; mask = (mask << 1) | 0x0001;
} }
v = v & mask; // truncate v to specified number of places v = v & mask; // truncate v to specified number of places
num_nibbles = num_places / 4; num_nibbles = num_places / 4;
if ((num_places % 4) != 0) { if ((num_places % 4) != 0) {
++num_nibbles; ++num_nibbles;
@ -249,7 +253,7 @@ void print_hex(int v, int num_places)
do { do {
digit = ((v >> (num_nibbles-1) * 4)) & 0x0f; digit = ((v >> (num_nibbles-1) * 4)) & 0x0f;
Serial.print(digit, HEX); Serial.print(digit, HEX);
} }
while(--num_nibbles); while(--num_nibbles);
} }
/* function to print configuration descriptor */ /* function to print configuration descriptor */
@ -305,7 +309,7 @@ void printepdescr( uint8_t* descr_ptr )
print_hex( ep_ptr->wMaxPacketSize, 16 ); print_hex( ep_ptr->wMaxPacketSize, 16 );
printProgStr(End_Interval_str); printProgStr(End_Interval_str);
print_hex( ep_ptr->bInterval, 8 ); print_hex( ep_ptr->bInterval, 8 );
return; return;
} }
/*function to print unknown descriptor */ /*function to print unknown descriptor */
@ -325,8 +329,8 @@ void printunkdescr( uint8_t* descr_ptr )
descr_ptr++; descr_ptr++;
} }
} }
/* Print a string from Program Memory directly to save RAM */ /* Print a string from Program Memory directly to save RAM */
void printProgStr(const prog_char str[]) void printProgStr(const prog_char str[])
{ {

View file

@ -0,0 +1,23 @@
// Just a copy of the HelloWorld example bundled with the LiquidCrystal library in the Arduino IDE
// HD44780 compatible LCD display via MAX3421E GPOUT support header
// pinout: D[4-7] -> GPOUT[4-7], RS-> GPOUT[2], E ->GPOUT[3]
#include <max_LCD.h>
USB Usb;
Max_LCD lcd(&Usb);
void setup() {
// Set up the LCD's number of columns and rows:
lcd.begin(16, 2);
// Print a message to the LCD.
lcd.print("Hello, World!");
}
void loop() {
// Set the cursor to column 0, line 1 (note: line 1 is the second row, since counting begins with 0):
lcd.setCursor(0, 1);
// Print the number of seconds since reset:
lcd.print(millis() / 1000);
}

View file

@ -4,6 +4,10 @@
/* CDC support */ /* CDC support */
#include <cdcacm.h> #include <cdcacm.h>
#include <cdcprolific.h> #include <cdcprolific.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
class PLAsyncOper : public CDCAsyncOper class PLAsyncOper : public CDCAsyncOper
{ {
@ -14,7 +18,7 @@ public:
uint8_t PLAsyncOper::OnInit(ACM *pacm) uint8_t PLAsyncOper::OnInit(ACM *pacm)
{ {
uint8_t rcode; uint8_t rcode;
// Set DTR = 1 // Set DTR = 1
rcode = pacm->SetControlLineState(1); rcode = pacm->SetControlLineState(1);
@ -29,13 +33,13 @@ uint8_t PLAsyncOper::OnInit(ACM *pacm)
lc.dwDTERate = 115200; lc.dwDTERate = 115200;
lc.bCharFormat = 0; lc.bCharFormat = 0;
lc.bParityType = 0; lc.bParityType = 0;
lc.bDataBits = 8; lc.bDataBits = 8;
rcode = pacm->SetLineCoding(&lc); rcode = pacm->SetLineCoding(&lc);
if (rcode) if (rcode)
ErrorMessage<uint8_t>(PSTR("SetLineCoding"), rcode); ErrorMessage<uint8_t>(PSTR("SetLineCoding"), rcode);
return rcode; return rcode;
} }
USB Usb; USB Usb;
@ -51,43 +55,43 @@ void setup()
if (Usb.Init() == -1) if (Usb.Init() == -1)
Serial.println("OSCOKIRQ failed to assert"); Serial.println("OSCOKIRQ failed to assert");
delay( 200 ); delay( 200 );
} }
void loop() void loop()
{ {
Usb.Task(); Usb.Task();
if( Usb.getUsbTaskState() == USB_STATE_RUNNING ) if( Usb.getUsbTaskState() == USB_STATE_RUNNING )
{ {
uint8_t rcode; uint8_t rcode;
/* reading the keyboard */ /* reading the keyboard */
if(Serial.available()) { if(Serial.available()) {
uint8_t data= Serial.read(); uint8_t data= Serial.read();
/* sending to the phone */ /* sending to the phone */
rcode = Pl.SndData(1, &data); rcode = Pl.SndData(1, &data);
if (rcode) if (rcode)
ErrorMessage<uint8_t>(PSTR("SndData"), rcode); ErrorMessage<uint8_t>(PSTR("SndData"), rcode);
}//if(Serial.available()... }//if(Serial.available()...
/* reading the converter */ /* reading the converter */
/* buffer size must be greater or equal to max.packet size */ /* buffer size must be greater or equal to max.packet size */
/* it it set to 64 (largest possible max.packet size) here, can be tuned down /* it it set to 64 (largest possible max.packet size) here, can be tuned down
for particular endpoint */ for particular endpoint */
uint8_t buf[64]; uint8_t buf[64];
uint16_t rcvd = 64; uint16_t rcvd = 64;
rcode = Pl.RcvData(&rcvd, buf); rcode = Pl.RcvData(&rcvd, buf);
if (rcode && rcode != hrNAK) if (rcode && rcode != hrNAK)
ErrorMessage<uint8_t>(PSTR("Ret"), rcode); ErrorMessage<uint8_t>(PSTR("Ret"), rcode);
if( rcvd ) { //more than zero bytes received if( rcvd ) { //more than zero bytes received
for(uint16_t i=0; i < rcvd; i++ ) { for(uint16_t i=0; i < rcvd; i++ ) {
Serial.print((char)buf[i]); //printing on the screen Serial.print((char)buf[i]); //printing on the screen
} }
}//if( rcvd ... }//if( rcvd ...
}//if( Usb.getUsbTaskState() == USB_STATE_RUNNING.. }//if( Usb.getUsbTaskState() == USB_STATE_RUNNING..
} }

View file

@ -5,81 +5,80 @@
/* CDC support */ /* CDC support */
#include <cdcacm.h> #include <cdcacm.h>
#include <cdcprolific.h> #include <cdcprolific.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
class PLAsyncOper : public CDCAsyncOper class PLAsyncOper : public CDCAsyncOper {
{
public: public:
virtual uint8_t OnInit(ACM *pacm); virtual uint8_t OnInit(ACM *pacm);
}; };
uint8_t PLAsyncOper::OnInit(ACM *pacm) uint8_t PLAsyncOper::OnInit(ACM *pacm) {
{ uint8_t rcode;
uint8_t rcode;
// Set DTR = 1
// Set DTR = 1 rcode = pacm->SetControlLineState(1);
rcode = pacm->SetControlLineState(1);
if(rcode) {
ErrorMessage<uint8_t>(PSTR("SetControlLineState"), rcode);
return rcode;
}
LINE_CODING lc;
lc.dwDTERate = 4800; //default serial speed of GPS unit
lc.bCharFormat = 0;
lc.bParityType = 0;
lc.bDataBits = 8;
rcode = pacm->SetLineCoding(&lc);
if(rcode)
ErrorMessage<uint8_t>(PSTR("SetLineCoding"), rcode);
if (rcode)
{
ErrorMessage<uint8_t>(PSTR("SetControlLineState"), rcode);
return rcode; return rcode;
}
LINE_CODING lc;
lc.dwDTERate = 4800; //default serial speed of GPS unit
lc.bCharFormat = 0;
lc.bParityType = 0;
lc.bDataBits = 8;
rcode = pacm->SetLineCoding(&lc);
if (rcode)
ErrorMessage<uint8_t>(PSTR("SetLineCoding"), rcode);
return rcode;
} }
USB Usb; USB Usb;
USBHub Hub(&Usb); USBHub Hub(&Usb);
PLAsyncOper AsyncOper; PLAsyncOper AsyncOper;
PL2303 Pl(&Usb, &AsyncOper); PL2303 Pl(&Usb, &AsyncOper);
uint32_t read_delay; uint32_t read_delay;
#define READ_DELAY 100 #define READ_DELAY 100
void setup() void setup() {
{ Serial.begin(115200);
Serial.begin( 115200 ); while(!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection
while (!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection Serial.println("Start");
Serial.println("Start");
if (Usb.Init() == -1) if(Usb.Init() == -1)
Serial.println("OSCOKIRQ failed to assert"); Serial.println("OSCOKIRQ failed to assert");
delay( 200 ); delay(200);
} }
void loop() void loop() {
{ uint8_t rcode;
uint8_t rcode; uint8_t buf[64]; //serial buffer equals Max.packet size of bulk-IN endpoint
uint8_t buf[64]; //serial buffer equals Max.packet size of bulk-IN endpoint uint16_t rcvd = 64;
uint16_t rcvd = 64;
Usb.Task(); Usb.Task();
if( Pl.isReady()) { if(Pl.isReady()) {
/* reading the GPS */ /* reading the GPS */
if( read_delay < millis() ){ if((long)(millis() - read_delay) >= 0L) {
read_delay += READ_DELAY; read_delay += READ_DELAY;
rcode = Pl.RcvData(&rcvd, buf); rcode = Pl.RcvData(&rcvd, buf);
if ( rcode && rcode != hrNAK ) if(rcode && rcode != hrNAK)
ErrorMessage<uint8_t>(PSTR("Ret"), rcode); ErrorMessage<uint8_t>(PSTR("Ret"), rcode);
if( rcvd ) { //more than zero bytes received if(rcvd) { //more than zero bytes received
for( uint16_t i=0; i < rcvd; i++ ) { for(uint16_t i = 0; i < rcvd; i++) {
Serial.print((char)buf[i]); //printing on the screen Serial.print((char)buf[i]); //printing on the screen
}//for( uint16_t i=0; i < rcvd; i++... }//for( uint16_t i=0; i < rcvd; i++...
}//if( rcvd }//if( rcvd
}//if( read_delay > millis()... }//if( read_delay > millis()...
}//if( Usb.getUsbTaskState() == USB_STATE_RUNNING.. }//if( Usb.getUsbTaskState() == USB_STATE_RUNNING..
} }

View file

@ -11,6 +11,10 @@
#include <cdcprolific.h> #include <cdcprolific.h>
#include <TinyGPS.h> #include <TinyGPS.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
/* This sample code demonstrates the normal use of a TinyGPS object. /* This sample code demonstrates the normal use of a TinyGPS object.
Modified to be used with USB Host Shield Library r2.0 Modified to be used with USB Host Shield Library r2.0
@ -26,7 +30,7 @@ public:
uint8_t PLAsyncOper::OnInit(ACM *pacm) uint8_t PLAsyncOper::OnInit(ACM *pacm)
{ {
uint8_t rcode; uint8_t rcode;
// Set DTR = 1 // Set DTR = 1
rcode = pacm->SetControlLineState(1); rcode = pacm->SetControlLineState(1);
@ -36,17 +40,17 @@ uint8_t PLAsyncOper::OnInit(ACM *pacm)
} }
LINE_CODING lc; LINE_CODING lc;
lc.dwDTERate = 4800; //default serial speed of GPS unit lc.dwDTERate = 4800; //default serial speed of GPS unit
lc.bCharFormat = 0; lc.bCharFormat = 0;
lc.bParityType = 0; lc.bParityType = 0;
lc.bDataBits = 8; lc.bDataBits = 8;
rcode = pacm->SetLineCoding(&lc); rcode = pacm->SetLineCoding(&lc);
if (rcode) { if (rcode) {
ErrorMessage<uint8_t>(PSTR("SetLineCoding"), rcode); ErrorMessage<uint8_t>(PSTR("SetLineCoding"), rcode);
} }
return rcode; return rcode;
} }
@ -65,7 +69,7 @@ void setup()
Serial.begin(115200); Serial.begin(115200);
while (!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection while (!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection
Serial.print("Testing TinyGPS library v. "); Serial.println(TinyGPS::library_version()); Serial.print("Testing TinyGPS library v. "); Serial.println(TinyGPS::library_version());
Serial.println("by Mikal Hart"); Serial.println("by Mikal Hart");
Serial.println(); Serial.println();
@ -75,16 +79,16 @@ void setup()
if (Usb.Init() == -1) { if (Usb.Init() == -1) {
Serial.println("OSCOKIRQ failed to assert"); Serial.println("OSCOKIRQ failed to assert");
} }
delay( 200 ); delay( 200 );
} }
void loop() void loop()
{ {
Usb.Task(); Usb.Task();
if( Pl.isReady()) { if( Pl.isReady()) {
bool newdata = false; bool newdata = false;
unsigned long start = millis(); unsigned long start = millis();
@ -94,7 +98,7 @@ void loop()
newdata = true; newdata = true;
} }
}//while (millis()... }//while (millis()...
if (newdata) { if (newdata) {
Serial.println("Acquired Data"); Serial.println("Acquired Data");
Serial.println("-------------"); Serial.println("-------------");
@ -118,7 +122,7 @@ void printFloat(double number, int digits)
double rounding = 0.5; double rounding = 0.5;
for (uint8_t i=0; i<digits; ++i) for (uint8_t i=0; i<digits; ++i)
rounding /= 10.0; rounding /= 10.0;
number += rounding; number += rounding;
// Extract the integer part of the number and print it // Extract the integer part of the number and print it
@ -128,7 +132,7 @@ void printFloat(double number, int digits)
// Print the decimal point, but only if there are digits beyond // Print the decimal point, but only if there are digits beyond
if (digits > 0) if (digits > 0)
Serial.print("."); Serial.print(".");
// Extract digits from the remainder one at a time // Extract digits from the remainder one at a time
while (digits-- > 0) while (digits-- > 0)
@ -136,8 +140,8 @@ void printFloat(double number, int digits)
remainder *= 10.0; remainder *= 10.0;
int toPrint = int(remainder); int toPrint = int(remainder);
Serial.print(toPrint); Serial.print(toPrint);
remainder -= toPrint; remainder -= toPrint;
} }
} }
void gpsdump(TinyGPS &gps) void gpsdump(TinyGPS &gps)
@ -150,9 +154,9 @@ void gpsdump(TinyGPS &gps)
unsigned short sentences, failed; unsigned short sentences, failed;
gps.get_position(&lat, &lon, &age); gps.get_position(&lat, &lon, &age);
Serial.print("Lat/Long(10^-5 deg): "); Serial.print(lat); Serial.print(", "); Serial.print(lon); Serial.print("Lat/Long(10^-5 deg): "); Serial.print(lat); Serial.print(", "); Serial.print(lon);
Serial.print(" Fix age: "); Serial.print(age); Serial.println("ms."); Serial.print(" Fix age: "); Serial.print(age); Serial.println("ms.");
feedgps(); // If we don't feed the gps during this long routine, we may drop characters and get checksum errors feedgps(); // If we don't feed the gps during this long routine, we may drop characters and get checksum errors
gps.f_get_position(&flat, &flon, &age); gps.f_get_position(&flat, &flon, &age);
@ -171,7 +175,7 @@ void gpsdump(TinyGPS &gps)
Serial.print("Date: "); Serial.print(static_cast<int>(month)); Serial.print("/"); Serial.print(static_cast<int>(day)); Serial.print("/"); Serial.print(year); Serial.print("Date: "); Serial.print(static_cast<int>(month)); Serial.print("/"); Serial.print(static_cast<int>(day)); Serial.print("/"); Serial.print(year);
Serial.print(" Time: "); Serial.print(static_cast<int>(hour)); Serial.print(":"); Serial.print(static_cast<int>(minute)); Serial.print(":"); Serial.print(static_cast<int>(second)); Serial.print("."); Serial.print(static_cast<int>(hundredths)); Serial.print(" Time: "); Serial.print(static_cast<int>(hour)); Serial.print(":"); Serial.print(static_cast<int>(minute)); Serial.print(":"); Serial.print(static_cast<int>(second)); Serial.print("."); Serial.print(static_cast<int>(hundredths));
Serial.print(" Fix age: "); Serial.print(age); Serial.println("ms."); Serial.print(" Fix age: "); Serial.print(age); Serial.println("ms.");
feedgps(); feedgps();
Serial.print("Alt(cm): "); Serial.print(gps.altitude()); Serial.print(" Course(10^-2 deg): "); Serial.print(gps.course()); Serial.print(" Speed(10^-2 knots): "); Serial.println(gps.speed()); Serial.print("Alt(cm): "); Serial.print(gps.altitude()); Serial.print(" Course(10^-2 deg): "); Serial.print(gps.course()); Serial.print(" Speed(10^-2 knots): "); Serial.println(gps.speed());
@ -184,13 +188,13 @@ void gpsdump(TinyGPS &gps)
gps.stats(&chars, &sentences, &failed); gps.stats(&chars, &sentences, &failed);
Serial.print("Stats: characters: "); Serial.print(chars); Serial.print(" sentences: "); Serial.print(sentences); Serial.print(" failed checksum: "); Serial.println(failed); Serial.print("Stats: characters: "); Serial.print(chars); Serial.print(" sentences: "); Serial.print(sentences); Serial.print(" failed checksum: "); Serial.println(failed);
} }
bool feedgps() bool feedgps()
{ {
uint8_t rcode; uint8_t rcode;
uint8_t buf[64]; //serial buffer equals Max.packet size of bulk-IN endpoint uint8_t buf[64]; //serial buffer equals Max.packet size of bulk-IN endpoint
uint16_t rcvd = 64; uint16_t rcvd = 64;
{ {
/* reading the GPS */ /* reading the GPS */
rcode = Pl.RcvData(&rcvd, buf); rcode = Pl.RcvData(&rcvd, buf);
if (rcode && rcode != hrNAK) if (rcode && rcode != hrNAK)
@ -201,7 +205,7 @@ bool feedgps()
if( gps.encode((char)buf[i])) { //feed a character to gps object if( gps.encode((char)buf[i])) { //feed a character to gps object
rcode = true; rcode = true;
}//if( gps.encode(buf[i]... }//if( gps.encode(buf[i]...
}//for( uint16_t i=0; i < rcvd; i++... }//for( uint16_t i=0; i < rcvd; i++...
}//if( rcvd... }//if( rcvd...
} }
return( rcode ); return( rcode );

View file

@ -5,6 +5,10 @@
/* CDC support */ /* CDC support */
#include <cdcacm.h> #include <cdcacm.h>
#include <cdcprolific.h> #include <cdcprolific.h>
// Satisfy IDE, which only needs to see the include statment in the ino.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#endif
class PLAsyncOper : public CDCAsyncOper class PLAsyncOper : public CDCAsyncOper
{ {
@ -15,7 +19,7 @@ public:
uint8_t PLAsyncOper::OnInit(ACM *pacm) uint8_t PLAsyncOper::OnInit(ACM *pacm)
{ {
uint8_t rcode; uint8_t rcode;
// Set DTR = 1 // Set DTR = 1
rcode = pacm->SetControlLineState(1); rcode = pacm->SetControlLineState(1);
@ -26,16 +30,16 @@ uint8_t PLAsyncOper::OnInit(ACM *pacm)
} }
LINE_CODING lc; LINE_CODING lc;
lc.dwDTERate = 115200; lc.dwDTERate = 115200;
lc.bCharFormat = 0; lc.bCharFormat = 0;
lc.bParityType = 0; lc.bParityType = 0;
lc.bDataBits = 8; lc.bDataBits = 8;
rcode = pacm->SetLineCoding(&lc); rcode = pacm->SetLineCoding(&lc);
if (rcode) if (rcode)
ErrorMessage<uint8_t>(PSTR("SetLineCoding"), rcode); ErrorMessage<uint8_t>(PSTR("SetLineCoding"), rcode);
return rcode; return rcode;
} }
USB Usb; USB Usb;
@ -51,29 +55,29 @@ void setup()
if (Usb.Init() == -1) if (Usb.Init() == -1)
Serial.println("OSCOKIRQ failed to assert"); Serial.println("OSCOKIRQ failed to assert");
delay( 200 ); delay( 200 );
} }
void loop() void loop()
{ {
Usb.Task(); Usb.Task();
if( Usb.getUsbTaskState() == USB_STATE_RUNNING ) if( Usb.getUsbTaskState() == USB_STATE_RUNNING )
{ {
uint8_t rcode; uint8_t rcode;
/* reading the keyboard */ /* reading the keyboard */
if(Serial.available()) { if(Serial.available()) {
uint8_t data= Serial.read(); uint8_t data= Serial.read();
if ( data == '\r' ) { if ( data == '\r' ) {
Serial.print("\r\n"); //insert linefeed Serial.print("\r\n"); //insert linefeed
} }
else { else {
Serial.print( data ); //echo back to the screen Serial.print( data ); //echo back to the screen
} }
/* sending to the phone */ /* sending to the phone */
rcode = Pl.SndData(1, &data); rcode = Pl.SndData(1, &data);
if (rcode) if (rcode)
@ -81,17 +85,17 @@ void loop()
}//if(Serial.available()... }//if(Serial.available()...
delay(50); delay(50);
/* reading the converter */ /* reading the converter */
/* buffer size must be greater or equal to max.packet size */ /* buffer size must be greater or equal to max.packet size */
/* it it set to 64 (largest possible max.packet size) here, can be tuned down /* it it set to 64 (largest possible max.packet size) here, can be tuned down
for particular endpoint */ for particular endpoint */
uint8_t buf[64]; uint8_t buf[64];
uint16_t rcvd = 64; uint16_t rcvd = 64;
rcode = Pl.RcvData(&rcvd, buf); rcode = Pl.RcvData(&rcvd, buf);
if (rcode && rcode != hrNAK) if (rcode && rcode != hrNAK)
ErrorMessage<uint8_t>(PSTR("Ret"), rcode); ErrorMessage<uint8_t>(PSTR("Ret"), rcode);
if( rcvd ) { //more than zero bytes received if( rcvd ) { //more than zero bytes received
for(uint16_t i=0; i < rcvd; i++ ) { for(uint16_t i=0; i < rcvd; i++ ) {
if( buf[i] =='\r' ) { if( buf[i] =='\r' ) {
@ -100,10 +104,10 @@ void loop()
else { else {
Serial.print((char)buf[i]); //printing on the screen Serial.print((char)buf[i]); //printing on the screen
} }
} }
} }
delay(10); delay(10);
}//if( Usb.getUsbTaskState() == USB_STATE_RUNNING.. }//if( Usb.getUsbTaskState() == USB_STATE_RUNNING..
} }

View file

@ -9,6 +9,10 @@
BOARD = mega BOARD = mega
PROGRAMMER = arduino PROGRAMMER = arduino
#BOARD = teensypp2
#BOARD = teensy3
#BOARD = teensy31
# set your Arduino tty port here # set your Arduino tty port here
PORT = /dev/ttyUSB0 PORT = /dev/ttyUSB0

@ -1 +1 @@
Subproject commit a4bd6f500f70599847de60973371ee973d094a34 Subproject commit b119b97e1484a08aebcf24e070113d78c82fb023

View file

@ -1,6 +0,0 @@
file build/testusbhostFAT.elf
target remote localhost:4242
set {int}0x802200 = 0xffff
set {int}0x802220 = 0x0000
#graph display `x /3xh 0x802200`

340
examples/testusbhostFAT/testusbhostFAT.ino Normal file → Executable file
View file

@ -19,35 +19,39 @@
* *
*/ */
/////////////////////////////////////////////////////////////
// Please Note: //
// This section is for info with the Arduino IDE ONLY. //
// Unfortunately due to short sightedness of the Arduino //
// code team, that you must set the following in the //
// respective libraries. //
// Changing them here will have _NO_ effect! //
/////////////////////////////////////////////////////////////
// Uncomment to enable debugging
//#define DEBUG_USB_HOST
// This is where stderr/USB debugging goes to
//#define USB_HOST_SERIAL Serial3
// If you have external memory, setting this to 0 enables FAT table caches.
// The 0 setting is recommended only if you have external memory.
//#define _FS_TINY 1
//#define _USE_LFN 3
//#define EXT_RAM_STACK 1
//#define EXT_RAM_HEAP 1
//#define _MAX_SS 512
/////////////////////////////////////////////////////////////
// End of Arduino IDE specific information //
/////////////////////////////////////////////////////////////
// You can set this to 0 if you are not using a USB hub. // You can set this to 0 if you are not using a USB hub.
// It will save a little bit of flash and RAM. // It will save a little bit of flash and RAM.
// Set to 1 if you want to use a hub. // Set to 1 if you want to use a hub.
#define WANT_HUB_TEST 0 #define WANT_HUB_TEST 0
///////////////////////////////////////////////////////////// #if defined(__AVR__)
// Please Note: This section is for Arduino IDE ONLY. //
// Use of Make creates a flash image that is 3.3KB smaller //
/////////////////////////////////////////////////////////////
#ifndef USING_MAKEFILE
// Uncomment to enable debugging
//#define DEBUG_USB_HOST
// This is where stderr/USB debugging goes to
#define USB_HOST_SERIAL Serial3
// If you have external memory, setting this to 0 enables FAT table caches.
// The 0 setting is recommended only if you have external memory.
#define _FS_TINY 1
// These you can safely leave alone.
#define _USE_LFN 3
#define EXT_RAM_STACK 1
#define EXT_RAM_HEAP 1
#define _MAX_SS 512
#endif
/////////////////////////////////////////////////////////////
// End of Arduino IDE specific hacks //
/////////////////////////////////////////////////////////////
#if defined(AVR)
#include <xmem.h> #include <xmem.h>
#else #else
#include <spi4teensy3.h> #include <spi4teensy3.h>
@ -63,7 +67,7 @@
#include <Wire.h> #include <Wire.h>
#include <RTClib.h> #include <RTClib.h>
#include <stdio.h> #include <stdio.h>
#if defined(AVR) #if defined(__AVR__)
static FILE tty_stdio; static FILE tty_stdio;
static FILE tty_stderr; static FILE tty_stderr;
volatile uint32_t LEDnext_time; // fade timeout volatile uint32_t LEDnext_time; // fade timeout
@ -100,7 +104,7 @@ static storage_t sto[_VOLUMES];
#define mbxs 128 #define mbxs 128
static uint8_t My_Buff_x[mbxs]; /* File read buffer */ static uint8_t My_Buff_x[mbxs]; /* File read buffer */
#if defined(AVR) #if defined(__AVR__)
#define prescale1 ((1 << WGM12) | (1 << CS10)) #define prescale1 ((1 << WGM12) | (1 << CS10))
#define prescale8 ((1 << WGM12) | (1 << CS11)) #define prescale8 ((1 << WGM12) | (1 << CS11))
@ -126,7 +130,7 @@ static int tty_std_putc(char c, FILE *t) {
} }
static int tty_std_getc(FILE *t) { static int tty_std_getc(FILE *t) {
while (!Serial.available()); while(!Serial.available());
return Serial.read(); return Serial.read();
} }
@ -140,18 +144,18 @@ extern "C" {
int _write(int fd, const char *ptr, int len) { int _write(int fd, const char *ptr, int len) {
int j; int j;
for (j = 0; j < len; j++) { for(j = 0; j < len; j++) {
if (fd == 1) if(fd == 1)
Serial.write(*ptr++); Serial.write(*ptr++);
else if (fd == 2) else if(fd == 2)
USB_HOST_SERIAL.write(*ptr++); USB_HOST_SERIAL.write(*ptr++);
} }
return len; return len;
} }
int _read(int fd, char *ptr, int len) { int _read(int fd, char *ptr, int len) {
if (len > 0 && fd == 0) { if(len > 0 && fd == 0) {
while (!Serial.available()); while(!Serial.available());
*ptr = Serial.read(); *ptr = Serial.read();
return 1; return 1;
} }
@ -175,7 +179,7 @@ extern "C" {
void setup() { void setup() {
boolean serr = false; boolean serr = false;
for (int i = 0; i < _VOLUMES; i++) { for(int i = 0; i < _VOLUMES; i++) {
Fats[i] = NULL; Fats[i] = NULL;
sto[i].private_data = new pvt_t; sto[i].private_data = new pvt_t;
((pvt_t *)sto[i].private_data)->B = 255; // impossible ((pvt_t *)sto[i].private_data)->B = 255; // impossible
@ -184,7 +188,7 @@ void setup() {
// minimum 0x00, maximum 0xff // minimum 0x00, maximum 0xff
UsbDEBUGlvl = 0x51; UsbDEBUGlvl = 0x51;
#if defined(AVR) #if !defined(CORE_TEENSY) && defined(__AVR__)
// make LED pin as an output: // make LED pin as an output:
pinMode(LED_BUILTIN, OUTPUT); pinMode(LED_BUILTIN, OUTPUT);
pinMode(2, OUTPUT); pinMode(2, OUTPUT);
@ -193,11 +197,23 @@ void setup() {
// Initialize 'debug' serial port // Initialize 'debug' serial port
USB_HOST_SERIAL.begin(115200); USB_HOST_SERIAL.begin(115200);
// Do not start primary Serial port if already started. // Do not start primary Serial port if already started.
if (bit_is_clear(UCSR0B, TXEN0)) { if(bit_is_clear(UCSR0B, TXEN0)) {
Serial.begin(115200); Serial.begin(115200);
serr = true; serr = true;
} }
// Blink LED
delay(500);
analogWrite(LED_BUILTIN, 255);
delay(500);
analogWrite(LED_BUILTIN, 0);
delay(500);
#else
while(!Serial);
Serial.begin(115200); // On the Teensy 3.x we get a delay at least!
#endif
#if defined(__AVR__)
// Set up stdio/stderr // Set up stdio/stderr
tty_stdio.put = tty_std_putc; tty_stdio.put = tty_std_putc;
tty_stdio.get = tty_std_getc; tty_stdio.get = tty_std_getc;
@ -212,17 +228,7 @@ void setup() {
stdout = &tty_stdio; stdout = &tty_stdio;
stdin = &tty_stdio; stdin = &tty_stdio;
stderr = &tty_stderr; stderr = &tty_stderr;
// Blink LED
delay(500);
analogWrite(LED_BUILTIN, 255);
delay(500);
analogWrite(LED_BUILTIN, 0);
delay(500);
#else
while (!Serial);
#endif #endif
printf_P(PSTR("\r\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nStart\r\n")); printf_P(PSTR("\r\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nStart\r\n"));
printf_P(PSTR("Current UsbDEBUGlvl %02x\r\n"), UsbDEBUGlvl); printf_P(PSTR("Current UsbDEBUGlvl %02x\r\n"), UsbDEBUGlvl);
printf_P(PSTR("'+' and '-' increase/decrease by 0x01\r\n")); printf_P(PSTR("'+' and '-' increase/decrease by 0x01\r\n"));
@ -236,7 +242,7 @@ void setup() {
"Disabled" "Disabled"
#endif #endif
"\r\n")); "\r\n"));
if (serr) { if(serr) {
fprintf_P(stderr, PSTR("\r\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nStart\r\n")); fprintf_P(stderr, PSTR("\r\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nStart\r\n"));
fprintf_P(stderr, PSTR("Current UsbDEBUGlvl %02x\r\n"), UsbDEBUGlvl); fprintf_P(stderr, PSTR("Current UsbDEBUGlvl %02x\r\n"), UsbDEBUGlvl);
fprintf_P(stderr, PSTR("Long filename support: " fprintf_P(stderr, PSTR("Long filename support: "
@ -247,8 +253,8 @@ void setup() {
#endif #endif
"\r\n")); "\r\n"));
} }
#if defined(AVR)
#if !defined(CORE_TEENSY) && defined(__AVR__)
analogWrite(LED_BUILTIN, 255); analogWrite(LED_BUILTIN, 255);
delay(500); delay(500);
analogWrite(LED_BUILTIN, 0); analogWrite(LED_BUILTIN, 0);
@ -263,7 +269,7 @@ void setup() {
delay(500); delay(500);
LEDnext_time = millis() + 1; LEDnext_time = millis() + 1;
#ifdef EXT_RAM #if EXT_RAM
printf_P(PSTR("Total EXT RAM banks %i\r\n"), xmem::getTotalBanks()); printf_P(PSTR("Total EXT RAM banks %i\r\n"), xmem::getTotalBanks());
#endif #endif
printf_P(PSTR("Available heap: %u Bytes\r\n"), freeHeap()); printf_P(PSTR("Available heap: %u Bytes\r\n"), freeHeap());
@ -274,22 +280,22 @@ void setup() {
// I want to be able to have slightly more control. // I want to be able to have slightly more control.
// Besides, it is easier to initialize stuff... // Besides, it is easier to initialize stuff...
#if WANT_HUB_TEST #if WANT_HUB_TEST
for (int i = 0; i < MAX_HUBS; i++) { for(int i = 0; i < MAX_HUBS; i++) {
Hubs[i] = new USBHub(&Usb); Hubs[i] = new USBHub(&Usb);
#if defined(AVR) #if defined(__AVR__)
printf_P(PSTR("Available heap: %u Bytes\r\n"), freeHeap()); printf_P(PSTR("Available heap: %u Bytes\r\n"), freeHeap());
#endif #endif
} }
#endif #endif
// Initialize generic storage. This must be done before USB starts. // Initialize generic storage. This must be done before USB starts.
InitStorage(); Init_Generic_Storage();
while (Usb.Init(1000) == -1) { while(Usb.Init(1000) == -1) {
printf_P(PSTR("No USB HOST Shield?\r\n")); printf_P(PSTR("No USB HOST Shield?\r\n"));
Notify(PSTR("OSC did not start."), 0x40); Notify(PSTR("OSC did not start."), 0x40);
} }
#if defined(AVR) #if !defined(CORE_TEENSY) && defined(__AVR__)
cli(); cli();
TCCR3A = 0; TCCR3A = 0;
TCCR3B = 0; TCCR3B = 0;
@ -300,32 +306,10 @@ void setup() {
sei(); sei();
HEAPnext_time = millis() + 10000; HEAPnext_time = millis() + 10000;
#else
#if 0
//
// On the teensy 3 we can raise the speed of SPI here.
//
// Default seen is 0xB8011001.
//
uint32_t ctar = SPI0_CTAR0;
//printf("SPI_CTAR0 = %8.8X\r\n", ctar);
ctar &= 0x7FFCFFF0; // 1/4 fSYS, 12.5Mhz
//printf("SPI_CTAR0 = %8.8X\r\n", ctar);
ctar |= 0x80000000; // 1/2 fSYS 25Mhz
//printf("SPI_CTAR0 = %8.8X\r\n", ctar);
uint32_t mcr = SPI0_MCR;
if (mcr & SPI_MCR_MDIS) {
SPI0_CTAR0 = ctar;
} else {
SPI0_MCR = mcr | SPI_MCR_MDIS | SPI_MCR_HALT;
SPI0_CTAR0 = ctar;
SPI0_MCR = mcr;
}
#endif #endif
#if defined(__AVR__)
HEAPnext_time = millis() + 10000;
#endif #endif
} }
void serialEvent() { void serialEvent() {
@ -334,23 +318,23 @@ void serialEvent() {
// . to increase by 16, , to decrease by 16 // . to increase by 16, , to decrease by 16
// e to flick VBUS // e to flick VBUS
// * to report debug level // * to report debug level
if (Serial.available()) { if(Serial.available()) {
int inByte = Serial.read(); int inByte = Serial.read();
switch (inByte) { switch(inByte) {
case '+': case '+':
if (UsbDEBUGlvl < 0xff) UsbDEBUGlvl++; if(UsbDEBUGlvl < 0xff) UsbDEBUGlvl++;
reportlvl = true; reportlvl = true;
break; break;
case '-': case '-':
if (UsbDEBUGlvl > 0x00) UsbDEBUGlvl--; if(UsbDEBUGlvl > 0x00) UsbDEBUGlvl--;
reportlvl = true; reportlvl = true;
break; break;
case '.': case '.':
if (UsbDEBUGlvl < 0xf0) UsbDEBUGlvl += 16; if(UsbDEBUGlvl < 0xf0) UsbDEBUGlvl += 16;
reportlvl = true; reportlvl = true;
break; break;
case ',': case ',':
if (UsbDEBUGlvl > 0x0f) UsbDEBUGlvl -= 16; if(UsbDEBUGlvl > 0x0f) UsbDEBUGlvl -= 16;
reportlvl = true; reportlvl = true;
break; break;
case '*': case '*':
@ -367,10 +351,11 @@ void serialEvent() {
} }
} }
#if defined(AVR) #if !defined(CORE_TEENSY) && defined(__AVR__)
// ALL teensy versions LACK PWM ON LED
ISR(TIMER3_COMPA_vect) { ISR(TIMER3_COMPA_vect) {
if (millis() >= LEDnext_time) { if((long)(millis() - LEDnext_time) >= 0L) {
LEDnext_time = millis() + 30; LEDnext_time = millis() + 30;
// set the brightness of LED // set the brightness of LED
@ -380,11 +365,11 @@ ISR(TIMER3_COMPA_vect) {
brightness = brightness + fadeAmount; brightness = brightness + fadeAmount;
// reverse the direction of the fading at the ends of the fade: // reverse the direction of the fading at the ends of the fade:
if (brightness <= 0) { if(brightness <= 0) {
brightness = 0; brightness = 0;
fadeAmount = -fadeAmount; fadeAmount = -fadeAmount;
} }
if (brightness >= 255) { if(brightness >= 255) {
brightness = 255; brightness = 255;
fadeAmount = -fadeAmount; fadeAmount = -fadeAmount;
} }
@ -404,29 +389,30 @@ void die(FRESULT rc) {
void loop() { void loop() {
FIL My_File_Object_x; /* File object */ FIL My_File_Object_x; /* File object */
#if defined(AVR) #if defined(__AVR__)
// Print a heap status report about every 10 seconds. // Print a heap status report about every 10 seconds.
if (millis() >= HEAPnext_time) { if((long)(millis() - HEAPnext_time) >= 0L) {
if (UsbDEBUGlvl > 0x50) { if(UsbDEBUGlvl > 0x50) {
printf_P(PSTR("Available heap: %u Bytes\r\n"), freeHeap()); printf_P(PSTR("Available heap: %u Bytes\r\n"), freeHeap());
} }
HEAPnext_time = millis() + 10000; HEAPnext_time = millis() + 10000;
} }
TCCR3B = 0; TCCR3B = 0;
#else #endif
// Arm suffers here, oh well... #if defined(CORE_TEENSY)
// Teensy suffers here, oh well...
serialEvent(); serialEvent();
#endif #endif
// Horrid! This sort of thing really belongs in an ISR, not here! // Horrid! This sort of thing really belongs in an ISR, not here!
// We also will be needing to test each hub port, we don't do this yet! // We also will be needing to test each hub port, we don't do this yet!
if (!change && !usbon && millis() >= usbon_time) { if(!change && !usbon && (long)(millis() - usbon_time) >= 0L) {
change = true; change = true;
usbon = true; usbon = true;
} }
if (change) { if(change) {
change = false; change = false;
if (usbon) { if(usbon) {
Usb.vbusPower(vbus_on); Usb.vbusPower(vbus_on);
printf_P(PSTR("VBUS on\r\n")); printf_P(PSTR("VBUS on\r\n"));
} else { } else {
@ -436,21 +422,21 @@ void loop() {
} }
Usb.Task(); Usb.Task();
current_state = Usb.getUsbTaskState(); current_state = Usb.getUsbTaskState();
if (current_state != last_state) { if(current_state != last_state) {
if (UsbDEBUGlvl > 0x50) if(UsbDEBUGlvl > 0x50)
printf_P(PSTR("USB state = %x\r\n"), current_state); printf_P(PSTR("USB state = %x\r\n"), current_state);
#if defined(AVR) #if !defined(CORE_TEENSY) && defined(__AVR__)
if (current_state == USB_STATE_RUNNING) { if(current_state == USB_STATE_RUNNING) {
fadeAmount = 30; fadeAmount = 30;
} }
#endif #endif
if (current_state == USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE) { if(current_state == USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE) {
#if defined(AVR) #if !defined(CORE_TEENSY) && defined(__AVR__)
fadeAmount = 80; fadeAmount = 80;
#endif #endif
partsready = false; partsready = false;
for (int i = 0; i < cpart; i++) { for(int i = 0; i < cpart; i++) {
if (Fats[i] != NULL) if(Fats[i] != NULL)
delete Fats[i]; delete Fats[i];
Fats[i] = NULL; Fats[i] = NULL;
} }
@ -462,48 +448,48 @@ void loop() {
} }
// only do any of this if usb is on // only do any of this if usb is on
if (usbon) { if(usbon) {
if (partsready && !fatready) { if(partsready && !fatready) {
if (cpart > 0) fatready = true; if(cpart > 0) fatready = true;
} }
// This is horrible, and needs to be moved elsewhere! // This is horrible, and needs to be moved elsewhere!
for (int B = 0; B < MAX_USB_MS_DRIVERS; B++) { for(int B = 0; B < MAX_USB_MS_DRIVERS; B++) {
if (!partsready && (Bulk[B]->GetAddress() != NULL)) { if(!partsready && (UHS_USB_BulkOnly[B]->GetAddress() != NULL)) {
// Build a list. // Build a list.
int ML = Bulk[B]->GetbMaxLUN(); int ML = UHS_USB_BulkOnly[B]->GetbMaxLUN();
//printf("MAXLUN = %i\r\n", ML); //printf("MAXLUN = %i\r\n", ML);
ML++; ML++;
for (int i = 0; i < ML; i++) { for(int i = 0; i < ML; i++) {
if (Bulk[B]->LUNIsGood(i)) { if(UHS_USB_BulkOnly[B]->LUNIsGood(i)) {
partsready = true; partsready = true;
((pvt_t *)(sto[i].private_data))->lun = i; ((pvt_t *)(sto[i].private_data))->lun = i;
((pvt_t *)(sto[i].private_data))->B = B; ((pvt_t *)(sto[i].private_data))->B = B;
sto[i].Read = *PRead; sto[i].Reads = *UHS_USB_BulkOnly_Read;
sto[i].Write = *PWrite; sto[i].Writes = *UHS_USB_BulkOnly_Write;
sto[i].Reads = *PReads; sto[i].Status = *UHS_USB_BulkOnly_Status;
sto[i].Writes = *PWrites; sto[i].Initialize = *UHS_USB_BulkOnly_Initialize;
sto[i].Status = *PStatus; sto[i].Commit = *UHS_USB_BulkOnly_Commit;
sto[i].TotalSectors = Bulk[B]->GetCapacity(i); sto[i].TotalSectors = UHS_USB_BulkOnly[B]->GetCapacity(i);
sto[i].SectorSize = Bulk[B]->GetSectorSize(i); sto[i].SectorSize = UHS_USB_BulkOnly[B]->GetSectorSize(i);
printf_P(PSTR("LUN:\t\t%u\r\n"), i); printf_P(PSTR("LUN:\t\t%u\r\n"), i);
printf_P(PSTR("Total Sectors:\t%08lx\t%lu\r\n"), sto[i].TotalSectors, sto[i].TotalSectors); printf_P(PSTR("Total Sectors:\t%08lx\t%lu\r\n"), sto[i].TotalSectors, sto[i].TotalSectors);
printf_P(PSTR("Sector Size:\t%04x\t\t%u\r\n"), sto[i].SectorSize, sto[i].SectorSize); printf_P(PSTR("Sector Size:\t%04x\t\t%u\r\n"), sto[i].SectorSize, sto[i].SectorSize);
// get the partition data... // get the partition data...
PT = new PCPartition; PT = new PCPartition;
if (!PT->Init(&sto[i])) { if(!PT->Init(&sto[i])) {
part_t *apart; part_t *apart;
for (int j = 0; j < 4; j++) { for(int j = 0; j < 4; j++) {
apart = PT->GetPart(j); apart = PT->GetPart(j);
if (apart != NULL && apart->type != 0x00) { if(apart != NULL && apart->type != 0x00) {
memcpy(&(parts[cpart]), apart, sizeof (part_t)); memcpy(&(parts[cpart]), apart, sizeof (part_t));
printf_P(PSTR("Partition %u type %#02x\r\n"), j, parts[cpart].type); printf_P(PSTR("Partition %u type %#02x\r\n"), j, parts[cpart].type);
// for now // for now
if (isfat(parts[cpart].type)) { if(isfat(parts[cpart].type)) {
Fats[cpart] = new PFAT(&sto[i], cpart, parts[cpart].firstSector); Fats[cpart] = new PFAT(&sto[i], cpart, parts[cpart].firstSector);
//int r = Fats[cpart]->Good(); //int r = Fats[cpart]->Good();
if (Fats[cpart]->Good()) { if(Fats[cpart]->MountStatus()) {
delete Fats[cpart]; delete Fats[cpart];
Fats[cpart] = NULL; Fats[cpart] = NULL;
} else cpart++; } else cpart++;
@ -514,7 +500,7 @@ void loop() {
// try superblock // try superblock
Fats[cpart] = new PFAT(&sto[i], cpart, 0); Fats[cpart] = new PFAT(&sto[i], cpart, 0);
//int r = Fats[cpart]->Good(); //int r = Fats[cpart]->Good();
if (Fats[cpart]->Good()) { if(Fats[cpart]->MountStatus()) {
//printf_P(PSTR("Superblock error %x\r\n"), r); //printf_P(PSTR("Superblock error %x\r\n"), r);
delete Fats[cpart]; delete Fats[cpart];
Fats[cpart] = NULL; Fats[cpart] = NULL;
@ -523,10 +509,9 @@ void loop() {
} }
delete PT; delete PT;
} else { } else {
sto[i].Read = NULL;
sto[i].Write = NULL;
sto[i].Writes = NULL; sto[i].Writes = NULL;
sto[i].Reads = NULL; sto[i].Reads = NULL;
sto[i].Initialize = NULL;
sto[i].TotalSectors = 0UL; sto[i].TotalSectors = 0UL;
sto[i].SectorSize = 0; sto[i].SectorSize = 0;
} }
@ -535,18 +520,18 @@ void loop() {
} }
} }
if (fatready) { if(fatready) {
if (Fats[0] != NULL) { if(Fats[0] != NULL) {
struct Pvt * p; struct Pvt * p;
p = ((struct Pvt *)(Fats[0]->storage->private_data)); p = ((struct Pvt *)(Fats[0]->storage->private_data));
if (!Bulk[p->B]->LUNIsGood(p->lun)) { if(!UHS_USB_BulkOnly[p->B]->LUNIsGood(p->lun)) {
// media change // media change
#if defined(AVR) #if !defined(CORE_TEENSY) && defined(__AVR__)
fadeAmount = 80; fadeAmount = 80;
#endif #endif
partsready = false; partsready = false;
for (int i = 0; i < cpart; i++) { for(int i = 0; i < cpart; i++) {
if (Fats[i] != NULL) if(Fats[i] != NULL)
delete Fats[i]; delete Fats[i];
Fats[cpart] = NULL; Fats[cpart] = NULL;
} }
@ -557,62 +542,64 @@ void loop() {
} }
} }
if (fatready) { if(fatready) {
FRESULT rc; /* Result code */ FRESULT rc; /* Result code */
UINT bw, br, i; UINT bw, br, i;
if(!notified) {
if (!notified) { #if !defined(CORE_TEENSY) && defined(__AVR__)
#if defined(AVR)
fadeAmount = 5; fadeAmount = 5;
#endif #endif
notified = true; notified = true;
FATFS *fs = NULL;
for(int zz = 0; zz < _VOLUMES; zz++) {
if(Fats[zz]->volmap == 0) fs = Fats[zz]->ffs;
}
printf_P(PSTR("\r\nOpen an existing file (message.txt).\r\n")); printf_P(PSTR("\r\nOpen an existing file (message.txt).\r\n"));
rc = f_open(&My_File_Object_x, "0:/MESSAGE.TXT", FA_READ); rc = f_open(&My_File_Object_x, "0:/MESSAGE.TXT", FA_READ);
if (rc) printf_P(PSTR("Error %i, message.txt not found.\r\n"), rc); if(rc) printf_P(PSTR("Error %i, message.txt not found.\r\n"), rc);
else { else {
printf_P(PSTR("\r\nType the file content.\r\n")); printf_P(PSTR("\r\nType the file content.\r\n"));
for (;;) { for(;;) {
rc = f_read(&My_File_Object_x, My_Buff_x, mbxs, &br); /* Read a chunk of file */ rc = f_read(&My_File_Object_x, My_Buff_x, mbxs, &br); /* Read a chunk of file */
if (rc || !br) break; /* Error or end of file */ if(rc || !br) break; /* Error or end of file */
for (i = 0; i < br; i++) { for(i = 0; i < br; i++) {
/* Type the data */ /* Type the data */
if (My_Buff_x[i] == '\n') if(My_Buff_x[i] == '\n')
Serial.write('\r'); Serial.write('\r');
if (My_Buff_x[i] != '\r') if(My_Buff_x[i] != '\r')
Serial.write(My_Buff_x[i]); Serial.write(My_Buff_x[i]);
Serial.flush(); Serial.flush();
} }
} }
if (rc) { if(rc) {
f_close(&My_File_Object_x); f_close(&My_File_Object_x);
goto out; goto out;
} }
printf_P(PSTR("\r\nClose the file.\r\n")); printf_P(PSTR("\r\nClose the file.\r\n"));
rc = f_close(&My_File_Object_x); rc = f_close(&My_File_Object_x);
if (rc) goto out; if(rc) goto out;
} }
printf_P(PSTR("\r\nCreate a new file (hello.txt).\r\n")); printf_P(PSTR("\r\nCreate a new file (hello.txt).\r\n"));
rc = f_open(&My_File_Object_x, "0:/Hello.TxT", FA_WRITE | FA_CREATE_ALWAYS); rc = f_open(&My_File_Object_x, "0:/Hello.TxT", FA_WRITE | FA_CREATE_ALWAYS);
if (rc) { if(rc) {
die(rc); die(rc);
goto outdir; goto outdir;
} }
printf_P(PSTR("\r\nWrite a text data. (Hello world!)\r\n")); printf_P(PSTR("\r\nWrite a text data. (Hello world!)\r\n"));
rc = f_write(&My_File_Object_x, "Hello world!\r\n", 14, &bw); rc = f_write(&My_File_Object_x, "Hello world!\r\n", 14, &bw);
if (rc) { if(rc) {
goto out; goto out;
} }
printf_P(PSTR("%u bytes written.\r\n"), bw); printf_P(PSTR("%u bytes written.\r\n"), bw);
printf_P(PSTR("\r\nClose the file.\r\n")); printf_P(PSTR("\r\nClose the file.\r\n"));
rc = f_close(&My_File_Object_x); rc = f_close(&My_File_Object_x);
if (rc) { if(rc) {
die(rc); die(rc);
goto out; goto out;
} }
outdir: outdir:{
{
#if _USE_LFN #if _USE_LFN
char lfn[_MAX_LFN + 1]; char lfn[_MAX_LFN + 1];
FILINFO My_File_Info_Object_x; /* File information object */ FILINFO My_File_Info_Object_x; /* File information object */
@ -621,55 +608,55 @@ outdir:
DIR My_Dir_Object_x; /* Directory object */ DIR My_Dir_Object_x; /* Directory object */
printf_P(PSTR("\r\nOpen root directory.\r\n")); printf_P(PSTR("\r\nOpen root directory.\r\n"));
rc = f_opendir(&My_Dir_Object_x, "0:/"); rc = f_opendir(&My_Dir_Object_x, "0:/");
if (rc) { if(rc) {
die(rc); die(rc);
goto out; goto out;
} }
printf_P(PSTR("\r\nDirectory listing...\r\n")); printf_P(PSTR("\r\nDirectory listing...\r\n"));
#if defined(AVR) #if defined(__AVR__)
printf_P(PSTR("Available heap: %u Bytes\r\n"), freeHeap()); printf_P(PSTR("Available heap: %u Bytes\r\n"), freeHeap());
#endif #endif
for (;;) { for(;;) {
#if _USE_LFN #if _USE_LFN
My_File_Info_Object_x.lfsize = _MAX_LFN; My_File_Info_Object_x.lfsize = _MAX_LFN;
#endif #endif
rc = f_readdir(&My_Dir_Object_x, &My_File_Info_Object_x); /* Read a directory item */ rc = f_readdir(&My_Dir_Object_x, &My_File_Info_Object_x); /* Read a directory item */
if (rc || !My_File_Info_Object_x.fname[0]) break; /* Error or end of dir */ if(rc || !My_File_Info_Object_x.fname[0]) break; /* Error or end of dir */
if (My_File_Info_Object_x.fattrib & AM_DIR) { if(My_File_Info_Object_x.fattrib & AM_DIR) {
Serial.write('d'); Serial.write('d');
} else { } else {
Serial.write('-'); Serial.write('-');
} }
Serial.write('r'); Serial.write('r');
if (My_File_Info_Object_x.fattrib & AM_RDO) { if(My_File_Info_Object_x.fattrib & AM_RDO) {
Serial.write('-'); Serial.write('-');
} else { } else {
Serial.write('w'); Serial.write('w');
} }
if (My_File_Info_Object_x.fattrib & AM_HID) { if(My_File_Info_Object_x.fattrib & AM_HID) {
Serial.write('h'); Serial.write('h');
} else { } else {
Serial.write('-'); Serial.write('-');
} }
if (My_File_Info_Object_x.fattrib & AM_SYS) { if(My_File_Info_Object_x.fattrib & AM_SYS) {
Serial.write('s'); Serial.write('s');
} else { } else {
Serial.write('-'); Serial.write('-');
} }
if (My_File_Info_Object_x.fattrib & AM_ARC) { if(My_File_Info_Object_x.fattrib & AM_ARC) {
Serial.write('a'); Serial.write('a');
} else { } else {
Serial.write('-'); Serial.write('-');
} }
#if _USE_LFN #if _USE_LFN
if (*My_File_Info_Object_x.lfname) if(*My_File_Info_Object_x.lfname)
printf_P(PSTR(" %8lu %s (%s)\r\n"), My_File_Info_Object_x.fsize, My_File_Info_Object_x.fname, My_File_Info_Object_x.lfname); printf_P(PSTR(" %8lu %s (%s)\r\n"), My_File_Info_Object_x.fsize, My_File_Info_Object_x.fname, My_File_Info_Object_x.lfname);
else else
#endif #endif
@ -677,48 +664,55 @@ outdir:
} }
} }
out: out:
if (rc) die(rc); if(rc) die(rc);
DISK_IOCTL(fs->drv, CTRL_COMMIT, 0);
printf_P(PSTR("\r\nTest completed.\r\n")); printf_P(PSTR("\r\nTest completed.\r\n"));
} }
if (runtest) { if(runtest) {
ULONG ii, wt, rt, start, end; ULONG ii, wt, rt, start, end;
FATFS *fs = NULL;
for(int zz = 0; zz < _VOLUMES; zz++) {
if(Fats[zz]->volmap == 0) fs = Fats[zz]->ffs;
}
runtest = false; runtest = false;
f_unlink("0:/10MB.bin"); f_unlink("0:/10MB.bin");
printf_P(PSTR("\r\nCreate a new 10MB test file (10MB.bin).\r\n")); printf_P(PSTR("\r\nCreate a new 10MB test file (10MB.bin).\r\n"));
rc = f_open(&My_File_Object_x, "0:/10MB.bin", FA_WRITE | FA_CREATE_ALWAYS); rc = f_open(&My_File_Object_x, "0:/10MB.bin", FA_WRITE | FA_CREATE_ALWAYS);
if (rc) goto failed; if(rc) goto failed;
for (bw = 0; bw < mbxs; bw++) My_Buff_x[bw] = bw & 0xff; for(bw = 0; bw < mbxs; bw++) My_Buff_x[bw] = bw & 0xff;
fflush(stdout); fflush(stdout);
start = millis(); start = millis();
while (start == millis()); while(start == millis());
for (ii = 10485760LU / mbxs; ii > 0LU; ii--) { for(ii = 10485760LU / mbxs; ii > 0LU; ii--) {
rc = f_write(&My_File_Object_x, My_Buff_x, mbxs, &bw); rc = f_write(&My_File_Object_x, My_Buff_x, mbxs, &bw);
if (rc || !bw) goto failed; if(rc || !bw) goto failed;
} }
rc = f_close(&My_File_Object_x); rc = f_close(&My_File_Object_x);
if (rc) goto failed; if(rc) goto failed;
end = millis(); end = millis();
wt = (end - start) - 1; wt = (end - start) - 1;
printf_P(PSTR("Time to write 10485760 bytes: %lu ms (%lu sec) \r\n"), wt, (500 + wt) / 1000UL); printf_P(PSTR("Time to write 10485760 bytes: %lu ms (%lu sec) \r\n"), wt, (500 + wt) / 1000UL);
rc = f_open(&My_File_Object_x, "0:/10MB.bin", FA_READ); rc = f_open(&My_File_Object_x, "0:/10MB.bin", FA_READ);
fflush(stdout); fflush(stdout);
start = millis(); start = millis();
while (start == millis()); while(start == millis());
if (rc) goto failed; if(rc) goto failed;
for (;;) { for(;;) {
rc = f_read(&My_File_Object_x, My_Buff_x, mbxs, &bw); /* Read a chunk of file */ rc = f_read(&My_File_Object_x, My_Buff_x, mbxs, &bw); /* Read a chunk of file */
if (rc || !bw) break; /* Error or end of file */ if(rc || !bw) break; /* Error or end of file */
} }
end = millis(); end = millis();
if (rc) goto failed; if(rc) goto failed;
rc = f_close(&My_File_Object_x); rc = f_close(&My_File_Object_x);
if (rc) goto failed; if(rc) goto failed;
rt = (end - start) - 1; rt = (end - start) - 1;
printf_P(PSTR("Time to read 10485760 bytes: %lu ms (%lu sec)\r\nDelete test file\r\n"), rt, (500 + rt) / 1000UL); printf_P(PSTR("Time to read 10485760 bytes: %lu ms (%lu sec)\r\nDelete test file\r\n"), rt, (500 + rt) / 1000UL);
failed: failed:
if (rc) die(rc); if(rc) die(rc);
DISK_IOCTL(fs->drv, CTRL_COMMIT, 0);
printf_P(PSTR("10MB timing test finished.\r\n")); printf_P(PSTR("10MB timing test finished.\r\n"));
} }
} }

View file

@ -41,7 +41,7 @@ public:
template <class BASE_CLASS, class LEN_TYPE, class OFFSET_TYPE> template <class BASE_CLASS, class LEN_TYPE, class OFFSET_TYPE>
void HexDumper<BASE_CLASS, LEN_TYPE, OFFSET_TYPE>::Parse(const LEN_TYPE len, const uint8_t *pbuf, const OFFSET_TYPE &offset) { void HexDumper<BASE_CLASS, LEN_TYPE, OFFSET_TYPE>::Parse(const LEN_TYPE len, const uint8_t *pbuf, const OFFSET_TYPE &offset) {
if(UsbDEBUGlvl >= 0x80) { // Fully bypass this block of code if we do not debug. if(UsbDEBUGlvl >= 0x80) { // Fully bypass this block of code if we do not debug.
for(LEN_TYPE j = 0; j < len; j++, byteCount++, byteTotal++) { for(LEN_TYPE j = 0; j < len; j++, byteCount++, byteTotal++) {
if(!byteCount) { if(!byteCount) {
PrintHex<OFFSET_TYPE > (byteTotal, 0x80); PrintHex<OFFSET_TYPE > (byteTotal, 0x80);
@ -58,4 +58,4 @@ void HexDumper<BASE_CLASS, LEN_TYPE, OFFSET_TYPE>::Parse(const LEN_TYPE len, con
} }
} }
#endif // __HEXDUMP_H__ #endif // __HEXDUMP_H__

30
hid.cpp
View file

@ -1,7 +1,25 @@
/* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Circuits At Home, LTD
Web : http://www.circuitsathome.com
e-mail : support@circuitsathome.com
*/
#include "hid.h" #include "hid.h"
//get HID report descriptor //get HID report descriptor
/* WRONG! Endpoint is _ALWAYS_ ZERO for HID! We want the _INTERFACE_ value here!
uint8_t HID::GetReportDescr(uint8_t ep, USBReadParser *parser) { uint8_t HID::GetReportDescr(uint8_t ep, USBReadParser *parser) {
const uint8_t constBufLen = 64; const uint8_t constBufLen = 64;
uint8_t buf[constBufLen]; uint8_t buf[constBufLen];
@ -12,6 +30,18 @@ uint8_t HID::GetReportDescr(uint8_t ep, USBReadParser *parser) {
//return ((rcode != hrSTALL) ? rcode : 0); //return ((rcode != hrSTALL) ? rcode : 0);
return rcode; return rcode;
} }
*/
uint8_t HID::GetReportDescr(uint16_t wIndex, USBReadParser *parser) {
const uint8_t constBufLen = 64;
uint8_t buf[constBufLen];
uint8_t rcode = pUsb->ctrlReq(bAddress, 0x00, bmREQ_HIDREPORT, USB_REQUEST_GET_DESCRIPTOR, 0x00,
HID_DESCRIPTOR_REPORT, wIndex, 128, constBufLen, buf, (USBReadParser*)parser);
//return ((rcode != hrSTALL) ? rcode : 0);
return rcode;
}
//uint8_t HID::getHidDescr( uint8_t ep, uint16_t nbytes, uint8_t* dataptr ) //uint8_t HID::getHidDescr( uint8_t ep, uint16_t nbytes, uint8_t* dataptr )
//{ //{
// return( pUsb->ctrlReq( bAddress, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, 0x00, HID_DESCRIPTOR_HID, 0x0000, nbytes, dataptr )); // return( pUsb->ctrlReq( bAddress, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, 0x00, HID_DESCRIPTOR_HID, 0x0000, nbytes, dataptr ));

152
hid.h
View file

@ -20,75 +20,101 @@ e-mail : support@circuitsathome.com
#include "Usb.h" #include "Usb.h"
#include "hidusagestr.h" #include "hidusagestr.h"
#define DATA_SIZE_MASK 0x03 #define MAX_REPORT_PARSERS 2
#define TYPE_MASK 0x0C #define HID_MAX_HID_CLASS_DESCRIPTORS 5
#define TAG_MASK 0xF0
#define DATA_SIZE_0 0x00 #define DATA_SIZE_MASK 0x03
#define DATA_SIZE_1 0x01 #define TYPE_MASK 0x0C
#define DATA_SIZE_2 0x02 #define TAG_MASK 0xF0
#define DATA_SIZE_4 0x03
#define TYPE_MAIN 0x00 #define DATA_SIZE_0 0x00
#define TYPE_GLOBAL 0x04 #define DATA_SIZE_1 0x01
#define TYPE_LOCAL 0x08 #define DATA_SIZE_2 0x02
#define DATA_SIZE_4 0x03
#define TAG_MAIN_INPUT 0x80 #define TYPE_MAIN 0x00
#define TAG_MAIN_OUTPUT 0x90 #define TYPE_GLOBAL 0x04
#define TAG_MAIN_COLLECTION 0xA0 #define TYPE_LOCAL 0x08
#define TAG_MAIN_FEATURE 0xB0
#define TAG_MAIN_ENDCOLLECTION 0xC0
#define TAG_GLOBAL_USAGEPAGE 0x00 #define TAG_MAIN_INPUT 0x80
#define TAG_GLOBAL_LOGICALMIN 0x10 #define TAG_MAIN_OUTPUT 0x90
#define TAG_GLOBAL_LOGICALMAX 0x20 #define TAG_MAIN_COLLECTION 0xA0
#define TAG_GLOBAL_PHYSMIN 0x30 #define TAG_MAIN_FEATURE 0xB0
#define TAG_GLOBAL_PHYSMAX 0x40 #define TAG_MAIN_ENDCOLLECTION 0xC0
#define TAG_GLOBAL_UNITEXP 0x50
#define TAG_GLOBAL_UNIT 0x60
#define TAG_GLOBAL_REPORTSIZE 0x70
#define TAG_GLOBAL_REPORTID 0x80
#define TAG_GLOBAL_REPORTCOUNT 0x90
#define TAG_GLOBAL_PUSH 0xA0
#define TAG_GLOBAL_POP 0xB0
#define TAG_LOCAL_USAGE 0x00 #define TAG_GLOBAL_USAGEPAGE 0x00
#define TAG_LOCAL_USAGEMIN 0x10 #define TAG_GLOBAL_LOGICALMIN 0x10
#define TAG_LOCAL_USAGEMAX 0x20 #define TAG_GLOBAL_LOGICALMAX 0x20
#define TAG_GLOBAL_PHYSMIN 0x30
#define TAG_GLOBAL_PHYSMAX 0x40
#define TAG_GLOBAL_UNITEXP 0x50
#define TAG_GLOBAL_UNIT 0x60
#define TAG_GLOBAL_REPORTSIZE 0x70
#define TAG_GLOBAL_REPORTID 0x80
#define TAG_GLOBAL_REPORTCOUNT 0x90
#define TAG_GLOBAL_PUSH 0xA0
#define TAG_GLOBAL_POP 0xB0
#define TAG_LOCAL_USAGE 0x00
#define TAG_LOCAL_USAGEMIN 0x10
#define TAG_LOCAL_USAGEMAX 0x20
/* HID requests */ /* HID requests */
#define bmREQ_HIDOUT USB_SETUP_HOST_TO_DEVICE|USB_SETUP_TYPE_CLASS|USB_SETUP_RECIPIENT_INTERFACE #define bmREQ_HIDOUT USB_SETUP_HOST_TO_DEVICE|USB_SETUP_TYPE_CLASS|USB_SETUP_RECIPIENT_INTERFACE
#define bmREQ_HIDIN USB_SETUP_DEVICE_TO_HOST|USB_SETUP_TYPE_CLASS|USB_SETUP_RECIPIENT_INTERFACE #define bmREQ_HIDIN USB_SETUP_DEVICE_TO_HOST|USB_SETUP_TYPE_CLASS|USB_SETUP_RECIPIENT_INTERFACE
#define bmREQ_HIDREPORT USB_SETUP_DEVICE_TO_HOST|USB_SETUP_TYPE_STANDARD|USB_SETUP_RECIPIENT_INTERFACE #define bmREQ_HIDREPORT USB_SETUP_DEVICE_TO_HOST|USB_SETUP_TYPE_STANDARD|USB_SETUP_RECIPIENT_INTERFACE
/* HID constants. Not part of chapter 9 */ /* HID constants. Not part of chapter 9 */
/* Class-Specific Requests */ /* Class-Specific Requests */
#define HID_REQUEST_GET_REPORT 0x01 #define HID_REQUEST_GET_REPORT 0x01
#define HID_REQUEST_GET_IDLE 0x02 #define HID_REQUEST_GET_IDLE 0x02
#define HID_REQUEST_GET_PROTOCOL 0x03 #define HID_REQUEST_GET_PROTOCOL 0x03
#define HID_REQUEST_SET_REPORT 0x09 #define HID_REQUEST_SET_REPORT 0x09
#define HID_REQUEST_SET_IDLE 0x0A #define HID_REQUEST_SET_IDLE 0x0A
#define HID_REQUEST_SET_PROTOCOL 0x0B #define HID_REQUEST_SET_PROTOCOL 0x0B
/* Class Descriptor Types */ /* Class Descriptor Types */
#define HID_DESCRIPTOR_HID 0x21 #define HID_DESCRIPTOR_HID 0x21
#define HID_DESCRIPTOR_REPORT 0x22 #define HID_DESCRIPTOR_REPORT 0x22
#define HID_DESRIPTOR_PHY 0x23 #define HID_DESRIPTOR_PHY 0x23
/* Protocol Selection */ /* Protocol Selection */
#define HID_BOOT_PROTOCOL 0x00 #define HID_BOOT_PROTOCOL 0x00
#define HID_RPT_PROTOCOL 0x01 #define HID_RPT_PROTOCOL 0x01
/* HID Interface Class Code */ /* HID Interface Class Code */
#define HID_INTF 0x03 #define HID_INTF 0x03
/* HID Interface Class SubClass Codes */ /* HID Interface Class SubClass Codes */
#define HID_BOOT_INTF_SUBCLASS 0x01 #define HID_BOOT_INTF_SUBCLASS 0x01
/* HID Interface Class Protocol Codes */ /* HID Interface Class Protocol Codes */
#define HID_PROTOCOL_NONE 0x00 #define HID_PROTOCOL_NONE 0x00
#define HID_PROTOCOL_KEYBOARD 0x01 #define HID_PROTOCOL_KEYBOARD 0x01
#define HID_PROTOCOL_MOUSE 0x02 #define HID_PROTOCOL_MOUSE 0x02
#define HID_ITEM_TYPE_MAIN 0
#define HID_ITEM_TYPE_GLOBAL 1
#define HID_ITEM_TYPE_LOCAL 2
#define HID_ITEM_TYPE_RESERVED 3
#define HID_LONG_ITEM_PREFIX 0xfe // Long item prefix value
#define bmHID_MAIN_ITEM_TAG 0xfc // Main item tag mask
#define bmHID_MAIN_ITEM_INPUT 0x80 // Main item Input tag value
#define bmHID_MAIN_ITEM_OUTPUT 0x90 // Main item Output tag value
#define bmHID_MAIN_ITEM_FEATURE 0xb0 // Main item Feature tag value
#define bmHID_MAIN_ITEM_COLLECTION 0xa0 // Main item Collection tag value
#define bmHID_MAIN_ITEM_END_COLLECTION 0xce // Main item End Collection tag value
#define HID_MAIN_ITEM_COLLECTION_PHYSICAL 0
#define HID_MAIN_ITEM_COLLECTION_APPLICATION 1
#define HID_MAIN_ITEM_COLLECTION_LOGICAL 2
#define HID_MAIN_ITEM_COLLECTION_REPORT 3
#define HID_MAIN_ITEM_COLLECTION_NAMED_ARRAY 4
#define HID_MAIN_ITEM_COLLECTION_USAGE_SWITCH 5
#define HID_MAIN_ITEM_COLLECTION_USAGE_MODIFIER 6
struct HidItemPrefix { struct HidItemPrefix {
uint8_t bSize : 2; uint8_t bSize : 2;
@ -96,29 +122,6 @@ struct HidItemPrefix {
uint8_t bTag : 4; uint8_t bTag : 4;
}; };
#define HID_ITEM_TYPE_MAIN 0
#define HID_ITEM_TYPE_GLOBAL 1
#define HID_ITEM_TYPE_LOCAL 2
#define HID_ITEM_TYPE_RESERVED 3
#define HID_LONG_ITEM_PREFIX 0xfe // Long item prefix value
#define bmHID_MAIN_ITEM_TAG 0xfc // Main item tag mask
#define bmHID_MAIN_ITEM_INPUT 0x80 // Main item Input tag value
#define bmHID_MAIN_ITEM_OUTPUT 0x90 // Main item Output tag value
#define bmHID_MAIN_ITEM_FEATURE 0xb0 // Main item Feature tag value
#define bmHID_MAIN_ITEM_COLLECTION 0xa0 // Main item Collection tag value
#define bmHID_MAIN_ITEM_END_COLLECTION 0xce // Main item End Collection tag value
#define HID_MAIN_ITEM_COLLECTION_PHYSICAL 0
#define HID_MAIN_ITEM_COLLECTION_APPLICATION 1
#define HID_MAIN_ITEM_COLLECTION_LOGICAL 2
#define HID_MAIN_ITEM_COLLECTION_REPORT 3
#define HID_MAIN_ITEM_COLLECTION_NAMED_ARRAY 4
#define HID_MAIN_ITEM_COLLECTION_USAGE_SWITCH 5
#define HID_MAIN_ITEM_COLLECTION_USAGE_MODIFIER 6
struct MainItemIOFeature { struct MainItemIOFeature {
uint8_t bmIsConstantOrData : 1; uint8_t bmIsConstantOrData : 1;
uint8_t bmIsArrayOrVariable : 1; uint8_t bmIsArrayOrVariable : 1;
@ -137,9 +140,6 @@ public:
virtual void Parse(HID *hid, bool is_rpt_id, uint8_t len, uint8_t *buf) = 0; virtual void Parse(HID *hid, bool is_rpt_id, uint8_t len, uint8_t *buf) = 0;
}; };
#define MAX_REPORT_PARSERS 2
#define HID_MAX_HID_CLASS_DESCRIPTORS 5
class HID : public USBDeviceConfig, public UsbConfigXtracter { class HID : public USBDeviceConfig, public UsbConfigXtracter {
protected: protected:
USB *pUsb; // USB class instance pointer USB *pUsb; // USB class instance pointer
@ -173,7 +173,7 @@ public:
uint8_t GetIdle(uint8_t iface, uint8_t reportID, uint8_t* dataptr); uint8_t GetIdle(uint8_t iface, uint8_t reportID, uint8_t* dataptr);
uint8_t SetIdle(uint8_t iface, uint8_t reportID, uint8_t duration); uint8_t SetIdle(uint8_t iface, uint8_t reportID, uint8_t duration);
uint8_t GetReportDescr(uint8_t ep, USBReadParser *parser = NULL); uint8_t GetReportDescr(uint16_t wIndex, USBReadParser *parser = NULL);
uint8_t GetHidDescr(uint8_t ep, uint16_t nbytes, uint8_t* dataptr); uint8_t GetHidDescr(uint8_t ep, uint16_t nbytes, uint8_t* dataptr);
uint8_t GetReport(uint8_t ep, uint8_t iface, uint8_t report_type, uint8_t report_id, uint16_t nbytes, uint8_t* dataptr); uint8_t GetReport(uint8_t ep, uint8_t iface, uint8_t report_type, uint8_t report_id, uint16_t nbytes, uint8_t* dataptr);

View file

@ -18,7 +18,10 @@ e-mail : support@circuitsathome.com
void MouseReportParser::Parse(HID *hid, bool is_rpt_id, uint8_t len, uint8_t *buf) { void MouseReportParser::Parse(HID *hid, bool is_rpt_id, uint8_t len, uint8_t *buf) {
MOUSEINFO *pmi = (MOUSEINFO*)buf; MOUSEINFO *pmi = (MOUSEINFO*)buf;
// Future:
// bool event;
#if 0
if (prevState.mouseInfo.bmLeftButton == 0 && pmi->bmLeftButton == 1) if (prevState.mouseInfo.bmLeftButton == 0 && pmi->bmLeftButton == 1)
OnLeftButtonDown(pmi); OnLeftButtonDown(pmi);
@ -43,6 +46,82 @@ void MouseReportParser::Parse(HID *hid, bool is_rpt_id, uint8_t len, uint8_t *bu
if (len > sizeof (MOUSEINFO)) if (len > sizeof (MOUSEINFO))
for (uint8_t i = 0; i<sizeof (MOUSEINFO); i++) for (uint8_t i = 0; i<sizeof (MOUSEINFO); i++)
prevState.bInfo[i] = buf[i]; prevState.bInfo[i] = buf[i];
#else
//
// Optimization idea:
//
// 1: Don't pass the structure on every event. Buttons would not need it.
// 2: Only pass x/y values in the movement routine.
//
// These two changes (with the ones I have made) will save extra flash.
// The only "bad" thing is that it could break old code.
//
// Future thoughts:
//
// The extra space gained can be used for a generic mouse event that can be called
// when there are _ANY_ changes. This one you _MAY_ want to pass everything, however the
// sketch could already have noted these facts to support drag/drop scroll wheel stuff, etc.
//
// Why do we need to pass the structure for buttons?
// The function call not enough of a hint for what is happening?
if(prevState.mouseInfo.bmLeftButton != pmi->bmLeftButton ) {
if(pmi->bmLeftButton) {
OnLeftButtonDown(pmi);
} else {
OnLeftButtonUp(pmi);
}
// Future:
// event = true;
}
if(prevState.mouseInfo.bmRightButton != pmi->bmRightButton) {
if(pmi->bmRightButton) {
OnRightButtonDown(pmi);
} else {
OnRightButtonUp(pmi);
}
// Future:
// event = true;
}
if(prevState.mouseInfo.bmMiddleButton != pmi->bmMiddleButton) {
if(pmi->bmMiddleButton) {
OnMiddleButtonDown(pmi);
} else {
OnMiddleButtonUp(pmi);
}
// Future:
// event = true;
}
//
// Scroll wheel(s), are not part of the spec, but we could support it.
// Logitech wireless keyboard and mouse combo reports scroll wheel in byte 4
// We wouldn't even need to save this information.
//if(len > 3) {
//}
//
// Mice only report motion when they actually move!
// Why not just pass the x/y values to simplify things??
if(pmi->dX || pmi->dY) {
OnMouseMove(pmi);
// Future:
// event = true;
}
//
// Future:
// Provide a callback that operates on the gathered events from above.
//
// if(event) OnMouse();
//
// Only the first byte matters (buttons). We do NOT need to save position info.
prevState.bInfo[0] = buf[0];
#endif
}; };
void KeyboardReportParser::Parse(HID *hid, bool is_rpt_id, uint8_t len, uint8_t *buf) { void KeyboardReportParser::Parse(HID *hid, bool is_rpt_id, uint8_t len, uint8_t *buf) {
@ -52,11 +131,11 @@ void KeyboardReportParser::Parse(HID *hid, bool is_rpt_id, uint8_t len, uint8_t
//KBDINFO *pki = (KBDINFO*)buf; //KBDINFO *pki = (KBDINFO*)buf;
// provide event for changed control key state // provide event for changed control key state
if (prevState.bInfo[0x00] != buf[0x00]) { if (prevState.bInfo[0x00] != buf[0x00]) {
OnControlKeysChanged(prevState.bInfo[0x00], buf[0x00]); OnControlKeysChanged(prevState.bInfo[0x00], buf[0x00]);
} }
for (uint8_t i = 2; i < 8; i++) { for (uint8_t i = 2; i < 8; i++) {
bool down = false; bool down = false;
bool up = false; bool up = false;
@ -82,13 +161,13 @@ uint8_t KeyboardReportParser::HandleLockingKeys(HID *hid, uint8_t key) {
uint8_t old_keys = kbdLockingKeys.bLeds; uint8_t old_keys = kbdLockingKeys.bLeds;
switch (key) { switch (key) {
case KEY_NUM_LOCK: case UHS_HID_BOOT_KEY_NUM_LOCK:
kbdLockingKeys.kbdLeds.bmNumLock = ~kbdLockingKeys.kbdLeds.bmNumLock; kbdLockingKeys.kbdLeds.bmNumLock = ~kbdLockingKeys.kbdLeds.bmNumLock;
break; break;
case KEY_CAPS_LOCK: case UHS_HID_BOOT_KEY_CAPS_LOCK:
kbdLockingKeys.kbdLeds.bmCapsLock = ~kbdLockingKeys.kbdLeds.bmCapsLock; kbdLockingKeys.kbdLeds.bmCapsLock = ~kbdLockingKeys.kbdLeds.bmCapsLock;
break; break;
case KEY_SCROLL_LOCK: case UHS_HID_BOOT_KEY_SCROLL_LOCK:
kbdLockingKeys.kbdLeds.bmScrollLock = ~kbdLockingKeys.kbdLeds.bmScrollLock; kbdLockingKeys.kbdLeds.bmScrollLock = ~kbdLockingKeys.kbdLeds.bmScrollLock;
break; break;
} }
@ -99,16 +178,16 @@ uint8_t KeyboardReportParser::HandleLockingKeys(HID *hid, uint8_t key) {
return 0; return 0;
} }
const uint8_t KeyboardReportParser::numKeys[] PROGMEM = {'!', '@', '#', '$', '%', '^', '&', '*', '(', ')'}; const uint8_t KeyboardReportParser::numKeys[10] PROGMEM = {'!', '@', '#', '$', '%', '^', '&', '*', '(', ')'};
const uint8_t KeyboardReportParser::symKeysUp[] PROGMEM = {'_', '+', '{', '}', '|', '~', ':', '"', '~', '<', '>', '?'}; const uint8_t KeyboardReportParser::symKeysUp[12] PROGMEM = {'_', '+', '{', '}', '|', '~', ':', '"', '~', '<', '>', '?'};
const uint8_t KeyboardReportParser::symKeysLo[] PROGMEM = {'-', '=', '[', ']', '\\', ' ', ';', '\'', '`', ',', '.', '/'}; const uint8_t KeyboardReportParser::symKeysLo[12] PROGMEM = {'-', '=', '[', ']', '\\', ' ', ';', '\'', '`', ',', '.', '/'};
const uint8_t KeyboardReportParser::padKeys[] PROGMEM = {'/', '*', '-', '+', 0x13}; const uint8_t KeyboardReportParser::padKeys[5] PROGMEM = {'/', '*', '-', '+', 0x13};
uint8_t KeyboardReportParser::OemToAscii(uint8_t mod, uint8_t key) { uint8_t KeyboardReportParser::OemToAscii(uint8_t mod, uint8_t key) {
uint8_t shift = (mod & 0x22); uint8_t shift = (mod & 0x22);
// [a-z] // [a-z]
if (key > 0x03 && key < 0x1e) { if (VALUE_WITHIN(key, 0x04, 0x1d)) {
// Upper case letters // Upper case letters
if ((kbdLockingKeys.kbdLeds.bmCapsLock == 0 && (mod & 2)) || if ((kbdLockingKeys.kbdLeds.bmCapsLock == 0 && (mod & 2)) ||
(kbdLockingKeys.kbdLeds.bmCapsLock == 1 && (mod & 2) == 0)) (kbdLockingKeys.kbdLeds.bmCapsLock == 1 && (mod & 2) == 0))
@ -118,26 +197,25 @@ uint8_t KeyboardReportParser::OemToAscii(uint8_t mod, uint8_t key) {
else else
return (key - 4 + 'a'); return (key - 4 + 'a');
}// Numbers }// Numbers
else if (key > 0x1d && key < 0x27) { else if (VALUE_WITHIN(key, 0x1e, 0x27)) {
if (shift) if (shift)
return ((uint8_t)pgm_read_byte(&numKeys[key - 0x1e])); return ((uint8_t)pgm_read_byte(&getNumKeys()[key - 0x1e]));
else else
return (key - 0x1e + '1'); return ((key == UHS_HID_BOOT_KEY_ZERO) ? '0' : key - 0x1e + '1');
}// Keypad Numbers }// Keypad Numbers
else if (key > 0x58 && key < 0x62) { else if(VALUE_WITHIN(key, 0x59, 0x61)) {
if (kbdLockingKeys.kbdLeds.bmNumLock == 1) if(kbdLockingKeys.kbdLeds.bmNumLock == 1)
return (key - 0x59 + '1'); return (key - 0x59 + '1');
} else if (key > 0x2c && key < 0x39) } else if(VALUE_WITHIN(key, 0x2d, 0x38))
return ((shift) ? (uint8_t)pgm_read_byte(&symKeysUp[key - 0x2d]) : (uint8_t)pgm_read_byte(&symKeysLo[key - 0x2d])); return ((shift) ? (uint8_t)pgm_read_byte(&getSymKeysUp()[key - 0x2d]) : (uint8_t)pgm_read_byte(&getSymKeysLo()[key - 0x2d]));
else if (key > 0x53 && key < 0x59) else if(VALUE_WITHIN(key, 0x54, 0x58))
return (uint8_t)pgm_read_byte(&padKeys[key - 0x54]); return (uint8_t)pgm_read_byte(&getPadKeys()[key - 0x54]);
else { else {
switch (key) { switch(key) {
case KEY_SPACE: return (0x20); case UHS_HID_BOOT_KEY_SPACE: return (0x20);
case KEY_ENTER: return (0x13); case UHS_HID_BOOT_KEY_ENTER: return (0x13);
case KEY_ZERO: return ((shift) ? ')': '0'); case UHS_HID_BOOT_KEY_ZERO2: return ((kbdLockingKeys.kbdLeds.bmNumLock == 1) ? '0': 0);
case KEY_ZERO2: return ((kbdLockingKeys.kbdLeds.bmNumLock == 1) ? '0': 0); case UHS_HID_BOOT_KEY_PERIOD: return ((kbdLockingKeys.kbdLeds.bmNumLock == 1) ? '.': 0);
case KEY_PERIOD: return ((kbdLockingKeys.kbdLeds.bmNumLock == 1) ? '.': 0);
} }
} }
return ( 0); return ( 0);

304
hidboot.h
View file

@ -19,11 +19,22 @@ e-mail : support@circuitsathome.com
#include "hid.h" #include "hid.h"
#define KEY_SPACE 0x2c #define UHS_HID_BOOT_KEY_ZERO 0x27
#define KEY_ZERO 0x27 #define UHS_HID_BOOT_KEY_ENTER 0x28
#define KEY_ZERO2 0x62 #define UHS_HID_BOOT_KEY_SPACE 0x2c
#define KEY_ENTER 0x28 #define UHS_HID_BOOT_KEY_CAPS_LOCK 0x39
#define KEY_PERIOD 0x63 #define UHS_HID_BOOT_KEY_SCROLL_LOCK 0x47
#define UHS_HID_BOOT_KEY_NUM_LOCK 0x53
#define UHS_HID_BOOT_KEY_ZERO2 0x62
#define UHS_HID_BOOT_KEY_PERIOD 0x63
// Don't worry, GCC will optimize the result to a final value.
#define bitsEndpoints(p) ((((p) & HID_PROTOCOL_KEYBOARD)? 2 : 0) | (((p) & HID_PROTOCOL_MOUSE)? 1 : 0))
#define totalEndpoints(p) ((bitsEndpoints(p) == 3) ? 3 : 2)
#define epMUL(p) ((((p) & HID_PROTOCOL_KEYBOARD)? 1 : 0) + (((p) & HID_PROTOCOL_MOUSE)? 1 : 0))
// Already defined in hid.h
// #define HID_MAX_HID_CLASS_DESCRIPTORS 5
struct MOUSEINFO { struct MOUSEINFO {
@ -31,7 +42,7 @@ struct MOUSEINFO {
uint8_t bmLeftButton : 1; uint8_t bmLeftButton : 1;
uint8_t bmRightButton : 1; uint8_t bmRightButton : 1;
uint8_t bmMiddleButton : 1; uint8_t bmMiddleButton : 1;
uint8_t bmDummy : 1; uint8_t bmDummy : 5;
}; };
int8_t dX; int8_t dX;
int8_t dY; int8_t dY;
@ -41,7 +52,7 @@ class MouseReportParser : public HIDReportParser {
union { union {
MOUSEINFO mouseInfo; MOUSEINFO mouseInfo;
uint8_t bInfo[sizeof(MOUSEINFO)]; uint8_t bInfo[sizeof (MOUSEINFO)];
} prevState; } prevState;
public: public:
@ -107,21 +118,17 @@ struct KBDLEDS {
uint8_t bmReserved : 3; uint8_t bmReserved : 3;
}; };
#define KEY_NUM_LOCK 0x53
#define KEY_CAPS_LOCK 0x39
#define KEY_SCROLL_LOCK 0x47
class KeyboardReportParser : public HIDReportParser { class KeyboardReportParser : public HIDReportParser {
static const uint8_t numKeys[]; static const uint8_t numKeys[10];
static const uint8_t symKeysUp[]; static const uint8_t symKeysUp[12];
static const uint8_t symKeysLo[]; static const uint8_t symKeysLo[12];
static const uint8_t padKeys[]; static const uint8_t padKeys[5];
protected: protected:
union { union {
KBDINFO kbdInfo; KBDINFO kbdInfo;
uint8_t bInfo[sizeof(KBDINFO)]; uint8_t bInfo[sizeof (KBDINFO)];
} prevState; } prevState;
union { union {
@ -150,17 +157,29 @@ protected:
virtual void OnKeyUp(uint8_t mod, uint8_t key) { virtual void OnKeyUp(uint8_t mod, uint8_t key) {
}; };
};
#define totalEndpoints (((BOOT_PROTOCOL & HID_PROTOCOL_KEYBOARD)? 2 : 0)+((BOOT_PROTOCOL & HID_PROTOCOL_MOUSE)? 1 : 0)) virtual const uint8_t *getNumKeys() {
#define epMUL (((BOOT_PROTOCOL & HID_PROTOCOL_KEYBOARD)? 1 : 0)+((BOOT_PROTOCOL & HID_PROTOCOL_MOUSE)? 1 : 0)) return numKeys;
#define HID_MAX_HID_CLASS_DESCRIPTORS 5 };
virtual const uint8_t *getSymKeysUp() {
return symKeysUp;
};
virtual const uint8_t *getSymKeysLo() {
return symKeysLo;
};
virtual const uint8_t *getPadKeys() {
return padKeys;
};
};
template <const uint8_t BOOT_PROTOCOL> template <const uint8_t BOOT_PROTOCOL>
class HIDBoot : public HID //public USBDeviceConfig, public UsbConfigXtracter class HIDBoot : public HID //public USBDeviceConfig, public UsbConfigXtracter
{ {
EpInfo epInfo[totalEndpoints]; EpInfo epInfo[totalEndpoints(BOOT_PROTOCOL)];
HIDReportParser *pRptParser[epMUL]; HIDReportParser *pRptParser[epMUL(BOOT_PROTOCOL)];
uint8_t bConfNum; // configuration number uint8_t bConfNum; // configuration number
uint8_t bIfaceNum; // Interface Number uint8_t bIfaceNum; // Interface Number
@ -168,6 +187,7 @@ class HIDBoot : public HID //public USBDeviceConfig, public UsbConfigXtracter
uint8_t bNumEP; // total number of EP in the configuration uint8_t bNumEP; // total number of EP in the configuration
uint32_t qNextPollTime; // next poll time uint32_t qNextPollTime; // next poll time
bool bPollEnable; // poll enable flag bool bPollEnable; // poll enable flag
uint8_t bInterval; // largest interval
void Initialize(); void Initialize();
@ -203,7 +223,7 @@ qNextPollTime(0),
bPollEnable(false) { bPollEnable(false) {
Initialize(); Initialize();
for(uint8_t i = 0; i < epMUL; i++) { for(int i = 0; i < epMUL(BOOT_PROTOCOL); i++) {
pRptParser[i] = NULL; pRptParser[i] = NULL;
} }
if(pUsb) if(pUsb)
@ -212,7 +232,7 @@ bPollEnable(false) {
template <const uint8_t BOOT_PROTOCOL> template <const uint8_t BOOT_PROTOCOL>
void HIDBoot<BOOT_PROTOCOL>::Initialize() { void HIDBoot<BOOT_PROTOCOL>::Initialize() {
for(uint8_t i = 0; i < totalEndpoints; i++) { for(int i = 0; i < totalEndpoints(BOOT_PROTOCOL); i++) {
epInfo[i].epAddr = 0; epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0; epInfo[i].epAttribs = 0;
@ -225,7 +245,7 @@ void HIDBoot<BOOT_PROTOCOL>::Initialize() {
template <const uint8_t BOOT_PROTOCOL> template <const uint8_t BOOT_PROTOCOL>
uint8_t HIDBoot<BOOT_PROTOCOL>::Init(uint8_t parent, uint8_t port, bool lowspeed) { uint8_t HIDBoot<BOOT_PROTOCOL>::Init(uint8_t parent, uint8_t port, bool lowspeed) {
const uint8_t constBufSize = sizeof(USB_DEVICE_DESCRIPTOR); const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR);
uint8_t buf[constBufSize]; uint8_t buf[constBufSize];
uint8_t rcode; uint8_t rcode;
@ -240,10 +260,13 @@ uint8_t HIDBoot<BOOT_PROTOCOL>::Init(uint8_t parent, uint8_t port, bool lowspeed
AddressPool &addrPool = pUsb->GetAddressPool(); AddressPool &addrPool = pUsb->GetAddressPool();
USBTRACE("BM Init\r\n"); USBTRACE("BM Init\r\n");
//USBTRACE2("totalEndpoints:", (uint8_t) (totalEndpoints(BOOT_PROTOCOL)));
//USBTRACE2("epMUL:", epMUL(BOOT_PROTOCOL));
if(bAddress) if(bAddress)
return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE; return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;
bInterval = 0;
// Get pointer to pseudo device with address 0 assigned // Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0); p = addrPool.GetUsbDevicePtr(0);
@ -264,7 +287,7 @@ uint8_t HIDBoot<BOOT_PROTOCOL>::Init(uint8_t parent, uint8_t port, bool lowspeed
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
// Get device descriptor // Get device descriptor
rcode = pUsb->getDevDescr(0, 0, 8, (uint8_t*) buf); rcode = pUsb->getDevDescr(0, 0, 8, (uint8_t*)buf);
if(!rcode) if(!rcode)
len = (buf[0] > constBufSize) ? constBufSize : buf[0]; len = (buf[0] > constBufSize) ? constBufSize : buf[0];
@ -286,7 +309,7 @@ uint8_t HIDBoot<BOOT_PROTOCOL>::Init(uint8_t parent, uint8_t port, bool lowspeed
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from the device descriptor // Extract Max Packet Size from the device descriptor
epInfo[0].maxPktSize = (uint8_t) ((USB_DEVICE_DESCRIPTOR*) buf)->bMaxPacketSize0; epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0;
// Assign new address to the device // Assign new address to the device
rcode = pUsb->setAddr(0, 0, bAddress); rcode = pUsb->setAddr(0, 0, bAddress);
@ -298,6 +321,7 @@ uint8_t HIDBoot<BOOT_PROTOCOL>::Init(uint8_t parent, uint8_t port, bool lowspeed
USBTRACE2("setAddr:", rcode); USBTRACE2("setAddr:", rcode);
return rcode; return rcode;
} }
//delay(2); //per USB 2.0 sect.9.2.6.3
USBTRACE2("Addr:", bAddress); USBTRACE2("Addr:", bAddress);
@ -311,63 +335,76 @@ uint8_t HIDBoot<BOOT_PROTOCOL>::Init(uint8_t parent, uint8_t port, bool lowspeed
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
if(len) if(len)
rcode = pUsb->getDevDescr(bAddress, 0, len, (uint8_t*) buf); rcode = pUsb->getDevDescr(bAddress, 0, len, (uint8_t*)buf);
if(rcode) if(rcode)
goto FailGetDevDescr; goto FailGetDevDescr;
num_of_conf = ((USB_DEVICE_DESCRIPTOR*) buf)->bNumConfigurations; num_of_conf = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations;
// Assign epInfo to epinfo pointer USBTRACE2("NC:", num_of_conf);
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if(rcode)
goto FailSetDevTblEntry;
//USBTRACE2("NC:", num_of_conf);
// GCC will optimize unused stuff away. // GCC will optimize unused stuff away.
if(BOOT_PROTOCOL & HID_PROTOCOL_KEYBOARD) { if((BOOT_PROTOCOL & (HID_PROTOCOL_KEYBOARD | HID_PROTOCOL_MOUSE)) == (HID_PROTOCOL_KEYBOARD | HID_PROTOCOL_MOUSE)) {
USBTRACE("HID_PROTOCOL_KEYBOARD AND MOUSE\r\n");
ConfigDescParser<
USB_CLASS_HID,
HID_BOOT_INTF_SUBCLASS,
HID_PROTOCOL_KEYBOARD | HID_PROTOCOL_MOUSE,
CP_MASK_COMPARE_ALL > confDescrParser(this);
confDescrParser.SetOR(); // Use the OR variant.
for(uint8_t i = 0; i < num_of_conf; i++) { for(uint8_t i = 0; i < num_of_conf; i++) {
ConfigDescParser< pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
USB_CLASS_HID, if(bNumEP == (uint8_t)(totalEndpoints(BOOT_PROTOCOL)))
HID_BOOT_INTF_SUBCLASS,
HID_PROTOCOL_KEYBOARD,
CP_MASK_COMPARE_ALL> confDescrParserA(this);
if(bNumEP == totalEndpoints)
break; break;
pUsb->getConfDescr(bAddress, 0, i, &confDescrParserA); }
} else {
// GCC will optimize unused stuff away.
if(BOOT_PROTOCOL & HID_PROTOCOL_KEYBOARD) {
USBTRACE("HID_PROTOCOL_KEYBOARD\r\n");
for(uint8_t i = 0; i < num_of_conf; i++) {
ConfigDescParser<
USB_CLASS_HID,
HID_BOOT_INTF_SUBCLASS,
HID_PROTOCOL_KEYBOARD,
CP_MASK_COMPARE_ALL> confDescrParserA(this);
pUsb->getConfDescr(bAddress, 0, i, &confDescrParserA);
if(bNumEP == (uint8_t)(totalEndpoints(BOOT_PROTOCOL)))
break;
}
}
// GCC will optimize unused stuff away.
if(BOOT_PROTOCOL & HID_PROTOCOL_MOUSE) {
USBTRACE("HID_PROTOCOL_MOUSE\r\n");
for(uint8_t i = 0; i < num_of_conf; i++) {
ConfigDescParser<
USB_CLASS_HID,
HID_BOOT_INTF_SUBCLASS,
HID_PROTOCOL_MOUSE,
CP_MASK_COMPARE_ALL> confDescrParserB(this);
pUsb->getConfDescr(bAddress, 0, i, &confDescrParserB);
if(bNumEP == ((uint8_t)(totalEndpoints(BOOT_PROTOCOL))))
break;
}
} }
} }
USBTRACE2("bNumEP:", bNumEP);
// GCC will optimize unused stuff away. if(bNumEP != (uint8_t)(totalEndpoints(BOOT_PROTOCOL))) {
if(BOOT_PROTOCOL & HID_PROTOCOL_MOUSE) {
for(uint8_t i = 0; i < num_of_conf; i++) {
ConfigDescParser<
USB_CLASS_HID,
HID_BOOT_INTF_SUBCLASS,
HID_PROTOCOL_MOUSE,
CP_MASK_COMPARE_ALL> confDescrParserB(this);
if(bNumEP == totalEndpoints)
break;
pUsb->getConfDescr(bAddress, 0, i, &confDescrParserB);
}
}
USBTRACE2("\r\nbAddr:", bAddress);
USBTRACE2("\r\nbNumEP:", bNumEP);
USBTRACE2("\r\ntotalEndpoints:", totalEndpoints);
if(bNumEP != totalEndpoints) {
rcode = USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; rcode = USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;
goto Fail; goto Fail;
} }
// Assign epInfo to epinfo pointer // Assign epInfo to epinfo pointer
rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo);
//USBTRACE2("setEpInfoEntry returned ", rcode);
USBTRACE2("Cnf:", bConfNum);
USBTRACE2("\r\nCnf:", bConfNum); delay(1000);
// Set Configuration Value // Set Configuration Value
rcode = pUsb->setConf(bAddress, 0, bConfNum); rcode = pUsb->setConf(bAddress, 0, bConfNum);
@ -375,19 +412,38 @@ uint8_t HIDBoot<BOOT_PROTOCOL>::Init(uint8_t parent, uint8_t port, bool lowspeed
if(rcode) if(rcode)
goto FailSetConfDescr; goto FailSetConfDescr;
USBTRACE2("\r\nIf:", bIfaceNum); delay(1000);
rcode = SetProtocol(bIfaceNum, HID_BOOT_PROTOCOL); USBTRACE2("bIfaceNum:", bIfaceNum);
USBTRACE2("bNumIface:", bNumIface);
if(rcode) // Yes, mouse wants SetProtocol and SetIdle too!
goto FailSetProtocol; for(uint8_t i = 0; i < epMUL(BOOT_PROTOCOL); i++) {
USBTRACE2("\r\nInterface:", i);
rcode = SetProtocol(i, HID_BOOT_PROTOCOL);
if(rcode) goto FailSetProtocol;
USBTRACE2("PROTOCOL SET HID_BOOT rcode:", rcode);
rcode = SetIdle(i, 0, 0);
USBTRACE2("SET_IDLE rcode:", rcode);
// if(rcode) goto FailSetIdle; This can fail.
// Get the RPIPE and just throw it away.
SinkParser<USBReadParser, uint16_t, uint16_t> sink;
rcode = GetReportDescr(i, &sink);
USBTRACE2("RPIPE rcode:", rcode);
}
// Get RPIPE and throw it away.
// GCC will optimize unused stuff away.
if(BOOT_PROTOCOL & HID_PROTOCOL_KEYBOARD) { if(BOOT_PROTOCOL & HID_PROTOCOL_KEYBOARD) {
rcode = SetIdle(0/* bIfaceNum*/, 0, 0); // Wake keyboard interface by twinkling up to 5 LEDs that are in the spec.
// kana, compose, scroll, caps, num
if(rcode) rcode = 0x20; // Reuse rcode.
goto FailSetIdle; while(rcode) {
rcode >>= 1;
// Ignore any error returned, we don't care if LED is not supported
SetReport(0, 0, 2, 0, 1, &rcode); // Eventually becomes zero (All off)
delay(25);
}
} }
USBTRACE("BM configured\r\n"); USBTRACE("BM configured\r\n");
@ -400,17 +456,17 @@ FailGetDevDescr:
goto Fail; goto Fail;
#endif #endif
FailSetDevTblEntry: //FailSetDevTblEntry:
#ifdef DEBUG_USB_HOST //#ifdef DEBUG_USB_HOST
NotifyFailSetDevTblEntry(); // NotifyFailSetDevTblEntry();
goto Fail; // goto Fail;
#endif //#endif
FailGetConfDescr: //FailGetConfDescr:
#ifdef DEBUG_USB_HOST //#ifdef DEBUG_USB_HOST
NotifyFailGetConfDescr(); // NotifyFailGetConfDescr();
goto Fail; // goto Fail;
#endif //#endif
FailSetConfDescr: FailSetConfDescr:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
@ -424,36 +480,39 @@ FailSetProtocol:
goto Fail; goto Fail;
#endif #endif
FailSetIdle: //FailSetIdle:
#ifdef DEBUG_USB_HOST //#ifdef DEBUG_USB_HOST
USBTRACE("SetIdle:"); // USBTRACE("SetIdle:");
#endif //#endif
Fail: Fail:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
NotifyFail(rcode); NotifyFail(rcode);
#endif #endif
Release(); Release();
return rcode; return rcode;
} }
template <const uint8_t BOOT_PROTOCOL> template <const uint8_t BOOT_PROTOCOL>
void HIDBoot<BOOT_PROTOCOL>::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *pep) { void HIDBoot<BOOT_PROTOCOL>::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *pep) {
// If the first configuration satisfies, the others are not considered. // If the first configuration satisfies, the others are not considered.
if(bNumEP > 1 && conf != bConfNum) //if(bNumEP > 1 && conf != bConfNum)
if(bNumEP == totalEndpoints(BOOT_PROTOCOL))
return; return;
bConfNum = conf; bConfNum = conf;
bIfaceNum = iface; bIfaceNum = iface;
if((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) { if((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) {
uint8_t index = bNumEP;//epInterruptInIndex; //+ bNumEP; if(pep->bInterval > bInterval) bInterval = pep->bInterval;
// Fill in the endpoint info structure // Fill in the endpoint info structure
epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F); epInfo[bNumEP].epAddr = (pep->bEndpointAddress & 0x0F);
epInfo[index].maxPktSize = (uint8_t) pep->wMaxPacketSize; epInfo[bNumEP].maxPktSize = (uint8_t)pep->wMaxPacketSize;
epInfo[index].epAttribs = 0; epInfo[bNumEP].epAttribs = 0;
epInfo[index].bmNakPower = USB_NAK_NOWAIT; epInfo[bNumEP].bmNakPower = USB_NAK_NOWAIT;
bNumEP++; bNumEP++;
} }
@ -469,6 +528,7 @@ uint8_t HIDBoot<BOOT_PROTOCOL>::Release() {
bAddress = 0; bAddress = 0;
qNextPollTime = 0; qNextPollTime = 0;
bPollEnable = false; bPollEnable = false;
return 0; return 0;
} }
@ -476,40 +536,48 @@ template <const uint8_t BOOT_PROTOCOL>
uint8_t HIDBoot<BOOT_PROTOCOL>::Poll() { uint8_t HIDBoot<BOOT_PROTOCOL>::Poll() {
uint8_t rcode = 0; uint8_t rcode = 0;
if(!bPollEnable) if(bPollEnable && ((long)(millis() - qNextPollTime) >= 0L)) {
return 0;
if(qNextPollTime <= millis()) { // To-do: optimize manually, using the for loop only if needed.
qNextPollTime = millis() + 10; for(int i = 0; i < epMUL(BOOT_PROTOCOL); i++) {
const uint16_t const_buff_len = 16;
// To-do: optimize manually, getting rid of the loop
for(uint8_t i = 0; i < epMUL; i++) {
const uint8_t const_buff_len = 16;
uint8_t buf[const_buff_len]; uint8_t buf[const_buff_len];
USBTRACE3("(hidboot.h) i=", i, 0x81);
USBTRACE3("(hidboot.h) epInfo[epInterruptInIndex + i].epAddr=", epInfo[epInterruptInIndex + i].epAddr, 0x81);
USBTRACE3("(hidboot.h) epInfo[epInterruptInIndex + i].maxPktSize=", epInfo[epInterruptInIndex + i].maxPktSize, 0x81);
uint16_t read = (uint16_t)epInfo[epInterruptInIndex + i].maxPktSize;
uint16_t read = (uint16_t) epInfo[epInterruptInIndex + i].maxPktSize; rcode = pUsb->inTransfer(bAddress, epInfo[epInterruptInIndex + i].epAddr, &read, buf);
// SOME buggy dongles report extra keys (like sleep) using a 2 byte packet on the wrong endpoint.
uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[epInterruptInIndex + i].epAddr, &read, buf); // Since keyboard and mice must report at least 3 bytes, we ignore the extra data.
if(!rcode) { if(!rcode && read > 2) {
if(pRptParser[i]) if(pRptParser[i])
pRptParser[i]->Parse((HID*)this, 0, (uint8_t) read, buf); pRptParser[i]->Parse((HID*)this, 0, (uint8_t)read, buf);
#ifdef DEBUG_USB_HOST
#if 0 // Set this to 1 to print the incoming data // We really don't care about errors and anomalies unless we are debugging.
for (uint8_t i=0; i < read; i++) {
PrintHex<uint8_t > (buf[i], 0x80);
USB_HOST_SERIAL.write(' ');
}
if (read)
USB_HOST_SERIAL.println();
#endif
} else { } else {
if(rcode != hrNAK) { if(rcode != hrNAK) {
USBTRACE2("Poll:", rcode); USBTRACE3("(hidboot.h) Poll:", rcode, 0x81);
break; }
if(!rcode && read) {
USBTRACE3("(hidboot.h) Strange read count: ", read, 0x80);
USBTRACE3("(hidboot.h) Interface:", i, 0x80);
} }
} }
if(!rcode && read && (UsbDEBUGlvl > 0x7f)) {
for(uint8_t i = 0; i < read; i++) {
PrintHex<uint8_t > (buf[i], 0x80);
USBTRACE1(" ", 0x80);
}
if(read)
USBTRACE1("\r\n", 0x80);
#endif
}
} }
qNextPollTime = millis() + bInterval;
} }
return rcode; return rcode;
} }

View file

@ -1,3 +1,20 @@
/* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Circuits At Home, LTD
Web : http://www.circuitsathome.com
e-mail : support@circuitsathome.com
*/
#include "hidescriptorparser.h" #include "hidescriptorparser.h"
const char * const ReportDescParserBase::usagePageTitles0[] PROGMEM = { const char * const ReportDescParserBase::usagePageTitles0[] PROGMEM = {
@ -980,7 +997,7 @@ void ReportDescParserBase::Parse(const uint16_t len, const uint8_t *pbuf, const
totalSize = 0; totalSize = 0;
while (cntdn) { while(cntdn) {
//USB_HOST_SERIAL.println(""); //USB_HOST_SERIAL.println("");
//PrintHex<uint16_t>(offset + len - cntdn); //PrintHex<uint16_t>(offset + len - cntdn);
//USB_HOST_SERIAL.print(":"); //USB_HOST_SERIAL.print(":");
@ -995,7 +1012,7 @@ void ReportDescParserBase::Parse(const uint16_t len, const uint8_t *pbuf, const
void ReportDescParserBase::PrintValue(uint8_t *p, uint8_t len) { void ReportDescParserBase::PrintValue(uint8_t *p, uint8_t len) {
E_Notify(PSTR("("), 0x80); E_Notify(PSTR("("), 0x80);
for (; len; p++, len--) for(; len; p++, len--)
PrintHex<uint8_t > (*p, 0x80); PrintHex<uint8_t > (*p, 0x80);
E_Notify(PSTR(")"), 0x80); E_Notify(PSTR(")"), 0x80);
} }
@ -1007,7 +1024,7 @@ void ReportDescParserBase::PrintByteValue(uint8_t data) {
} }
void ReportDescParserBase::PrintItemTitle(uint8_t prefix) { void ReportDescParserBase::PrintItemTitle(uint8_t prefix) {
switch (prefix & (TYPE_MASK | TAG_MASK)) { switch(prefix & (TYPE_MASK | TAG_MASK)) {
case (TYPE_GLOBAL | TAG_GLOBAL_PUSH): case (TYPE_GLOBAL | TAG_GLOBAL_PUSH):
E_Notify(PSTR("\r\nPush"), 0x80); E_Notify(PSTR("\r\nPush"), 0x80);
break; break;
@ -1073,10 +1090,10 @@ void ReportDescParserBase::PrintItemTitle(uint8_t prefix) {
uint8_t ReportDescParserBase::ParseItem(uint8_t **pp, uint16_t *pcntdn) { uint8_t ReportDescParserBase::ParseItem(uint8_t **pp, uint16_t *pcntdn) {
//uint8_t ret = enErrorSuccess; //uint8_t ret = enErrorSuccess;
//reinterpret_cast<>(varBuffer);
switch (itemParseState) { switch(itemParseState) {
case 0: case 0:
if (**pp == HID_LONG_ITEM_PREFIX) if(**pp == HID_LONG_ITEM_PREFIX)
USBTRACE("\r\nLONG\r\n"); USBTRACE("\r\nLONG\r\n");
else { else {
uint8_t size = ((**pp) & DATA_SIZE_MASK); uint8_t size = ((**pp) & DATA_SIZE_MASK);
@ -1091,10 +1108,10 @@ uint8_t ReportDescParserBase::ParseItem(uint8_t **pp, uint16_t *pcntdn) {
itemSize--; itemSize--;
itemParseState = 1; itemParseState = 1;
if (!itemSize) if(!itemSize)
break; break;
if (!pcntdn) if(!pcntdn)
return enErrorIncomplete; return enErrorIncomplete;
case 1: case 1:
//USBTRACE2("\r\niSz:",itemSize); //USBTRACE2("\r\niSz:",itemSize);
@ -1103,19 +1120,20 @@ uint8_t ReportDescParserBase::ParseItem(uint8_t **pp, uint16_t *pcntdn) {
valParser.Initialize(&theBuffer); valParser.Initialize(&theBuffer);
itemParseState = 2; itemParseState = 2;
case 2: case 2:
if (!valParser.Parse(pp, pcntdn)) if(!valParser.Parse(pp, pcntdn))
return enErrorIncomplete; return enErrorIncomplete;
itemParseState = 3; itemParseState = 3;
case 3: case 3:
{ {
uint8_t data = *((uint8_t*)varBuffer); uint8_t data = *((uint8_t*)varBuffer);
switch (itemPrefix & (TYPE_MASK | TAG_MASK)) { switch(itemPrefix & (TYPE_MASK | TAG_MASK)) {
case (TYPE_LOCAL | TAG_LOCAL_USAGE): case (TYPE_LOCAL | TAG_LOCAL_USAGE):
if (pfUsage) { if(pfUsage) {
if (theBuffer.valueSize > 1) if(theBuffer.valueSize > 1) {
pfUsage(*((uint16_t*)varBuffer)); uint16_t* ui16 = reinterpret_cast<uint16_t *>(varBuffer);
else pfUsage(*ui16);
} else
pfUsage(data); pfUsage(data);
} }
break; break;
@ -1148,7 +1166,7 @@ uint8_t ReportDescParserBase::ParseItem(uint8_t **pp, uint16_t *pcntdn) {
break; break;
case (TYPE_MAIN | TAG_MAIN_COLLECTION): case (TYPE_MAIN | TAG_MAIN_COLLECTION):
case (TYPE_MAIN | TAG_MAIN_ENDCOLLECTION): case (TYPE_MAIN | TAG_MAIN_ENDCOLLECTION):
switch (data) { switch(data) {
case 0x00: case 0x00:
E_Notify(PSTR(" Physical"), 0x80); E_Notify(PSTR(" Physical"), 0x80);
break; break;
@ -1215,18 +1233,23 @@ ReportDescParserBase::UsagePageFunc ReportDescParserBase::usagePageFunctions[] /
void ReportDescParserBase::SetUsagePage(uint16_t page) { void ReportDescParserBase::SetUsagePage(uint16_t page) {
pfUsage = NULL; pfUsage = NULL;
if (page > 0x00 && page < 0x11) if(VALUE_BETWEEN(page, 0x00, 0x11))
pfUsage = /*(UsagePageFunc)pgm_read_pointer*/(usagePageFunctions[page - 1]); pfUsage = (usagePageFunctions[page - 1]);
// Dead code...
//
// pfUsage = (UsagePageFunc)pgm_read_pointer(usagePageFunctions[page - 1]);
//else if (page > 0x7f && page < 0x84) //else if (page > 0x7f && page < 0x84)
// E_Notify(pstrUsagePageMonitor); // E_Notify(pstrUsagePageMonitor);
//else if (page > 0x83 && page < 0x8c) //else if (page > 0x83 && page < 0x8c)
// E_Notify(pstrUsagePagePower); // E_Notify(pstrUsagePagePower);
//else if (page > 0x8b && page < 0x92) //else if (page > 0x8b && page < 0x92)
// E_Notify((char*)pgm_read_pointer(&usagePageTitles1[page - 0x8c])); // E_Notify((char*)pgm_read_pointer(&usagePageTitles1[page - 0x8c]));
//else if (page > 0xfeff && page <= 0xffff) //else if (page > 0xfeff && page <= 0xffff)
// E_Notify(pstrUsagePageVendorDefined); // E_Notify(pstrUsagePageVendorDefined);
//
else else
switch (page) { switch(page) {
case 0x14: case 0x14:
pfUsage = &ReportDescParserBase::PrintAlphanumDisplayPageUsage; pfUsage = &ReportDescParserBase::PrintAlphanumDisplayPageUsage;
break; break;
@ -1237,20 +1260,19 @@ void ReportDescParserBase::SetUsagePage(uint16_t page) {
} }
void ReportDescParserBase::PrintUsagePage(uint16_t page) { void ReportDescParserBase::PrintUsagePage(uint16_t page) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (page > 0x00 && page < 0x11) output_if_between(page, 0x00, 0x11, w, E_Notify, usagePageTitles0, 0x80)
E_Notify((char*)pgm_read_pointer(&usagePageTitles0[page - 1]), 0x80); else output_if_between(page, 0x8b, 0x92, w, E_Notify, usagePageTitles1, 0x80)
else if (page > 0x7f && page < 0x84) else if(VALUE_BETWEEN(page, 0x7f, 0x84))
E_Notify(pstrUsagePageMonitor, 0x80); E_Notify(pstrUsagePageMonitor, 0x80);
else if (page > 0x83 && page < 0x8c) else if(VALUE_BETWEEN(page, 0x83, 0x8c))
E_Notify(pstrUsagePagePower, 0x80); E_Notify(pstrUsagePagePower, 0x80);
else if (page > 0x8b && page < 0x92) else if(page > 0xfeff /* && page <= 0xffff */)
E_Notify((char*)pgm_read_pointer(&usagePageTitles1[page - 0x8c]), 0x80);
else if (page > 0xfeff && page <= 0xffff)
E_Notify(pstrUsagePageVendorDefined, 0x80); E_Notify(pstrUsagePageVendorDefined, 0x80);
else else
switch (page) { switch(page) {
case 0x14: case 0x14:
E_Notify(pstrUsagePageAlphaNumericDisplay, 0x80); E_Notify(pstrUsagePageAlphaNumericDisplay, 0x80);
break; break;
@ -1280,197 +1302,147 @@ void ReportDescParserBase::PrintOrdinalPageUsage(uint16_t usage) {
} }
void ReportDescParserBase::PrintGenericDesktopPageUsage(uint16_t usage) { void ReportDescParserBase::PrintGenericDesktopPageUsage(uint16_t usage) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (usage > 0x00 && usage < 0x0a) output_if_between(usage, 0x00, 0x0a, w, E_Notify, genDesktopTitles0, 0x80)
E_Notify((char*)pgm_read_pointer(&genDesktopTitles0[usage - 1]), 0x80); else output_if_between(usage, 0x2f, 0x49, w, E_Notify, genDesktopTitles1, 0x80)
else if (usage > 0x2f && usage < 0x49) else output_if_between(usage, 0x7f, 0x94, w, E_Notify, genDesktopTitles2, 0x80)
E_Notify((char*)pgm_read_pointer(&genDesktopTitles1[usage - 0x30]), 0x80); else output_if_between(usage, 0x9f, 0xa9, w, E_Notify, genDesktopTitles3, 0x80)
else if (usage > 0x7f && usage < 0x94) else output_if_between(usage, 0xaf, 0xb8, w, E_Notify, genDesktopTitles4, 0x80)
E_Notify((char*)pgm_read_pointer(&genDesktopTitles2[usage - 0x80]), 0x80); else E_Notify(pstrUsagePageUndefined, 0x80);
else if (usage > 0x9f && usage < 0xa9)
E_Notify((char*)pgm_read_pointer(&genDesktopTitles3[usage - 0xa0]), 0x80);
else if (usage > 0xaf && usage < 0xb8)
E_Notify((char*)pgm_read_pointer(&genDesktopTitles4[usage - 0xb0]), 0x80);
else
E_Notify(pstrUsagePageUndefined, 0x80);
} }
void ReportDescParserBase::PrintSimulationControlsPageUsage(uint16_t usage) { void ReportDescParserBase::PrintSimulationControlsPageUsage(uint16_t usage) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (usage > 0x00 && usage < 0x0d) output_if_between(usage, 0x00, 0x0d, w, E_Notify, simuTitles0, 0x80)
E_Notify((char*)pgm_read_pointer(&simuTitles0[usage - 1]), 0x80); else output_if_between(usage, 0x1f, 0x26, w, E_Notify, simuTitles1, 0x80)
else if (usage > 0x1f && usage < 0x26) else output_if_between(usage, 0xaf, 0xd1, w, E_Notify, simuTitles2, 0x80)
E_Notify((char*)pgm_read_pointer(&simuTitles1[usage - 0x20]), 0x80); else E_Notify(pstrUsagePageUndefined, 0x80);
else if (usage > 0xaf && usage < 0xd1)
E_Notify((char*)pgm_read_pointer(&simuTitles2[usage - 0xb0]), 0x80);
else
E_Notify(pstrUsagePageUndefined, 0x80);
} }
void ReportDescParserBase::PrintVRControlsPageUsage(uint16_t usage) { void ReportDescParserBase::PrintVRControlsPageUsage(uint16_t usage) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (usage > 0x00 && usage < 0x0b) output_if_between(usage, 0x00, 0x0b, w, E_Notify, vrTitles0, 0x80)
E_Notify((char*)pgm_read_pointer(&vrTitles0[usage - 1]), 0x80); else output_if_between(usage, 0x1f, 0x22, w, E_Notify, vrTitles1, 0x80)
else if (usage > 0x1f && usage < 0x22) else E_Notify(pstrUsagePageUndefined, 0x80);
E_Notify((char*)pgm_read_pointer(&vrTitles1[usage - 0x20]), 0x80);
else
E_Notify(pstrUsagePageUndefined, 0x80);
} }
void ReportDescParserBase::PrintSportsControlsPageUsage(uint16_t usage) { void ReportDescParserBase::PrintSportsControlsPageUsage(uint16_t usage) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (usage > 0x00 && usage < 0x05) output_if_between(usage, 0x00, 0x05, w, E_Notify, sportsCtrlTitles0, 0x80)
E_Notify((char*)pgm_read_pointer(&sportsCtrlTitles0[usage - 1]), 0x80); else output_if_between(usage, 0x2f, 0x3a, w, E_Notify, sportsCtrlTitles1, 0x80)
else if (usage > 0x2f && usage < 0x3a) else output_if_between(usage, 0x4f, 0x64, w, E_Notify, sportsCtrlTitles2, 0x80)
E_Notify((char*)pgm_read_pointer(&sportsCtrlTitles1[usage - 0x30]), 0x80); else E_Notify(pstrUsagePageUndefined, 0x80);
else if (usage > 0x4f && usage < 0x64)
E_Notify((char*)pgm_read_pointer(&sportsCtrlTitles2[usage - 0x50]), 0x80);
else
E_Notify(pstrUsagePageUndefined, 0x80);
} }
void ReportDescParserBase::PrintGameControlsPageUsage(uint16_t usage) { void ReportDescParserBase::PrintGameControlsPageUsage(uint16_t usage) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (usage > 0x00 && usage < 0x04) output_if_between(usage, 0x00, 0x04, w, E_Notify, gameTitles0, 0x80)
E_Notify((char*)pgm_read_pointer(&gameTitles0[usage - 1]), 0x80); else output_if_between(usage, 0x1f, 0x3a, w, E_Notify, gameTitles1, 0x80)
else if (usage > 0x1f && usage < 0x3a) else E_Notify(pstrUsagePageUndefined, 0x80);
E_Notify((char*)pgm_read_pointer(&gameTitles1[usage - 0x20]), 0x80);
else
E_Notify(pstrUsagePageUndefined, 0x80);
} }
void ReportDescParserBase::PrintGenericDeviceControlsPageUsage(uint16_t usage) { void ReportDescParserBase::PrintGenericDeviceControlsPageUsage(uint16_t usage) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (usage > 0x1f && usage < 0x27) output_if_between(usage, 0x1f, 0x27, w, E_Notify, genDevCtrlTitles, 0x80)
E_Notify((char*)pgm_read_pointer(&genDevCtrlTitles[usage - 0x20]), 0x80); else E_Notify(pstrUsagePageUndefined, 0x80);
else
E_Notify(pstrUsagePageUndefined, 0x80);
} }
void ReportDescParserBase::PrintLEDPageUsage(uint16_t usage) { void ReportDescParserBase::PrintLEDPageUsage(uint16_t usage) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (usage > 0x00 && usage < 0x4e) output_if_between(usage, 0x00, 0x4e, w, E_Notify, ledTitles, 0x80)
E_Notify((char*)pgm_read_pointer(&ledTitles[usage - 1]), 0x80); else E_Notify(pstrUsagePageUndefined, 0x80);
else
E_Notify(pstrUsagePageUndefined, 0x80);
} }
void ReportDescParserBase::PrintTelephonyPageUsage(uint16_t usage) { void ReportDescParserBase::PrintTelephonyPageUsage(uint16_t usage) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (usage > 0x00 && usage < 0x08) output_if_between(usage, 0x00, 0x08, w, E_Notify, telTitles0, 0x80)
E_Notify((char*)pgm_read_pointer(&telTitles0[usage - 1]), 0x80); else output_if_between(usage, 0x1f, 0x32, w, E_Notify, telTitles1, 0x80)
else if (usage > 0x1f && usage < 0x32) else output_if_between(usage, 0x4f, 0x54, w, E_Notify, telTitles2, 0x80)
E_Notify((char*)pgm_read_pointer(&telTitles1[usage - 0x1f]), 0x80); else output_if_between(usage, 0x6f, 0x75, w, E_Notify, telTitles3, 0x80)
else if (usage > 0x4f && usage < 0x54) else output_if_between(usage, 0x8f, 0x9f, w, E_Notify, telTitles4, 0x80)
E_Notify((char*)pgm_read_pointer(&telTitles2[usage - 0x4f]), 0x80); else output_if_between(usage, 0xaf, 0xc0, w, E_Notify, telTitles5, 0x80)
else if (usage > 0x6f && usage < 0x75) else E_Notify(pstrUsagePageUndefined, 0x80);
E_Notify((char*)pgm_read_pointer(&telTitles3[usage - 0x6f]), 0x80);
else if (usage > 0x8f && usage < 0x9f)
E_Notify((char*)pgm_read_pointer(&telTitles4[usage - 0x8f]), 0x80);
else if (usage > 0xaf && usage < 0xc0)
E_Notify((char*)pgm_read_pointer(&telTitles5[usage - 0xaf]), 0x80);
else
E_Notify(pstrUsagePageUndefined, 0x80);
} }
void ReportDescParserBase::PrintConsumerPageUsage(uint16_t usage) { void ReportDescParserBase::PrintConsumerPageUsage(uint16_t usage) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (usage > 0x00 && usage < 0x07) output_if_between(usage, 0x00, 0x07, w, E_Notify, consTitles0, 0x80)
E_Notify((char*)pgm_read_pointer(&consTitles0[usage - 1]), 0x80); else output_if_between(usage, 0x1f, 0x23, w, E_Notify, consTitles1, 0x80)
else if (usage > 0x1f && usage < 0x23) else output_if_between(usage, 0x2f, 0x37, w, E_Notify, consTitles2, 0x80)
E_Notify((char*)pgm_read_pointer(&consTitles1[usage - 0x1f]), 0x80); else output_if_between(usage, 0x3f, 0x49, w, E_Notify, consTitles3, 0x80)
else if (usage > 0x2f && usage < 0x37) else output_if_between(usage, 0x5f, 0x67, w, E_Notify, consTitles4, 0x80)
E_Notify((char*)pgm_read_pointer(&consTitles2[usage - 0x2f]), 0x80); else output_if_between(usage, 0x7f, 0xa5, w, E_Notify, consTitles5, 0x80)
else if (usage > 0x3f && usage < 0x49) else output_if_between(usage, 0xaf, 0xcf, w, E_Notify, consTitles6, 0x80)
E_Notify((char*)pgm_read_pointer(&consTitles3[usage - 0x3f]), 0x80); else output_if_between(usage, 0xdf, 0xeb, w, E_Notify, consTitles7, 0x80)
else if (usage > 0x5f && usage < 0x67) else output_if_between(usage, 0xef, 0xf6, w, E_Notify, consTitles8, 0x80)
E_Notify((char*)pgm_read_pointer(&consTitles4[usage - 0x5f]), 0x80); else output_if_between(usage, 0xff, 0x10e, w, E_Notify, consTitles9, 0x80)
else if (usage > 0x7f && usage < 0xa5) else output_if_between(usage, 0x14f, 0x156, w, E_Notify, consTitlesA, 0x80)
E_Notify((char*)pgm_read_pointer(&consTitles5[usage - 0x7f]), 0x80); else output_if_between(usage, 0x15f, 0x16b, w, E_Notify, consTitlesB, 0x80)
else if (usage > 0xaf && usage < 0xcf) else output_if_between(usage, 0x16f, 0x175, w, E_Notify, consTitlesC, 0x80)
E_Notify((char*)pgm_read_pointer(&consTitles6[usage - 0xaf]), 0x80); else output_if_between(usage, 0x17f, 0x1c8, w, E_Notify, consTitlesD, 0x80)
else if (usage > 0xdf && usage < 0xeb) else output_if_between(usage, 0x1ff, 0x29d, w, E_Notify, consTitlesE, 0x80)
E_Notify((char*)pgm_read_pointer(&consTitles7[usage - 0xdf]), 0x80); else E_Notify(pstrUsagePageUndefined, 0x80);
else if (usage > 0xef && usage < 0xf6)
E_Notify((char*)pgm_read_pointer(&consTitles8[usage - 0xef]), 0x80);
else if (usage > 0xff && usage < 0x10e)
E_Notify((char*)pgm_read_pointer(&consTitles9[usage - 0xff]), 0x80);
else if (usage > 0x14f && usage < 0x156)
E_Notify((char*)pgm_read_pointer(&consTitlesA[usage - 0x14f]), 0x80);
else if (usage > 0x15f && usage < 0x16b)
E_Notify((char*)pgm_read_pointer(&consTitlesB[usage - 0x15f]), 0x80);
else if (usage > 0x16f && usage < 0x175)
E_Notify((char*)pgm_read_pointer(&consTitlesC[usage - 0x16f]), 0x80);
else if (usage > 0x17f && usage < 0x1c8)
E_Notify((char*)pgm_read_pointer(&consTitlesD[usage - 0x17f]), 0x80);
else if (usage > 0x1ff && usage < 0x29d)
E_Notify((char*)pgm_read_pointer(&consTitlesE[usage - 0x1ff]), 0x80);
else
E_Notify(pstrUsagePageUndefined, 0x80);
} }
void ReportDescParserBase::PrintDigitizerPageUsage(uint16_t usage) { void ReportDescParserBase::PrintDigitizerPageUsage(uint16_t usage) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (usage > 0x00 && usage < 0x0e) output_if_between(usage, 0x00, 0x0e, w, E_Notify, digitTitles0, 0x80)
E_Notify((char*)pgm_read_pointer(&digitTitles0[usage - 1]), 0x80); else output_if_between(usage, 0x1f, 0x23, w, E_Notify, digitTitles1, 0x80)
else if (usage > 0x1f && usage < 0x23) else output_if_between(usage, 0x2f, 0x47, w, E_Notify, digitTitles2, 0x80)
E_Notify((char*)pgm_read_pointer(&digitTitles1[usage - 0x1f]), 0x80); else E_Notify(pstrUsagePageUndefined, 0x80);
else if (usage > 0x2f && usage < 0x47)
E_Notify((char*)pgm_read_pointer(&digitTitles2[usage - 0x2f]), 0x80);
else
E_Notify(pstrUsagePageUndefined, 0x80);
} }
void ReportDescParserBase::PrintAlphanumDisplayPageUsage(uint16_t usage) { void ReportDescParserBase::PrintAlphanumDisplayPageUsage(uint16_t usage) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (usage > 0x00 && usage < 0x03) output_if_between(usage, 0x00, 0x03, w, E_Notify, aplphanumTitles0, 0x80)
E_Notify((char*)pgm_read_pointer(&aplphanumTitles0[usage - 1]), 0x80); else output_if_between(usage, 0x1f, 0x4e, w, E_Notify, aplphanumTitles1, 0x80)
else if (usage > 0x1f && usage < 0x4e) else output_if_between(usage, 0x7f, 0x96, w, E_Notify, digitTitles2, 0x80)
E_Notify((char*)pgm_read_pointer(&aplphanumTitles1[usage - 0x1f]), 0x80); else E_Notify(pstrUsagePageUndefined, 0x80);
else if (usage > 0x7f && usage < 0x96)
E_Notify((char*)pgm_read_pointer(&digitTitles2[usage - 0x80]), 0x80);
else
E_Notify(pstrUsagePageUndefined, 0x80);
} }
void ReportDescParserBase::PrintMedicalInstrumentPageUsage(uint16_t usage) { void ReportDescParserBase::PrintMedicalInstrumentPageUsage(uint16_t usage) {
const char * const * w;
E_Notify(pstrSpace, 0x80); E_Notify(pstrSpace, 0x80);
if (usage == 1) if(usage == 1) E_Notify(pstrUsageMedicalUltrasound, 0x80);
E_Notify(pstrUsageMedicalUltrasound, 0x80); else if(usage == 0x70)
else if (usage > 0x1f && usage < 0x28)
E_Notify((char*)pgm_read_pointer(&medInstrTitles0[usage - 0x1f]), 0x80);
else if (usage > 0x3f && usage < 0x45)
E_Notify((char*)pgm_read_pointer(&medInstrTitles1[usage - 0x40]), 0x80);
else if (usage > 0x5f && usage < 0x62)
E_Notify((char*)pgm_read_pointer(&medInstrTitles2[usage - 0x60]), 0x80);
else if (usage == 0x70)
E_Notify(pstrUsageDepthGainCompensation, 0x80); E_Notify(pstrUsageDepthGainCompensation, 0x80);
else if (usage > 0x7f && usage < 0x8a) else output_if_between(usage, 0x1f, 0x28, w, E_Notify, medInstrTitles0, 0x80)
E_Notify((char*)pgm_read_pointer(&medInstrTitles3[usage - 0x80]), 0x80); else output_if_between(usage, 0x3f, 0x45, w, E_Notify, medInstrTitles1, 0x80)
else if (usage > 0x9f && usage < 0xa2) else output_if_between(usage, 0x5f, 0x62, w, E_Notify, medInstrTitles2, 0x80)
E_Notify((char*)pgm_read_pointer(&medInstrTitles4[usage - 0xa0]), 0x80); else output_if_between(usage, 0x7f, 0x8a, w, E_Notify, medInstrTitles3, 0x80)
else else output_if_between(usage, 0x9f, 0xa2, w, E_Notify, medInstrTitles4, 0x80)
E_Notify(pstrUsagePageUndefined, 0x80); else E_Notify(pstrUsagePageUndefined, 0x80);
} }
uint8_t ReportDescParser2::ParseItem(uint8_t **pp, uint16_t *pcntdn) { uint8_t ReportDescParser2::ParseItem(uint8_t **pp, uint16_t *pcntdn) {
//uint8_t ret = enErrorSuccess; //uint8_t ret = enErrorSuccess;
switch (itemParseState) { switch(itemParseState) {
case 0: case 0:
if (**pp == HID_LONG_ITEM_PREFIX) if(**pp == HID_LONG_ITEM_PREFIX)
USBTRACE("\r\nLONG\r\n"); USBTRACE("\r\nLONG\r\n");
else { else {
uint8_t size = ((**pp) & DATA_SIZE_MASK); uint8_t size = ((**pp) & DATA_SIZE_MASK);
@ -1482,29 +1454,30 @@ uint8_t ReportDescParser2::ParseItem(uint8_t **pp, uint16_t *pcntdn) {
itemSize--; itemSize--;
itemParseState = 1; itemParseState = 1;
if (!itemSize) if(!itemSize)
break; break;
if (!pcntdn) if(!pcntdn)
return enErrorIncomplete; return enErrorIncomplete;
case 1: case 1:
theBuffer.valueSize = itemSize; theBuffer.valueSize = itemSize;
valParser.Initialize(&theBuffer); valParser.Initialize(&theBuffer);
itemParseState = 2; itemParseState = 2;
case 2: case 2:
if (!valParser.Parse(pp, pcntdn)) if(!valParser.Parse(pp, pcntdn))
return enErrorIncomplete; return enErrorIncomplete;
itemParseState = 3; itemParseState = 3;
case 3: case 3:
{ {
uint8_t data = *((uint8_t*)varBuffer); uint8_t data = *((uint8_t*)varBuffer);
switch (itemPrefix & (TYPE_MASK | TAG_MASK)) { switch(itemPrefix & (TYPE_MASK | TAG_MASK)) {
case (TYPE_LOCAL | TAG_LOCAL_USAGE): case (TYPE_LOCAL | TAG_LOCAL_USAGE):
if (pfUsage) { if(pfUsage) {
if (theBuffer.valueSize > 1) if(theBuffer.valueSize > 1) {
pfUsage(*((uint16_t*)varBuffer)); uint16_t* ui16 = reinterpret_cast<uint16_t *>(varBuffer);
else pfUsage(*ui16);
} else
pfUsage(data); pfUsage(data);
} }
break; break;
@ -1556,7 +1529,7 @@ void ReportDescParser2::OnInputItem(uint8_t itm) {
uint8_t bit_offset = totalSize - tmp; // number of bits in the current byte already handled uint8_t bit_offset = totalSize - tmp; // number of bits in the current byte already handled
uint8_t *p = pBuf + byte_offset; // current byte pointer uint8_t *p = pBuf + byte_offset; // current byte pointer
if (bit_offset) if(bit_offset)
*p >>= bit_offset; *p >>= bit_offset;
uint8_t usage = useMin; uint8_t usage = useMin;
@ -1566,7 +1539,7 @@ void ReportDescParser2::OnInputItem(uint8_t itm) {
uint8_t bits_of_byte = 8; uint8_t bits_of_byte = 8;
// for each field in field array defined by rptCount // for each field in field array defined by rptCount
for (uint8_t field = 0; field < rptCount; field++, usage++) { for(uint8_t field = 0; field < rptCount; field++, usage++) {
union { union {
uint8_t bResult[4]; uint8_t bResult[4];
@ -1577,7 +1550,7 @@ void ReportDescParser2::OnInputItem(uint8_t itm) {
result.dwResult = 0; result.dwResult = 0;
uint8_t mask = 0; uint8_t mask = 0;
if (print_usemin_usemax) if(print_usemin_usemax)
pfUsage(usage); pfUsage(usage);
// bits_left - number of bits in the field(array of fields, depending on Report Count) left to process // bits_left - number of bits in the field(array of fields, depending on Report Count) left to process
@ -1585,7 +1558,7 @@ void ReportDescParser2::OnInputItem(uint8_t itm) {
// bits_to_copy - number of bits to copy to result buffer // bits_to_copy - number of bits to copy to result buffer
// for each bit in a field // for each bit in a field
for (uint8_t bits_left = rptSize, bits_to_copy = 0; bits_left; for(uint8_t bits_left = rptSize, bits_to_copy = 0; bits_left;
bits_left -= bits_to_copy) { bits_left -= bits_to_copy) {
bits_to_copy = (bits_left > bits_of_byte) ? bits_of_byte : bits_left; bits_to_copy = (bits_left > bits_of_byte) ? bits_of_byte : bits_left;
@ -1597,7 +1570,7 @@ void ReportDescParser2::OnInputItem(uint8_t itm) {
mask = 0; mask = 0;
for (uint8_t j = bits_to_copy; j; j--) { for(uint8_t j = bits_to_copy; j; j--) {
mask <<= 1; mask <<= 1;
mask |= 1; mask |= 1;
} }
@ -1606,7 +1579,7 @@ void ReportDescParser2::OnInputItem(uint8_t itm) {
bits_of_byte -= bits_to_copy; bits_of_byte -= bits_to_copy;
if (bits_of_byte < 1) { if(bits_of_byte < 1) {
bits_of_byte = 8; bits_of_byte = 8;
p++; p++;
} }
@ -1621,6 +1594,6 @@ void UniversalReportParser::Parse(HID *hid, bool is_rpt_id, uint8_t len, uint8_t
uint8_t ret = hid->GetReportDescr(0, &prs); uint8_t ret = hid->GetReportDescr(0, &prs);
if (ret) if(ret)
ErrorMessage<uint8_t > (PSTR("GetReportDescr-2"), ret); ErrorMessage<uint8_t > (PSTR("GetReportDescr-2"), ret);
} }

View file

@ -101,7 +101,7 @@ protected:
MultiValueBuffer theBuffer; MultiValueBuffer theBuffer;
MultiByteValueParser valParser; MultiByteValueParser valParser;
ByteSkipper theSkipper; ByteSkipper theSkipper;
uint8_t varBuffer[sizeof(USB_CONFIGURATION_DESCRIPTOR)]; uint8_t varBuffer[sizeof (USB_CONFIGURATION_DESCRIPTOR)];
uint8_t itemParseState; // Item parser state variable uint8_t itemParseState; // Item parser state variable
uint8_t itemSize; // Item size uint8_t itemSize; // Item size

View file

@ -1,20 +1,38 @@
/* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Circuits At Home, LTD
Web : http://www.circuitsathome.com
e-mail : support@circuitsathome.com
*/
#include "hiduniversal.h" #include "hiduniversal.h"
HIDUniversal::HIDUniversal(USB *p) : HIDUniversal::HIDUniversal(USB *p) :
HID(p), HID(p),
qNextPollTime(0), qNextPollTime(0),
pollInterval(0),
bPollEnable(false), bPollEnable(false),
bHasReportId(false) { bHasReportId(false) {
Initialize(); Initialize();
if (pUsb) if(pUsb)
pUsb->RegisterDeviceClass(this); pUsb->RegisterDeviceClass(this);
} }
uint16_t HIDUniversal::GetHidClassDescrLen(uint8_t type, uint8_t num) { uint16_t HIDUniversal::GetHidClassDescrLen(uint8_t type, uint8_t num) {
for (uint8_t i = 0, n = 0; i < HID_MAX_HID_CLASS_DESCRIPTORS; i++) { for(uint8_t i = 0, n = 0; i < HID_MAX_HID_CLASS_DESCRIPTORS; i++) {
if (descrInfo[i].bDescrType == type) { if(descrInfo[i].bDescrType == type) {
if (n == num) if(n == num)
return descrInfo[i].wDescriptorLength; return descrInfo[i].wDescriptorLength;
n++; n++;
} }
@ -23,22 +41,22 @@ uint16_t HIDUniversal::GetHidClassDescrLen(uint8_t type, uint8_t num) {
} }
void HIDUniversal::Initialize() { void HIDUniversal::Initialize() {
for (uint8_t i = 0; i < MAX_REPORT_PARSERS; i++) { for(uint8_t i = 0; i < MAX_REPORT_PARSERS; i++) {
rptParsers[i].rptId = 0; rptParsers[i].rptId = 0;
rptParsers[i].rptParser = NULL; rptParsers[i].rptParser = NULL;
} }
for (uint8_t i = 0; i < HID_MAX_HID_CLASS_DESCRIPTORS; i++) { for(uint8_t i = 0; i < HID_MAX_HID_CLASS_DESCRIPTORS; i++) {
descrInfo[i].bDescrType = 0; descrInfo[i].bDescrType = 0;
descrInfo[i].wDescriptorLength = 0; descrInfo[i].wDescriptorLength = 0;
} }
for (uint8_t i = 0; i < maxHidInterfaces; i++) { for(uint8_t i = 0; i < maxHidInterfaces; i++) {
hidInterfaces[i].bmInterface = 0; hidInterfaces[i].bmInterface = 0;
hidInterfaces[i].bmProtocol = 0; hidInterfaces[i].bmProtocol = 0;
for (uint8_t j = 0; j < maxEpPerInterface; j++) for(uint8_t j = 0; j < maxEpPerInterface; j++)
hidInterfaces[i].epIndex[j] = 0; hidInterfaces[i].epIndex[j] = 0;
} }
for (uint8_t i = 0; i < totalEndpoints; i++) { for(uint8_t i = 0; i < totalEndpoints; i++) {
epInfo[i].epAddr = 0; epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0; epInfo[i].epAttribs = 0;
@ -47,13 +65,14 @@ void HIDUniversal::Initialize() {
bNumEP = 1; bNumEP = 1;
bNumIface = 0; bNumIface = 0;
bConfNum = 0; bConfNum = 0;
pollInterval = 0;
ZeroMemory(constBuffLen, prevBuf); ZeroMemory(constBuffLen, prevBuf);
} }
bool HIDUniversal::SetReportParser(uint8_t id, HIDReportParser *prs) { bool HIDUniversal::SetReportParser(uint8_t id, HIDReportParser *prs) {
for (uint8_t i = 0; i < MAX_REPORT_PARSERS; i++) { for(uint8_t i = 0; i < MAX_REPORT_PARSERS; i++) {
if (rptParsers[i].rptId == 0 && rptParsers[i].rptParser == NULL) { if(rptParsers[i].rptId == 0 && rptParsers[i].rptParser == NULL) {
rptParsers[i].rptId = id; rptParsers[i].rptId = id;
rptParsers[i].rptParser = prs; rptParsers[i].rptParser = prs;
return true; return true;
@ -63,11 +82,11 @@ bool HIDUniversal::SetReportParser(uint8_t id, HIDReportParser *prs) {
} }
HIDReportParser* HIDUniversal::GetReportParser(uint8_t id) { HIDReportParser* HIDUniversal::GetReportParser(uint8_t id) {
if (!bHasReportId) if(!bHasReportId)
return ((rptParsers[0].rptParser) ? rptParsers[0].rptParser : NULL); return ((rptParsers[0].rptParser) ? rptParsers[0].rptParser : NULL);
for (uint8_t i = 0; i < MAX_REPORT_PARSERS; i++) { for(uint8_t i = 0; i < MAX_REPORT_PARSERS; i++) {
if (rptParsers[i].rptId == id) if(rptParsers[i].rptId == id)
return rptParsers[i].rptParser; return rptParsers[i].rptParser;
} }
return NULL; return NULL;
@ -77,6 +96,7 @@ uint8_t HIDUniversal::Init(uint8_t parent, uint8_t port, bool lowspeed) {
const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR); const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR);
uint8_t buf[constBufSize]; uint8_t buf[constBufSize];
USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf);
uint8_t rcode; uint8_t rcode;
UsbDevice *p = NULL; UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL; EpInfo *oldep_ptr = NULL;
@ -89,16 +109,16 @@ uint8_t HIDUniversal::Init(uint8_t parent, uint8_t port, bool lowspeed) {
USBTRACE("HU Init\r\n"); USBTRACE("HU Init\r\n");
if (bAddress) if(bAddress)
return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE; return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;
// Get pointer to pseudo device with address 0 assigned // Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0); p = addrPool.GetUsbDevicePtr(0);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if (!p->epinfo) { if(!p->epinfo) {
USBTRACE("epinfo\r\n"); USBTRACE("epinfo\r\n");
return USB_ERROR_EPINFO_IS_NULL; return USB_ERROR_EPINFO_IS_NULL;
} }
@ -114,10 +134,10 @@ uint8_t HIDUniversal::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Get device descriptor // Get device descriptor
rcode = pUsb->getDevDescr(0, 0, 8, (uint8_t*)buf); rcode = pUsb->getDevDescr(0, 0, 8, (uint8_t*)buf);
if (!rcode) if(!rcode)
len = (buf[0] > constBufSize) ? constBufSize : buf[0]; len = (buf[0] > constBufSize) ? constBufSize : buf[0];
if (rcode) { if(rcode) {
// Restore p->epinfo // Restore p->epinfo
p->epinfo = oldep_ptr; p->epinfo = oldep_ptr;
@ -130,16 +150,16 @@ uint8_t HIDUniversal::Init(uint8_t parent, uint8_t port, bool lowspeed) {
// Allocate new address according to device class // Allocate new address according to device class
bAddress = addrPool.AllocAddress(parent, false, port); bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress) if(!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from the device descriptor // Extract Max Packet Size from the device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; epInfo[0].maxPktSize = udd->bMaxPacketSize0;
// Assign new address to the device // Assign new address to the device
rcode = pUsb->setAddr(0, 0, bAddress); rcode = pUsb->setAddr(0, 0, bAddress);
if (rcode) { if(rcode) {
p->lowspeed = false; p->lowspeed = false;
addrPool.FreeAddress(bAddress); addrPool.FreeAddress(bAddress);
bAddress = 0; bAddress = 0;
@ -147,7 +167,7 @@ uint8_t HIDUniversal::Init(uint8_t parent, uint8_t port, bool lowspeed) {
return rcode; return rcode;
} }
delay( 2 ); //per USB 2.0 sect.9.2.6.3 //delay(2); //per USB 2.0 sect.9.2.6.3
USBTRACE2("Addr:", bAddress); USBTRACE2("Addr:", bAddress);
@ -155,28 +175,31 @@ uint8_t HIDUniversal::Init(uint8_t parent, uint8_t port, bool lowspeed) {
p = addrPool.GetUsbDevicePtr(bAddress); p = addrPool.GetUsbDevicePtr(bAddress);
if (!p) if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed; p->lowspeed = lowspeed;
if (len) if(len)
rcode = pUsb->getDevDescr(bAddress, 0, len, (uint8_t*)buf); rcode = pUsb->getDevDescr(bAddress, 0, len, (uint8_t*)buf);
if (rcode) if(rcode)
goto FailGetDevDescr; goto FailGetDevDescr;
num_of_conf = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations; VID = udd->idVendor; // Can be used by classes that inherits this class to check the VID and PID of the connected device
PID = udd->idProduct;
num_of_conf = udd->bNumConfigurations;
// Assign epInfo to epinfo pointer // Assign epInfo to epinfo pointer
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode) if(rcode)
goto FailSetDevTblEntry; goto FailSetDevTblEntry;
USBTRACE2("NC:", num_of_conf); USBTRACE2("NC:", num_of_conf);
for (uint8_t i = 0; i < num_of_conf; i++) { for(uint8_t i = 0; i < num_of_conf; i++) {
//HexDumper<USBReadParser, uint16_t, uint16_t> HexDump; //HexDumper<USBReadParser, uint16_t, uint16_t> HexDump;
ConfigDescParser<USB_CLASS_HID, 0, 0, ConfigDescParser<USB_CLASS_HID, 0, 0,
CP_MASK_COMPARE_CLASS> confDescrParser(this); CP_MASK_COMPARE_CLASS> confDescrParser(this);
@ -184,34 +207,34 @@ uint8_t HIDUniversal::Init(uint8_t parent, uint8_t port, bool lowspeed) {
//rcode = pUsb->getConfDescr(bAddress, 0, i, &HexDump); //rcode = pUsb->getConfDescr(bAddress, 0, i, &HexDump);
rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser); rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
if (rcode) if(rcode)
goto FailGetConfDescr; goto FailGetConfDescr;
if (bNumEP > 1) if(bNumEP > 1)
break; break;
} // for } // for
if (bNumEP < 2) if(bNumEP < 2)
return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;
// Assign epInfo to epinfo pointer // Assign epInfo to epinfo pointer
rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo); rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo);
USBTRACE2("\r\nCnf:", bConfNum); USBTRACE2("Cnf:", bConfNum);
// Set Configuration Value // Set Configuration Value
rcode = pUsb->setConf(bAddress, 0, bConfNum); rcode = pUsb->setConf(bAddress, 0, bConfNum);
if (rcode) if(rcode)
goto FailSetConfDescr; goto FailSetConfDescr;
for (uint8_t i = 0; i < bNumIface; i++) { for(uint8_t i = 0; i < bNumIface; i++) {
if (hidInterfaces[i].epIndex[epInterruptInIndex] == 0) if(hidInterfaces[i].epIndex[epInterruptInIndex] == 0)
continue; continue;
rcode = SetIdle(hidInterfaces[i].bmInterface, 0, 0); rcode = SetIdle(hidInterfaces[i].bmInterface, 0, 0);
if (rcode && rcode != hrSTALL) if(rcode && rcode != hrSTALL)
goto FailSetIdle; goto FailSetIdle;
} }
@ -252,8 +275,8 @@ FailSetIdle:
USBTRACE("SetIdle:"); USBTRACE("SetIdle:");
#endif #endif
Fail:
#ifdef DEBUG_USB_HOST #ifdef DEBUG_USB_HOST
Fail:
NotifyFail(rcode); NotifyFail(rcode);
#endif #endif
Release(); Release();
@ -261,8 +284,8 @@ Fail:
} }
HIDUniversal::HIDInterface* HIDUniversal::FindInterface(uint8_t iface, uint8_t alt, uint8_t proto) { HIDUniversal::HIDInterface* HIDUniversal::FindInterface(uint8_t iface, uint8_t alt, uint8_t proto) {
for (uint8_t i = 0; i < bNumIface && i < maxHidInterfaces; i++) for(uint8_t i = 0; i < bNumIface && i < maxHidInterfaces; i++)
if (hidInterfaces[i].bmInterface == iface && hidInterfaces[i].bmAltSet == alt if(hidInterfaces[i].bmInterface == iface && hidInterfaces[i].bmAltSet == alt
&& hidInterfaces[i].bmProtocol == proto) && hidInterfaces[i].bmProtocol == proto)
return hidInterfaces + i; return hidInterfaces + i;
return NULL; return NULL;
@ -270,7 +293,7 @@ HIDUniversal::HIDInterface* HIDUniversal::FindInterface(uint8_t iface, uint8_t a
void HIDUniversal::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *pep) { void HIDUniversal::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *pep) {
// If the first configuration satisfies, the others are not concidered. // If the first configuration satisfies, the others are not concidered.
if (bNumEP > 1 && conf != bConfNum) if(bNumEP > 1 && conf != bConfNum)
return; return;
//ErrorMessage<uint8_t>(PSTR("\r\nConf.Val"), conf); //ErrorMessage<uint8_t>(PSTR("\r\nConf.Val"), conf);
@ -283,7 +306,7 @@ void HIDUniversal::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint
HIDInterface *piface = FindInterface(iface, alt, proto); HIDInterface *piface = FindInterface(iface, alt, proto);
// Fill in interface structure in case of new interface // Fill in interface structure in case of new interface
if (!piface) { if(!piface) {
piface = hidInterfaces + bNumIface; piface = hidInterfaces + bNumIface;
piface->bmInterface = iface; piface->bmInterface = iface;
piface->bmAltSet = alt; piface->bmAltSet = alt;
@ -291,12 +314,12 @@ void HIDUniversal::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint
bNumIface++; bNumIface++;
} }
if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) if((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80)
index = epInterruptInIndex; index = epInterruptInIndex;
else else
index = epInterruptOutIndex; index = epInterruptOutIndex;
if (index) { if(index) {
// Fill in the endpoint info structure // Fill in the endpoint info structure
epInfo[bNumEP].epAddr = (pep->bEndpointAddress & 0x0F); epInfo[bNumEP].epAddr = (pep->bEndpointAddress & 0x0F);
epInfo[bNumEP].maxPktSize = (uint8_t)pep->wMaxPacketSize; epInfo[bNumEP].maxPktSize = (uint8_t)pep->wMaxPacketSize;
@ -306,6 +329,9 @@ void HIDUniversal::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint
// Fill in the endpoint index list // Fill in the endpoint index list
piface->epIndex[index] = bNumEP; //(pep->bEndpointAddress & 0x0F); piface->epIndex[index] = bNumEP; //(pep->bEndpointAddress & 0x0F);
if(pollInterval < pep->bInterval) // Set the polling interval as the largest polling interval obtained from endpoints
pollInterval = pep->bInterval;
bNumEP++; bNumEP++;
} }
//PrintEndpointDescriptor(pep); //PrintEndpointDescriptor(pep);
@ -322,34 +348,34 @@ uint8_t HIDUniversal::Release() {
} }
bool HIDUniversal::BuffersIdentical(uint8_t len, uint8_t *buf1, uint8_t *buf2) { bool HIDUniversal::BuffersIdentical(uint8_t len, uint8_t *buf1, uint8_t *buf2) {
for (uint8_t i = 0; i < len; i++) for(uint8_t i = 0; i < len; i++)
if (buf1[i] != buf2[i]) if(buf1[i] != buf2[i])
return false; return false;
return true; return true;
} }
void HIDUniversal::ZeroMemory(uint8_t len, uint8_t *buf) { void HIDUniversal::ZeroMemory(uint8_t len, uint8_t *buf) {
for (uint8_t i = 0; i < len; i++) for(uint8_t i = 0; i < len; i++)
buf[i] = 0; buf[i] = 0;
} }
void HIDUniversal::SaveBuffer(uint8_t len, uint8_t *src, uint8_t *dest) { void HIDUniversal::SaveBuffer(uint8_t len, uint8_t *src, uint8_t *dest) {
for (uint8_t i = 0; i < len; i++) for(uint8_t i = 0; i < len; i++)
dest[i] = src[i]; dest[i] = src[i];
} }
uint8_t HIDUniversal::Poll() { uint8_t HIDUniversal::Poll() {
uint8_t rcode = 0; uint8_t rcode = 0;
if (!bPollEnable) if(!bPollEnable)
return 0; return 0;
if (qNextPollTime <= millis()) { if((long)(millis() - qNextPollTime) >= 0L) {
qNextPollTime = millis() + 50; qNextPollTime = millis() + pollInterval;
uint8_t buf[constBuffLen]; uint8_t buf[constBuffLen];
for (uint8_t i = 0; i < bNumIface; i++) { for(uint8_t i = 0; i < bNumIface; i++) {
uint8_t index = hidInterfaces[i].epIndex[epInterruptInIndex]; uint8_t index = hidInterfaces[i].epIndex[epInterruptInIndex];
uint16_t read = (uint16_t)epInfo[index].maxPktSize; uint16_t read = (uint16_t)epInfo[index].maxPktSize;
@ -357,32 +383,36 @@ uint8_t HIDUniversal::Poll() {
uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[index].epAddr, &read, buf); uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[index].epAddr, &read, buf);
if (rcode) { if(rcode) {
if (rcode != hrNAK) if(rcode != hrNAK)
USBTRACE2("Poll:", rcode); USBTRACE3("(hiduniversal.h) Poll:", rcode, 0x81);
return rcode; return rcode;
} }
if (read > constBuffLen) if(read > constBuffLen)
read = constBuffLen; read = constBuffLen;
bool identical = BuffersIdentical(read, buf, prevBuf); bool identical = BuffersIdentical(read, buf, prevBuf);
SaveBuffer(read, buf, prevBuf); SaveBuffer(read, buf, prevBuf);
if (identical) if(identical)
return 0; return 0;
#if 0
Notify(PSTR("\r\nBuf: "), 0x80); Notify(PSTR("\r\nBuf: "), 0x80);
for (uint8_t i = 0; i < read; i++) for(uint8_t i = 0; i < read; i++) {
D_PrintHex<uint8_t > (buf[i], 0x80); D_PrintHex<uint8_t > (buf[i], 0x80);
Notify(PSTR(" "), 0x80);
}
Notify(PSTR("\r\n"), 0x80); Notify(PSTR("\r\n"), 0x80);
#endif
ParseHIDData(this, bHasReportId, (uint8_t)read, buf);
HIDReportParser *prs = GetReportParser(((bHasReportId) ? *buf : 0)); HIDReportParser *prs = GetReportParser(((bHasReportId) ? *buf : 0));
if (prs) if(prs)
prs->Parse(this, bHasReportId, (uint8_t)read, buf); prs->Parse(this, bHasReportId, (uint8_t)read, buf);
} }
} }

View file

@ -1,3 +1,20 @@
/* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Circuits At Home, LTD
Web : http://www.circuitsathome.com
e-mail : support@circuitsathome.com
*/
#if !defined(__HIDUNIVERSAL_H__) #if !defined(__HIDUNIVERSAL_H__)
#define __HIDUNIVERSAL_H__ #define __HIDUNIVERSAL_H__
@ -17,10 +34,7 @@ class HIDUniversal : public HID {
// Returns HID class specific descriptor length by its type and order number // Returns HID class specific descriptor length by its type and order number
uint16_t GetHidClassDescrLen(uint8_t type, uint8_t num); uint16_t GetHidClassDescrLen(uint8_t type, uint8_t num);
EpInfo epInfo[totalEndpoints];
struct HIDInterface { struct HIDInterface {
struct { struct {
uint8_t bmInterface : 3; uint8_t bmInterface : 3;
uint8_t bmAltSet : 3; uint8_t bmAltSet : 3;
@ -29,12 +43,11 @@ class HIDUniversal : public HID {
uint8_t epIndex[maxEpPerInterface]; uint8_t epIndex[maxEpPerInterface];
}; };
HIDInterface hidInterfaces[maxHidInterfaces];
uint8_t bConfNum; // configuration number uint8_t bConfNum; // configuration number
uint8_t bNumIface; // number of interfaces in the configuration uint8_t bNumIface; // number of interfaces in the configuration
uint8_t bNumEP; // total number of EP in the configuration uint8_t bNumEP; // total number of EP in the configuration
uint32_t qNextPollTime; // next poll time uint32_t qNextPollTime; // next poll time
uint8_t pollInterval;
bool bPollEnable; // poll enable flag bool bPollEnable; // poll enable flag
static const uint16_t constBuffLen = 64; // event buffer length static const uint16_t constBuffLen = 64; // event buffer length
@ -48,8 +61,13 @@ class HIDUniversal : public HID {
void SaveBuffer(uint8_t len, uint8_t *src, uint8_t *dest); void SaveBuffer(uint8_t len, uint8_t *src, uint8_t *dest);
protected: protected:
EpInfo epInfo[totalEndpoints];
HIDInterface hidInterfaces[maxHidInterfaces];
bool bHasReportId; bool bHasReportId;
uint16_t PID, VID; // PID and VID of connected device
// HID implementation // HID implementation
virtual HIDReportParser* GetReportParser(uint8_t id); virtual HIDReportParser* GetReportParser(uint8_t id);
@ -57,6 +75,10 @@ protected:
return 0; return 0;
}; };
virtual void ParseHIDData(HID *hid, bool is_rpt_id, uint8_t len, uint8_t *buf) {
return;
};
public: public:
HIDUniversal(USB *p); HIDUniversal(USB *p);
@ -72,8 +94,12 @@ public:
return bAddress; return bAddress;
}; };
virtual bool isReady() {
return bPollEnable;
};
// UsbConfigXtracter implementation // UsbConfigXtracter implementation
virtual void EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *ep); virtual void EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *ep);
}; };
#endif // __HIDUNIVERSAL_H__ #endif // __HIDUNIVERSAL_H__

View file

@ -17,7 +17,7 @@ e-mail : support@circuitsathome.com
#if !defined( __HIDUSAGESTR_H__) #if !defined( __HIDUSAGESTR_H__)
#define __HIDUSAGESTR_H__ #define __HIDUSAGESTR_H__
#include <avr/pgmspace.h> #include "Usb.h"
const char pstrSpace [] PROGMEM = " "; const char pstrSpace [] PROGMEM = " ";
const char pstrCRLF [] PROGMEM = "\r\n"; const char pstrCRLF [] PROGMEM = "\r\n";
@ -974,4 +974,4 @@ const char pstrUsageSoftControlAdjust [] PROGMEM = "Soft Ctrl Adj";
//const char *medInstrTitles3[]; //const char *medInstrTitles3[];
//const char *medInstrTitles4[]; //const char *medInstrTitles4[];
#endif //__HIDUSAGESTR_H__ #endif //__HIDUSAGESTR_H__

View file

@ -17,7 +17,6 @@ e-mail : support@circuitsathome.com
#if !defined(__HIDUSAGETITLEARRAYS_H__) #if !defined(__HIDUSAGETITLEARRAYS_H__)
#define __HIDUSAGETITLEARRAYS_H__ #define __HIDUSAGETITLEARRAYS_H__
#include <avr/pgmspace.h>
#include "hidusagestr.h" #include "hidusagestr.h"
//const char *usagePageTitles0[] PROGMEM = //const char *usagePageTitles0[] PROGMEM =
@ -1044,4 +1043,4 @@ e-mail : support@circuitsathome.com
// pstrUsageSoftControlAdjust // pstrUsageSoftControlAdjust
//}; //};
#endif // __HIDUSAGETITLEARRAYS_H__ #endif // __HIDUSAGETITLEARRAYS_H__

View file

@ -25,7 +25,7 @@ BTD KEYWORD1
Task KEYWORD2 Task KEYWORD2
#################################################### ####################################################
# Syntax Coloring Map For PS3 Bluetooth/USB Library # Syntax Coloring Map For PS3/PS4 Bluetooth/USB Library
#################################################### ####################################################
#################################################### ####################################################
@ -34,6 +34,8 @@ Task KEYWORD2
PS3BT KEYWORD1 PS3BT KEYWORD1
PS3USB KEYWORD1 PS3USB KEYWORD1
PS4BT KEYWORD1
PS4USB KEYWORD1
#################################################### ####################################################
# Methods and Functions (KEYWORD2) # Methods and Functions (KEYWORD2)
@ -52,7 +54,7 @@ getSensor KEYWORD2
getAngle KEYWORD2 getAngle KEYWORD2
get9DOFValues KEYWORD2 get9DOFValues KEYWORD2
getStatus KEYWORD2 getStatus KEYWORD2
getStatusString KEYWORD2 printStatusString KEYWORD2
getTemperature KEYWORD2 getTemperature KEYWORD2
disconnect KEYWORD2 disconnect KEYWORD2
@ -62,6 +64,7 @@ setRumbleOn KEYWORD2
setLedOff KEYWORD2 setLedOff KEYWORD2
setLedOn KEYWORD2 setLedOn KEYWORD2
setLedToggle KEYWORD2 setLedToggle KEYWORD2
setLedFlash KEYWORD2
moveSetBulb KEYWORD2 moveSetBulb KEYWORD2
moveSetRumble KEYWORD2 moveSetRumble KEYWORD2
@ -74,9 +77,19 @@ PS3NavigationConnected KEYWORD2
isReady KEYWORD2 isReady KEYWORD2
watingForConnection KEYWORD2 watingForConnection KEYWORD2
isTouching KEYWORD2
getX KEYWORD2
getY KEYWORD2
getTouchCounter KEYWORD2
getUsbStatus KEYWORD2
getAudioStatus KEYWORD2
getMicStatus KEYWORD2
#################################################### ####################################################
# Constants and enums (LITERAL1) # Constants and enums (LITERAL1)
#################################################### ####################################################
OFF LITERAL1
LED1 LITERAL1 LED1 LITERAL1
LED2 LITERAL1 LED2 LITERAL1
LED3 LITERAL1 LED3 LITERAL1
@ -117,6 +130,10 @@ PS LITERAL1
MOVE LITERAL1 MOVE LITERAL1
T LITERAL1 T LITERAL1
SHARE LITERAL1
OPTIONS LITERAL1
TOUCHPAD LITERAL1
LeftHatX LITERAL1 LeftHatX LITERAL1
LeftHatY LITERAL1 LeftHatY LITERAL1
RightHatX LITERAL1 RightHatX LITERAL1
@ -125,6 +142,8 @@ RightHatY LITERAL1
aX LITERAL1 aX LITERAL1
aY LITERAL1 aY LITERAL1
aZ LITERAL1 aZ LITERAL1
gX LITERAL1
gY LITERAL1
gZ LITERAL1 gZ LITERAL1
aXmove LITERAL1 aXmove LITERAL1
aYmove LITERAL1 aYmove LITERAL1
@ -299,7 +318,7 @@ getIRy4 KEYWORD2
getIRs4 KEYWORD2 getIRs4 KEYWORD2
#################################################### ####################################################
# Syntax Coloring Map For RFCOMM/SPP Library # Syntax Coloring Map For BTHID Library
#################################################### ####################################################
#################################################### ####################################################
@ -312,4 +331,31 @@ BTHID KEYWORD1
# Methods and Functions (KEYWORD2) # Methods and Functions (KEYWORD2)
#################################################### ####################################################
SetReportParser KEYWORD2 SetReportParser KEYWORD2
setProtocolMode KEYWORD2 setProtocolMode KEYWORD2
####################################################
# Syntax Coloring Map For PS Buzz Library
####################################################
####################################################
# Datatypes (KEYWORD1)
####################################################
PSBuzz KEYWORD1
####################################################
# Methods and Functions (KEYWORD2)
####################################################
setLedOnAll KEYWORD2
setLedOffAll KEYWORD2
####################################################
# Constants and enums (LITERAL1)
####################################################
RED LITERAL1
YELLOW LITERAL1
GREEN LITERAL1
ORANGE LITERAL1
BLUE LITERAL1

View file

@ -1,8 +1,18 @@
/* /* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved.
* File: macros.h
* Author: AJK This software may be distributed and modified under the terms of the GNU
* General Public License version 2 (GPL2) as published by the Free Software
* Created on September 23, 2013, 12:31 AM Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Circuits At Home, LTD
Web : http://www.circuitsathome.com
e-mail : support@circuitsathome.com
*/ */
#if !defined(_usb_h_) || defined(MACROS_H) #if !defined(_usb_h_) || defined(MACROS_H)
@ -14,6 +24,11 @@
// HANDY MACROS // HANDY MACROS
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
#define VALUE_BETWEEN(v,l,h) (((v)>(l)) && ((v)<(h)))
#define VALUE_WITHIN(v,l,h) (((v)>=(l)) && ((v)<=(h)))
#define output_pgm_message(wa,fp,mp,el) wa = &mp, fp((char *)pgm_read_pointer(wa), el)
#define output_if_between(v,l,h,wa,fp,mp,el) if(VALUE_BETWEEN(v,l,h)) output_pgm_message(wa,fp,mp[v-(l+1)],el);
#define SWAP(a, b) (((a) ^= (b)), ((b) ^= (a)), ((a) ^= (b))) #define SWAP(a, b) (((a) ^= (b)), ((b) ^= (a)), ((a) ^= (b)))
#ifndef __BYTE_GRABBING_DEFINED__ #ifndef __BYTE_GRABBING_DEFINED__
#define __BYTE_GRABBING_DEFINED__ 1 #define __BYTE_GRABBING_DEFINED__ 1
@ -58,7 +73,9 @@
* Debug macros: Strings are stored in progmem (flash) instead of RAM. * Debug macros: Strings are stored in progmem (flash) instead of RAM.
*/ */
#define USBTRACE(s) (Notify(PSTR(s), 0x80)) #define USBTRACE(s) (Notify(PSTR(s), 0x80))
#define USBTRACE1(s,l) (Notify(PSTR(s), l))
#define USBTRACE2(s,r) (Notify(PSTR(s), 0x80), D_PrintHex((r), 0x80), Notify(PSTR("\r\n"), 0x80)) #define USBTRACE2(s,r) (Notify(PSTR(s), 0x80), D_PrintHex((r), 0x80), Notify(PSTR("\r\n"), 0x80))
#define USBTRACE3(s,r,l) (Notify(PSTR(s), l), D_PrintHex((r), l), Notify(PSTR("\r\n"), l))
#endif /* MACROS_H */ #endif /* MACROS_H */

Some files were not shown because too many files have changed in this diff Show more