Merge branch 'xxxajk' of github.com:felis/USB_Host_Shield_2.0 into xxxajk

Conflicts:
	examples/board_qc/board_qc.ino
This commit is contained in:
Kristian Sloth Lauszus 2013-10-21 20:12:47 +02:00
commit d5550f51dc

View file

@ -8,6 +8,7 @@
/* variables */ /* variables */
uint8_t rcode; uint8_t rcode;
uint8_t usbstate; uint8_t usbstate;
uint8_t laststate;
//uint8_t buf[sizeof(USB_DEVICE_DESCRIPTOR)]; //uint8_t buf[sizeof(USB_DEVICE_DESCRIPTOR)];
USB_DEVICE_DESCRIPTOR buf; USB_DEVICE_DESCRIPTOR buf;
@ -15,236 +16,235 @@ USB_DEVICE_DESCRIPTOR buf;
USB Usb; USB Usb;
//USBHub hub(&Usb); //USBHub hub(&Usb);
void setup() {
void setup() laststate = 0;
{ Serial.begin(115200);
Serial.begin( 115200 ); while (!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection
while (!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection E_Notify(PSTR("\r\nCircuits At Home 2011"), 0x80);
E_Notify(PSTR("\r\nCircuits At Home 2011"),0x80); E_Notify(PSTR("\r\nUSB Host Shield Quality Control Routine"), 0x80);
E_Notify(PSTR("\r\nUSB Host Shield Quality Control Routine"),0x80); /* SPI quick test - check revision register */
/* SPI quick test - check revision register */ E_Notify(PSTR("\r\nReading REVISION register... Die revision "), 0x80);
E_Notify(PSTR("\r\nReading REVISION register... Die revision "),0x80); Usb.Init(); // Initializes SPI, we don't care about the return value here
{ {
uint8_t tmpbyte = Usb.regRd( rREVISION ); uint8_t tmpbyte = Usb.regRd(rREVISION);
switch( tmpbyte ) { switch (tmpbyte) {
case( 0x01): //rev.01 case( 0x01): //rev.01
E_Notify(PSTR("01"),0x80); E_Notify(PSTR("01"), 0x80);
break; break;
case( 0x12): //rev.02 case( 0x12): //rev.02
E_Notify(PSTR("02"),0x80); E_Notify(PSTR("02"), 0x80);
break; break;
case( 0x13): //rev.03 case( 0x13): //rev.03
E_Notify(PSTR("03"),0x80); E_Notify(PSTR("03"), 0x80);
break; break;
default: default:
E_Notify(PSTR("invalid. Value returned: "),0x80); E_Notify(PSTR("invalid. Value returned: "), 0x80);
print_hex( tmpbyte, 8 ); print_hex(tmpbyte, 8);
halt55(); halt55();
break; break;
}//switch( tmpbyte... }//switch( tmpbyte...
}//check revision register }//check revision register
/* SPI long test */ /* SPI long test */
{ {
E_Notify(PSTR("\r\nSPI long test. Transfers 1MB of data. Each dot is 64K"),0x80); E_Notify(PSTR("\r\nSPI long test. Transfers 1MB of data. Each dot is 64K"), 0x80);
uint8_t sample_wr = 0; uint8_t sample_wr = 0;
uint8_t sample_rd = 0; uint8_t sample_rd = 0;
uint8_t gpinpol_copy = Usb.regRd( rGPINPOL ); uint8_t gpinpol_copy = Usb.regRd(rGPINPOL);
for( uint8_t i = 0; i < 16; i++ ) { for (uint8_t i = 0; i < 16; i++) {
for( uint16_t j = 0; j < 65535; j++ ) { for (uint16_t j = 0; j < 65535; j++) {
Usb.regWr( rGPINPOL, sample_wr ); Usb.regWr(rGPINPOL, sample_wr);
sample_rd = Usb.regRd( rGPINPOL ); sample_rd = Usb.regRd(rGPINPOL);
if( sample_rd != sample_wr ) { if (sample_rd != sample_wr) {
E_Notify(PSTR("\r\nTest failed. "),0x80); E_Notify(PSTR("\r\nTest failed. "), 0x80);
E_Notify(PSTR("Value written: "),0x80); E_Notify(PSTR("Value written: "), 0x80);
print_hex( sample_wr, 8 ); print_hex(sample_wr, 8);
E_Notify(PSTR(" read: "),0x80); E_Notify(PSTR(" read: "), 0x80);
print_hex( sample_rd, 8 ); print_hex(sample_rd, 8);
halt55(); halt55();
}//if( sample_rd != sample_wr.. }//if( sample_rd != sample_wr..
sample_wr++; sample_wr++;
}//for( uint16_t j... }//for( uint16_t j...
E_Notify(PSTR("."),0x80); E_Notify(PSTR("."), 0x80);
}//for( uint8_t i... }//for( uint8_t i...
Usb.regWr( rGPINPOL, gpinpol_copy ); Usb.regWr(rGPINPOL, gpinpol_copy);
E_Notify(PSTR(" SPI long test passed"),0x80); E_Notify(PSTR(" SPI long test passed"), 0x80);
}//SPI long test }//SPI long test
/* GPIO test */ /* GPIO test */
/* in order to simplify board layout, GPIN pins on text fixture are connected to GPOUT */ /* in order to simplify board layout, GPIN pins on text fixture are connected to GPOUT */
/* in reverse order, i.e, GPIN0 is connected to GPOUT7, GPIN1 to GPOUT6, etc. */ /* in reverse order, i.e, GPIN0 is connected to GPOUT7, GPIN1 to GPOUT6, etc. */
{ {
uint8_t tmpbyte; uint8_t tmpbyte;
E_Notify(PSTR("\r\nGPIO test. Connect GPIN0 to GPOUT7, GPIN1 to GPOUT6, and so on"),0x80); E_Notify(PSTR("\r\nGPIO test. Connect GPIN0 to GPOUT7, GPIN1 to GPOUT6, and so on"), 0x80);
for( uint8_t sample_gpio = 0; sample_gpio < 255; sample_gpio++ ) { for (uint8_t sample_gpio = 0; sample_gpio < 255; sample_gpio++) {
Usb.gpioWr( sample_gpio ); Usb.gpioWr(sample_gpio);
tmpbyte = Usb.gpioRd(); tmpbyte = Usb.gpioRd();
/* bit reversing code copied vetbatim from http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */ /* bit reversing code copied vetbatim from http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */
tmpbyte = ((tmpbyte * 0x0802LU & 0x22110LU) | (tmpbyte * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; tmpbyte = ((tmpbyte * 0x0802LU & 0x22110LU) | (tmpbyte * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
if( sample_gpio != tmpbyte ) { if (sample_gpio != tmpbyte) {
E_Notify(PSTR("\r\nTest failed. Value written: "),0x80); E_Notify(PSTR("\r\nTest failed. Value written: "), 0x80);
print_hex( sample_gpio, 8 ); print_hex(sample_gpio, 8);
E_Notify(PSTR(" Value read: "),0x80); E_Notify(PSTR(" Value read: "), 0x80);
print_hex( tmpbyte , 8 ); print_hex(tmpbyte, 8);
E_Notify(PSTR(" "),0x80); E_Notify(PSTR(" "), 0x80);
press_any_key(); press_any_key();
break; break;
}//if( sample_gpio != tmpbyte... }//if( sample_gpio != tmpbyte...
}//for( uint8_t sample_gpio... }//for( uint8_t sample_gpio...
E_Notify(PSTR("\r\nGPIO test passed."),0x80); E_Notify(PSTR("\r\nGPIO test passed."), 0x80);
}//GPIO test }//GPIO test
/* PLL test. Stops/starts MAX3421E oscillator several times */ /* PLL test. Stops/starts MAX3421E oscillator several times */
{ {
E_Notify(PSTR("\r\nPLL test. 100 chip resets will be performed"),0x80); E_Notify(PSTR("\r\nPLL test. 100 chip resets will be performed"), 0x80);
/* check current state of the oscillator */ /* check current state of the oscillator */
if(!( Usb.regRd( rUSBIRQ ) & bmOSCOKIRQ )) { //wrong state - should be on if (!(Usb.regRd(rUSBIRQ) & bmOSCOKIRQ)) { //wrong state - should be on
E_Notify(PSTR("\r\nCurrent oscillator state unexpected."),0x80); E_Notify(PSTR("\r\nCurrent oscillator state unexpected."), 0x80);
press_any_key(); press_any_key();
} }
/* Restart oscillator */ /* Restart oscillator */
E_Notify(PSTR("\r\nResetting oscillator"),0x80); E_Notify(PSTR("\r\nResetting oscillator\r\n"), 0x80);
for( uint16_t i = 0; i < 101; i++ ) { for (uint16_t i = 0; i < 100; i++) {
E_Notify(PSTR("\rReset number "),0x80); E_Notify(PSTR("\rReset number "), 0x80);
Serial.print( i, DEC ); Serial.print(i, DEC);
Usb.regWr( rUSBCTL, bmCHIPRES ); //reset Usb.regWr(rUSBCTL, bmCHIPRES); //reset
if( Usb.regRd( rUSBIRQ ) & bmOSCOKIRQ ) { //wrong state - should be off if (Usb.regRd(rUSBIRQ) & bmOSCOKIRQ) { //wrong state - should be off
E_Notify(PSTR("\r\nCurrent oscillator state unexpected."),0x80); E_Notify(PSTR("\r\nCurrent oscillator state unexpected."), 0x80);
halt55(); halt55();
} }
Usb.regWr( rUSBCTL, 0x00 ); //release from reset Usb.regWr(rUSBCTL, 0x00); //release from reset
uint16_t j = 0; uint16_t j = 0;
for( j = 0; j < 65535; j++ ) { //tracking off to on time for (j = 0; j < 65535; j++) { //tracking off to on time
if( Usb.regRd( rUSBIRQ ) & bmOSCOKIRQ ) { if (Usb.regRd(rUSBIRQ) & bmOSCOKIRQ) {
E_Notify(PSTR(" Time to stabilize - "),0x80); E_Notify(PSTR(" Time to stabilize - "), 0x80);
Serial.print( j, DEC ); Serial.print(j, DEC);
E_Notify(PSTR(" cycles"),0x80); E_Notify(PSTR(" cycles\r\n"), 0x80);
break; break;
} }
}//for( uint16_t j = 0; j < 65535; j++ }//for( uint16_t j = 0; j < 65535; j++
if( j == 0 ) { if (j == 0) {
E_Notify(PSTR("PLL failed to stabilize"),0x80); E_Notify(PSTR("PLL failed to stabilize"), 0x80);
press_any_key(); press_any_key();
} }
}//for( uint8_t i = 0; i < 255; i++ }//for( uint8_t i = 0; i < 255; i++
}//PLL test }//PLL test
/* initializing USB stack */ /* initializing USB stack */
if (Usb.Init() == -1) { if (Usb.Init() == -1) {
E_Notify(PSTR("\r\nOSCOKIRQ failed to assert"),0x80); E_Notify(PSTR("\r\nOSCOKIRQ failed to assert"), 0x80);
halt55(); halt55();
} }
E_Notify(PSTR("\r\nChecking USB device communication.\r\n"),0x80); E_Notify(PSTR("\r\nChecking USB device communication.\r\n"), 0x80);
} }
void loop() void loop() {
{ delay(200);
delay( 200 ); Usb.Task();
Usb.Task(); usbstate = Usb.getUsbTaskState();
usbstate = Usb.getUsbTaskState(); if (usbstate != laststate) {
/**/ laststate = usbstate;
switch( usbstate ) { /**/
case( USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE ): switch (usbstate) {
E_Notify(PSTR("\rWaiting for device ..."),0x80); case( USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE):
break; E_Notify(PSTR("\r\nWaiting for device..."), 0x80);
case( USB_ATTACHED_SUBSTATE_RESET_DEVICE ): break;
E_Notify(PSTR("\r\nDevice connected. Resetting"),0x80); case( USB_ATTACHED_SUBSTATE_RESET_DEVICE):
break; E_Notify(PSTR("\r\nDevice connected. Resetting..."), 0x80);
case( USB_ATTACHED_SUBSTATE_WAIT_SOF ): break;
E_Notify(PSTR("\rReset complete. Waiting for the first SOF..."),0x80); case( USB_ATTACHED_SUBSTATE_WAIT_SOF):
break; E_Notify(PSTR("\r\nReset complete. Waiting for the first SOF..."), 0x80);
case( USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE ): break;
E_Notify(PSTR("\r\nSOF generation started. Enumerating device."),0x80); case( USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE):
break; E_Notify(PSTR("\r\nSOF generation started. Enumerating device..."), 0x80);
case( USB_STATE_ADDRESSING ): break;
E_Notify(PSTR("\r\nSetting device address"),0x80); case( USB_STATE_ADDRESSING):
break; E_Notify(PSTR("\r\nSetting device address..."), 0x80);
case( USB_STATE_RUNNING ): break;
E_Notify(PSTR("\r\nGetting device descriptor"),0x80); case( USB_STATE_RUNNING):
rcode = Usb.getDevDescr( 1, 0, sizeof(USB_DEVICE_DESCRIPTOR), (uint8_t*)&buf ); E_Notify(PSTR("\r\nGetting device descriptor"), 0x80);
rcode = Usb.getDevDescr(1, 0, sizeof (USB_DEVICE_DESCRIPTOR), (uint8_t*) & buf);
if( rcode ) {
E_Notify(PSTR("\rError reading device descriptor. Error code "),0x80); if (rcode) {
print_hex( rcode, 8 ); E_Notify(PSTR("\r\nError reading device descriptor. Error code "), 0x80);
print_hex(rcode, 8);
} else {
/**/
E_Notify(PSTR("\r\nDescriptor Length:\t"), 0x80);
print_hex(buf.bLength, 8);
E_Notify(PSTR("\r\nDescriptor type:\t"), 0x80);
print_hex(buf.bDescriptorType, 8);
E_Notify(PSTR("\r\nUSB version:\t\t"), 0x80);
print_hex(buf.bcdUSB, 16);
E_Notify(PSTR("\r\nDevice class:\t\t"), 0x80);
print_hex(buf.bDeviceClass, 8);
E_Notify(PSTR("\r\nDevice Subclass:\t"), 0x80);
print_hex(buf.bDeviceSubClass, 8);
E_Notify(PSTR("\r\nDevice Protocol:\t"), 0x80);
print_hex(buf.bDeviceProtocol, 8);
E_Notify(PSTR("\r\nMax.packet size:\t"), 0x80);
print_hex(buf.bMaxPacketSize0, 8);
E_Notify(PSTR("\r\nVendor ID:\t\t"), 0x80);
print_hex(buf.idVendor, 16);
E_Notify(PSTR("\r\nProduct ID:\t\t"), 0x80);
print_hex(buf.idProduct, 16);
E_Notify(PSTR("\r\nRevision ID:\t\t"), 0x80);
print_hex(buf.bcdDevice, 16);
E_Notify(PSTR("\r\nMfg.string index:\t"), 0x80);
print_hex(buf.iManufacturer, 8);
E_Notify(PSTR("\r\nProd.string index:\t"), 0x80);
print_hex(buf.iProduct, 8);
E_Notify(PSTR("\r\nSerial number index:\t"), 0x80);
print_hex(buf.iSerialNumber, 8);
E_Notify(PSTR("\r\nNumber of conf.:\t"), 0x80);
print_hex(buf.bNumConfigurations, 8);
/**/
E_Notify(PSTR("\r\n\nAll tests passed. Press RESET to restart test"), 0x80);
while (1);
}
break;
case( USB_STATE_ERROR):
E_Notify(PSTR("\r\nUSB state machine reached error state"), 0x80);
break;
default:
break;
}//switch( usbstate...
} }
else {
/**/
E_Notify(PSTR("\r\nDescriptor Length:\t"),0x80);
print_hex( buf.bLength, 8 );
E_Notify(PSTR("\r\nDescriptor type:\t"),0x80);
print_hex( buf.bDescriptorType, 8 );
E_Notify(PSTR("\r\nUSB version:\t\t"),0x80);
print_hex( buf.bcdUSB, 16 );
E_Notify(PSTR("\r\nDevice class:\t\t"),0x80);
print_hex( buf.bDeviceClass, 8 );
E_Notify(PSTR("\r\nDevice Subclass:\t"),0x80);
print_hex( buf.bDeviceSubClass, 8 );
E_Notify(PSTR("\r\nDevice Protocol:\t"),0x80);
print_hex( buf.bDeviceProtocol, 8 );
E_Notify(PSTR("\r\nMax.packet size:\t"),0x80);
print_hex( buf.bMaxPacketSize0, 8 );
E_Notify(PSTR("\r\nVendor ID:\t\t"),0x80);
print_hex( buf.idVendor, 16 );
E_Notify(PSTR("\r\nProduct ID:\t\t"),0x80);
print_hex( buf.idProduct, 16 );
E_Notify(PSTR("\r\nRevision ID:\t\t"),0x80);
print_hex( buf.bcdDevice, 16 );
E_Notify(PSTR("\r\nMfg.string index:\t"),0x80);
print_hex( buf.iManufacturer, 8 );
E_Notify(PSTR("\r\nProd.string index:\t"),0x80);
print_hex( buf.iProduct, 8 );
E_Notify(PSTR("\r\nSerial number index:\t"),0x80);
print_hex( buf.iSerialNumber, 8 );
E_Notify(PSTR("\r\nNumber of conf.:\t"),0x80);
print_hex( buf.bNumConfigurations, 8 );
/**/
E_Notify(PSTR("\r\n\nAll tests passed. Press RESET to restart test"),0x80);
while(1);
}
break;
case( USB_STATE_ERROR ):
E_Notify(PSTR("\rUSB state machine reached error state"),0x80);
break;
default:
break;
}//switch( usbstate...
}//loop()... }//loop()...
/* constantly transmits 0x55 via SPI to aid probing */ /* constantly transmits 0x55 via SPI to aid probing */
void halt55() void halt55() {
{
E_Notify(PSTR("\r\nUnrecoverable error - test halted!!"),0x80); E_Notify(PSTR("\r\nUnrecoverable error - test halted!!"), 0x80);
E_Notify(PSTR("\r\n0x55 pattern is transmitted via SPI"),0x80); E_Notify(PSTR("\r\n0x55 pattern is transmitted via SPI"), 0x80);
E_Notify(PSTR("\r\nPress RESET to restart test"),0x80); E_Notify(PSTR("\r\nPress RESET to restart test"), 0x80);
while( 1 ) { while (1) {
Usb.regWr( 0x55, 0x55 ); Usb.regWr(0x55, 0x55);
} }
} }
/* prints hex numbers with leading zeroes */ /* prints hex numbers with leading zeroes */
void print_hex(int v, int num_places) void print_hex(int v, int num_places) {
{ int mask = 0, n, num_nibbles, digit;
int mask=0, n, num_nibbles, digit;
for (n=1; n<=num_places; n++) { for (n = 1; n <= num_places; n++) {
mask = (mask << 1) | 0x0001; mask = (mask << 1) | 0x0001;
} }
v = v & mask; // truncate v to specified number of places v = v & mask; // truncate v to specified number of places
num_nibbles = num_places / 4; num_nibbles = num_places / 4;
if ((num_places % 4) != 0) { if ((num_places % 4) != 0) {
++num_nibbles; ++num_nibbles;
} }
do { do {
digit = ((v >> (num_nibbles-1) * 4)) & 0x0f; digit = ((v >> (num_nibbles - 1) * 4)) & 0x0f;
Serial.print(digit, HEX); Serial.print(digit, HEX);
} while(--num_nibbles); } while (--num_nibbles);
} }
/* prints "Press any key" and returns when key is pressed */ /* prints "Press any key" and returns when key is pressed */
void press_any_key() void press_any_key() {
{ E_Notify(PSTR("\r\nPress any key to continue..."), 0x80);
E_Notify(PSTR("\r\nPress any key to continue..."),0x80); while (Serial.available() <= 0); //wait for input
while( Serial.available() <= 0 ); //wait for input Serial.read(); //empty input buffer
Serial.read(); //empty input buffer return;
return;
} }