/* USB Host Shield 2.0 board quality control routine */ /* To see the output set your terminal speed to 115200 */ /* for GPIO test to pass you need to connect GPIN0 to GPOUT7, GPIN1 to GPOUT6, etc. */ /* otherwise press any key after getting GPIO error to complete the test */ /**/ #include /* variables */ uint8_t rcode; uint8_t usbstate; uint8_t laststate; //uint8_t buf[sizeof(USB_DEVICE_DESCRIPTOR)]; USB_DEVICE_DESCRIPTOR buf; /* objects */ USB Usb; //USBHub hub(&Usb); void setup() { laststate=0; Serial.begin( 115200 ); E_Notify(PSTR("\r\nCircuits At Home 2011"),0x80); E_Notify(PSTR("\r\nUSB Host Shield Quality Control Routine"),0x80); /* SPI quick test - check revision register */ E_Notify(PSTR("\r\nReading REVISION register... Die revision "),0x80); Usb.Init(); { uint8_t tmpbyte = Usb.regRd( rREVISION ); switch( tmpbyte ) { case( 0x01): //rev.01 E_Notify(PSTR("01"),0x80); break; case( 0x12): //rev.02 E_Notify(PSTR("02"),0x80); break; case( 0x13): //rev.03 E_Notify(PSTR("03"),0x80); break; default: E_Notify(PSTR("invalid. Value returned: "),0x80); print_hex( tmpbyte, 8 ); halt55(); break; }//switch( tmpbyte... }//check revision register /* SPI long test */ { E_Notify(PSTR("\r\nSPI long test. Transfers 1MB of data. Each dot is 64K"),0x80); uint8_t sample_wr = 0; uint8_t sample_rd = 0; uint8_t gpinpol_copy = Usb.regRd( rGPINPOL ); for( uint8_t i = 0; i < 16; i++ ) { for( uint16_t j = 0; j < 65535; j++ ) { Usb.regWr( rGPINPOL, sample_wr ); sample_rd = Usb.regRd( rGPINPOL ); if( sample_rd != sample_wr ) { E_Notify(PSTR("\r\nTest failed. "),0x80); E_Notify(PSTR("Value written: "),0x80); print_hex( sample_wr, 8 ); E_Notify(PSTR(" read: "),0x80); print_hex( sample_rd, 8 ); halt55(); }//if( sample_rd != sample_wr.. sample_wr++; }//for( uint16_t j... E_Notify(PSTR("."),0x80); }//for( uint8_t i... Usb.regWr( rGPINPOL, gpinpol_copy ); E_Notify(PSTR(" SPI long test passed"),0x80); }//SPI long test /* GPIO test */ /* in order to simplify board layout, GPIN pins on text fixture are connected to GPOUT */ /* in reverse order, i.e, GPIN0 is connected to GPOUT7, GPIN1 to GPOUT6, etc. */ { uint8_t tmpbyte; E_Notify(PSTR("\r\nGPIO test. Connect GPIN0 to GPOUT7, GPIN1 to GPOUT6, and so on"),0x80); for( uint8_t sample_gpio = 0; sample_gpio < 255; sample_gpio++ ) { Usb.gpioWr( sample_gpio ); tmpbyte = Usb.gpioRd(); /* bit reversing code copied vetbatim from http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */ tmpbyte = ((tmpbyte * 0x0802LU & 0x22110LU) | (tmpbyte * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; if( sample_gpio != tmpbyte ) { E_Notify(PSTR("\r\nTest failed. Value written: "),0x80); print_hex( sample_gpio, 8 ); E_Notify(PSTR(" Value read: "),0x80); print_hex( tmpbyte , 8 ); E_Notify(PSTR(" "),0x80); press_any_key(); break; }//if( sample_gpio != tmpbyte... }//for( uint8_t sample_gpio... E_Notify(PSTR("\r\nGPIO test passed."),0x80); }//GPIO test /* PLL test. Stops/starts MAX3421E oscillator several times */ { E_Notify(PSTR("\r\nPLL test. 100 chip resets will be performed"),0x80); /* check current state of the oscillator */ if(!( Usb.regRd( rUSBIRQ ) & bmOSCOKIRQ )) { //wrong state - should be on E_Notify(PSTR("\r\nCurrent oscillator state unexpected."),0x80); press_any_key(); } /* Restart oscillator */ E_Notify(PSTR("\r\nResetting oscillator\r\n"),0x80); for( uint16_t i = 0; i < 100; i++ ) { E_Notify(PSTR("\rReset number "),0x80); Serial.print( i, DEC ); Usb.regWr( rUSBCTL, bmCHIPRES ); //reset if( Usb.regRd( rUSBIRQ ) & bmOSCOKIRQ ) { //wrong state - should be off E_Notify(PSTR("\r\nCurrent oscillator state unexpected."),0x80); halt55(); } Usb.regWr( rUSBCTL, 0x00 ); //release from reset uint16_t j = 0; for( j = 0; j < 65535; j++ ) { //tracking off to on time if( Usb.regRd( rUSBIRQ ) & bmOSCOKIRQ ) { E_Notify(PSTR(" Time to stabilize - "),0x80); Serial.print( j, DEC ); E_Notify(PSTR(" cycles\r\n"),0x80); break; } }//for( uint16_t j = 0; j < 65535; j++ if( j == 0 ) { E_Notify(PSTR("PLL failed to stabilize"),0x80); press_any_key(); } }//for( uint8_t i = 0; i < 255; i++ }//PLL test /* initializing USB stack */ if (Usb.Init() == -1) { E_Notify(PSTR("\r\nOSCOKIRQ failed to assert"),0x80); halt55(); } E_Notify(PSTR("\r\nChecking USB device communication.\r\n"),0x80); } void loop() { delay( 200 ); Usb.Task(); usbstate = Usb.getUsbTaskState(); if(usbstate != laststate) { laststate=usbstate; /**/ switch( usbstate ) { case( USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE ): E_Notify(PSTR("\r\nWaiting for device..."),0x80); break; case( USB_ATTACHED_SUBSTATE_RESET_DEVICE ): E_Notify(PSTR("\r\nDevice connected. Resetting..."),0x80); break; case( USB_ATTACHED_SUBSTATE_WAIT_SOF ): E_Notify(PSTR("\r\nReset complete. Waiting for the first SOF..."),0x80); break; case( USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE ): E_Notify(PSTR("\r\nSOF generation started. Enumerating device..."),0x80); break; case( USB_STATE_ADDRESSING ): E_Notify(PSTR("\r\nSetting device address..."),0x80); break; case( USB_STATE_RUNNING ): E_Notify(PSTR("\r\nGetting device descriptor"),0x80); rcode = Usb.getDevDescr( 1, 0, sizeof(USB_DEVICE_DESCRIPTOR), (uint8_t*)&buf ); if( rcode ) { E_Notify(PSTR("\r\nError reading device descriptor. Error code "),0x80); print_hex( rcode, 8 ); } else { /**/ E_Notify(PSTR("\r\nDescriptor Length:\t"),0x80); print_hex( buf.bLength, 8 ); E_Notify(PSTR("\r\nDescriptor type:\t"),0x80); print_hex( buf.bDescriptorType, 8 ); E_Notify(PSTR("\r\nUSB version:\t\t"),0x80); print_hex( buf.bcdUSB, 16 ); E_Notify(PSTR("\r\nDevice class:\t\t"),0x80); print_hex( buf.bDeviceClass, 8 ); E_Notify(PSTR("\r\nDevice Subclass:\t"),0x80); print_hex( buf.bDeviceSubClass, 8 ); E_Notify(PSTR("\r\nDevice Protocol:\t"),0x80); print_hex( buf.bDeviceProtocol, 8 ); E_Notify(PSTR("\r\nMax.packet size:\t"),0x80); print_hex( buf.bMaxPacketSize0, 8 ); E_Notify(PSTR("\r\nVendor ID:\t\t"),0x80); print_hex( buf.idVendor, 16 ); E_Notify(PSTR("\r\nProduct ID:\t\t"),0x80); print_hex( buf.idProduct, 16 ); E_Notify(PSTR("\r\nRevision ID:\t\t"),0x80); print_hex( buf.bcdDevice, 16 ); E_Notify(PSTR("\r\nMfg.string index:\t"),0x80); print_hex( buf.iManufacturer, 8 ); E_Notify(PSTR("\r\nProd.string index:\t"),0x80); print_hex( buf.iProduct, 8 ); E_Notify(PSTR("\r\nSerial number index:\t"),0x80); print_hex( buf.iSerialNumber, 8 ); E_Notify(PSTR("\r\nNumber of conf.:\t"),0x80); print_hex( buf.bNumConfigurations, 8 ); /**/ E_Notify(PSTR("\r\n\nAll tests passed. Press RESET to restart test"),0x80); while(1); } break; case( USB_STATE_ERROR ): E_Notify(PSTR("\r\nUSB state machine reached error state"),0x80); break; default: break; }//switch( usbstate... } }//loop()... /* constantly transmits 0x55 via SPI to aid probing */ void halt55() { E_Notify(PSTR("\r\nUnrecoverable error - test halted!!"),0x80); E_Notify(PSTR("\r\n0x55 pattern is transmitted via SPI"),0x80); E_Notify(PSTR("\r\nPress RESET to restart test"),0x80); while( 1 ) { Usb.regWr( 0x55, 0x55 ); } } /* prints hex numbers with leading zeroes */ void print_hex(int v, int num_places) { int mask=0, n, num_nibbles, digit; for (n=1; n<=num_places; n++) { mask = (mask << 1) | 0x0001; } v = v & mask; // truncate v to specified number of places num_nibbles = num_places / 4; if ((num_places % 4) != 0) { ++num_nibbles; } do { digit = ((v >> (num_nibbles-1) * 4)) & 0x0f; Serial.print(digit, HEX); } while(--num_nibbles); } /* prints "Press any key" and returns when key is pressed */ void press_any_key() { E_Notify(PSTR("\r\nPress any key to continue..."),0x80); while( Serial.available() <= 0 ); //wait for input Serial.read(); //empty input buffer return; }