/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved. This software may be distributed and modified under the terms of the GNU General Public License version 2 (GPL2) as published by the Free Software Foundation and appearing in the file GPL2.TXT included in the packaging of this file. Please note that GPL2 Section 2[b] requires that all works based on this software must also be made publicly available under the terms of the GPL2 ("Copyleft"). Contact information ------------------- Kristian Lauszus, TKJ Electronics Web : http://www.tkjelectronics.com e-mail : kristianl@tkjelectronics.com */ #include "BTD.h" #define DEBUG // Uncomment to print data for debugging //#define EXTRADEBUG // Uncomment to get even more debugging data const uint8_t BTD::BTD_EVENT_PIPE = 1; const uint8_t BTD::BTD_DATAIN_PIPE = 2; const uint8_t BTD::BTD_DATAOUT_PIPE = 3; BTD::BTD(USB *p): pUsb(p), // Pointer to USB class instance - mandatory bAddress(0), // Device address - mandatory bNumEP(1), // If config descriptor needs to be parsed qNextPollTime(0), // Reset NextPollTime bPollEnable(false) // Don't start polling before dongle is connected { for(uint8_t i=0; iRegisterDeviceClass(this); //set devConfig[] entry wiiServiceID = -1; } uint8_t BTD::Init(uint8_t parent, uint8_t port, bool lowspeed) { uint8_t buf[sizeof(USB_DEVICE_DESCRIPTOR)]; uint8_t rcode; UsbDevice *p = NULL; EpInfo *oldep_ptr = NULL; uint8_t num_of_conf; // number of configurations uint16_t PID; uint16_t VID; // get memory address of USB device address pool AddressPool &addrPool = pUsb->GetAddressPool(); #ifdef EXTRADEBUG Notify(PSTR("\r\nBTD Init")); #endif // check if address has already been assigned to an instance if (bAddress) { #ifdef DEBUG Notify(PSTR("\r\nAddress in use")); #endif return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE; } // Get pointer to pseudo device with address 0 assigned p = addrPool.GetUsbDevicePtr(0); if (!p) { #ifdef DEBUG Notify(PSTR("\r\nAddress not found")); #endif return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; } if (!p->epinfo) { #ifdef DEBUG Notify(PSTR("\r\nepinfo is null")); #endif return USB_ERROR_EPINFO_IS_NULL; } // Save old pointer to EP_RECORD of address 0 oldep_ptr = p->epinfo; // Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence p->epinfo = epInfo; p->lowspeed = lowspeed; // Get device descriptor rcode = pUsb->getDevDescr(0, 0, sizeof(USB_DEVICE_DESCRIPTOR), (uint8_t*)buf);// Get device descriptor - addr, ep, nbytes, data // Restore p->epinfo p->epinfo = oldep_ptr; if(rcode) goto FailGetDevDescr; // Allocate new address according to device class bAddress = addrPool.AllocAddress(parent, false, port); if (!bAddress) return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; // Extract Max Packet Size from device descriptor epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; // Assign new address to the device rcode = pUsb->setAddr( 0, 0, bAddress ); if (rcode) { p->lowspeed = false; addrPool.FreeAddress(bAddress); bAddress = 0; #ifdef DEBUG Notify(PSTR("\r\nsetAddr: ")); #endif PrintHex(rcode); return rcode; } #ifdef EXTRADEBUG Notify(PSTR("\r\nAddr: ")); PrintHex(bAddress); #endif p->lowspeed = false; //get pointer to assigned address record p = addrPool.GetUsbDevicePtr(bAddress); if (!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; p->lowspeed = lowspeed; // Assign epInfo to epinfo pointer - only EP0 is known rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); if (rcode) goto FailSetDevTblEntry; VID = ((USB_DEVICE_DESCRIPTOR*)buf)->idVendor; PID = ((USB_DEVICE_DESCRIPTOR*)buf)->idProduct; if(VID == PS3_VID && (PID == PS3_PID || PID == PS3NAVIGATION_PID || PID == PS3MOVE_PID)) { /* We only need the Control endpoint, so we don't have to initialize the other endpoints of device */ rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, 1); if( rcode ) goto FailSetConf; if(PID == PS3_PID || PID == PS3NAVIGATION_PID) { #ifdef DEBUG if(PID == PS3_PID) Notify(PSTR("\r\nDualshock 3 Controller Connected")); else // must be a navigation controller Notify(PSTR("\r\nNavigation Controller Connected")); #endif /* Set internal bluetooth address */ setBdaddr(my_bdaddr); } else { // must be a Motion controller #ifdef DEBUG Notify(PSTR("\r\nMotion Controller Connected")); #endif setMoveBdaddr(my_bdaddr); } rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, 0); // Reset configuration value pUsb->setAddr(bAddress, 0, 0); // Reset address Release(); // Release device return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; // return } else { num_of_conf = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations; // check if attached device is a Bluetooth dongle and fill endpoint data structure // first interface in the configuration must have Bluetooth assigned Class/Subclass/Protocol // and 3 endpoints - interrupt-IN, bulk-IN, bulk-OUT, // not necessarily in this order for (uint8_t i=0; i confDescrParser(this); rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser); if(rcode) goto FailGetConfDescr; if(bNumEP >= BTD_MAX_ENDPOINTS) // All endpoints extracted break; } if (bNumEP < BTD_MAX_ENDPOINTS) goto FailUnknownDevice; // Assign epInfo to epinfo pointer - this time all 3 endpoins rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo); if(rcode) goto FailSetDevTblEntry; delay(200); // Give time for address change // Set Configuration Value rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bConfNum); if(rcode) goto FailSetConf; hci_num_reset_loops = 100; // only loop 100 times before trying to send the hci reset command hci_counter = 0; hci_state = HCI_INIT_STATE; watingForConnection = false; bPollEnable = true; #ifdef DEBUG Notify(PSTR("\r\nBluetooth Dongle Initialized")); #endif } return 0; // Successful configuration /* diagnostic messages */ FailGetDevDescr: #ifdef DEBUG Notify(PSTR("\r\ngetDevDescr")); #endif goto Fail; FailSetDevTblEntry: #ifdef DEBUG Notify(PSTR("\r\nsetDevTblEn")); #endif goto Fail; FailGetConfDescr: #ifdef DEBUG Notify(PSTR("\r\ngetConf")); #endif goto Fail; FailSetConf: #ifdef DEBUG Notify(PSTR("\r\nsetConf")); #endif goto Fail; FailUnknownDevice: #ifdef DEBUG Notify(PSTR("\r\nUnknown Device Connected - VID: ")); PrintHex(VID); Notify(PSTR(" PID: ")); PrintHex(PID); #endif pUsb->setAddr(bAddress, 0, 0); // Reset address rcode = USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; goto Fail; Fail: #ifdef DEBUG Notify(PSTR("\r\nBTD Init Failed, error code: ")); Serial.print(rcode); #endif Release(); return rcode; } /* Extracts interrupt-IN, bulk-IN, bulk-OUT endpoint information from config descriptor */ void BTD::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *pep) { //ErrorMessage(PSTR("Conf.Val"),conf); //ErrorMessage(PSTR("Iface Num"),iface); //ErrorMessage(PSTR("Alt.Set"),alt); if(alt) // wrong interface - by BT spec, no alt setting return; bConfNum = conf; uint8_t index; if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) // Interrupt In endpoint found index = BTD_EVENT_PIPE; else { if ((pep->bmAttributes & 0x02) == 2) // bulk endpoint found index = ((pep->bEndpointAddress & 0x80) == 0x80) ? BTD_DATAIN_PIPE : BTD_DATAOUT_PIPE; else return; } // Fill the rest of endpoint data structure epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F); epInfo[index].maxPktSize = (uint8_t)pep->wMaxPacketSize; #ifdef EXTRADEBUG PrintEndpointDescriptor(pep); #endif if(pollInterval < pep->bInterval) // Set the polling interval as the largest polling interval obtained from endpoints pollInterval = pep->bInterval; bNumEP++; } void BTD::PrintEndpointDescriptor(const USB_ENDPOINT_DESCRIPTOR* ep_ptr) { Notify(PSTR("\r\nEndpoint descriptor:")); Notify(PSTR("\r\nLength:\t\t")); PrintHex(ep_ptr->bLength); Notify(PSTR("\r\nType:\t\t")); PrintHex(ep_ptr->bDescriptorType); Notify(PSTR("\r\nAddress:\t")); PrintHex(ep_ptr->bEndpointAddress); Notify(PSTR("\r\nAttributes:\t")); PrintHex(ep_ptr->bmAttributes); Notify(PSTR("\r\nMaxPktSize:\t")); PrintHex(ep_ptr->wMaxPacketSize); Notify(PSTR("\r\nPoll Intrv:\t")); PrintHex(ep_ptr->bInterval); } /* Performs a cleanup after failed Init() attempt */ uint8_t BTD::Release() { for (uint8_t i=0; iReset(); // Reset all Bluetooth services pUsb->GetAddressPool().FreeAddress(bAddress); bAddress = 0; bPollEnable = false; bNumEP = 1; // must have to be reset to 1 return 0; } uint8_t BTD::Poll() { if (!bPollEnable) return 0; if (qNextPollTime <= millis()) { // Don't poll if shorter than polling interval qNextPollTime = millis() + pollInterval; // Set new poll time HCI_event_task(); // poll the HCI event pipe ACL_event_task(); // start polling the ACL input pipe too, though discard data until connected } return 0; } void BTD::HCI_event_task() { /* check the event pipe*/ uint16_t MAX_BUFFER_SIZE = BULK_MAXPKTSIZE; // Request more than 16 bytes anyway, the inTransfer routine will take care of this uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_EVENT_PIPE ].epAddr, &MAX_BUFFER_SIZE, hcibuf); // input on endpoint 1 if(!rcode || rcode == hrNAK) // Check for errors { switch (hcibuf[0]) //switch on event type { case EV_COMMAND_COMPLETE: if (!hcibuf[5]) { // Check if command succeeded hci_event_flag |= HCI_FLAG_CMD_COMPLETE; // set command complete flag if((hcibuf[3] == 0x01) && (hcibuf[4] == 0x10)) { // parameters from read local version information hci_version = hcibuf[6]; // Used to check if it supports 2.0+EDR - see http://www.bluetooth.org/Technical/AssignedNumbers/hci.htm hci_event_flag |= HCI_FLAG_READ_VERSION; } else if((hcibuf[3] == 0x09) && (hcibuf[4] == 0x10)) { // parameters from read local bluetooth address for (uint8_t i = 0; i < 6; i++) my_bdaddr[i] = hcibuf[6 + i]; hci_event_flag |= HCI_FLAG_READ_BDADDR; } } break; case EV_COMMAND_STATUS: if(hcibuf[2]) { // show status on serial if not OK #ifdef DEBUG Notify(PSTR("\r\nHCI Command Failed: ")); PrintHex(hcibuf[2]); Notify(PSTR(" ")); PrintHex(hcibuf[4]); Notify(PSTR(" ")); PrintHex(hcibuf[5]); #endif } break; case EV_INQUIRY_COMPLETE: // We don't use this for anything break; case EV_INQUIRY_RESULT: if (hcibuf[2]) { // Check that there is more than zero responses #ifdef EXTRADEBUG Notify(PSTR("\r\nNumber of responses: ")); Serial.print(hcibuf[2]); #endif for(uint8_t i = 0; i < hcibuf[2]; i++) { if((hcibuf[4+8*hcibuf[2]+3*i] == 0x04 && hcibuf[5+8*hcibuf[2]+3*i] == 0x25 && hcibuf[6+8*hcibuf[2]+3*i] == 0x00) || (hcibuf[4+8*hcibuf[2]+3*i] == 0x08 && hcibuf[5+8*hcibuf[2]+3*i] == 0x05 && hcibuf[6+8*hcibuf[2]+3*i] == 0x00)) { // See http://bluetooth-pentest.narod.ru/software/bluetooth_class_of_device-service_generator.html and http://wiibrew.org/wiki/Wiimote#SDP_information disc_bdaddr[0] = hcibuf[3+6*i]; disc_bdaddr[1] = hcibuf[4+6*i]; disc_bdaddr[2] = hcibuf[5+6*i]; disc_bdaddr[3] = hcibuf[6+6*i]; disc_bdaddr[4] = hcibuf[7+6*i]; disc_bdaddr[5] = hcibuf[8+6*i]; hci_event_flag |= HCI_FLAG_WII_FOUND; break; } #ifdef EXTRADEBUG else { Notify(PSTR("\r\nClass of device: ")); PrintHex(hcibuf[6+8*hcibuf[2]+3*i]); Notify(PSTR(" ")); PrintHex(hcibuf[5+8*hcibuf[2]+3*i]); Notify(PSTR(" ")); PrintHex(hcibuf[4+8*hcibuf[2]+3*i]); } #endif } } break; case EV_CONNECT_COMPLETE: hci_event_flag |= HCI_FLAG_CONNECT_EVENT; if (!hcibuf[2]) { // check if connected OK hci_handle = hcibuf[3] | ((hcibuf[4] & 0x0F) << 8); // store the handle for the ACL connection hci_event_flag |= HCI_FLAG_CONN_COMPLETE; // set connection complete flag } #ifdef EXTRADEBUG else { Notify(PSTR("\r\nConnection Failed")); } #endif break; case EV_DISCONNECT_COMPLETE: if (!hcibuf[2]) { // check if disconnected OK hci_event_flag |= HCI_FLAG_DISCONN_COMPLETE; // set disconnect command complete flag hci_event_flag &= ~HCI_FLAG_CONN_COMPLETE; // clear connection complete flag } break; case EV_REMOTE_NAME_COMPLETE: if (!hcibuf[2]) { // check if reading is OK for (uint8_t i = 0; i < 30; i++) remote_name[i] = hcibuf[9 + i]; //store first 30 bytes hci_event_flag |= HCI_FLAG_REMOTE_NAME_COMPLETE; } break; case EV_INCOMING_CONNECT: disc_bdaddr[0] = hcibuf[2]; disc_bdaddr[1] = hcibuf[3]; disc_bdaddr[2] = hcibuf[4]; disc_bdaddr[3] = hcibuf[5]; disc_bdaddr[4] = hcibuf[6]; disc_bdaddr[5] = hcibuf[7]; hci_event_flag |= HCI_FLAG_INCOMING_REQUEST; break; case EV_PIN_CODE_REQUEST: if(btdPin != NULL) { #ifdef DEBUG Notify(PSTR("\r\nBluetooth pin is set too: ")); Serial.print(btdPin); #endif hci_pin_code_request_reply(btdPin); } else { #ifdef DEBUG Notify(PSTR("\r\nNo pin was set")); #endif hci_pin_code_negative_request_reply(); } break; case EV_LINK_KEY_REQUEST: #ifdef DEBUG Notify(PSTR("\r\nReceived Key Request")); #endif hci_link_key_request_negative_reply(); break; /* We will just ignore the following events */ case EV_NUM_COMPLETE_PKT: case EV_ROLE_CHANGED: case EV_PAGE_SCAN_REP_MODE: case EV_LOOPBACK_COMMAND: case EV_DATA_BUFFER_OVERFLOW: case EV_CHANGE_CONNECTION_LINK: case EV_AUTHENTICATION_COMPLETE: case EV_MAX_SLOTS_CHANGE: case EV_QOS_SETUP_COMPLETE: case EV_LINK_KEY_NOTIFICATION: case EV_ENCRYPTION_CHANGE: case EV_READ_REMOTE_VERSION_INFORMATION_COMPLETE: break; #ifdef EXTRADEBUG default: if(hcibuf[0] != 0x00) { Notify(PSTR("\r\nUnmanaged HCI Event: ")); PrintHex(hcibuf[0]); } break; #endif } // switch HCI_task(); } #ifdef EXTRADEBUG else { Notify(PSTR("\r\nHCI event error: ")); PrintHex(rcode); } #endif } /* Poll Bluetooth and print result */ void BTD::HCI_task() { switch (hci_state){ case HCI_INIT_STATE: hci_counter++; if (hci_counter > hci_num_reset_loops) { // wait until we have looped x times to clear any old events hci_reset(); hci_state = HCI_RESET_STATE; hci_counter = 0; } break; case HCI_RESET_STATE: hci_counter++; if (hci_cmd_complete) { #ifdef DEBUG Notify(PSTR("\r\nHCI Reset complete")); #endif hci_state = HCI_BDADDR_STATE; hci_read_bdaddr(); } else if (hci_counter > hci_num_reset_loops) { hci_num_reset_loops *= 10; if(hci_num_reset_loops > 2000) hci_num_reset_loops = 2000; #ifdef DEBUG Notify(PSTR("\r\nNo response to HCI Reset")); #endif hci_state = HCI_INIT_STATE; hci_counter = 0; } break; case HCI_BDADDR_STATE: if (hci_read_bdaddr_complete) { #ifdef DEBUG Notify(PSTR("\r\nLocal Bluetooth Address: ")); for(int8_t i = 5; i > 0;i--) { PrintHex(my_bdaddr[i]); Notify(PSTR(":")); } PrintHex(my_bdaddr[0]); #endif hci_read_local_version_information(); hci_state = HCI_LOCAL_VERSION_STATE; } break; case HCI_LOCAL_VERSION_STATE: // The local version is used by the PS3BT class if (hci_read_version_complete) { if(btdName != NULL) { hci_set_local_name(btdName); hci_state = HCI_SET_NAME_STATE; } else hci_state = HCI_CHECK_WII_SERVICE; } break; case HCI_SET_NAME_STATE: if (hci_cmd_complete) { #ifdef DEBUG Notify(PSTR("\r\nThe name is set to: ")); Serial.print(btdName); #endif hci_state = HCI_CHECK_WII_SERVICE; } break; case HCI_CHECK_WII_SERVICE: if(wiiServiceID != -1) { // Check if it should try to connect to a wiimote if(disc_bdaddr[5] == 0 && disc_bdaddr[4] == 0 && disc_bdaddr[3] == 0 && disc_bdaddr[2] == 0 && disc_bdaddr[1] == 0 && disc_bdaddr[0] == 0) { #ifdef DEBUG Notify(PSTR("\r\nStarting inquiry\r\nPress 1 & 2 on the Wiimote")); #endif hci_inquiry(); hci_state = HCI_INQUIRY_STATE; } else hci_state = HCI_CONNECT_WII_STATE; } else hci_state = HCI_SCANNING_STATE; // Don't try to connect to a Wiimote break; case HCI_INQUIRY_STATE: if(hci_wii_found) { hci_inquiry_cancel(); // Stop inquiry #ifdef DEBUG Notify(PSTR("\r\nWiimote found")); Notify(PSTR("\r\nCreate the instance like so to connect automatically:")); Notify(PSTR("\r\nWII Wii(&Btd,")); for(int8_t i = 5; i>0;i--) { Notify(PSTR("0x")); PrintHex(disc_bdaddr[i]); Notify(PSTR(",")); } Notify(PSTR("0x")); PrintHex(disc_bdaddr[0]); Notify(PSTR(");")); #endif hci_state = HCI_CONNECT_WII_STATE; } break; case HCI_CONNECT_WII_STATE: if(!hci_wii_found || hci_cmd_complete) { #ifdef DEBUG Notify(PSTR("\r\nConnecting to Wiimote")); #endif hci_connect(); hci_state = HCI_CONNECTED_WII_STATE; } break; case HCI_CONNECTED_WII_STATE: if(hci_connect_event) { if(hci_connect_complete) { #ifdef DEBUG Notify(PSTR("\r\nConnected to Wiimote")); #endif connectToWii = true; // Only send the ACL data to the Wii service hci_state = HCI_SCANNING_STATE; } else { #ifdef DEBUG Notify(PSTR("\r\nTrying to connect one more time...")); #endif hci_connect(); // Try to connect one more time } } break; case HCI_SCANNING_STATE: if(!connectToWii) { #ifdef DEBUG Notify(PSTR("\r\nWait For Incoming Connection Request")); #endif hci_write_scan_enable(); watingForConnection = true; hci_state = HCI_CONNECT_IN_STATE; } break; case HCI_CONNECT_IN_STATE: if(hci_incoming_connect_request) { watingForConnection = false; #ifdef DEBUG Notify(PSTR("\r\nIncoming Connection Request")); #endif hci_remote_name(); hci_state = HCI_REMOTE_NAME_STATE; } else if (hci_disconnect_complete) hci_state = HCI_DISCONNECT_STATE; break; case HCI_REMOTE_NAME_STATE: if(hci_remote_name_complete) { #ifdef DEBUG Notify(PSTR("\r\nRemote Name: ")); for (uint8_t i = 0; i < 30; i++) { if(remote_name[i] == NULL) break; Serial.write(remote_name[i]); } #endif hci_accept_connection(); hci_state = HCI_CONNECTED_STATE; } break; case HCI_CONNECTED_STATE: if (hci_connect_complete) { #ifdef DEBUG Notify(PSTR("\r\nConnected to Device: ")); for(int8_t i = 5; i>0;i--) { PrintHex(disc_bdaddr[i]); Notify(PSTR(":")); } PrintHex(disc_bdaddr[0]); #endif hci_write_scan_disable(); hci_state = HCI_DISABLE_SCAN_STATE; } break; case HCI_DISABLE_SCAN_STATE: if (hci_cmd_complete) { #ifdef DEBUG Notify(PSTR("\r\nScan Disabled")); #endif hci_event_flag = 0; hci_state = HCI_DONE_STATE; } break; case HCI_DONE_STATE: hci_counter++; if (hci_counter > 250) { // Wait until we have looped 250 times to make sure that the L2CAP connection has been started hci_counter = 0; hci_state = HCI_SCANNING_STATE; l2capConnectionClaimed = false; } break; case HCI_DISCONNECT_STATE: if (hci_disconnect_complete) { #ifdef DEBUG Notify(PSTR("\r\nHCI Disconnected from Device")); #endif hci_event_flag = 0; // Clear all flags // Reset all buffers for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++) hcibuf[i] = 0; for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++) l2capinbuf[i] = 0; hci_state = HCI_SCANNING_STATE; } break; default: break; } } void BTD::ACL_event_task() { uint16_t MAX_BUFFER_SIZE = BULK_MAXPKTSIZE; uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_DATAIN_PIPE ].epAddr, &MAX_BUFFER_SIZE, l2capinbuf); // input on endpoint 2 if(!rcode) { // Check for errors if(connectToWii) // Only send the data to the Wii service btService[wiiServiceID]->ACLData(l2capinbuf); else { for (uint8_t i=0; iACLData(l2capinbuf); } } #ifdef EXTRADEBUG else if (rcode != hrNAK) { Notify(PSTR("\r\nACL data in error: ")); PrintHex(rcode); } #endif for (uint8_t i=0; iRun(); } /************************************************************/ /* HCI Commands */ /************************************************************/ void BTD::HCI_Command(uint8_t* data, uint16_t nbytes) { hci_event_flag &= ~HCI_FLAG_CMD_COMPLETE; pUsb->ctrlReq(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bmREQ_HCI_OUT, 0x00, 0x00, 0x00 ,0x00, nbytes, nbytes, data, NULL); } void BTD::hci_reset() { hci_event_flag = 0; // Clear all the flags hcibuf[0] = 0x03; // HCI OCF = 3 hcibuf[1] = 0x03 << 2; // HCI OGF = 3 hcibuf[2] = 0x00; HCI_Command(hcibuf, 3); } void BTD::hci_write_scan_enable() { hci_event_flag &= ~HCI_FLAG_INCOMING_REQUEST; hcibuf[0] = 0x1A; // HCI OCF = 1A hcibuf[1] = 0x03 << 2; // HCI OGF = 3 hcibuf[2] = 0x01; // parameter length = 1 if(btdName != NULL) hcibuf[3] = 0x03; // Inquiry Scan enabled. Page Scan enabled. else hcibuf[3] = 0x02; // Inquiry Scan disabled. Page Scan enabled. HCI_Command(hcibuf, 4); } void BTD::hci_write_scan_disable() { hcibuf[0] = 0x1A; // HCI OCF = 1A hcibuf[1] = 0x03 << 2; // HCI OGF = 3 hcibuf[2] = 0x01; // parameter length = 1 hcibuf[3] = 0x00; // Inquiry Scan disabled. Page Scan disabled. HCI_Command(hcibuf, 4); } void BTD::hci_read_bdaddr() { hcibuf[0] = 0x09; // HCI OCF = 9 hcibuf[1] = 0x04 << 2; // HCI OGF = 4 hcibuf[2] = 0x00; HCI_Command(hcibuf, 3); } void BTD::hci_read_local_version_information() { hcibuf[0] = 0x01; // HCI OCF = 1 hcibuf[1] = 0x04 << 2; // HCI OGF = 4 hcibuf[2] = 0x00; HCI_Command(hcibuf, 3); } void BTD::hci_accept_connection() { hci_event_flag &= ~HCI_FLAG_CONN_COMPLETE; hcibuf[0] = 0x09; // HCI OCF = 9 hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[2] = 0x07; // parameter length 7 hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr hcibuf[4] = disc_bdaddr[1]; hcibuf[5] = disc_bdaddr[2]; hcibuf[6] = disc_bdaddr[3]; hcibuf[7] = disc_bdaddr[4]; hcibuf[8] = disc_bdaddr[5]; hcibuf[9] = 0x00; //switch role to master HCI_Command(hcibuf, 10); } void BTD::hci_remote_name() { hci_event_flag &= ~HCI_FLAG_REMOTE_NAME_COMPLETE; hcibuf[0] = 0x19; // HCI OCF = 19 hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[2] = 0x0A; // parameter length = 10 hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr hcibuf[4] = disc_bdaddr[1]; hcibuf[5] = disc_bdaddr[2]; hcibuf[6] = disc_bdaddr[3]; hcibuf[7] = disc_bdaddr[4]; hcibuf[8] = disc_bdaddr[5]; hcibuf[9] = 0x01; //Page Scan Repetition Mode hcibuf[10] = 0x00; //Reserved hcibuf[11] = 0x00; //Clock offset - low byte hcibuf[12] = 0x00; //Clock offset - high byte HCI_Command(hcibuf, 13); } void BTD::hci_set_local_name(const char* name) { hcibuf[0] = 0x13; // HCI OCF = 13 hcibuf[1] = 0x03 << 2; // HCI OGF = 3 hcibuf[2] = strlen(name)+1; // parameter length = the length of the string + end byte uint8_t i; for(i = 0; i < strlen(name); i++) hcibuf[i+3] = name[i]; hcibuf[i+3] = 0x00; // End of string HCI_Command(hcibuf, 4+strlen(name)); } void BTD::hci_inquiry() { hci_event_flag &= ~HCI_FLAG_WII_FOUND; hcibuf[0] = 0x01; hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[2] = 0x05; // Parameter Total Length = 5 hcibuf[3] = 0x33; // LAP: Genera/Unlimited Inquiry Access Code (GIAC = 0x9E8B33) - see https://www.bluetooth.org/Technical/AssignedNumbers/baseband.htm hcibuf[4] = 0x8B; hcibuf[5] = 0x9E; hcibuf[6] = 0x30; // Inquiry time = 61.44 sec (maximum) hcibuf[7] = 0x0A; // 10 number of responses HCI_Command(hcibuf, 8); } void BTD::hci_inquiry_cancel() { hcibuf[0] = 0x02; hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[2] = 0x0; // Parameter Total Length = 0 HCI_Command(hcibuf, 3); } void BTD::hci_connect() { hci_event_flag &= ~(HCI_FLAG_CONN_COMPLETE | HCI_FLAG_CONNECT_EVENT); hcibuf[0] = 0x05; hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[2] = 0x0D; // parameter Total Length = 13 hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr hcibuf[4] = disc_bdaddr[1]; hcibuf[5] = disc_bdaddr[2]; hcibuf[6] = disc_bdaddr[3]; hcibuf[7] = disc_bdaddr[4]; hcibuf[8] = disc_bdaddr[5]; hcibuf[9] = 0x18; // DM1 or DH1 may be used hcibuf[10] = 0xCC; // DM3, DH3, DM5, DH5 may be used hcibuf[11] = 0x01; // Page repetition mode R1 hcibuf[12] = 0x00; // Reserved hcibuf[13] = 0x00; // Clock offset hcibuf[14] = 0x00; // Invalid clock offset hcibuf[15] = 0x00; // Do not allow role switch HCI_Command(hcibuf, 16); } void BTD::hci_pin_code_request_reply(const char* key) { hcibuf[0] = 0x0D; // HCI OCF = 0D hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[2] = 0x17; // parameter length 23 hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr hcibuf[4] = disc_bdaddr[1]; hcibuf[5] = disc_bdaddr[2]; hcibuf[6] = disc_bdaddr[3]; hcibuf[7] = disc_bdaddr[4]; hcibuf[8] = disc_bdaddr[5]; hcibuf[9] = strlen(key); // Length of key uint8_t i; for(i = 0; i < strlen(key); i++) // The maximum size of the key is 16 hcibuf[i+10] = key[i]; for(;i < 16; i++) hcibuf[i+10] = 0x00; // The rest should be 0 HCI_Command(hcibuf, 26); } void BTD::hci_pin_code_negative_request_reply() { hcibuf[0] = 0x0E; // HCI OCF = 0E hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[2] = 0x06; // parameter length 6 hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr hcibuf[4] = disc_bdaddr[1]; hcibuf[5] = disc_bdaddr[2]; hcibuf[6] = disc_bdaddr[3]; hcibuf[7] = disc_bdaddr[4]; hcibuf[8] = disc_bdaddr[5]; HCI_Command(hcibuf, 9); } void BTD::hci_link_key_request_negative_reply() { hcibuf[0] = 0x0C; // HCI OCF = 0C hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[2] = 0x06; // parameter length 6 hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr hcibuf[4] = disc_bdaddr[1]; hcibuf[5] = disc_bdaddr[2]; hcibuf[6] = disc_bdaddr[3]; hcibuf[7] = disc_bdaddr[4]; hcibuf[8] = disc_bdaddr[5]; HCI_Command(hcibuf, 9); } void BTD::hci_disconnect(uint16_t handle) { // This is called by the different services hci_event_flag &= ~HCI_FLAG_DISCONN_COMPLETE; hcibuf[0] = 0x06; // HCI OCF = 6 hcibuf[1] = 0x01 << 2; // HCI OGF = 1 hcibuf[2] = 0x03; // parameter length = 3 hcibuf[3] = (uint8_t)(handle & 0xFF);//connection handle - low byte hcibuf[4] = (uint8_t)((handle >> 8) & 0x0F);//connection handle - high byte hcibuf[5] = 0x13; // reason HCI_Command(hcibuf, 6); } /******************************************************************* * * * HCI ACL Data Packet * * * * buf[0] buf[1] buf[2] buf[3] * 0 4 8 11 12 16 24 31 MSB * .-+-+-+-+-+-+-+-|-+-+-+-|-+-|-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-. * | HCI Handle |PB |BC | Data Total Length | HCI ACL Data Packet * .-+-+-+-+-+-+-+-|-+-+-+-|-+-|-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-. * * buf[4] buf[5] buf[6] buf[7] * 0 8 16 31 MSB * .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-. * | Length | Channel ID | Basic L2CAP header * .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-. * * buf[8] buf[9] buf[10] buf[11] * 0 8 16 31 MSB * .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-. * | Code | Identifier | Length | Control frame (C-frame) * .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-. (signaling packet format) */ /************************************************************/ /* L2CAP Commands */ /************************************************************/ void BTD::L2CAP_Command(uint16_t handle, uint8_t* data, uint8_t nbytes, uint8_t channelLow, uint8_t channelHigh) { uint8_t buf[8+nbytes]; buf[0] = (uint8_t)(handle & 0xff); // HCI handle with PB,BC flag buf[1] = (uint8_t)(((handle >> 8) & 0x0f) | 0x20); buf[2] = (uint8_t)((4 + nbytes) & 0xff); // HCI ACL total data length buf[3] = (uint8_t)((4 + nbytes) >> 8); buf[4] = (uint8_t)(nbytes & 0xff); // L2CAP header: Length buf[5] = (uint8_t)(nbytes >> 8); buf[6] = channelLow; buf[7] = channelHigh; for (uint16_t i = 0; i < nbytes; i++) // L2CAP C-frame buf[8 + i] = data[i]; uint8_t rcode = pUsb->outTransfer(bAddress, epInfo[ BTD_DATAOUT_PIPE ].epAddr, (8 + nbytes), buf); if(rcode) { delay(100); // This small delay prevents it from overflowing if it fails #ifdef DEBUG Notify(PSTR("\r\nError sending L2CAP message: 0x")); PrintHex(rcode); Notify(PSTR(" - Channel ID: ")); Serial.print(channelHigh); Notify(PSTR(" ")); Serial.print(channelLow); #endif } } void BTD::l2cap_connection_request(uint16_t handle, uint8_t rxid, uint8_t* scid, uint16_t psm) { l2capoutbuf[0] = L2CAP_CMD_CONNECTION_REQUEST; // Code l2capoutbuf[1] = rxid; // Identifier l2capoutbuf[2] = 0x04; // Length l2capoutbuf[3] = 0x00; l2capoutbuf[4] = (uint8_t)(psm & 0xff); // PSM l2capoutbuf[5] = (uint8_t)(psm >> 8); l2capoutbuf[6] = scid[0]; // Source CID l2capoutbuf[7] = scid[1]; L2CAP_Command(handle, l2capoutbuf, 8); } void BTD::l2cap_connection_response(uint16_t handle, uint8_t rxid, uint8_t* dcid, uint8_t* scid, uint8_t result) { l2capoutbuf[0] = L2CAP_CMD_CONNECTION_RESPONSE; // Code l2capoutbuf[1] = rxid; // Identifier l2capoutbuf[2] = 0x08; // Length l2capoutbuf[3] = 0x00; l2capoutbuf[4] = dcid[0]; // Destination CID l2capoutbuf[5] = dcid[1]; l2capoutbuf[6] = scid[0]; // Source CID l2capoutbuf[7] = scid[1]; l2capoutbuf[8] = result; // Result: Pending or Success l2capoutbuf[9] = 0x00; l2capoutbuf[10] = 0x00; // No further information l2capoutbuf[11] = 0x00; L2CAP_Command(handle, l2capoutbuf, 12); } void BTD::l2cap_config_request(uint16_t handle, uint8_t rxid, uint8_t* dcid) { l2capoutbuf[0] = L2CAP_CMD_CONFIG_REQUEST; // Code l2capoutbuf[1] = rxid; // Identifier l2capoutbuf[2] = 0x08; // Length l2capoutbuf[3] = 0x00; l2capoutbuf[4] = dcid[0]; // Destination CID l2capoutbuf[5] = dcid[1]; l2capoutbuf[6] = 0x00; // Flags l2capoutbuf[7] = 0x00; l2capoutbuf[8] = 0x01; // Config Opt: type = MTU (Maximum Transmission Unit) - Hint l2capoutbuf[9] = 0x02; // Config Opt: length l2capoutbuf[10] = 0xFF; // MTU l2capoutbuf[11] = 0xFF; L2CAP_Command(handle, l2capoutbuf, 12); } void BTD::l2cap_config_response(uint16_t handle, uint8_t rxid, uint8_t* scid) { l2capoutbuf[0] = L2CAP_CMD_CONFIG_RESPONSE; // Code l2capoutbuf[1] = rxid; // Identifier l2capoutbuf[2] = 0x0A; // Length l2capoutbuf[3] = 0x00; l2capoutbuf[4] = scid[0]; // Source CID l2capoutbuf[5] = scid[1]; l2capoutbuf[6] = 0x00; // Flag l2capoutbuf[7] = 0x00; l2capoutbuf[8] = 0x00; // Result l2capoutbuf[9] = 0x00; l2capoutbuf[10] = 0x01; // Config l2capoutbuf[11] = 0x02; l2capoutbuf[12] = 0xA0; l2capoutbuf[13] = 0x02; L2CAP_Command(handle, l2capoutbuf, 14); } void BTD::l2cap_disconnection_request(uint16_t handle, uint8_t rxid, uint8_t* dcid, uint8_t* scid) { l2capoutbuf[0] = L2CAP_CMD_DISCONNECT_REQUEST; // Code l2capoutbuf[1] = rxid; // Identifier l2capoutbuf[2] = 0x04; // Length l2capoutbuf[3] = 0x00; l2capoutbuf[4] = dcid[0]; l2capoutbuf[5] = dcid[1]; l2capoutbuf[6] = scid[0]; l2capoutbuf[7] = scid[1]; L2CAP_Command(handle, l2capoutbuf, 8); } void BTD::l2cap_disconnection_response(uint16_t handle, uint8_t rxid, uint8_t* dcid, uint8_t* scid) { l2capoutbuf[0] = L2CAP_CMD_DISCONNECT_RESPONSE; // Code l2capoutbuf[1] = rxid; // Identifier l2capoutbuf[2] = 0x04; // Length l2capoutbuf[3] = 0x00; l2capoutbuf[4] = dcid[0]; l2capoutbuf[5] = dcid[1]; l2capoutbuf[6] = scid[0]; l2capoutbuf[7] = scid[1]; L2CAP_Command(handle, l2capoutbuf, 8); } void BTD::l2cap_information_response(uint16_t handle, uint8_t rxid, uint8_t infoTypeLow, uint8_t infoTypeHigh) { l2capoutbuf[0] = L2CAP_CMD_INFORMATION_RESPONSE; // Code l2capoutbuf[1] = rxid; // Identifier l2capoutbuf[2] = 0x08; // Length l2capoutbuf[3] = 0x00; l2capoutbuf[4] = infoTypeLow; l2capoutbuf[5] = infoTypeHigh; l2capoutbuf[6] = 0x00; // Result = success l2capoutbuf[7] = 0x00; // Result = success l2capoutbuf[8] = 0x00; l2capoutbuf[9] = 0x00; l2capoutbuf[10] = 0x00; l2capoutbuf[11] = 0x00; L2CAP_Command(handle, l2capoutbuf, 12); } /* PS3 Commands - only set Bluetooth address is implemented */ void BTD::setBdaddr(uint8_t* BDADDR) { /* Set the internal bluetooth address */ uint8_t buf[8]; buf[0] = 0x01; buf[1] = 0x00; for (uint8_t i = 0; i < 6; i++) buf[i+2] = BDADDR[5 - i];//Copy into buffer, has to be written reversed //bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0xF5), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data) pUsb->ctrlReq(bAddress,epInfo[BTD_CONTROL_PIPE].epAddr, bmREQ_HID_OUT, HID_REQUEST_SET_REPORT, 0xF5, 0x03, 0x00, 8, 8, buf, NULL); #ifdef DEBUG Notify(PSTR("\r\nBluetooth Address was set to: ")); for(int8_t i = 5; i > 0; i--) { PrintHex(my_bdaddr[i]); Notify(PSTR(":")); } PrintHex(my_bdaddr[0]); #endif } void BTD::setMoveBdaddr(uint8_t* BDADDR) { /* Set the internal bluetooth address */ uint8_t buf[11]; buf[0] = 0x05; buf[7] = 0x10; buf[8] = 0x01; buf[9] = 0x02; buf[10] = 0x12; for (uint8_t i = 0; i < 6; i++) buf[i + 1] = BDADDR[i]; //bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0x05), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data) pUsb->ctrlReq(bAddress,epInfo[BTD_CONTROL_PIPE].epAddr, bmREQ_HID_OUT, HID_REQUEST_SET_REPORT, 0x05, 0x03, 0x00,11,11, buf, NULL); #ifdef DEBUG Notify(PSTR("\r\nBluetooth Address was set to: ")); for(int8_t i = 5; i > 0; i--) { PrintHex(my_bdaddr[i]); Notify(PSTR(":")); } PrintHex(my_bdaddr[0]); #endif }