#include "hiduniversal.h" HIDUniversal::HIDUniversal(USB *p) : HID(p), qNextPollTime(0), bPollEnable(false), bHasReportId(false) { Initialize(); if (pUsb) pUsb->RegisterDeviceClass(this); } uint16_t HIDUniversal::GetHidClassDescrLen(uint8_t type, uint8_t num) { for (uint8_t i = 0, n = 0; i < HID_MAX_HID_CLASS_DESCRIPTORS; i++) { if (descrInfo[i].bDescrType == type) { if (n == num) return descrInfo[i].wDescriptorLength; n++; } } return 0; } void HIDUniversal::Initialize() { for (uint8_t i = 0; i < MAX_REPORT_PARSERS; i++) { rptParsers[i].rptId = 0; rptParsers[i].rptParser = NULL; } for (uint8_t i = 0; i < HID_MAX_HID_CLASS_DESCRIPTORS; i++) { descrInfo[i].bDescrType = 0; descrInfo[i].wDescriptorLength = 0; } for (uint8_t i = 0; i < maxHidInterfaces; i++) { hidInterfaces[i].bmInterface = 0; hidInterfaces[i].bmProtocol = 0; for (uint8_t j = 0; j < maxEpPerInterface; j++) hidInterfaces[i].epIndex[j] = 0; } for (uint8_t i = 0; i < totalEndpoints; i++) { epInfo[i].epAddr = 0; epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].epAttribs = 0; epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER; } bNumEP = 1; bNumIface = 0; bConfNum = 0; ZeroMemory(constBuffLen, prevBuf); } bool HIDUniversal::SetReportParser(uint8_t id, HIDReportParser *prs) { for (uint8_t i = 0; i < MAX_REPORT_PARSERS; i++) { if (rptParsers[i].rptId == 0 && rptParsers[i].rptParser == NULL) { rptParsers[i].rptId = id; rptParsers[i].rptParser = prs; return true; } } return false; } HIDReportParser* HIDUniversal::GetReportParser(uint8_t id) { if (!bHasReportId) return ((rptParsers[0].rptParser) ? rptParsers[0].rptParser : NULL); for (uint8_t i = 0; i < MAX_REPORT_PARSERS; i++) { if (rptParsers[i].rptId == id) return rptParsers[i].rptParser; } return NULL; } uint8_t HIDUniversal::Init(uint8_t parent, uint8_t port, bool lowspeed) { const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR); uint8_t buf[constBufSize]; uint8_t rcode; UsbDevice *p = NULL; EpInfo *oldep_ptr = NULL; uint8_t len = 0; uint8_t num_of_conf; // number of configurations //uint8_t num_of_intf; // number of interfaces AddressPool &addrPool = pUsb->GetAddressPool(); USBTRACE("HU Init\r\n"); if (bAddress) return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE; // Get pointer to pseudo device with address 0 assigned p = addrPool.GetUsbDevicePtr(0); if (!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; if (!p->epinfo) { USBTRACE("epinfo\r\n"); return USB_ERROR_EPINFO_IS_NULL; } // Save old pointer to EP_RECORD of address 0 oldep_ptr = p->epinfo; // Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence p->epinfo = epInfo; p->lowspeed = lowspeed; // Get device descriptor rcode = pUsb->getDevDescr(0, 0, 8, (uint8_t*)buf); if (!rcode) len = (buf[0] > constBufSize) ? constBufSize : buf[0]; if (rcode) { // Restore p->epinfo p->epinfo = oldep_ptr; goto FailGetDevDescr; } // Restore p->epinfo p->epinfo = oldep_ptr; // Allocate new address according to device class bAddress = addrPool.AllocAddress(parent, false, port); if (!bAddress) return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; // Extract Max Packet Size from the device descriptor epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; // Assign new address to the device rcode = pUsb->setAddr(0, 0, bAddress); if (rcode) { p->lowspeed = false; addrPool.FreeAddress(bAddress); bAddress = 0; USBTRACE2("setAddr:", rcode); return rcode; } USBTRACE2("Addr:", bAddress); p->lowspeed = false; p = addrPool.GetUsbDevicePtr(bAddress); if (!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; p->lowspeed = lowspeed; if (len) rcode = pUsb->getDevDescr(bAddress, 0, len, (uint8_t*)buf); if (rcode) goto FailGetDevDescr; num_of_conf = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations; // Assign epInfo to epinfo pointer rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); if (rcode) goto FailSetDevTblEntry; USBTRACE2("NC:", num_of_conf); for (uint8_t i = 0; i < num_of_conf; i++) { //HexDumper HexDump; ConfigDescParser confDescrParser(this); //rcode = pUsb->getConfDescr(bAddress, 0, i, &HexDump); rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser); if (rcode) goto FailGetConfDescr; if (bNumEP > 1) break; } // for if (bNumEP < 2) return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; // Assign epInfo to epinfo pointer rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo); USBTRACE2("\r\nCnf:", bConfNum); // Set Configuration Value rcode = pUsb->setConf(bAddress, 0, bConfNum); if (rcode) goto FailSetConfDescr; for (uint8_t i = 0; i < bNumIface; i++) { if (hidInterfaces[i].epIndex[epInterruptInIndex] == 0) continue; rcode = SetIdle(hidInterfaces[i].bmInterface, 0, 0); if (rcode && rcode != hrSTALL) goto FailSetIdle; } USBTRACE("HU configured\r\n"); OnInitSuccessful(); bPollEnable = true; return 0; FailGetDevDescr: USBTRACE("getDevDescr:"); goto Fail; FailSetDevTblEntry: USBTRACE("setDevTblEn:"); goto Fail; FailGetConfDescr: USBTRACE("getConf:"); goto Fail; FailSetConfDescr: USBTRACE("setConf:"); goto Fail; FailSetIdle: USBTRACE("SetIdle:"); goto Fail; Fail: PrintHex (rcode, 0x80); Notify(PSTR("\r\n"), 0x80); //Serial.println(rcode, HEX); Release(); return rcode; } HIDUniversal::HIDInterface* HIDUniversal::FindInterface(uint8_t iface, uint8_t alt, uint8_t proto) { for (uint8_t i = 0; i < bNumIface && i < maxHidInterfaces; i++) if (hidInterfaces[i].bmInterface == iface && hidInterfaces[i].bmAltSet == alt && hidInterfaces[i].bmProtocol == proto) return hidInterfaces + i; return NULL; } void HIDUniversal::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *pep) { // If the first configuration satisfies, the others are not concidered. if (bNumEP > 1 && conf != bConfNum) return; //ErrorMessage(PSTR("\r\nConf.Val"), conf); //ErrorMessage(PSTR("Iface Num"), iface); //ErrorMessage(PSTR("Alt.Set"), alt); bConfNum = conf; uint8_t index = 0; HIDInterface *piface = FindInterface(iface, alt, proto); // Fill in interface structure in case of new interface if (!piface) { piface = hidInterfaces + bNumIface; piface->bmInterface = iface; piface->bmAltSet = alt; piface->bmProtocol = proto; bNumIface++; } if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) index = epInterruptInIndex; else index = epInterruptOutIndex; if (index) { // Fill in the endpoint info structure epInfo[bNumEP].epAddr = (pep->bEndpointAddress & 0x0F); epInfo[bNumEP].maxPktSize = (uint8_t)pep->wMaxPacketSize; epInfo[bNumEP].epAttribs = 0; epInfo[bNumEP].bmNakPower = USB_NAK_NOWAIT; // Fill in the endpoint index list piface->epIndex[index] = bNumEP; //(pep->bEndpointAddress & 0x0F); bNumEP++; } //PrintEndpointDescriptor(pep); } uint8_t HIDUniversal::Release() { pUsb->GetAddressPool().FreeAddress(bAddress); bNumEP = 1; bAddress = 0; qNextPollTime = 0; bPollEnable = false; return 0; } bool HIDUniversal::BuffersIdentical(uint8_t len, uint8_t *buf1, uint8_t *buf2) { for (uint8_t i = 0; i < len; i++) if (buf1[i] != buf2[i]) return false; return true; } void HIDUniversal::ZeroMemory(uint8_t len, uint8_t *buf) { for (uint8_t i = 0; i < len; i++) buf[i] = 0; } void HIDUniversal::SaveBuffer(uint8_t len, uint8_t *src, uint8_t *dest) { for (uint8_t i = 0; i < len; i++) dest[i] = src[i]; } uint8_t HIDUniversal::Poll() { uint8_t rcode = 0; if (!bPollEnable) return 0; if (qNextPollTime <= millis()) { qNextPollTime = millis() + 50; uint8_t buf[constBuffLen]; for (uint8_t i = 0; i < bNumIface; i++) { uint8_t index = hidInterfaces[i].epIndex[epInterruptInIndex]; uint16_t read = (uint16_t)epInfo[index].maxPktSize; ZeroMemory(constBuffLen, buf); uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[index].epAddr, &read, buf); if (rcode) { if (rcode != hrNAK) USBTRACE2("Poll:", rcode); return rcode; } if (read > constBuffLen) read = constBuffLen; bool identical = BuffersIdentical(read, buf, prevBuf); SaveBuffer(read, buf, prevBuf); if (identical) return 0; Notify(PSTR("\r\nBuf: "), 0x80); for (uint8_t i = 0; i < read; i++) PrintHex (buf[i], 0x80); Notify(PSTR("\r\n"), 0x80); HIDReportParser *prs = GetReportParser(((bHasReportId) ? *buf : 0)); if (prs) prs->Parse(this, bHasReportId, (uint8_t)read, buf); } } return rcode; }