/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved. This software may be distributed and modified under the terms of the GNU General Public License version 2 (GPL2) as published by the Free Software Foundation and appearing in the file GPL2.TXT included in the packaging of this file. Please note that GPL2 Section 2[b] requires that all works based on this software must also be made publicly available under the terms of the GPL2 ("Copyleft"). Contact information ------------------- Kristian Lauszus, TKJ Electronics Web : http://www.tkjelectronics.com e-mail : kristianl@tkjelectronics.com */ #include "SPP.h" #define DEBUG // Uncomment to print data for debugging //#define EXTRADEBUG // Uncomment to get even more debugging data //#define PRINTREPORT // Uncomment to print the report sent to the Arduino /* * CRC (reversed crc) lookup table as calculated by the table generator in ETSI TS 101 369 V6.3.0. */ const uint8_t rfcomm_crc_table[256] PROGMEM = { /* reversed, 8-bit, poly=0x07 */ 0x00, 0x91, 0xE3, 0x72, 0x07, 0x96, 0xE4, 0x75, 0x0E, 0x9F, 0xED, 0x7C, 0x09, 0x98, 0xEA, 0x7B, 0x1C, 0x8D, 0xFF, 0x6E, 0x1B, 0x8A, 0xF8, 0x69, 0x12, 0x83, 0xF1, 0x60, 0x15, 0x84, 0xF6, 0x67, 0x38, 0xA9, 0xDB, 0x4A, 0x3F, 0xAE, 0xDC, 0x4D, 0x36, 0xA7, 0xD5, 0x44, 0x31, 0xA0, 0xD2, 0x43, 0x24, 0xB5, 0xC7, 0x56, 0x23, 0xB2, 0xC0, 0x51, 0x2A, 0xBB, 0xC9, 0x58, 0x2D, 0xBC, 0xCE, 0x5F, 0x70, 0xE1, 0x93, 0x02, 0x77, 0xE6, 0x94, 0x05, 0x7E, 0xEF, 0x9D, 0x0C, 0x79, 0xE8, 0x9A, 0x0B, 0x6C, 0xFD, 0x8F, 0x1E, 0x6B, 0xFA, 0x88, 0x19, 0x62, 0xF3, 0x81, 0x10, 0x65, 0xF4, 0x86, 0x17, 0x48, 0xD9, 0xAB, 0x3A, 0x4F, 0xDE, 0xAC, 0x3D, 0x46, 0xD7, 0xA5, 0x34, 0x41, 0xD0, 0xA2, 0x33, 0x54, 0xC5, 0xB7, 0x26, 0x53, 0xC2, 0xB0, 0x21, 0x5A, 0xCB, 0xB9, 0x28, 0x5D, 0xCC, 0xBE, 0x2F, 0xE0, 0x71, 0x03, 0x92, 0xE7, 0x76, 0x04, 0x95, 0xEE, 0x7F, 0x0D, 0x9C, 0xE9, 0x78, 0x0A, 0x9B, 0xFC, 0x6D, 0x1F, 0x8E, 0xFB, 0x6A, 0x18, 0x89, 0xF2, 0x63, 0x11, 0x80, 0xF5, 0x64, 0x16, 0x87, 0xD8, 0x49, 0x3B, 0xAA, 0xDF, 0x4E, 0x3C, 0xAD, 0xD6, 0x47, 0x35, 0xA4, 0xD1, 0x40, 0x32, 0xA3, 0xC4, 0x55, 0x27, 0xB6, 0xC3, 0x52, 0x20, 0xB1, 0xCA, 0x5B, 0x29, 0xB8, 0xCD, 0x5C, 0x2E, 0xBF, 0x90, 0x01, 0x73, 0xE2, 0x97, 0x06, 0x74, 0xE5, 0x9E, 0x0F, 0x7D, 0xEC, 0x99, 0x08, 0x7A, 0xEB, 0x8C, 0x1D, 0x6F, 0xFE, 0x8B, 0x1A, 0x68, 0xF9, 0x82, 0x13, 0x61, 0xF0, 0x85, 0x14, 0x66, 0xF7, 0xA8, 0x39, 0x4B, 0xDA, 0xAF, 0x3E, 0x4C, 0xDD, 0xA6, 0x37, 0x45, 0xD4, 0xA1, 0x30, 0x42, 0xD3, 0xB4, 0x25, 0x57, 0xC6, 0xB3, 0x22, 0x50, 0xC1, 0xBA, 0x2B, 0x59, 0xC8, 0xBD, 0x2C, 0x5E, 0xCF }; SPP::SPP(BTD *p, const char* name, const char* pin): pBtd(p) // Pointer to BTD class instance - mandatory { if (pBtd) pBtd->registerServiceClass(this); // Register it as a Bluetooth service pBtd->btdName = name; pBtd->btdPin = pin; /* Set device cid for the SDP and RFCOMM channelse */ sdp_dcid[0] = 0x50; // 0x0050 sdp_dcid[1] = 0x00; rfcomm_dcid[0] = 0x51; // 0x0051 rfcomm_dcid[1] = 0x00; Reset(); } void SPP::Reset() { connected = false; RFCOMMConnected = false; SDPConnected = false; l2cap_sdp_state = L2CAP_SDP_WAIT; l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT; l2cap_event_flag = 0; } void SPP::disconnect(){ connected = false; // First the two L2CAP channels has to be disconencted and then the HCI connection if(RFCOMMConnected) pBtd->l2cap_disconnection_request(hci_handle,0x0A, rfcomm_scid, rfcomm_dcid); if(SDPConnected) pBtd->l2cap_disconnection_request(hci_handle,0x0B, sdp_scid, sdp_dcid); l2cap_event_flag = 0; // Reset flags l2cap_sdp_state = L2CAP_DISCONNECT_RESPONSE; } void SPP::ACLData(uint8_t* l2capinbuf) { if(!pBtd->l2capConnectionClaimed && !connected && !RFCOMMConnected && !SDPConnected) { if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) { if(((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM) || ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM)) { pBtd->claimConnection(); // Claim that the incoming connection belongs to this service hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection } } } if (((l2capinbuf[0] | (l2capinbuf[1] << 8)) == (hci_handle | 0x2000))) { // acl_handle_ok if ((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001) { //l2cap_control - Channel ID for ACL-U if (l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) { #ifdef DEBUG Notify(PSTR("\r\nL2CAP Command Rejected - Reason: ")); PrintHex(l2capinbuf[13]); Notify(PSTR(" ")); PrintHex(l2capinbuf[12]); Notify(PSTR(" Data: ")); PrintHex(l2capinbuf[17]); Notify(PSTR(" ")); PrintHex(l2capinbuf[16]); Notify(PSTR(" ")); PrintHex(l2capinbuf[15]); Notify(PSTR(" ")); PrintHex(l2capinbuf[14]); #endif } else if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) { #ifdef EXTRADEBUG Notify(PSTR("\r\nL2CAP Connection Request - PSM: ")); PrintHex(l2capinbuf[13]); Notify(PSTR(" ")); PrintHex(l2capinbuf[12]); Notify(PSTR(" SCID: ")); PrintHex(l2capinbuf[15]); Notify(PSTR(" ")); PrintHex(l2capinbuf[14]); Notify(PSTR(" Identifier: ")); PrintHex(l2capinbuf[9]); #endif if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM) { // It doesn't matter if it receives another reqeust, since it waits for the channel to disconnect in the L2CAP_SDP_DONE state, and the l2cap_event_flag will be cleared if so identifier = l2capinbuf[9]; sdp_scid[0] = l2capinbuf[14]; sdp_scid[1] = l2capinbuf[15]; l2cap_event_flag |= L2CAP_FLAG_CONNECTION_SDP_REQUEST; } else if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM) { // ----- || ----- identifier = l2capinbuf[9]; rfcomm_scid[0] = l2capinbuf[14]; rfcomm_scid[1] = l2capinbuf[15]; l2cap_event_flag |= L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST; } } else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) { if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) { if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success //Serial.print("\r\nSDP Configuration Complete"); l2cap_event_flag |= L2CAP_FLAG_CONFIG_SDP_SUCCESS; } } else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) { if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success //Serial.print("\r\nRFCOMM Configuration Complete"); l2cap_event_flag |= L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS; } } } else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) { if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) { //Serial.print("\r\nSDP Configuration Request"); identifier = l2capinbuf[9]; l2cap_event_flag |= L2CAP_FLAG_CONFIG_SDP_REQUEST; } else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) { //Serial.print("\r\nRFCOMM Configuration Request"); identifier = l2capinbuf[9]; l2cap_event_flag |= L2CAP_FLAG_CONFIG_RFCOMM_REQUEST; } } else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) { if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) { //Notify(PSTR("\r\nDisconnect Request: SDP Channel")); identifier = l2capinbuf[9]; l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_SDP_REQUEST; } else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) { //Notify(PSTR("\r\nDisconnect Request: RFCOMM Channel")); identifier = l2capinbuf[9]; l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST; } } else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) { if (l2capinbuf[12] == sdp_scid[0] && l2capinbuf[13] == sdp_scid[1]) { //Serial.print("\r\nDisconnect Response: SDP Channel"); identifier = l2capinbuf[9]; l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RESPONSE; } else if (l2capinbuf[12] == rfcomm_scid[0] && l2capinbuf[13] == rfcomm_scid[1]) { //Serial.print("\r\nDisconnect Response: RFCOMM Channel"); identifier = l2capinbuf[9]; l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RESPONSE; } } else if (l2capinbuf[8] == L2CAP_CMD_INFORMATION_REQUEST) { #ifdef DEBUG Notify(PSTR("\r\nInformation request")); #endif identifier = l2capinbuf[9]; pBtd->l2cap_information_response(hci_handle,identifier,l2capinbuf[12],l2capinbuf[13]); } #ifdef EXTRADEBUG else { Notify(PSTR("\r\nL2CAP Unknown Signaling Command: ")); PrintHex(l2capinbuf[8]); } #endif } else if (l2capinbuf[6] == sdp_dcid[0] && l2capinbuf[7] == sdp_dcid[1]) { // SDP if(l2capinbuf[8] == SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST_PDU) { /* Serial.print("\r\nUUID: 0x"); Serial.print(l2capinbuf[16],HEX); Serial.print(" "); Serial.print(l2capinbuf[17],HEX); */ if ((l2capinbuf[16] << 8 | l2capinbuf[17]) == SERIALPORT_UUID) { if(firstMessage) { serialPortResponse1(l2capinbuf[9],l2capinbuf[10]); firstMessage = false; } else { serialPortResponse2(l2capinbuf[9],l2capinbuf[10]); // Serialport continuation state firstMessage = true; } } else if ((l2capinbuf[16] << 8 | l2capinbuf[17]) == L2CAP_UUID) { if(firstMessage) { l2capResponse1(l2capinbuf[9],l2capinbuf[10]); firstMessage = false; } else { l2capResponse2(l2capinbuf[9],l2capinbuf[10]); // L2CAP continuation state firstMessage = true; } } else serviceNotSupported(l2capinbuf[9],l2capinbuf[10]); // The service is not supported } } else if (l2capinbuf[6] == rfcomm_dcid[0] && l2capinbuf[7] == rfcomm_dcid[1]) { // RFCOMM rfcommChannel = l2capinbuf[8] & 0xF8; rfcommDirection = l2capinbuf[8] & 0x04; rfcommCommandResponse = l2capinbuf[8] & 0x02; rfcommChannelType = l2capinbuf[9] & 0xEF; rfcommPfBit = l2capinbuf[9] & 0x10; if(rfcommChannel>>3 != 0x00) rfcommChannelConnection = rfcommChannel; #ifdef EXTRADEBUG Notify(PSTR("\r\nRFCOMM Channel: ")); Serial.print(rfcommChannel>>3,HEX); Notify(PSTR(" Direction: ")); Serial.print(rfcommDirection>>2,HEX); Notify(PSTR(" CommandResponse: ")); Serial.print(rfcommCommandResponse>>1,HEX); Notify(PSTR(" ChannelType: ")); Serial.print(rfcommChannelType,HEX); Notify(PSTR(" PF_BIT: ")); Serial.print(rfcommPfBit,HEX); #endif if (rfcommChannelType == RFCOMM_DISC) { #ifdef DEBUG Notify(PSTR("\r\nReceived Disconnect RFCOMM Command on channel: ")); Serial.print(rfcommChannel>>3,HEX); #endif connected = false; sendRfcomm(rfcommChannel,rfcommDirection,rfcommCommandResponse,RFCOMM_UA,rfcommPfBit,rfcommbuf,0x00); // UA Command } if(connected) { /* Read the incoming message */ if(rfcommChannelType != RFCOMM_UIH || rfcommChannel != rfcommChannelConnection) return; uint8_t length = l2capinbuf[10] >> 1; // Get length if(rfcommAvailable + length > 256) return; // Return if the buffer would be full uint8_t offset = l2capinbuf[4]-length-4; // See if there is credit for(uint8_t i = 0; i < length; i++) rfcommDataBuffer[rfcommAvailable+i] = l2capinbuf[11+i+offset]; rfcommAvailable += length; #ifdef EXTRADEBUG Notify(PSTR("\r\nRFCOMM Data Available: ")); Serial.print(rfcommAvailable); if (offset) { Notify(PSTR(" - Credit: 0x")); Serial.print(l2capinbuf[11],HEX); } #endif #ifdef PRINTREPORT // Uncomment "#define PRINTREPORT" to print the report send to the Arduino via Bluetooth if(rfcommChannelType != RFCOMM_UIH || rfcommChannel != rfcommChannelConnection) return; uint8_t length = l2capinbuf[10] >> 1; // Get length uint8_t offset = l2capinbuf[4]-length-4; // See if there is credit for(uint8_t i = 0; i < length; i++) Serial.write(l2capinbuf[i+11+offset]); #endif } else { if(rfcommChannelType == RFCOMM_SABM) { // SABM Command - this is sent twice: once for channel 0 and then for the channel to establish #ifdef DEBUG Notify(PSTR("\r\nReceived SABM Command")); #endif sendRfcomm(rfcommChannel,rfcommDirection,rfcommCommandResponse,RFCOMM_UA,rfcommPfBit,rfcommbuf,0x00); // UA Command } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_PN_CMD) { // UIH Parameter Negotiation Command #ifdef DEBUG Notify(PSTR("\r\nReceived UIH Parameter Negotiation Command")); #endif rfcommbuf[0] = BT_RFCOMM_PN_RSP; // UIH Parameter Negotiation Response rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1 rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1 rfcommbuf[3] = 0xE0; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM rfcommbuf[4] = 0x00; // Priority rfcommbuf[5] = 0x00; // Timer rfcommbuf[6] = 0x40; // Max Fram Size LSB - we will just set this to 64 rfcommbuf[7] = 0x00; // Max Fram Size MSB rfcommbuf[8] = 0x00; // MaxRatransm. rfcommbuf[9] = 0x00; // Number of Frames sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x0A); } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command #ifdef DEBUG Notify(PSTR("\r\nSend UIH Modem Status Response")); #endif rfcommbuf[0] = BT_RFCOMM_MSC_RSP; // UIH Modem Status Response rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1 rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3) rfcommbuf[3] = l2capinbuf[14]; sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x04); delay(1); #ifdef DEBUG Notify(PSTR("\r\nSend UIH Modem Status Command")); #endif rfcommbuf[0] = BT_RFCOMM_MSC_CMD; // UIH Modem Status Command rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1 rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3) rfcommbuf[3] = 0x8D; // Can receive frames (YES), Ready to Communicate (YES), Ready to Receive (YES), Incomig Call (NO), Data is Value (YES) sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x04); } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_RSP) { // UIH Modem Status Response if(!creditSent) { #ifdef DEBUG Notify(PSTR("\r\nSend UIH Command with credit")); #endif sendRfcommCredit(rfcommChannelConnection,rfcommDirection,0,RFCOMM_UIH,0x10,0xFF); // 255 credit creditSent = true; timer = millis(); waitForLastCommand = true; } } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[10] == 0x01) { // UIH Command with credit #ifdef DEBUG Notify(PSTR("\r\nReceived UIH Command with credit")); #endif } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command #ifdef DEBUG Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command")); #endif rfcommbuf[0] = BT_RFCOMM_RPN_RSP; // Command rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1 rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1 rfcommbuf[3] = l2capinbuf[14]; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM rfcommbuf[4] = l2capinbuf[15]; // Priority rfcommbuf[5] = l2capinbuf[16]; // Timer rfcommbuf[6] = l2capinbuf[17]; // Max Fram Size LSB rfcommbuf[7] = l2capinbuf[18]; // Max Fram Size MSB rfcommbuf[8] = l2capinbuf[19]; // MaxRatransm. rfcommbuf[9] = l2capinbuf[20]; // Number of Frames sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x0A); // UIH Remote Port Negotiation Response #ifdef DEBUG Notify(PSTR("\r\nRFCOMM Connection is now established\r\n")); #endif waitForLastCommand = false; creditSent = false; connected = true; // The RFCOMM channel is now established } else if(rfcommChannelType != RFCOMM_DISC) { #ifdef DEBUG Notify(PSTR("\r\nUnsupported RFCOMM Data - ChannelType: ")); PrintHex(rfcommChannelType); Notify(PSTR(" Command: ")); PrintHex(l2capinbuf[11]); #endif } } } else { #ifdef EXTRADEBUG Notify(PSTR("\r\nUnsupported L2CAP Data - Channel ID: ")); PrintHex(l2capinbuf[7]); Notify(PSTR(" ")); PrintHex(l2capinbuf[6]); #endif } SDP_task(); RFCOMM_task(); } } void SPP::Run() { if(waitForLastCommand && (millis() - timer) > 100) { // We will only wait 100ms and see if the UIH Remote Port Negotiation Command is send, as some deviced don't send it #ifdef DEBUG Notify(PSTR("\r\nRFCOMM Connection is now established - Automatic\r\n")); #endif creditSent = false; waitForLastCommand = false; connected = true; // The RFCOMM channel is now established } } void SPP::SDP_task() { switch (l2cap_sdp_state) { case L2CAP_SDP_WAIT: if (l2cap_connection_request_sdp_flag) { #ifdef DEBUG Notify(PSTR("\r\nSDP Incoming Connection Request")); #endif pBtd->l2cap_connection_response(hci_handle,identifier, sdp_dcid, sdp_scid, PENDING); delay(1); pBtd->l2cap_connection_response(hci_handle,identifier, sdp_dcid, sdp_scid, SUCCESSFUL); identifier++; delay(1); pBtd->l2cap_config_request(hci_handle,identifier, sdp_scid); l2cap_sdp_state = L2CAP_SDP_REQUEST; } break; case L2CAP_SDP_REQUEST: if (l2cap_config_request_sdp_flag) { #ifdef DEBUG Notify(PSTR("\r\nSDP Configuration Request")); #endif pBtd->l2cap_config_response(hci_handle,identifier, sdp_scid); l2cap_sdp_state = L2CAP_SDP_SUCCESS; } break; case L2CAP_SDP_SUCCESS: if (l2cap_config_success_sdp_flag) { #ifdef DEBUG Notify(PSTR("\r\nSDP Successfully Configured")); #endif firstMessage = true; // Reset bool SDPConnected = true; l2cap_sdp_state = L2CAP_SDP_DONE; } break; case L2CAP_SDP_DONE: if(l2cap_disconnect_request_sdp_flag) { SDPConnected = false; #ifdef DEBUG Notify(PSTR("\r\nDisconnected SDP Channel")); #endif pBtd->l2cap_disconnection_response(hci_handle,identifier,sdp_dcid,sdp_scid); l2cap_event_flag = 0; // Reset flags l2cap_sdp_state = L2CAP_SDP_WAIT; } break; case L2CAP_DISCONNECT_RESPONSE: // This is for both disconnection response from the RFCOMM and SDP channel if they were connected if (l2cap_disconnect_response_flag) { #ifdef DEBUG Notify(PSTR("\r\nDisconnected L2CAP Connection")); #endif RFCOMMConnected = false; SDPConnected = false; pBtd->hci_disconnect(hci_handle); l2cap_sdp_state = L2CAP_SDP_WAIT; l2cap_sdp_state = L2CAP_RFCOMM_WAIT; } break; } } void SPP::RFCOMM_task() { switch (l2cap_rfcomm_state) { case L2CAP_RFCOMM_WAIT: if(l2cap_connection_request_rfcomm_flag) { #ifdef DEBUG Notify(PSTR("\r\nRFCOMM Incoming Connection Request")); #endif pBtd->l2cap_connection_response(hci_handle,identifier, rfcomm_dcid, rfcomm_scid, PENDING); delay(1); pBtd->l2cap_connection_response(hci_handle,identifier, rfcomm_dcid, rfcomm_scid, SUCCESSFUL); identifier++; delay(1); pBtd->l2cap_config_request(hci_handle,identifier, rfcomm_scid); l2cap_rfcomm_state = L2CAP_RFCOMM_REQUEST; } break; case L2CAP_RFCOMM_REQUEST: if (l2cap_config_request_rfcomm_flag) { #ifdef DEBUG Notify(PSTR("\r\nRFCOMM Configuration Request")); #endif pBtd->l2cap_config_response(hci_handle,identifier, rfcomm_scid); l2cap_rfcomm_state = L2CAP_RFCOMM_SUCCESS; } break; case L2CAP_RFCOMM_SUCCESS: if (l2cap_config_success_rfcomm_flag) { #ifdef DEBUG Notify(PSTR("\r\nRFCOMM Successfully Configured")); #endif rfcommAvailable = 0; // Reset number of bytes available bytesRead = 0; // Reset number of bytes received RFCOMMConnected = true; l2cap_rfcomm_state = L2CAP_RFCOMM_DONE; } break; case L2CAP_RFCOMM_DONE: if(l2cap_disconnect_request_rfcomm_flag) { RFCOMMConnected = false; connected = false; #ifdef DEBUG Notify(PSTR("\r\nDisconnected RFCOMM Channel")); #endif pBtd->l2cap_disconnection_response(hci_handle,identifier,rfcomm_dcid,rfcomm_scid); l2cap_event_flag = 0; // Reset flags l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT; } break; } } /************************************************************/ /* SDP Commands */ /************************************************************/ void SPP::SDP_Command(uint8_t* data, uint8_t nbytes) { // See page 223 in the Bluetooth specs pBtd->L2CAP_Command(hci_handle,data,nbytes,sdp_scid[0],sdp_scid[1]); } void SPP::serviceNotSupported(uint8_t transactionIDHigh, uint8_t transactionIDLow) { // See page 235 in the Bluetooth specs l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU; l2capoutbuf[1] = transactionIDHigh; l2capoutbuf[2] = transactionIDLow; l2capoutbuf[3] = 0x00; // Parameter Length l2capoutbuf[4] = 0x05; // Parameter Length l2capoutbuf[5] = 0x00; // AttributeListsByteCount l2capoutbuf[6] = 0x02; // AttributeListsByteCount /* Attribute ID/Value Sequence: */ l2capoutbuf[7] = 0x35; l2capoutbuf[8] = 0x00; l2capoutbuf[9] = 0x00; SDP_Command(l2capoutbuf,10); } void SPP::serialPortResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) { l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU; l2capoutbuf[1] = transactionIDHigh; l2capoutbuf[2] = transactionIDLow; l2capoutbuf[3] = 0x00; // Parameter Length l2capoutbuf[4] = 0x2B; // Parameter Length l2capoutbuf[5] = 0x00; // AttributeListsByteCount l2capoutbuf[6] = 0x26; // AttributeListsByteCount /* Attribute ID/Value Sequence: */ l2capoutbuf[7] = 0x36; l2capoutbuf[8] = 0x00; l2capoutbuf[9] = 0x3C; l2capoutbuf[10] = 0x36; l2capoutbuf[11] = 0x00; l2capoutbuf[12] = 0x39; l2capoutbuf[13] = 0x09; l2capoutbuf[14] = 0x00; l2capoutbuf[15] = 0x00; l2capoutbuf[16] = 0x0A; l2capoutbuf[17] = 0x00; l2capoutbuf[18] = 0x01; l2capoutbuf[19] = 0x00; l2capoutbuf[20] = 0x06; l2capoutbuf[21] = 0x09; l2capoutbuf[22] = 0x00; l2capoutbuf[23] = 0x01; l2capoutbuf[24] = 0x35; l2capoutbuf[25] = 0x03; l2capoutbuf[26] = 0x19; l2capoutbuf[27] = 0x11; l2capoutbuf[28] = 0x01; l2capoutbuf[29] = 0x09; l2capoutbuf[30] = 0x00; l2capoutbuf[31] = 0x04; l2capoutbuf[32] = 0x35; l2capoutbuf[33] = 0x0C; l2capoutbuf[34] = 0x35; l2capoutbuf[35] = 0x03; l2capoutbuf[36] = 0x19; l2capoutbuf[37] = 0x01; l2capoutbuf[38] = 0x00; l2capoutbuf[39] = 0x35; l2capoutbuf[40] = 0x05; l2capoutbuf[41] = 0x19; l2capoutbuf[42] = 0x00; l2capoutbuf[43] = 0x03; l2capoutbuf[44] = 0x08; l2capoutbuf[45] = 0x02; // Two more bytes? l2capoutbuf[46] = 0x00; // 19 more bytes to come l2capoutbuf[47] = 0x19; SDP_Command(l2capoutbuf,48); } void SPP::serialPortResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) { l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU; l2capoutbuf[1] = transactionIDHigh; l2capoutbuf[2] = transactionIDLow; l2capoutbuf[3] = 0x00; // Parameter Length l2capoutbuf[4] = 0x1C; // Parameter Length l2capoutbuf[5] = 0x00; // AttributeListsByteCount l2capoutbuf[6] = 0x19; // AttributeListsByteCount /* Attribute ID/Value Sequence: */ l2capoutbuf[7] = 0x01; l2capoutbuf[8] = 0x09; l2capoutbuf[9] = 0x00; l2capoutbuf[10] = 0x06; l2capoutbuf[11] = 0x35; l2capoutbuf[12] = 0x09; l2capoutbuf[13] = 0x09; l2capoutbuf[14] = 0x65; l2capoutbuf[15] = 0x6E; l2capoutbuf[16] = 0x09; l2capoutbuf[17] = 0x00; l2capoutbuf[18] = 0x6A; l2capoutbuf[19] = 0x09; l2capoutbuf[20] = 0x01; l2capoutbuf[21] = 0x00; l2capoutbuf[22] = 0x09; l2capoutbuf[23] = 0x01; l2capoutbuf[24] = 0x00; l2capoutbuf[25] = 0x25; l2capoutbuf[26] = 0x05; // Name length l2capoutbuf[27] = 'T'; l2capoutbuf[28] = 'K'; l2capoutbuf[29] = 'J'; l2capoutbuf[30] = 'S'; l2capoutbuf[31] = 'P'; l2capoutbuf[32] = 0x00; SDP_Command(l2capoutbuf,33); } void SPP::l2capResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) { serialPortResponse1(transactionIDHigh,transactionIDLow); // These has to send all the supported functions, since it only supports virtual serialport it just sends the message again } void SPP::l2capResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) { serialPortResponse2(transactionIDHigh,transactionIDLow); // Same data as serialPortResponse2 } /************************************************************/ /* RFCOMM Commands */ /************************************************************/ void SPP::RFCOMM_Command(uint8_t* data, uint8_t nbytes) { if ((millis() - printTimer) < 10)// Check if is has been more than 10ms since last command delay((uint32_t)(10 - (millis() - printTimer))); // There have to be a delay between commands pBtd->L2CAP_Command(hci_handle,data,nbytes,rfcomm_scid[0],rfcomm_scid[1]); printTimer = millis(); } void SPP::sendRfcomm(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t* data, uint8_t length) { l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control l2capoutbuf[2] = length << 1 | 0x01; // Length and format (allways 0x01 bytes format) uint8_t i = 0; for(; i < length; i++) l2capoutbuf[i+3] = data[i]; l2capoutbuf[i+3] = calcFcs(l2capoutbuf); #ifdef EXTRADEBUG Notify(PSTR(" - RFCOMM Data: ")); for(i = 0; i < length+4; i++) { Serial.print(l2capoutbuf[i],HEX); Notify(PSTR(" ")); } #endif RFCOMM_Command(l2capoutbuf,length+4); } void SPP::sendRfcommCredit(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t credit) { l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control l2capoutbuf[2] = 0x01; // Length = 0 l2capoutbuf[3] = credit; // Credit l2capoutbuf[4] = calcFcs(l2capoutbuf); #ifdef EXTRADEBUG Notify(PSTR(" - RFCOMM Credit Data: ")); for(uint8_t i = 0; i < 5; i++) { Serial.print(l2capoutbuf[i],HEX); Notify(PSTR(" ")); } #endif RFCOMM_Command(l2capoutbuf,5); } /* CRC on 2 bytes */ uint8_t SPP::__crc(uint8_t* data) { return(pgm_read_byte(&rfcomm_crc_table[pgm_read_byte(&rfcomm_crc_table[0xff ^ data[0]]) ^ data[1]])); } /* Calculate FCS - we never actually check if the host sends correct FCS to the Arduino */ uint8_t SPP::calcFcs(uint8_t *data) { if((data[1] & 0xEF) == RFCOMM_UIH) return (0xff - __crc(data)); // FCS on 2 bytes else return (0xff - pgm_read_byte(&rfcomm_crc_table[__crc(data) ^ data[2]])); // FCS on 3 bytes } /* Serial commands */ void SPP::print(const String &str) { uint8_t length = str.length(); if(length > (sizeof(l2capoutbuf)-4)) length = sizeof(l2capoutbuf)-4; l2capoutbuf[0] = rfcommChannelConnection | 0 | 0 | extendAddress;; // RFCOMM Address l2capoutbuf[1] = RFCOMM_UIH; // RFCOMM Control l2capoutbuf[2] = length << 1 | 1; // Length uint8_t i = 0; for(; i < length; i++) l2capoutbuf[i+3] = str[i]; l2capoutbuf[i+3] = calcFcs(l2capoutbuf); RFCOMM_Command(l2capoutbuf,length+4); } void SPP::print(const char* data) { uint8_t length = strlen(data); if(length > (sizeof(l2capoutbuf)-4)) length = sizeof(l2capoutbuf)-4; l2capoutbuf[0] = rfcommChannelConnection | 0 | 0 | extendAddress;; // RFCOMM Address l2capoutbuf[1] = RFCOMM_UIH; // RFCOMM Control l2capoutbuf[2] = length << 1 | 1; // Length uint8_t i = 0; for(; i < length; i++) l2capoutbuf[i+3] = data[i]; l2capoutbuf[i+3] = calcFcs(l2capoutbuf); RFCOMM_Command(l2capoutbuf,length+4); } void SPP::print(uint8_t data) { print(&data,1); } void SPP::print(uint8_t* array, uint8_t length) { if(length > (sizeof(l2capoutbuf)-4)) length = sizeof(l2capoutbuf)-4; l2capoutbuf[0] = rfcommChannelConnection | 0 | 0 | extendAddress;; // RFCOMM Address l2capoutbuf[1] = RFCOMM_UIH; // RFCOMM Control l2capoutbuf[2] = length << 1 | 1; // Length uint8_t i = 0; for(; i < length; i++) l2capoutbuf[i+3] = array[i]; l2capoutbuf[i+3] = calcFcs(l2capoutbuf); RFCOMM_Command(l2capoutbuf,length+4); } void SPP::print(const __FlashStringHelper *ifsh) { const char PROGMEM *p = (const char PROGMEM *)ifsh; size_t size = 0; while (1) { // Calculate the size of the string uint8_t c = pgm_read_byte(p+size); if (c == 0) break; size++; } uint8_t buf[size]; for(uint8_t i = 0; i < size; i++) buf[i] = pgm_read_byte(p++); print(buf,size); } void SPP::println(const String &str) { String output = str + "\r\n"; print(output); } void SPP::println(const char* data) { char output[strlen(data)+2]; strcpy(output,data); strcat(output,"\r\n"); print(output); } void SPP::println(uint8_t data) { uint8_t buf[3] = {data, '\r', '\n'}; print(buf,3); } void SPP::println(uint8_t* array, uint8_t length) { uint8_t buf[length+2]; memcpy(buf,array,length); buf[length] = '\r'; buf[length+1] = '\n'; print(buf,length+2); } void SPP::println(const __FlashStringHelper *ifsh) { const char PROGMEM *p = (const char PROGMEM *)ifsh; size_t size = 0; while (1) { // Calculate the size of the string uint8_t c = pgm_read_byte(p+size); if (c == 0) break; size++; } uint8_t buf[size+2]; for(uint8_t i = 0; i < size; i++) buf[i] = pgm_read_byte(p++); buf[size] = '\r'; buf[size+1] = '\n'; print(buf,size+2); } void SPP::println(void) { uint8_t buf[2] = {'\r','\n'}; print(buf,2); } /* These must be used to print numbers */ void SPP::printNumber(uint16_t n) { uint16_t temp = n; uint8_t digits = 0; while (temp) { temp /= 10; digits++; } if(digits == 0) print("0"); else { uint8_t buf[digits]; for(uint8_t i = 1; i < digits+1; i++) { buf[digits-i] = n%10; // Get number and convert to ASCII Character buf[digits-i] += 48; n /= 10; } print(buf,digits); } } void SPP::printNumberln(uint16_t n) { uint16_t temp = n; uint8_t digits = 0; while (temp) { temp /= 10; digits++; } if(digits == 0) print("0\r\n"); else { uint8_t buf[digits+2]; for(uint8_t i = 1; i < digits+1; i++) { buf[digits-i] = n%10; // Get number and convert to ASCII Character buf[digits-i] += 48; n /= 10; } buf[digits] = '\r'; buf[digits+1] = '\n'; print(buf,digits+2); } } uint8_t SPP::read() { uint8_t output = rfcommDataBuffer[0]; for(uint8_t i = 1; i < rfcommAvailable; i++) rfcommDataBuffer[i-1] = rfcommDataBuffer[i]; // Shift the buffer one left rfcommAvailable--; bytesRead++; if(bytesRead > 250) { bytesRead = 0; sendRfcommCredit(rfcommChannelConnection,rfcommDirection,0,RFCOMM_UIH,0x10,0xFF); // Send 255 more credit #ifdef EXTRADEBUG Notify(PSTR("\r\nSent 255 more credit")); #endif } return output; }