#include "masstorage.h" const uint8_t BulkOnly::epDataInIndex = 1; const uint8_t BulkOnly::epDataOutIndex = 2; const uint8_t BulkOnly::epInterruptInIndex = 3; BulkOnly::BulkOnly(USB *p) : pUsb(p), bAddress(0), bIface(0), bNumEP(1), qNextPollTime(0), bPollEnable(false), dCBWTag(0), bLastUsbError(0) { ClearAllEP(); dCBWTag = 0; if (pUsb) pUsb->RegisterDeviceClass(this); } void BulkOnly::ClearAllEP() { for (uint8_t i = 0; i < MASS_MAX_ENDPOINTS; i++) { epInfo[i].epAddr = 0; epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].epAttribs = 0; epInfo[i].bmNakPower = USB_NAK_DEFAULT; //0; //USB_NAK_DEFAULT; } // clear all LUN data as well for (uint8_t i = 0; i < MASS_MAX_SUPPORTED_LUN; i++) LUNOk[i] = false; bIface = 0; bNumEP = 1; bAddress = 0; qNextPollTime = 0; bPollEnable = false; bLastUsbError = 0; bMaxLUN = 0; bTheLUN = 0; //dCBWTag = 100; //dCBWTag = 1073741823; } boolean BulkOnly::CheckLUN(uint8_t lun) { uint8_t rcode; Capacity capacity; for (uint8_t i = 0; i>>>>>>>>>>>>>>>ReadCapacity returned %i\r\n", rcode); return false; } ErrorMessage (PSTR(">>>>>>>>>>>>>>>>CAPACITY OK ON LUN"), lun); for (uint8_t i = 0; i (capacity.data[i], 0x80); Notify(PSTR("\r\n\r\n"), 0x80); // Only 512/1024/2048/4096 are valid values! uint32_t c = ((uint32_t)capacity.data[4] << 24) + ((uint32_t)capacity.data[5] << 16) + ((uint32_t)capacity.data[6] << 8) + (uint32_t)capacity.data[7]; if (c != 0x0200LU && c != 0x0400LU && c != 0x0800LU && c != 0x1000LU) { return false; } // Store capacity information. CurrentSectorSize[lun] = (uint16_t)(c & 0xFFFF); CurrentCapacity[lun] = ((uint32_t)capacity.data[0] << 24) + ((uint32_t)capacity.data[1] << 16) + ((uint32_t)capacity.data[2] << 8) + (uint32_t)capacity.data[3]; if (CurrentCapacity[lun] == 0xffffffffLU || CurrentCapacity[lun] == 0x00LU) { // Buggy firmware will report 0xffffffff or 0 for no media if (CurrentCapacity[lun]) ErrorMessage (PSTR(">>>>>>>>>>>>>>>>BUGGY FIRMWARE. CAPACITY FAIL ON LUN"), lun); return false; } //rcode = TestUnitReady(lun); //if (!rcode) delay(20); Page3F(lun); //if (!Page3F(lun)) //if (!Page3F(lun)) if (!TestUnitReady(lun)) return true; //LockMedia(lun, 1); //MediaCTL(lun, 1); //if (!TestUnitReady(lun)) return true; return false; } // Scan for media change // @Oleg -- should we scan ALL LUN, or just one at a time? void BulkOnly::CheckMedia() { for (uint8_t lun = 0; lun <= bMaxLUN; lun++) { if (TestUnitReady(lun)) { LUNOk[lun] = false; continue; } if (!LUNOk[lun]) LUNOk[lun] = CheckLUN(lun); } #if 0 printf("}}}}}}}}}}}}}}}}STATUS "); for (uint8_t lun = 0; lun <= bMaxLUN; lun++) { if (LUNOk[lun]) printf("#"); else printf("."); } printf("\r\n"); #endif qNextPollTime = millis() + 2000; } /* * USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET == success * We need to standardize either the rcode, or change the API to return values * so a signal that additional actions are required can be produced. * Some of these codes do exist already. * * TECHNICAL: We could do most of this code elsewhere, with the exception of checking the class instance. * Doing so would save some program memory when using multiple drivers. */ uint8_t BulkOnly::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) { const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR); uint8_t buf[constBufSize]; uint8_t rcode; UsbDevice *p = NULL; EpInfo *oldep_ptr = NULL; USBTRACE("MS ConfigureDevice\r\n"); ClearAllEP(); delay(2000); AddressPool &addrPool = pUsb->GetAddressPool(); if (bAddress) return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE; // // Get pointer to pseudo device with address 0 assigned p = addrPool.GetUsbDevicePtr(0); if (!p) { return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; } if (!p->epinfo) { USBTRACE("epinfo\r\n"); return USB_ERROR_EPINFO_IS_NULL; } // Save old pointer to EP_RECORD of address 0 oldep_ptr = p->epinfo; // Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence p->epinfo = epInfo; p->lowspeed = lowspeed; // Get device descriptor rcode = pUsb->getDevDescr(0, 0, constBufSize, (uint8_t*)buf); // Restore p->epinfo p->epinfo = oldep_ptr; if (rcode) { goto FailGetDevDescr; } // Allocate new address according to device class bAddress = addrPool.AllocAddress(parent, false, port); if (!bAddress) return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; // Extract Max Packet Size from the device descriptor epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0; // Steal and abuse from epInfo structure to save on memory. epInfo[1].epAddr = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations; // return USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET; FailGetDevDescr: #ifdef DEBUG NotifyFailGetDevDescr(rcode); #endif rcode = USB_ERROR_FailGetDevDescr; Fail: Release(); return rcode; }; boolean BulkOnly::WriteProtected(uint8_t lun) { return WriteOk[lun]; } // Check for write protect. uint8_t BulkOnly::Page3F(uint8_t lun) { uint8_t buf[192]; for (int i = 0; i < 192; i++) { buf[i] = 0x00; } WriteOk[lun] = true; uint8_t rc = ModeSense(lun, 0, 0x3f, 0, 192, buf); //if (rc) rc = ModeSense(lun, 0, 0x00, 0, 4, buf); //if (rc) rc = ModeSense(lun, 0, 0x3f, 0, 192, buf); if (!rc) { WriteOk[lun] = ((buf[2] & 0x80) == 0); Notify(PSTR("Mode Sense: "), 0x80); for (int i = 0; i < 4; i++) { PrintHex (buf[i], 0x80); Notify(PSTR(" "), 0x80); } #if 0 if (WriteOk[lun]) { Notify(PSTR(" Writes Allowed"), 0x80); } else { Notify(PSTR(" Writes Denied"), 0x80); } #endif Notify(PSTR("\r\n"), 0x80); } return rc; } // Bottom half of init. 0 == success. uint8_t BulkOnly::Init(uint8_t parent, uint8_t port, bool lowspeed) { uint8_t rcode; uint8_t num_of_conf = epInfo[1].epAddr; // number of configurations epInfo[1].epAddr = 0; USBTRACE("MS Init\r\n"); AddressPool &addrPool = pUsb->GetAddressPool(); UsbDevice *p = addrPool.GetUsbDevicePtr(bAddress); if (!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; // Assign new address to the device delay(2000); rcode = pUsb->setAddr(0, 0, bAddress); if (rcode) { p->lowspeed = false; addrPool.FreeAddress(bAddress); bAddress = 0; USBTRACE2("setAddr:", rcode); return rcode; } USBTRACE2("Addr:", bAddress); p->lowspeed = false; p = addrPool.GetUsbDevicePtr(bAddress); if (!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; p->lowspeed = lowspeed; // Assign epInfo to epinfo pointer rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); if (rcode) goto FailSetDevTblEntry; USBTRACE2("NC:", num_of_conf); for (uint8_t i = 0; i < num_of_conf; i++) { ConfigDescParser< USB_CLASS_MASS_STORAGE, MASS_SUBCLASS_SCSI, MASS_PROTO_BBB, CP_MASK_COMPARE_CLASS | CP_MASK_COMPARE_SUBCLASS | CP_MASK_COMPARE_PROTOCOL > BulkOnlyParser(this); rcode = pUsb->getConfDescr(bAddress, 0, i, &BulkOnlyParser); if (rcode) goto FailGetConfDescr; if (bNumEP > 1) break; } // for if (bNumEP < 3) return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; // Assign epInfo to epinfo pointer pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo); USBTRACE("MS ConfigureDevice\r\n"); USBTRACE2("Conf:", bConfNum); // Set Configuration Value rcode = pUsb->setConf(bAddress, 0, bConfNum); if (rcode) goto FailSetConfDescr; //Linux does a 1sec delay after this. delay(1000); rcode = GetMaxLUN(&bMaxLUN); if (rcode) goto FailGetMaxLUN; if (bMaxLUN >= MASS_MAX_SUPPORTED_LUN) bMaxLUN = MASS_MAX_SUPPORTED_LUN - 1; ErrorMessage (PSTR("MaxLUN"), bMaxLUN); delay(1000); // Delay a bit for slow firmware. //bTheLUN = bMaxLUN; for (uint8_t lun = 0; lun <= bMaxLUN; lun++) { InquiryResponse response; rcode = Inquiry(lun, sizeof (InquiryResponse), (uint8_t*) & response); if (rcode) { ErrorMessage (PSTR("Inquiry"), rcode); } else { uint8_t tries = 0xf0; while (rcode = TestUnitReady(lun)) { if (rcode == 0x08) break; // break on no media, this is OK to do. // try to lock media and spin up if (tries > 2) { LockMedia(lun, 1); MediaCTL(lun, 1); // I actually have a USB stick that needs this! } else delay(2 * (tries + 1)); tries++; if (!tries) break; } if (!rcode) { delay(1000); LUNOk[lun] = CheckLUN(lun); if (!LUNOk[lun]) LUNOk[lun] = CheckLUN(lun); } } } #if 0 { bool good; for (uint8_t i = 1; i == 0; i++) { good = false; CheckMedia(); for (uint8_t lun = 0; lun <= bMaxLUN; lun++) good |= LUNOk[lun]; if (good) break; delay(118); // 255 loops =~ 30 seconds to allow for spin up, as per SCSI spec. } } #else CheckMedia(); #endif rcode = OnInit(); if (rcode) goto FailOnInit; USBTRACE("MS configured\r\n\r\n"); bPollEnable = true; //USBTRACE("Poll enabled\r\n"); return 0; FailSetConfDescr: #ifdef DEBUG NotifyFailSetConfDescr(); goto Fail; #endif FailOnInit: #ifdef DEBUG USBTRACE("OnInit:"); goto Fail; #endif FailGetMaxLUN: #ifdef DEBUG USBTRACE("GetMaxLUN:"); goto Fail; #endif FailInvalidSectorSize: #ifdef DEBUG USBTRACE("Sector Size is NOT VALID: "); goto Fail; #endif FailSetDevTblEntry: #ifdef DEBUG NotifyFailSetDevTblEntry(); goto Fail; #endif FailGetConfDescr: #ifdef DEBUG NotifyFailGetConfDescr(); #endif Fail: #ifdef DEBUG NotifyFail(rcode); #endif Release(); return rcode; } uint32_t BulkOnly::GetCapacity(uint8_t lun) { if (LUNOk[lun]) return CurrentCapacity[lun]; return 0LU; } uint16_t BulkOnly::GetSectorSize(uint8_t lun) { if (LUNOk[lun]) return CurrentSectorSize[lun]; return 0U; } bool BulkOnly::LUNIsGood(uint8_t lun) { return LUNOk[lun]; } void BulkOnly::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR * pep) { ErrorMessage (PSTR("Conf.Val"), conf); ErrorMessage (PSTR("Iface Num"), iface); ErrorMessage (PSTR("Alt.Set"), alt); bConfNum = conf; uint8_t index; if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) index = epInterruptInIndex; else if ((pep->bmAttributes & 0x02) == 2) index = ((pep->bEndpointAddress & 0x80) == 0x80) ? epDataInIndex : epDataOutIndex; else return; // Fill in the endpoint info structure epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F); epInfo[index].maxPktSize = (uint8_t)pep->wMaxPacketSize; epInfo[index].epAttribs = 0; bNumEP++; PrintEndpointDescriptor(pep); } uint8_t BulkOnly::Release() { ClearAllEP(); pUsb->GetAddressPool().FreeAddress(bAddress); return 0; } uint8_t BulkOnly::Poll() { uint8_t rcode = 0; if (!bPollEnable) return 0; if (qNextPollTime <= millis()) { CheckMedia(); } rcode = 0; return rcode; } uint8_t BulkOnly::GetMaxLUN(uint8_t *plun) { uint8_t ret = pUsb->ctrlReq(bAddress, 0, bmREQ_MASSIN, MASS_REQ_GET_MAX_LUN, 0, 0, bIface, 1, 1, plun, NULL); if (ret == hrSTALL) *plun = 0; return 0; } uint8_t BulkOnly::ClearEpHalt(uint8_t index) { if (index == 0) return 0; uint8_t ret = 0; while (ret = (pUsb->ctrlReq(bAddress, 0, USB_SETUP_HOST_TO_DEVICE | USB_SETUP_TYPE_STANDARD | USB_SETUP_RECIPIENT_ENDPOINT, USB_REQUEST_CLEAR_FEATURE, USB_FEATURE_ENDPOINT_HALT, 0, ((index == epDataInIndex) ? (0x80 | epInfo[index].epAddr) : epInfo[index].epAddr), 0, 0, NULL, NULL)) == 0x01) delay(6); if (ret) { ErrorMessage (PSTR("ClearEpHalt"), ret); ErrorMessage (PSTR("EP"), ((index == epDataInIndex) ? (0x80 | epInfo[index].epAddr) : epInfo[index].epAddr)); return ret; } epInfo[index].bmSndToggle = 0; epInfo[index].bmRcvToggle = 0; // epAttribs = 0; return 0; } uint8_t BulkOnly::Reset() { uint8_t r; while (pUsb->ctrlReq(bAddress, 0, bmREQ_MASSOUT, MASS_REQ_BOMSR, 0, 0, bIface, 0, 0, NULL, NULL) == 0x01) delay(6); #if 0 if (r) { printf("Reset error %2.2X\r\n", r); } #endif return r; } uint8_t BulkOnly::ResetRecovery() { Notify(PSTR("\r\nResetRecovery\r\n"), 0x80); Notify(PSTR("-----------------\r\n"), 0x80); #if 0 bLastUsbError = Reset(); if (bLastUsbError) { return bLastUsbError; } delay(6); bLastUsbError = ClearEpHalt(epDataInIndex); if (bLastUsbError) { return bLastUsbError; } delay(6); bLastUsbError = ClearEpHalt(epDataOutIndex); #else delay(6); Reset(); delay(6); ClearEpHalt(epDataInIndex); delay(6); bLastUsbError = ClearEpHalt(epDataOutIndex); #endif delay(6); return bLastUsbError; } #if 0 // TO-DO: Unify CBW creation as much as possible. // Make and submit CBW. // if stalled, delay retry // exit on 100 retries, or anything except stall. uint8_t SubmitCBW(uint8_t cmd, uint8_t cmdsz, uint8_t lun, uint16_t bsize, uint8_t *buf, uint8_t flags) { CommandBlockWrapper cbw; SetCurLUN(lun); cbw.dCBWSignature = MASS_CBW_SIGNATURE; cbw.dCBWTag = ++dCBWTag; cbw.dCBWDataTransferLength = bsize; cbw.bmCBWFlags = flags; cbw.bmCBWLUN = lun; cbw.bmCBWCBLength = cmdsz; for (uint8_t i = 0; i < 16; i++) cbw.CBWCB[i] = 0; cbw.CBWCB[0] = cmd; cbw.CBWCB[1] = lun << 5; cbw.CBWCB[4] = bsize; } #endif // don't test if OK uint8_t BulkOnly::Inquiry(uint8_t lun, uint16_t bsize, uint8_t *buf) { Notify(PSTR("\r\nInquiry\r\n"), 0x80); Notify(PSTR("---------\r\n"), 0x80); CommandBlockWrapper cbw; SetCurLUN(lun); cbw.dCBWSignature = MASS_CBW_SIGNATURE; cbw.dCBWTag = ++dCBWTag; cbw.dCBWDataTransferLength = bsize; cbw.bmCBWFlags = MASS_CMD_DIR_IN; cbw.bmCBWLUN = lun; cbw.bmCBWCBLength = 6; for (uint8_t i = 0; i < 16; i++) cbw.CBWCB[i] = 0; cbw.CBWCB[0] = SCSI_CMD_INQUIRY; cbw.CBWCB[1] = lun << 5; cbw.CBWCB[4] = bsize; uint8_t rc = HandleSCSIError(Transaction(&cbw, bsize, buf, 0)); #if 0 if (!rc) { printf("LUN %i `", lun); for (int i = 8; i < 36; i++) printf("%c", buf[i]); printf("'\r\nQualifier %1.1X ", (buf[0]&0xE0) >> 5); printf("Device type %2.2X ", buf[0]&0x1f); printf("RMB %1.1X ", buf[1]&0x80 >> 7); printf("SSCS% 1.1X ", buf[5]&0x80 >> 7); uint8_t sv = buf[2]; printf("SCSI version %2.2X\r\nDevice conforms to ", sv); switch (sv) { case 0: printf("No specific"); break; /* case 1: printf(""); break; */ case 2: printf("ANSI 2"); break; case 3: printf("ANSI INCITS 301-1997 (SPC)"); break; case 4: printf("ANSI INCITS 351-2001 (SPC-2)"); break; case 5: printf("ANSI INCITS 408-2005 (SPC-4)"); break; case 6: printf("T10/1731-D (SPC-4)"); break; default: printf("unknown"); } printf(" standards.\r\n"); } #endif return rc; } uint8_t BulkOnly::LockMedia(uint8_t lun, uint8_t lock) { Notify(PSTR("\r\nLockMedia\r\n"), 0x80); Notify(PSTR("---------\r\n"), 0x80); CommandBlockWrapper cbw; SetCurLUN(lun); cbw.dCBWSignature = MASS_CBW_SIGNATURE; cbw.dCBWTag = ++dCBWTag; cbw.dCBWDataTransferLength = 0; cbw.bmCBWFlags = MASS_CMD_DIR_IN; cbw.bmCBWLUN = lun; cbw.bmCBWCBLength = 6; for (uint8_t i = 0; i < 16; i++) cbw.CBWCB[i] = 0; cbw.CBWCB[0] = SCSI_CMD_PREVENT_REMOVAL; //cbw.CBWCB[1] = lun << 5; cbw.CBWCB[4] = lock; return (HandleSCSIError(Transaction(&cbw, 0, NULL, 0))); } // don't test if OK, only for use internally. uint8_t BulkOnly::RequestSense(uint8_t lun, uint16_t size, uint8_t *buf) { Notify(PSTR("\r\nRequestSense\r\n"), 0x80); Notify(PSTR("----------------\r\n"), 0x80); CommandBlockWrapper cbw; SetCurLUN(lun); cbw.dCBWSignature = MASS_CBW_SIGNATURE; cbw.dCBWTag = ++dCBWTag; cbw.dCBWDataTransferLength = size; cbw.bmCBWFlags = MASS_CMD_DIR_IN; cbw.bmCBWLUN = lun; cbw.bmCBWCBLength = 6; for (uint8_t i = 0; i < 16; i++) cbw.CBWCB[i] = 0; cbw.CBWCB[0] = SCSI_CMD_REQUEST_SENSE; cbw.CBWCB[1] = lun << 5; cbw.CBWCB[4] = size; return Transaction(&cbw, size, buf, 0); } uint8_t BulkOnly::ReadCapacity(uint8_t lun, uint16_t bsize, uint8_t *buf) { Notify(PSTR("\r\nReadCapacity\r\n"), 0x80); Notify(PSTR("---------------\r\n"), 0x80); CommandBlockWrapper cbw; SetCurLUN(lun); cbw.dCBWSignature = MASS_CBW_SIGNATURE; cbw.dCBWTag = ++dCBWTag; cbw.dCBWDataTransferLength = bsize; cbw.bmCBWFlags = MASS_CMD_DIR_IN; cbw.bmCBWLUN = lun; cbw.bmCBWCBLength = 10; for (uint8_t i = 0; i < 16; i++) cbw.CBWCB[i] = 0; cbw.CBWCB[0] = SCSI_CMD_READ_CAPACITY_10; cbw.CBWCB[1] = lun << 5; return HandleSCSIError(Transaction(&cbw, bsize, buf, 0)); } // don't test if OK uint8_t BulkOnly::TestUnitReady(uint8_t lun) { SetCurLUN(lun); if (!bAddress) return MASS_ERR_UNIT_NOT_READY; Notify(PSTR("\r\nTestUnitReady\r\n"), 0x80); Notify(PSTR("-----------------\r\n"), 0x80); CommandBlockWrapper cbw; uint8_t rc; cbw.dCBWSignature = MASS_CBW_SIGNATURE; cbw.dCBWTag = ++dCBWTag; cbw.dCBWDataTransferLength = 0; cbw.bmCBWFlags = MASS_CMD_DIR_OUT; cbw.bmCBWLUN = lun; cbw.bmCBWCBLength = 6; for (uint8_t i = 0; i < 16; i++) cbw.CBWCB[i] = 0; cbw.CBWCB[0] = SCSI_CMD_TEST_UNIT_READY; cbw.CBWCB[1] = lun; rc = HandleSCSIError(Transaction(&cbw, 0, NULL, 0)); return (rc); } /* Media control: 0x00 Stop Motor, 0x01 Start Motor, 0x02 Eject Media, 0x03 Load Media */ // don't test if OK uint8_t BulkOnly::MediaCTL(uint8_t lun, uint8_t ctl) { Notify(PSTR("\r\nMediaCTL\r\n"), 0x80); Notify(PSTR("-----------------\r\n"), 0x80); SetCurLUN(lun); uint8_t rcode = MASS_ERR_UNIT_NOT_READY; if (bAddress) { CommandBlockWrapper cbw; cbw.dCBWSignature = MASS_CBW_SIGNATURE; cbw.dCBWTag = ++dCBWTag; cbw.dCBWDataTransferLength = 0; cbw.bmCBWFlags = MASS_CMD_DIR_OUT; cbw.bmCBWLUN = lun; cbw.bmCBWCBLength = 6; for (uint8_t i = 0; i < 16; i++) cbw.CBWCB[i] = 0; cbw.CBWCB[0] = SCSI_CMD_START_STOP_UNIT; cbw.CBWCB[1] = lun << 5; cbw.CBWCB[4] = ctl & 0x03; rcode = HandleSCSIError(Transaction(&cbw, 0, NULL, 0)); } return rcode; } uint8_t BulkOnly::Read(uint8_t lun, uint32_t addr, uint16_t bsize, uint8_t blocks, uint8_t *buf) { if (!LUNOk[lun]) return MASS_ERR_NO_MEDIA; Notify(PSTR("\r\nRead LUN:\t"), 0x80); PrintHex (lun, 0x90); //printf("LUN=%i LBA=%8.8X BLOCKS=%i SIZE=%i\r\n", lun, addr, blocks, bsize); Notify(PSTR("\r\nLBA:\t\t"), 0x90); PrintHex (addr, 0x90); Notify(PSTR("\r\nblocks:\t\t"), 0x90); PrintHex (blocks, 0x90); Notify(PSTR("\r\nblock size:\t"), 0x90); PrintHex (bsize, 0x90); Notify(PSTR("\r\n---------\r\n"), 0x80); CommandBlockWrapper cbw; again: cbw.dCBWSignature = MASS_CBW_SIGNATURE; cbw.dCBWDataTransferLength = ((uint32_t)bsize * blocks); cbw.bmCBWFlags = MASS_CMD_DIR_IN; cbw.bmCBWLUN = lun; cbw.bmCBWCBLength = 10; for (uint8_t i = 0; i < 16; i++) cbw.CBWCB[i] = 0; cbw.CBWCB[0] = SCSI_CMD_READ_10; cbw.CBWCB[1] = lun << 5; cbw.CBWCB[2] = ((addr >> 24) & 0xff); cbw.CBWCB[3] = ((addr >> 16) & 0xff); cbw.CBWCB[4] = ((addr >> 8) & 0xff); cbw.CBWCB[5] = (addr & 0xff); cbw.CBWCB[8] = blocks; cbw.dCBWTag = ++dCBWTag; SetCurLUN(lun); uint8_t er = HandleSCSIError(Transaction(&cbw, bsize, buf, 0)); if (er == MASS_ERR_STALL) { MediaCTL(lun, 1); delay(150); if (!TestUnitReady(lun)) goto again; } return er; } /* We won't be needing this... */ uint8_t BulkOnly::Read(uint8_t lun, uint32_t addr, uint16_t bsize, uint8_t blocks, USBReadParser * prs) { if (!LUNOk[lun]) return MASS_ERR_NO_MEDIA; #if 0 Notify(PSTR("\r\nRead (With parser)\r\n"), 0x80); Notify(PSTR("---------\r\n"), 0x80); CommandBlockWrapper cbw; cbw.dCBWSignature = MASS_CBW_SIGNATURE; cbw.dCBWTag = ++dCBWTag; cbw.dCBWDataTransferLength = ((uint32_t)bsize * blocks); cbw.bmCBWFlags = MASS_CMD_DIR_IN, cbw.bmCBWLUN = lun; cbw.bmCBWCBLength = 10; for (uint8_t i = 0; i < 16; i++) cbw.CBWCB[i] = 0; cbw.CBWCB[0] = SCSI_CMD_READ_10; cbw.CBWCB[8] = blocks; cbw.CBWCB[2] = ((addr >> 24) & 0xff); cbw.CBWCB[3] = ((addr >> 16) & 0xff); cbw.CBWCB[4] = ((addr >> 8) & 0xff); cbw.CBWCB[5] = (addr & 0xff); return HandleSCSIError(Transaction(&cbw, bsize, prs, 1)); #endif } uint8_t BulkOnly::Write(uint8_t lun, uint32_t addr, uint16_t bsize, uint8_t blocks, const uint8_t * buf) { if (!LUNOk[lun]) return MASS_ERR_NO_MEDIA; if (!WriteOk[lun]) return MASS_ERR_WRITE_PROTECTED; Notify(PSTR("\r\nWrite LUN:\t"), 0x80); PrintHex (lun, 0x90); //printf("LUN=%i LBA=%8.8X BLOCKS=%i SIZE=%i\r\n", lun, addr, blocks, bsize); Notify(PSTR("\r\nLBA:\t\t"), 0x90); PrintHex (addr, 0x90); Notify(PSTR("\r\nblocks:\t\t"), 0x90); PrintHex (blocks, 0x90); Notify(PSTR("\r\nblock size:\t"), 0x90); PrintHex (bsize, 0x90); Notify(PSTR("\r\n---------\r\n"), 0x80); //MediaCTL(lun, 0x01); CommandBlockWrapper cbw; again: cbw.dCBWSignature = MASS_CBW_SIGNATURE; cbw.dCBWTag = ++dCBWTag; cbw.dCBWDataTransferLength = ((uint32_t)bsize * blocks); cbw.bmCBWFlags = MASS_CMD_DIR_OUT; cbw.bmCBWLUN = lun; cbw.bmCBWCBLength = 10; for (uint8_t i = 0; i < 16; i++) cbw.CBWCB[i] = 0; cbw.CBWCB[0] = SCSI_CMD_WRITE_10; cbw.CBWCB[1] = lun << 5; cbw.CBWCB[2] = ((addr >> 24) & 0xff); cbw.CBWCB[3] = ((addr >> 16) & 0xff); cbw.CBWCB[4] = ((addr >> 8) & 0xff); cbw.CBWCB[5] = (addr & 0xff); cbw.CBWCB[8] = 1; SetCurLUN(lun); uint8_t er = HandleSCSIError(Transaction(&cbw, bsize, (void*)buf, 0)); if (er == MASS_ERR_WRITE_STALL) { MediaCTL(lun, 1); delay(150); if (!TestUnitReady(lun)) goto again; } return er; } // don't test if OK uint8_t BulkOnly::ModeSense(uint8_t lun, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t len, uint8_t * pbuf) { Notify(PSTR("\r\rModeSense\r\n"), 0x80); Notify(PSTR("------------\r\n"), 0x80); CommandBlockWrapper cbw; SetCurLUN(lun); cbw.dCBWSignature = MASS_CBW_SIGNATURE; cbw.dCBWTag = ++dCBWTag; cbw.dCBWDataTransferLength = ((uint32_t)len); cbw.bmCBWFlags = MASS_CMD_DIR_IN; cbw.bmCBWLUN = lun; cbw.bmCBWCBLength = 6; for (uint8_t i = 0; i < 16; i++) cbw.CBWCB[i] = 0; cbw.CBWCB[0] = SCSI_CMD_MODE_SENSE_6; cbw.CBWCB[2] = ((pc << 6) | page); cbw.CBWCB[3] = subpage; cbw.CBWCB[4] = len; return HandleSCSIError(Transaction(&cbw, 512, pbuf, 0)); } bool BulkOnly::IsValidCSW(CommandStatusWrapper *pcsw, CommandBlockWrapperBase *pcbw) { if (pcsw->dCSWSignature != MASS_CSW_SIGNATURE) { Notify(PSTR("CSW:Sig error\r\n"), 0x80); //printf("%lx != %lx\r\n", MASS_CSW_SIGNATURE, pcsw->dCSWSignature); return false; } if (pcsw->dCSWTag != pcbw->dCBWTag) { Notify(PSTR("CSW:Wrong tag\r\n"), 0x80); //printf("%lx != %lx\r\n", pcsw->dCSWTag, pcbw->dCBWTag); return false; } return true; } uint8_t BulkOnly::Transaction(CommandBlockWrapper *pcbw, uint16_t buf_size, void *buf, uint8_t flags) { uint16_t bytes = (pcbw->dCBWDataTransferLength > buf_size) ? buf_size : pcbw->dCBWDataTransferLength; boolean write = (pcbw->bmCBWFlags & MASS_CMD_DIR_IN) != MASS_CMD_DIR_IN; boolean callback = (flags & MASS_TRANS_FLG_CALLBACK) == MASS_TRANS_FLG_CALLBACK; uint8_t ret = 0; uint8_t usberr; CommandStatusWrapper csw; // up here, we allocate ahead to save cpu cycles. // Fix reserved bits. pcbw->bmReserved1 = 0; pcbw->bmReserved2 = 0; ErrorMessage (PSTR("CBW.dCBWTag"), pcbw->dCBWTag); while ((usberr = pUsb->outTransfer(bAddress, epInfo[epDataOutIndex].epAddr, sizeof (CommandBlockWrapper), (uint8_t*)pcbw)) == hrBUSY) delay(1); ret = HandleUsbError(usberr, epDataOutIndex); //ret = HandleUsbError(pUsb->outTransfer(bAddress, epInfo[epDataOutIndex].epAddr, sizeof (CommandBlockWrapper), (uint8_t*)pcbw), epDataOutIndex); if (ret) { ErrorMessage (PSTR("============================ CBW"), ret); } else { if (bytes) { if (!write) { if (callback) { uint8_t rbuf[bytes]; while ((usberr = pUsb->inTransfer(bAddress, epInfo[epDataInIndex].epAddr, &bytes, rbuf)) == hrBUSY) delay(1); if (usberr == hrSUCCESS) ((USBReadParser*)buf)->Parse(bytes, rbuf, 0); } else { while ((usberr = pUsb->inTransfer(bAddress, epInfo[epDataInIndex].epAddr, &bytes, (uint8_t*)buf)) == hrBUSY) delay(1); } ret = HandleUsbError(usberr, epDataInIndex); } else { while ((usberr = pUsb->outTransfer(bAddress, epInfo[epDataOutIndex].epAddr, bytes, (uint8_t*)buf)) == hrBUSY) delay(1); ret = HandleUsbError(usberr, epDataOutIndex); } if (ret) { ErrorMessage (PSTR("============================ DAT"), ret); } } } //if (!ret || ret == MASS_ERR_WRITE_STALL || ret == MASS_ERR_STALL) { { bytes = sizeof (CommandStatusWrapper); int tries = 2; while (tries--) { while ((usberr = pUsb->inTransfer(bAddress, epInfo[epDataInIndex].epAddr, &bytes, (uint8_t*) & csw)) == hrBUSY) delay(1); if (!usberr) break; ClearEpHalt(epDataInIndex); //HandleUsbError(usberr, epDataInIndex); if (tries) ResetRecovery(); } if (!ret) { Notify(PSTR("CBW:\t\tOK\r\n"), 0x80); Notify(PSTR("Data Stage:\tOK\r\n"), 0x80); } else { // Throw away csw, IT IS NOT OF ANY USE. //HandleUsbError(usberr, epDataInIndex); ResetRecovery(); return ret; } ret = HandleUsbError(usberr, epDataInIndex); if (ret) { ErrorMessage (PSTR("============================ CSW"), ret); } if (usberr == hrSUCCESS) { if (IsValidCSW(&csw, pcbw)) { //ErrorMessage (PSTR("CSW.dCBWTag"), csw.dCSWTag); //ErrorMessage (PSTR("bCSWStatus"), csw.bCSWStatus); //ErrorMessage (PSTR("dCSWDataResidue"), csw.dCSWDataResidue); Notify(PSTR("CSW:\t\tOK\r\n\r\n"), 0x80); return csw.bCSWStatus; } else { Notify(PSTR("Invalid CSW\r\n"), 0x80); ResetRecovery(); //return MASS_ERR_SUCCESS; return MASS_ERR_INVALID_CSW; } } } return ret; } uint8_t BulkOnly::SetCurLUN(uint8_t lun) { if (lun > bMaxLUN) return MASS_ERR_INVALID_LUN; bTheLUN = lun; return MASS_ERR_SUCCESS; }; uint8_t BulkOnly::HandleUsbError(uint8_t error, uint8_t index) { uint8_t count = 3; bLastUsbError = error; //if (error) //ClearEpHalt(index); while (error && count) { if (error != hrSUCCESS) { ErrorMessage (PSTR("USB Error"), error); ErrorMessage (PSTR("Index"), index); } switch (error) { // case hrWRONGPID: case hrSUCCESS: return MASS_ERR_SUCCESS; case hrBUSY: // SIE is busy, just hang out and try again. return MASS_ERR_UNIT_BUSY; case hrTIMEOUT: case hrJERR: return MASS_ERR_DEVICE_DISCONNECTED; case hrSTALL: if (index == 0) return MASS_ERR_STALL; ClearEpHalt(index); if (index != epDataInIndex) return MASS_ERR_WRITE_STALL; return MASS_ERR_STALL; case hrNAK: if (index == 0) return MASS_ERR_UNIT_BUSY; return MASS_ERR_UNIT_BUSY; //ClearEpHalt(index); //ResetRecovery(); //if (index != epDataInIndex) // return MASS_ERR_WRITE_NAKS; //return MASS_ERR_READ_NAKS; case hrTOGERR: if (bAddress && bConfNum) { error = pUsb->setConf(bAddress, 0, bConfNum); if (error) break; } return MASS_ERR_SUCCESS; default: ErrorMessage (PSTR("\r\nUSB"), error); return MASS_ERR_GENERAL_USB_ERROR; } count--; } // while return ((error && !count) ? MASS_ERR_GENERAL_USB_ERROR : MASS_ERR_SUCCESS); } uint8_t BulkOnly::HandleSCSIError(uint8_t status) { uint8_t ret = 0; switch (status) { case 0: return MASS_ERR_SUCCESS; //case 4: return MASS_ERR_UNIT_BUSY; // Busy means retry later. // case 0x05/0x14: we stalled out // case 0x15/0x16: we naked out. case 2: ErrorMessage (PSTR("Phase Error"), status); ErrorMessage (PSTR("LUN"), bTheLUN); ResetRecovery(); return MASS_ERR_GENERAL_SCSI_ERROR; case 1: ErrorMessage (PSTR("SCSI Error"), status); ErrorMessage (PSTR("LUN"), bTheLUN); RequestSenseResponce rsp; ret = RequestSense(bTheLUN, sizeof (RequestSenseResponce), (uint8_t*) & rsp); if (ret) { //ResetRecovery(); return MASS_ERR_GENERAL_SCSI_ERROR; } ErrorMessage (PSTR("Response Code"), rsp.bResponseCode); if (rsp.bResponseCode & 0x80) { Notify(PSTR("Information field: "), 0x80); for (int i = 0; i < 4; i++) { PrintHex (rsp.CmdSpecificInformation[i], 0x80); Notify(PSTR(" "), 0x80); } Notify(PSTR("\r\n"), 0x80); } ErrorMessage (PSTR("Sense Key"), rsp.bmSenseKey); ErrorMessage (PSTR("Add Sense Code"), rsp.bAdditionalSenseCode); ErrorMessage (PSTR("Add Sense Qual"), rsp.bAdditionalSenseQualifier); // warning, this is not testing ASQ, only SK and ASC. switch (rsp.bmSenseKey) { /* bug... case 0: return MASS_ERR_SUCCESS; */ case SCSI_S_UNIT_ATTENTION: switch (rsp.bAdditionalSenseCode) { case SCSI_ASC_MEDIA_CHANGED: return MASS_ERR_MEDIA_CHANGED; default: return MASS_ERR_UNIT_NOT_READY; } case SCSI_S_NOT_READY: switch (rsp.bAdditionalSenseCode) { case SCSI_ASC_MEDIUM_NOT_PRESENT: return MASS_ERR_NO_MEDIA; //return MASS_ERR_SUCCESS; default: return MASS_ERR_UNIT_NOT_READY; } case SCSI_S_ILLEGAL_REQUEST: switch (rsp.bAdditionalSenseCode) { case SCSI_ASC_LBA_OUT_OF_RANGE: return MASS_ERR_BAD_LBA; default: return MASS_ERR_CMD_NOT_SUPPORTED; } default: return MASS_ERR_GENERAL_SCSI_ERROR; } default: // Should have been handled already in HandleUsbError. // ResetRecovery(); ErrorMessage (PSTR("Gen SCSI Err"), status); ErrorMessage (PSTR("LUN"), bTheLUN); return status; //MASS_ERR_GENERAL_SCSI_ERROR; } // switch } void BulkOnly::PrintEndpointDescriptor(const USB_ENDPOINT_DESCRIPTOR * ep_ptr) { Notify(PSTR("Endpoint descriptor:"), 0x80); Notify(PSTR("\r\nLength:\t\t"), 0x80); PrintHex (ep_ptr->bLength, 0x80); Notify(PSTR("\r\nType:\t\t"), 0x80); PrintHex (ep_ptr->bDescriptorType, 0x80); Notify(PSTR("\r\nAddress:\t"), 0x80); PrintHex (ep_ptr->bEndpointAddress, 0x80); Notify(PSTR("\r\nAttributes:\t"), 0x80); PrintHex (ep_ptr->bmAttributes, 0x80); Notify(PSTR("\r\nMaxPktSize:\t"), 0x80); PrintHex (ep_ptr->wMaxPacketSize, 0x80); Notify(PSTR("\r\nPoll Intrv:\t"), 0x80); PrintHex (ep_ptr->bInterval, 0x80); Notify(PSTR("\r\n"), 0x80); }