USB_Host_Shield_2.0/masstorage.cpp
Oleg Mazurov 13884b6b6a ms
2012-07-24 15:48:47 -06:00

647 lines
14 KiB
C++

#include "masstorage.h"
//bool BulkReadParser::IsValidCSW(uint8_t size, uint8_t *pcsw)
//{
// if (size != 0x0d)
// {
// Notify(PSTR("CSW:Size error"));
// return false;
// }
// if (*((uint32_t*)pcsw) != MASS_CSW_SIGNATURE)
// {
// Notify(PSTR("CSW:Sig error"));
// return false;
// }
// //if (size != 0x0d || *((uint32_t*)pcsw) != MASS_CSW_SIGNATURE ||
// // ((CommandStatusWrapper*)pcsw)->dCSWTag != dCBWTag)
// // return false;
// return true;
//}
//bool BulkReadParser::IsMeaningfulCSW(uint8_t size, uint8_t *pcsw)
//{
// if (((CommandStatusWrapper*)pcsw)->bCSWStatus < 2 &&
// ((CommandStatusWrapper*)pcsw)->dCSWDataResidue <= dCBWDataTransferLength )
// return true;
// if ( ((CommandStatusWrapper*)pcsw)->bCSWStatus == 2 )
// return true;
// return false;
//}
//void BulkReadParser::Parse(const uint16_t len, const uint8_t *pbuf, const uint16_t &offset)
//{
// if (offset == 0 && len > sizeof(CommandStatusWrapper))
// if (IsValidCSW(sizeof(CommandStatusWrapper), pbuf) && IsMeaningfulCSW(sizeof(CommandStatusWrapper), pbuf))
// {
// CommandStatusWrapper *pCSW = (CommandStatusWrapper*)pbuf;
//
// Serial.println("Sig:");
// PrintHex<uint32_t>(pCSW->dCSWSignature);
// Serial.println("Tag:");
// PrintHex<uint32_t>(pCSW->dCSWTag);
// Serial.println("Res:");
// PrintHex<uint32_t>(pCSW->dCSWDataResidue);
// Serial.println("Ret:");
// PrintHex<uint8_t>(pCSW->bCSWStatus);
// }
//}
const uint8_t BulkOnly::epDataInIndex = 1;
const uint8_t BulkOnly::epDataOutIndex = 2;
const uint8_t BulkOnly::epInterruptInIndex = 3;
BulkOnly::BulkOnly(USB *p /*, CDCAsyncOper *pasync*/) :
pUsb(p),
//pAsync(pasync),
bAddress(0),
qNextPollTime(0),
bPollEnable(false),
bIface(0),
bNumEP(1)
{
for(uint8_t i=0; i<MASS_MAX_ENDPOINTS; i++)
{
epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0;
if (!i)
epInfo[i].bmNakPower = USB_NAK_MAX_POWER;
}
if (pUsb)
pUsb->RegisterDeviceClass(this);
}
uint8_t BulkOnly::Init(uint8_t parent, uint8_t port, bool lowspeed)
{
const uint8_t constBufSize = sizeof(USB_DEVICE_DESCRIPTOR);
uint8_t buf[constBufSize];
uint8_t rcode;
UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL;
uint8_t num_of_conf; // number of configurations
AddressPool &addrPool = pUsb->GetAddressPool();
USBTRACE("MS Init\r\n");
if (bAddress)
return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;
// Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0);
if (!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if (!p->epinfo)
{
USBTRACE("epinfo\r\n");
return USB_ERROR_EPINFO_IS_NULL;
}
// Save old pointer to EP_RECORD of address 0
oldep_ptr = p->epinfo;
// Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence
p->epinfo = epInfo;
p->lowspeed = lowspeed;
// Get device descriptor
rcode = pUsb->getDevDescr( 0, 0, constBufSize, (uint8_t*)buf );
// Restore p->epinfo
p->epinfo = oldep_ptr;
if( rcode )
goto FailGetDevDescr;
// Allocate new address according to device class
bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from the device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0;
// Assign new address to the device
rcode = pUsb->setAddr( 0, 0, bAddress );
if (rcode)
{
p->lowspeed = false;
addrPool.FreeAddress(bAddress);
bAddress = 0;
USBTRACE2("setAddr:",rcode);
return rcode;
}
USBTRACE2("Addr:", bAddress);
p->lowspeed = false;
p = addrPool.GetUsbDevicePtr(bAddress);
if (!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed;
num_of_conf = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations;
// Assign epInfo to epinfo pointer
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode)
goto FailSetDevTblEntry;
USBTRACE2("NC:", num_of_conf);
for (uint8_t i=0; i<num_of_conf; i++)
{
HexDumper<USBReadParser, uint16_t, uint16_t> HexDump;
ConfigDescParser< USB_CLASS_MASS_STORAGE,
MASS_SUBCLASS_SCSI,
MASS_PROTO_BBB,
CP_MASK_COMPARE_CLASS |
CP_MASK_COMPARE_SUBCLASS |
CP_MASK_COMPARE_PROTOCOL> BulkOnlyParser(this);
rcode = pUsb->getConfDescr(bAddress, 0, i, &HexDump);
rcode = pUsb->getConfDescr(bAddress, 0, i, &BulkOnlyParser);
if (bNumEP > 1)
break;
} // for
if (bNumEP < 3)
return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;
// Assign epInfo to epinfo pointer
rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo);
USBTRACE2("Conf:", bConfNum);
// Set Configuration Value
rcode = pUsb->setConf(bAddress, 0, bConfNum);
if (rcode)
goto FailSetConf;
delay(5000);
//rcode = pAsync->OnInit(this);
//if (rcode)
// goto FailOnInit;
rcode = GetMaxLUN(&bMaxLUN);
if (rcode)
goto FailGetMaxLUN;
delay(10);
{
InquiryResponse response;
rcode = Inquiry(bMaxLUN, sizeof(InquiryResponse), (uint8_t*)&response);
if (rcode)
goto FailInquiry;
//if (response.DeviceType != 0)
// goto FailInvalidDevice;
}
delay(10);
USBTRACE("MS configured\r\n");
bPollEnable = true;
//USBTRACE("Poll enabled\r\n");
return 0;
FailGetDevDescr:
USBTRACE("getDevDescr:");
goto Fail;
FailSetDevTblEntry:
USBTRACE("setDevTblEn:");
goto Fail;
FailGetConfDescr:
USBTRACE("getConf:");
goto Fail;
FailSetConf:
USBTRACE("setConf:");
goto Fail;
FailOnInit:
USBTRACE("OnInit:");
goto Fail;
FailGetMaxLUN:
USBTRACE("GetMaxLUN:");
goto Fail;
FailInquiry:
USBTRACE("Inquiry:");
goto Fail;
Fail:
Serial.println(rcode, HEX);
Release();
return rcode;
}
void BulkOnly::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *pep)
{
ErrorMessage<uint8_t>(PSTR("Conf.Val"), conf);
ErrorMessage<uint8_t>(PSTR("Iface Num"),iface);
ErrorMessage<uint8_t>(PSTR("Alt.Set"), alt);
bConfNum = conf;
uint8_t index;
if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80)
index = epInterruptInIndex;
else
if ((pep->bmAttributes & 0x02) == 2)
index = ((pep->bEndpointAddress & 0x80) == 0x80) ? epDataInIndex : epDataOutIndex;
else
return;
// Fill in the endpoint info structure
epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F);
epInfo[index].maxPktSize = (uint8_t)pep->wMaxPacketSize;
epInfo[index].epAttribs = 0;
bNumEP ++;
PrintEndpointDescriptor(pep);
}
uint8_t BulkOnly::Release()
{
pUsb->GetAddressPool().FreeAddress(bAddress);
bIface = 0;
bNumEP = 1;
bAddress = 0;
qNextPollTime = 0;
bPollEnable = false;
return 0;
}
uint8_t BulkOnly::Poll()
{
uint8_t rcode = 0;
if (!bPollEnable)
return 0;
uint32_t time_now = millis();
//if (qNextPollTime <= time_now)
//{
// qNextPollTime = time_now + 100;
// uint8_t rcode;
// const uint8_t constBufSize = 16;
// uint8_t buf[constBufSize];
// for (uint8_t i=0; i<constBufSize; i++)
// buf[i] = 0;
// uint16_t read = (constBufSize > epInfo[epInterruptInIndex].maxPktSize)
// ? epInfo[epInterruptInIndex].maxPktSize : constBufSize;
// rcode = pUsb->inTransfer(bAddress, epInfo[epInterruptInIndex].epAddr, &read, buf);
// if (rcode)
// return rcode;
// for (uint8_t i=0; i<read; i++)
// {
// PrintHex<uint8_t>(buf[i]);
// Serial.print(" ");
// }
// USBTRACE("\r\n");
//}
return rcode;
}
bool BulkOnly::IsValidCBW(uint8_t size, uint8_t *pcbw)
{
if (size != 0x1f || *((uint32_t*)pcbw) != MASS_CBW_SIGNATURE)
return false;
return true;
}
bool BulkOnly::IsMeaningfulCBW(uint8_t size, uint8_t *pcbw)
{
if (((CommandBlockWrapper*)pcbw)->bmReserved1 != 0 ||
((CommandBlockWrapper*)pcbw)->bmReserved2 != 0 ||
((CommandBlockWrapper*)pcbw)->bmCBWLUN > bMaxLUN ||
((CommandBlockWrapper*)pcbw)->bmCBWCBLength > 0x10 )
return false;
return true;
}
uint8_t BulkOnly::Reset()
{
return( pUsb->ctrlReq( bAddress, 0, bmREQ_MASSOUT, MASS_REQ_BOMSR, 0, 0, bIface, 0, 0, NULL, NULL ));
}
uint8_t BulkOnly::GetMaxLUN(uint8_t *plun)
{
uint8_t cnt = 3;
bLastUsbError = pUsb->ctrlReq( bAddress, 0, bmREQ_MASSIN, MASS_REQ_GET_MAX_LUN, 0, 0, bIface, 1, 1, plun, NULL );
delay(10);
//Serial.println(F("bLastUsbError: "));
//Serial.println(bLastUsbError);
if (bLastUsbError == hrSTALL)
{
*plun = 0;
bLastUsbError = ClearEpHalt(epDataInIndex);
return MASS_ERR_SUCCESS;
}
if (bLastUsbError == hrJERR)
return MASS_ERR_DEVICE_DISCONNECTED;
else if (bLastUsbError)
return MASS_ERR_GENERAL_USB_ERROR;
return MASS_ERR_SUCCESS;
}
uint8_t BulkOnly::HandleUsbError(uint8_t index)
{
uint8_t count = 3;
while (bLastUsbError && count)
{
switch (bLastUsbError)
{
case hrSUCCESS:
return MASS_ERR_SUCCESS;
case hrJERR:
bLastUsbError = hrSUCCESS;
return MASS_ERR_DEVICE_DISCONNECTED;
case hrSTALL:
bLastUsbError = ClearEpHalt(index);
break;
default:
return MASS_ERR_GENERAL_USB_ERROR;
}
count --;
} // while
return MASS_ERR_SUCCESS;
}
uint8_t BulkOnly::ClearEpHalt(uint8_t index)
{
return (pUsb->ctrlReq( bAddress, 0, USB_SETUP_HOST_TO_DEVICE|USB_SETUP_TYPE_STANDARD|USB_SETUP_RECIPIENT_ENDPOINT,
USB_REQUEST_CLEAR_FEATURE, USB_FEATURE_ENDPOINT_HALT, 0, epInfo[index].epAddr, 0, 0, NULL, NULL ));
}
uint8_t BulkOnly::ResetRecovery()
{
bLastUsbError = Reset();
if (bLastUsbError)
return bLastUsbError;
delay(6);
bLastUsbError = ClearEpHalt(epDataInIndex);
if (bLastUsbError)
return bLastUsbError;
delay(6);
bLastUsbError = ClearEpHalt(epDataOutIndex);
delay(6);
return bLastUsbError;
}
uint8_t BulkOnly::Inquiry(uint8_t lun, uint16_t bsize, uint8_t *buf)
{
CommandBlockWrapper cbw;
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = 0xdeadbeef;
cbw.dCBWDataTransferLength = bsize;
cbw.bmCBWFlags = MASS_CMD_DIR_IN,
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 6;
for (uint8_t i=0; i<16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_INQUIRY;
cbw.CBWCB[4] = bsize;
return Transaction(&cbw, bsize, buf, 0);
}
uint8_t BulkOnly::RequestSense(uint8_t lun, uint16_t size, uint8_t *buf)
{
CommandBlockWrapper cbw;
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = 0xdeadbeef;
cbw.dCBWDataTransferLength = size;
cbw.bmCBWFlags = MASS_CMD_DIR_IN,
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 6;
for (uint8_t i=0; i<16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_REQUEST_SENSE;
cbw.CBWCB[4] = size;
return Transaction(&cbw, size, buf, 0);
}
uint8_t BulkOnly::ReadCapacity(uint8_t lun, uint16_t bsize, uint8_t *buf)
{
CommandBlockWrapper cbw;
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = 0xdeadbeef;
cbw.dCBWDataTransferLength = bsize;
cbw.bmCBWFlags = MASS_CMD_DIR_IN,
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 10;
for (uint8_t i=0; i<16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_READ_CAPACITY_10;
cbw.CBWCB[4] = bsize;
return Transaction(&cbw, bsize, buf, 0);
}
uint8_t BulkOnly::TestUnitReady(uint8_t lun)
{
CommandBlockWrapper cbw;
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = 0xdeadbeef;
cbw.dCBWDataTransferLength = 0;
cbw.bmCBWFlags = MASS_CMD_DIR_OUT,
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 6;
for (uint8_t i=0; i<16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_TEST_UNIT_READY;
return Transaction(&cbw, 0, NULL, 0);
}
uint8_t BulkOnly::Read(uint8_t lun, uint32_t addr, uint16_t bsize, USBReadParser *prs)
{
CommandBlockWrapper cbw;
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = 0xdeadbeef;
cbw.dCBWDataTransferLength = bsize;
cbw.bmCBWFlags = MASS_CMD_DIR_IN,
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 10;
for (uint8_t i=0; i<16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_READ_10;
cbw.CBWCB[8] = 1;
cbw.CBWCB[5] = (addr & 0xff);
cbw.CBWCB[4] = ((addr >> 8) & 0xff);
cbw.CBWCB[3] = ((addr >> 16) & 0xff);
cbw.CBWCB[2] = ((addr >> 24) & 0xff);
return Transaction(&cbw, bsize, prs, 1);
}
uint8_t BulkOnly::Transaction(CommandBlockWrapper *cbw, uint16_t size, void *buf, uint8_t flags)
{
uint16_t read;
{
bLastUsbError = pUsb->outTransfer(bAddress, epInfo[epDataOutIndex].epAddr, sizeof(CommandBlockWrapper), (uint8_t*)cbw);
uint8_t ret = HandleUsbError(epDataOutIndex);
if (ret)
{
ErrorMessage<uint8_t>(PSTR("CBW"), ret);
return ret;
}
}
if (size && buf)
{
read = size;
if (cbw->bmCBWFlags & MASS_CMD_DIR_IN)
{
if ((flags & MASS_TRANS_FLG_CALLBACK) == MASS_TRANS_FLG_CALLBACK)
{
const uint8_t bufSize = 64;
uint16_t total = size;
uint16_t count = 0;
uint8_t rbuf[bufSize];
read = bufSize;
while(count < total &&
((bLastUsbError = pUsb->inTransfer(bAddress, epInfo[epDataInIndex].epAddr, &read, (uint8_t*)rbuf)) == hrSUCCESS)
)
{
((USBReadParser*)buf)->Parse(read, rbuf, count);
count += read;
read = bufSize;
}
if (bLastUsbError == hrSTALL)
bLastUsbError = ClearEpHalt(epDataInIndex);
if (bLastUsbError)
{
ErrorMessage<uint8_t>(PSTR("RDR"), bLastUsbError);
return MASS_ERR_GENERAL_USB_ERROR;
}
} // if ((flags & 1) == 1)
else
bLastUsbError = pUsb->inTransfer(bAddress, epInfo[epDataInIndex].epAddr, &read, (uint8_t*)buf);
} // if (cbw->bmCBWFlags & MASS_CMD_DIR_IN)
else if (cbw->bmCBWFlags & MASS_CMD_DIR_OUT)
bLastUsbError = pUsb->outTransfer(bAddress, epInfo[epDataOutIndex].epAddr, read, (uint8_t*)buf);
}
uint8_t ret = HandleUsbError((cbw->bmCBWFlags & MASS_CMD_DIR_IN) ? epDataInIndex : epDataOutIndex);
if (ret)
{
ErrorMessage<uint8_t>(PSTR("RSP"), ret);
return MASS_ERR_GENERAL_USB_ERROR;
}
{
CommandStatusWrapper csw;
read = sizeof(CommandStatusWrapper);
bLastUsbError = pUsb->inTransfer(bAddress, epInfo[epDataInIndex].epAddr, &read, (uint8_t*)&csw);
uint8_t ret = HandleUsbError(epDataInIndex);
if (ret)
{
ErrorMessage<uint8_t>(PSTR("CSW"), ret);
return ret;
}
//if (csw.bCSWStatus == MASS_ERR_PHASE_ERROR)
// bLastUsbError = ResetRecovery();
return csw.bCSWStatus;
}
//return MASS_ERR_SUCCESS;
}
void BulkOnly::PrintEndpointDescriptor( const USB_ENDPOINT_DESCRIPTOR* ep_ptr )
{
Notify(PSTR("Endpoint descriptor:"));
Notify(PSTR("\r\nLength:\t\t"));
PrintHex<uint8_t>(ep_ptr->bLength);
Notify(PSTR("\r\nType:\t\t"));
PrintHex<uint8_t>(ep_ptr->bDescriptorType);
Notify(PSTR("\r\nAddress:\t"));
PrintHex<uint8_t>(ep_ptr->bEndpointAddress);
Notify(PSTR("\r\nAttributes:\t"));
PrintHex<uint8_t>(ep_ptr->bmAttributes);
Notify(PSTR("\r\nMaxPktSize:\t"));
PrintHex<uint16_t>(ep_ptr->wMaxPacketSize);
Notify(PSTR("\r\nPoll Intrv:\t"));
PrintHex<uint8_t>(ep_ptr->bInterval);
Notify(PSTR("\r\n"));
}