USB_Host_Shield_2.0/SPP.cpp
2013-04-26 23:50:39 +02:00

937 lines
No EOL
48 KiB
C++

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#include "SPP.h"
#define DEBUG // Uncomment to print data for debugging
//#define EXTRADEBUG // Uncomment to get even more debugging data
//#define PRINTREPORT // Uncomment to print the report sent to the Arduino
/*
* CRC (reversed crc) lookup table as calculated by the table generator in ETSI TS 101 369 V6.3.0.
*/
const uint8_t rfcomm_crc_table[256] PROGMEM = {/* reversed, 8-bit, poly=0x07 */
0x00, 0x91, 0xE3, 0x72, 0x07, 0x96, 0xE4, 0x75, 0x0E, 0x9F, 0xED, 0x7C, 0x09, 0x98, 0xEA, 0x7B,
0x1C, 0x8D, 0xFF, 0x6E, 0x1B, 0x8A, 0xF8, 0x69, 0x12, 0x83, 0xF1, 0x60, 0x15, 0x84, 0xF6, 0x67,
0x38, 0xA9, 0xDB, 0x4A, 0x3F, 0xAE, 0xDC, 0x4D, 0x36, 0xA7, 0xD5, 0x44, 0x31, 0xA0, 0xD2, 0x43,
0x24, 0xB5, 0xC7, 0x56, 0x23, 0xB2, 0xC0, 0x51, 0x2A, 0xBB, 0xC9, 0x58, 0x2D, 0xBC, 0xCE, 0x5F,
0x70, 0xE1, 0x93, 0x02, 0x77, 0xE6, 0x94, 0x05, 0x7E, 0xEF, 0x9D, 0x0C, 0x79, 0xE8, 0x9A, 0x0B,
0x6C, 0xFD, 0x8F, 0x1E, 0x6B, 0xFA, 0x88, 0x19, 0x62, 0xF3, 0x81, 0x10, 0x65, 0xF4, 0x86, 0x17,
0x48, 0xD9, 0xAB, 0x3A, 0x4F, 0xDE, 0xAC, 0x3D, 0x46, 0xD7, 0xA5, 0x34, 0x41, 0xD0, 0xA2, 0x33,
0x54, 0xC5, 0xB7, 0x26, 0x53, 0xC2, 0xB0, 0x21, 0x5A, 0xCB, 0xB9, 0x28, 0x5D, 0xCC, 0xBE, 0x2F,
0xE0, 0x71, 0x03, 0x92, 0xE7, 0x76, 0x04, 0x95, 0xEE, 0x7F, 0x0D, 0x9C, 0xE9, 0x78, 0x0A, 0x9B,
0xFC, 0x6D, 0x1F, 0x8E, 0xFB, 0x6A, 0x18, 0x89, 0xF2, 0x63, 0x11, 0x80, 0xF5, 0x64, 0x16, 0x87,
0xD8, 0x49, 0x3B, 0xAA, 0xDF, 0x4E, 0x3C, 0xAD, 0xD6, 0x47, 0x35, 0xA4, 0xD1, 0x40, 0x32, 0xA3,
0xC4, 0x55, 0x27, 0xB6, 0xC3, 0x52, 0x20, 0xB1, 0xCA, 0x5B, 0x29, 0xB8, 0xCD, 0x5C, 0x2E, 0xBF,
0x90, 0x01, 0x73, 0xE2, 0x97, 0x06, 0x74, 0xE5, 0x9E, 0x0F, 0x7D, 0xEC, 0x99, 0x08, 0x7A, 0xEB,
0x8C, 0x1D, 0x6F, 0xFE, 0x8B, 0x1A, 0x68, 0xF9, 0x82, 0x13, 0x61, 0xF0, 0x85, 0x14, 0x66, 0xF7,
0xA8, 0x39, 0x4B, 0xDA, 0xAF, 0x3E, 0x4C, 0xDD, 0xA6, 0x37, 0x45, 0xD4, 0xA1, 0x30, 0x42, 0xD3,
0xB4, 0x25, 0x57, 0xC6, 0xB3, 0x22, 0x50, 0xC1, 0xBA, 0x2B, 0x59, 0xC8, 0xBD, 0x2C, 0x5E, 0xCF
};
SPP::SPP(BTD *p, const char* name, const char* pin) :
pBtd(p) // Pointer to BTD class instance - mandatory
{
if (pBtd)
pBtd->registerServiceClass(this); // Register it as a Bluetooth service
pBtd->btdName = name;
pBtd->btdPin = pin;
/* Set device cid for the SDP and RFCOMM channelse */
sdp_dcid[0] = 0x50; // 0x0050
sdp_dcid[1] = 0x00;
rfcomm_dcid[0] = 0x51; // 0x0051
rfcomm_dcid[1] = 0x00;
Reset();
}
void SPP::Reset() {
connected = false;
RFCOMMConnected = false;
SDPConnected = false;
l2cap_sdp_state = L2CAP_SDP_WAIT;
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
l2cap_event_flag = 0;
}
void SPP::disconnect() {
connected = false;
// First the two L2CAP channels has to be disconencted and then the HCI connection
if (RFCOMMConnected)
pBtd->l2cap_disconnection_request(hci_handle, 0x0A, rfcomm_scid, rfcomm_dcid);
if (RFCOMMConnected && SDPConnected)
delay(1); // Add delay between commands
if (SDPConnected)
pBtd->l2cap_disconnection_request(hci_handle, 0x0B, sdp_scid, sdp_dcid);
l2cap_sdp_state = L2CAP_DISCONNECT_RESPONSE;
}
void SPP::ACLData(uint8_t* l2capinbuf) {
if (!connected) {
if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM && !pBtd->sdpConnectionClaimed) {
pBtd->sdpConnectionClaimed = true;
hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection
l2cap_sdp_state = L2CAP_SDP_WAIT; // Reset state
} else if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM && !pBtd->rfcommConnectionClaimed) {
pBtd->rfcommConnectionClaimed = true;
hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT; // Reset state
}
}
}
if (((l2capinbuf[0] | (l2capinbuf[1] << 8)) == (hci_handle | 0x2000))) { // acl_handle_ok
if ((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001) { //l2cap_control - Channel ID for ACL-U
if (l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) {
#ifdef DEBUG
Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "), 0x80);
PrintHex<uint8_t > (l2capinbuf[13], 0x80);
Notify(PSTR(" "), 0x80);
PrintHex<uint8_t > (l2capinbuf[12], 0x80);
Notify(PSTR(" Data: "), 0x80);
PrintHex<uint8_t > (l2capinbuf[17], 0x80);
Notify(PSTR(" "), 0x80);
PrintHex<uint8_t > (l2capinbuf[16], 0x80);
Notify(PSTR(" "), 0x80);
PrintHex<uint8_t > (l2capinbuf[15], 0x80);
Notify(PSTR(" "), 0x80);
PrintHex<uint8_t > (l2capinbuf[14], 0x80);
#endif
} else if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nL2CAP Connection Request - PSM: "), 0x80);
PrintHex<uint8_t > (l2capinbuf[13], 0x80);
Notify(PSTR(" "), 0x80);
PrintHex<uint8_t > (l2capinbuf[12], 0x80);
Notify(PSTR(" SCID: "), 0x80);
PrintHex<uint8_t > (l2capinbuf[15], 0x80);
Notify(PSTR(" "), 0x80);
PrintHex<uint8_t > (l2capinbuf[14], 0x80);
Notify(PSTR(" Identifier: "), 0x80);
PrintHex<uint8_t > (l2capinbuf[9], 0x80);
#endif
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM) { // It doesn't matter if it receives another reqeust, since it waits for the channel to disconnect in the L2CAP_SDP_DONE state, and the l2cap_event_flag will be cleared if so
identifier = l2capinbuf[9];
sdp_scid[0] = l2capinbuf[14];
sdp_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_SDP_REQUEST;
} else if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM) { // ----- || -----
identifier = l2capinbuf[9];
rfcomm_scid[0] = l2capinbuf[14];
rfcomm_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST;
}
} else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) {
if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
//Notify(PSTR("\r\nSDP Configuration Complete"), 0x80);
l2cap_event_flag |= L2CAP_FLAG_CONFIG_SDP_SUCCESS;
} else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
//Notify(PSTR("\r\nRFCOMM Configuration Complete"), 0x80);
l2cap_event_flag |= L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS;
}
}
} else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
//Notify(PSTR("\r\nSDP Configuration Request"), 0x80);
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_CONFIG_SDP_REQUEST;
} else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
//Notify(PSTR("\r\nRFCOMM Configuration Request"), 0x80);
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_CONFIG_RFCOMM_REQUEST;
}
} else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
//Notify(PSTR("\r\nDisconnect Request: SDP Channel"), 0x80);
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_SDP_REQUEST;
} else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
//Notify(PSTR("\r\nDisconnect Request: RFCOMM Channel"), 0x80);
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST;
}
} else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) {
if (l2capinbuf[12] == sdp_scid[0] && l2capinbuf[13] == sdp_scid[1]) {
//Notify(PSTR("\r\nDisconnect Response: SDP Channel"), 0x80);
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RESPONSE;
} else if (l2capinbuf[12] == rfcomm_scid[0] && l2capinbuf[13] == rfcomm_scid[1]) {
//Notify(PSTR("\r\nDisconnect Response: RFCOMM Channel"), 0x80);
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RESPONSE;
}
} else if (l2capinbuf[8] == L2CAP_CMD_INFORMATION_REQUEST) {
#ifdef DEBUG
Notify(PSTR("\r\nInformation request"), 0x80);
#endif
identifier = l2capinbuf[9];
pBtd->l2cap_information_response(hci_handle, identifier, l2capinbuf[12], l2capinbuf[13]);
}
#ifdef EXTRADEBUG
else {
Notify(PSTR("\r\nL2CAP Unknown Signaling Command: "), 0x80);
PrintHex<uint8_t > (l2capinbuf[8], 0x80);
}
#endif
} else if (l2capinbuf[6] == sdp_dcid[0] && l2capinbuf[7] == sdp_dcid[1]) { // SDP
if (l2capinbuf[8] == SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST_PDU) {
if (((l2capinbuf[16] << 8 | l2capinbuf[17]) == SERIALPORT_UUID) || ((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000 && (l2capinbuf[18] << 8 | l2capinbuf[19]) == SERIALPORT_UUID)) { // Check if it's sending the full UUID, see: https://www.bluetooth.org/Technical/AssignedNumbers/service_discovery.htm, we will just check the first four bytes
if (firstMessage) {
serialPortResponse1(l2capinbuf[9], l2capinbuf[10]);
firstMessage = false;
} else {
serialPortResponse2(l2capinbuf[9], l2capinbuf[10]); // Serialport continuation state
firstMessage = true;
}
} else if (((l2capinbuf[16] << 8 | l2capinbuf[17]) == L2CAP_UUID) || ((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000 && (l2capinbuf[18] << 8 | l2capinbuf[19]) == L2CAP_UUID)) {
if (firstMessage) {
l2capResponse1(l2capinbuf[9], l2capinbuf[10]);
firstMessage = false;
} else {
l2capResponse2(l2capinbuf[9], l2capinbuf[10]); // L2CAP continuation state
firstMessage = true;
}
} else
serviceNotSupported(l2capinbuf[9], l2capinbuf[10]); // The service is not supported
#ifdef EXTRADEBUG
Notify(PSTR("\r\nUUID: "), 0x80);
uint16_t uuid;
if((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000) // Check if it's sending the UUID as a 128-bit UUID
uuid = (l2capinbuf[18] << 8 | l2capinbuf[19]);
else // Short UUID
uuid = (l2capinbuf[16] << 8 | l2capinbuf[17]);
PrintHex<uint16_t> (uuid, 0x80);
Notify(PSTR("\r\nLength: "), 0x80);
uint16_t length = l2capinbuf[11] << 8 | l2capinbuf[12];
PrintHex<uint16_t> (length, 0x80);
Notify(PSTR("\r\nData: "), 0x80);
for (uint8_t i = 0; i < length; i++) {
PrintHex<uint8_t> (l2capinbuf[13+i], 0x80);
Notify(PSTR(" "), 0x80);
}
#endif
}
} else if (l2capinbuf[6] == rfcomm_dcid[0] && l2capinbuf[7] == rfcomm_dcid[1]) { // RFCOMM
rfcommChannel = l2capinbuf[8] & 0xF8;
rfcommDirection = l2capinbuf[8] & 0x04;
rfcommCommandResponse = l2capinbuf[8] & 0x02;
rfcommChannelType = l2capinbuf[9] & 0xEF;
rfcommPfBit = l2capinbuf[9] & 0x10;
if (rfcommChannel >> 3 != 0x00)
rfcommChannelConnection = rfcommChannel;
#ifdef EXTRADEBUG
Notify(PSTR("\r\nRFCOMM Channel: "), 0x80);
PrintHex<uint8_t > (rfcommChannel >> 3, 0x80);
Notify(PSTR(" Direction: "), 0x80);
PrintHex<uint8_t > (rfcommDirection >> 2, 0x80);
Notify(PSTR(" CommandResponse: "), 0x80);
PrintHex<uint8_t > (rfcommCommandResponse >> 1, 0x80);
Notify(PSTR(" ChannelType: "), 0x80);
PrintHex<uint8_t > (rfcommChannelType, 0x80);
Notify(PSTR(" PF_BIT: "), 0x80);
PrintHex<uint8_t > (rfcommPfBit, 0x80);
#endif
if (rfcommChannelType == RFCOMM_DISC) {
#ifdef DEBUG
Notify(PSTR("\r\nReceived Disconnect RFCOMM Command on channel: "), 0x80);
PrintHex<uint8_t > (rfcommChannel >> 3, 0x80);
#endif
connected = false;
sendRfcomm(rfcommChannel, rfcommDirection, rfcommCommandResponse, RFCOMM_UA, rfcommPfBit, rfcommbuf, 0x00); // UA Command
}
if (connected) {
/* Read the incoming message */
if (rfcommChannelType == RFCOMM_UIH && rfcommChannel == rfcommChannelConnection) {
uint8_t length = l2capinbuf[10] >> 1; // Get length
uint8_t offset = l2capinbuf[4] - length - 4; // See if there is credit
if (rfcommAvailable + length <= sizeof (rfcommDataBuffer)) { // Don't add data to buffer if it would be full
for (uint8_t i = 0; i < length; i++)
rfcommDataBuffer[rfcommAvailable + i] = l2capinbuf[11 + i + offset];
rfcommAvailable += length;
}
#ifdef EXTRADEBUG
Notify(PSTR("\r\nRFCOMM Data Available: "), 0x80);
Notify(rfcommAvailable, 0x80);
if (offset) {
Notify(PSTR(" - Credit: 0x"), 0x80);
PrintHex<uint8_t > (l2capinbuf[11], 0x80);
}
#endif
#ifdef PRINTREPORT // Uncomment "#define PRINTREPORT" to print the report send to the Arduino via Bluetooth
for (uint8_t i = 0; i < length; i++)
Notifyc(l2capinbuf[i + 11 + offset], 0x80);
#endif
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command
#ifdef DEBUG
Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command"), 0x80);
#endif
rfcommbuf[0] = BT_RFCOMM_RPN_RSP; // Command
rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1
rfcommbuf[3] = l2capinbuf[14]; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
rfcommbuf[4] = l2capinbuf[15]; // Priority
rfcommbuf[5] = l2capinbuf[16]; // Timer
rfcommbuf[6] = l2capinbuf[17]; // Max Fram Size LSB
rfcommbuf[7] = l2capinbuf[18]; // Max Fram Size MSB
rfcommbuf[8] = l2capinbuf[19]; // MaxRatransm.
rfcommbuf[9] = l2capinbuf[20]; // Number of Frames
sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A); // UIH Remote Port Negotiation Response
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command
#ifdef DEBUG
Notify(PSTR("\r\nSend UIH Modem Status Response"), 0x80);
#endif
rfcommbuf[0] = BT_RFCOMM_MSC_RSP; // UIH Modem Status Response
rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3)
rfcommbuf[3] = l2capinbuf[14];
sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04);
}
} else {
if (rfcommChannelType == RFCOMM_SABM) { // SABM Command - this is sent twice: once for channel 0 and then for the channel to establish
#ifdef DEBUG
Notify(PSTR("\r\nReceived SABM Command"), 0x80);
#endif
sendRfcomm(rfcommChannel, rfcommDirection, rfcommCommandResponse, RFCOMM_UA, rfcommPfBit, rfcommbuf, 0x00); // UA Command
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_PN_CMD) { // UIH Parameter Negotiation Command
#ifdef DEBUG
Notify(PSTR("\r\nReceived UIH Parameter Negotiation Command"), 0x80);
#endif
rfcommbuf[0] = BT_RFCOMM_PN_RSP; // UIH Parameter Negotiation Response
rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1
rfcommbuf[3] = 0xE0; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
rfcommbuf[4] = 0x00; // Priority
rfcommbuf[5] = 0x00; // Timer
rfcommbuf[6] = BULK_MAXPKTSIZE - 14; // Max Fram Size LSB - set to the size of received data (50)
rfcommbuf[7] = 0x00; // Max Fram Size MSB
rfcommbuf[8] = 0x00; // MaxRatransm.
rfcommbuf[9] = 0x00; // Number of Frames
sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A);
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command
#ifdef DEBUG
Notify(PSTR("\r\nSend UIH Modem Status Response"), 0x80);
#endif
rfcommbuf[0] = BT_RFCOMM_MSC_RSP; // UIH Modem Status Response
rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3)
rfcommbuf[3] = l2capinbuf[14];
sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04);
delay(1);
#ifdef DEBUG
Notify(PSTR("\r\nSend UIH Modem Status Command"), 0x80);
#endif
rfcommbuf[0] = BT_RFCOMM_MSC_CMD; // UIH Modem Status Command
rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3)
rfcommbuf[3] = 0x8D; // Can receive frames (YES), Ready to Communicate (YES), Ready to Receive (YES), Incomig Call (NO), Data is Value (YES)
sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04);
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_RSP) { // UIH Modem Status Response
if (!creditSent) {
#ifdef DEBUG
Notify(PSTR("\r\nSend UIH Command with credit"), 0x80);
#endif
sendRfcommCredit(rfcommChannelConnection, rfcommDirection, 0, RFCOMM_UIH, 0x10, sizeof (rfcommDataBuffer)); // Send credit
creditSent = true;
timer = millis();
waitForLastCommand = true;
}
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[10] == 0x01) { // UIH Command with credit
#ifdef DEBUG
Notify(PSTR("\r\nReceived UIH Command with credit"), 0x80);
#endif
} else if (rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command
#ifdef DEBUG
Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command"), 0x80);
#endif
rfcommbuf[0] = BT_RFCOMM_RPN_RSP; // Command
rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1
rfcommbuf[3] = l2capinbuf[14]; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
rfcommbuf[4] = l2capinbuf[15]; // Priority
rfcommbuf[5] = l2capinbuf[16]; // Timer
rfcommbuf[6] = l2capinbuf[17]; // Max Fram Size LSB
rfcommbuf[7] = l2capinbuf[18]; // Max Fram Size MSB
rfcommbuf[8] = l2capinbuf[19]; // MaxRatransm.
rfcommbuf[9] = l2capinbuf[20]; // Number of Frames
sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A); // UIH Remote Port Negotiation Response
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Connection is now established\r\n"), 0x80);
#endif
waitForLastCommand = false;
creditSent = false;
connected = true; // The RFCOMM channel is now established
}
#ifdef DEBUG
else if (rfcommChannelType != RFCOMM_DISC) {
Notify(PSTR("\r\nUnsupported RFCOMM Data - ChannelType: "), 0x80);
PrintHex<uint8_t > (rfcommChannelType, 0x80);
Notify(PSTR(" Command: "), 0x80);
PrintHex<uint8_t > (l2capinbuf[11], 0x80);
}
#endif
}
}
#ifdef EXTRADEBUG
else {
Notify(PSTR("\r\nUnsupported L2CAP Data - Channel ID: "), 0x80);
PrintHex<uint8_t > (l2capinbuf[7], 0x80);
Notify(PSTR(" "), 0x80);
PrintHex<uint8_t > (l2capinbuf[6], 0x80);
}
#endif
SDP_task();
RFCOMM_task();
}
}
void SPP::Run() {
if (waitForLastCommand && (millis() - timer) > 100) { // We will only wait 100ms and see if the UIH Remote Port Negotiation Command is send, as some deviced don't send it
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Connection is now established - Automatic\r\n"), 0x80);
#endif
creditSent = false;
waitForLastCommand = false;
connected = true; // The RFCOMM channel is now established
}
}
void SPP::SDP_task() {
switch (l2cap_sdp_state) {
case L2CAP_SDP_WAIT:
if (l2cap_connection_request_sdp_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_CONNECTION_SDP_REQUEST; // Clear flag
#ifdef DEBUG
Notify(PSTR("\r\nSDP Incoming Connection Request"), 0x80);
#endif
pBtd->l2cap_connection_response(hci_handle, identifier, sdp_dcid, sdp_scid, PENDING);
delay(1);
pBtd->l2cap_connection_response(hci_handle, identifier, sdp_dcid, sdp_scid, SUCCESSFUL);
identifier++;
delay(1);
pBtd->l2cap_config_request(hci_handle, identifier, sdp_scid);
l2cap_sdp_state = L2CAP_SDP_REQUEST;
}
break;
case L2CAP_SDP_REQUEST:
if (l2cap_config_request_sdp_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_CONFIG_SDP_REQUEST; // Clear flag
#ifdef DEBUG
Notify(PSTR("\r\nSDP Configuration Request"), 0x80);
#endif
pBtd->l2cap_config_response(hci_handle, identifier, sdp_scid);
l2cap_sdp_state = L2CAP_SDP_SUCCESS;
}
break;
case L2CAP_SDP_SUCCESS:
if (l2cap_config_success_sdp_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_CONFIG_SDP_SUCCESS; // Clear flag
#ifdef DEBUG
Notify(PSTR("\r\nSDP Successfully Configured"), 0x80);
#endif
firstMessage = true; // Reset bool
SDPConnected = true;
l2cap_sdp_state = L2CAP_SDP_DONE;
}
break;
case L2CAP_SDP_DONE:
if (l2cap_disconnect_request_sdp_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_DISCONNECT_SDP_REQUEST; // Clear flag
SDPConnected = false;
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected SDP Channel"), 0x80);
#endif
pBtd->l2cap_disconnection_response(hci_handle, identifier, sdp_dcid, sdp_scid);
l2cap_sdp_state = L2CAP_SDP_WAIT;
} else if (l2cap_connection_request_sdp_flag)
l2cap_rfcomm_state = L2CAP_SDP_WAIT;
break;
case L2CAP_DISCONNECT_RESPONSE: // This is for both disconnection response from the RFCOMM and SDP channel if they were connected
if (l2cap_disconnect_response_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected L2CAP Connection"), 0x80);
#endif
RFCOMMConnected = false;
SDPConnected = false;
pBtd->hci_disconnect(hci_handle);
hci_handle = -1; // Reset handle
l2cap_event_flag = 0; // Reset flags
l2cap_sdp_state = L2CAP_SDP_WAIT;
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
}
break;
}
}
void SPP::RFCOMM_task() {
switch (l2cap_rfcomm_state) {
case L2CAP_RFCOMM_WAIT:
if (l2cap_connection_request_rfcomm_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST; // Clear flag
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Incoming Connection Request"), 0x80);
#endif
pBtd->l2cap_connection_response(hci_handle, identifier, rfcomm_dcid, rfcomm_scid, PENDING);
delay(1);
pBtd->l2cap_connection_response(hci_handle, identifier, rfcomm_dcid, rfcomm_scid, SUCCESSFUL);
identifier++;
delay(1);
pBtd->l2cap_config_request(hci_handle, identifier, rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_REQUEST;
}
break;
case L2CAP_RFCOMM_REQUEST:
if (l2cap_config_request_rfcomm_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_CONFIG_RFCOMM_REQUEST; // Clear flag
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Configuration Request"), 0x80);
#endif
pBtd->l2cap_config_response(hci_handle, identifier, rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_SUCCESS;
}
break;
case L2CAP_RFCOMM_SUCCESS:
if (l2cap_config_success_rfcomm_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS; // Clear flag
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Successfully Configured"), 0x80);
#endif
rfcommAvailable = 0; // Reset number of bytes available
bytesRead = 0; // Reset number of bytes received
RFCOMMConnected = true;
l2cap_rfcomm_state = L2CAP_RFCOMM_DONE;
}
break;
case L2CAP_RFCOMM_DONE:
if (l2cap_disconnect_request_rfcomm_flag) {
l2cap_event_flag &= ~L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST; // Clear flag
RFCOMMConnected = false;
connected = false;
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected RFCOMM Channel"), 0x80);
#endif
pBtd->l2cap_disconnection_response(hci_handle, identifier, rfcomm_dcid, rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
} else if (l2cap_connection_request_rfcomm_flag)
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
break;
}
}
/************************************************************/
/* SDP Commands */
/************************************************************/
void SPP::SDP_Command(uint8_t* data, uint8_t nbytes) { // See page 223 in the Bluetooth specs
pBtd->L2CAP_Command(hci_handle, data, nbytes, sdp_scid[0], sdp_scid[1]);
}
void SPP::serviceNotSupported(uint8_t transactionIDHigh, uint8_t transactionIDLow) { // See page 235 in the Bluetooth specs
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length
l2capoutbuf[4] = 0x05; // Parameter Length
l2capoutbuf[5] = 0x00; // AttributeListsByteCount
l2capoutbuf[6] = 0x02; // AttributeListsByteCount
/* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x35;
l2capoutbuf[8] = 0x00;
l2capoutbuf[9] = 0x00;
SDP_Command(l2capoutbuf, 10);
}
void SPP::serialPortResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length
l2capoutbuf[4] = 0x2B; // Parameter Length
l2capoutbuf[5] = 0x00; // AttributeListsByteCount
l2capoutbuf[6] = 0x26; // AttributeListsByteCount
/* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x36;
l2capoutbuf[8] = 0x00;
l2capoutbuf[9] = 0x3C;
l2capoutbuf[10] = 0x36;
l2capoutbuf[11] = 0x00;
l2capoutbuf[12] = 0x39;
l2capoutbuf[13] = 0x09;
l2capoutbuf[14] = 0x00;
l2capoutbuf[15] = 0x00;
l2capoutbuf[16] = 0x0A;
l2capoutbuf[17] = 0x00;
l2capoutbuf[18] = 0x01;
l2capoutbuf[19] = 0x00;
l2capoutbuf[20] = 0x06;
l2capoutbuf[21] = 0x09;
l2capoutbuf[22] = 0x00;
l2capoutbuf[23] = 0x01;
l2capoutbuf[24] = 0x35;
l2capoutbuf[25] = 0x03;
l2capoutbuf[26] = 0x19;
l2capoutbuf[27] = 0x11;
l2capoutbuf[28] = 0x01;
l2capoutbuf[29] = 0x09;
l2capoutbuf[30] = 0x00;
l2capoutbuf[31] = 0x04;
l2capoutbuf[32] = 0x35;
l2capoutbuf[33] = 0x0C;
l2capoutbuf[34] = 0x35;
l2capoutbuf[35] = 0x03;
l2capoutbuf[36] = 0x19;
l2capoutbuf[37] = 0x01;
l2capoutbuf[38] = 0x00;
l2capoutbuf[39] = 0x35;
l2capoutbuf[40] = 0x05;
l2capoutbuf[41] = 0x19;
l2capoutbuf[42] = 0x00;
l2capoutbuf[43] = 0x03;
l2capoutbuf[44] = 0x08;
l2capoutbuf[45] = 0x02; // Two extra bytes
l2capoutbuf[46] = 0x00; // 25 (0x19) more bytes to come
l2capoutbuf[47] = 0x19;
SDP_Command(l2capoutbuf, 48);
}
void SPP::serialPortResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length
l2capoutbuf[4] = 0x1C; // Parameter Length
l2capoutbuf[5] = 0x00; // AttributeListsByteCount
l2capoutbuf[6] = 0x19; // AttributeListsByteCount
/* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x01;
l2capoutbuf[8] = 0x09;
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x06;
l2capoutbuf[11] = 0x35;
l2capoutbuf[12] = 0x09;
l2capoutbuf[13] = 0x09;
l2capoutbuf[14] = 0x65;
l2capoutbuf[15] = 0x6E;
l2capoutbuf[16] = 0x09;
l2capoutbuf[17] = 0x00;
l2capoutbuf[18] = 0x6A;
l2capoutbuf[19] = 0x09;
l2capoutbuf[20] = 0x01;
l2capoutbuf[21] = 0x00;
l2capoutbuf[22] = 0x09;
l2capoutbuf[23] = 0x01;
l2capoutbuf[24] = 0x00;
l2capoutbuf[25] = 0x25;
l2capoutbuf[26] = 0x05; // Name length
l2capoutbuf[27] = 'T';
l2capoutbuf[28] = 'K';
l2capoutbuf[29] = 'J';
l2capoutbuf[30] = 'S';
l2capoutbuf[31] = 'P';
l2capoutbuf[32] = 0x00; // No more data
SDP_Command(l2capoutbuf, 33);
}
void SPP::l2capResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
serialPortResponse1(transactionIDHigh, transactionIDLow); // These has to send all the supported functions, since it only supports virtual serialport it just sends the message again
}
void SPP::l2capResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
serialPortResponse2(transactionIDHigh, transactionIDLow); // Same data as serialPortResponse2
}
/************************************************************/
/* RFCOMM Commands */
/************************************************************/
void SPP::RFCOMM_Command(uint8_t* data, uint8_t nbytes) {
pBtd->L2CAP_Command(hci_handle, data, nbytes, rfcomm_scid[0], rfcomm_scid[1]);
}
void SPP::sendRfcomm(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t* data, uint8_t length) {
l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address
l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control
l2capoutbuf[2] = length << 1 | 0x01; // Length and format (always 0x01 bytes format)
uint8_t i = 0;
for (; i < length; i++)
l2capoutbuf[i + 3] = data[i];
l2capoutbuf[i + 3] = calcFcs(l2capoutbuf);
#ifdef EXTRADEBUG
Notify(PSTR(" - RFCOMM Data: "), 0x80);
for (i = 0; i < length + 4; i++) {
PrintHex<uint8_t > (l2capoutbuf[i], 0x80);
Notify(PSTR(" "), 0x80);
}
#endif
RFCOMM_Command(l2capoutbuf, length + 4);
}
void SPP::sendRfcommCredit(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t credit) {
l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address
l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control
l2capoutbuf[2] = 0x01; // Length = 0
l2capoutbuf[3] = credit; // Credit
l2capoutbuf[4] = calcFcs(l2capoutbuf);
#ifdef EXTRADEBUG
Notify(PSTR(" - RFCOMM Credit Data: "), 0x80);
for (uint8_t i = 0; i < 5; i++) {
PrintHex<uint8_t > (l2capoutbuf[i], 0x80);
Notify(PSTR(" "), 0x80);
}
#endif
RFCOMM_Command(l2capoutbuf, 5);
}
/* CRC on 2 bytes */
uint8_t SPP::__crc(uint8_t* data) {
return (pgm_read_byte(&rfcomm_crc_table[pgm_read_byte(&rfcomm_crc_table[0xff ^ data[0]]) ^ data[1]]));
}
/* Calculate FCS - we never actually check if the host sends correct FCS to the Arduino */
uint8_t SPP::calcFcs(uint8_t *data) {
if ((data[1] & 0xEF) == RFCOMM_UIH)
return (0xff - __crc(data)); // FCS on 2 bytes
else
return (0xff - pgm_read_byte(&rfcomm_crc_table[__crc(data) ^ data[2]])); // FCS on 3 bytes
}
/* Serial commands */
void SPP::print(const String &str) {
uint8_t length = str.length(); // Get the length of the string
uint8_t buf[length];
for(uint8_t i = 0; i < length; i++)
buf[i] = str[i];
print(buf,length);
}
void SPP::print(const char* str) {
print((uint8_t*) str, strlen(str));
}
void SPP::print(uint8_t* array, uint8_t stringLength) {
if (!connected)
return;
uint8_t length; // This is the length of the string we are sending
uint8_t offset = 0; // This is used to keep track of where we are in the string
l2capoutbuf[0] = rfcommChannelConnection | 0 | 0 | extendAddress; // RFCOMM Address
l2capoutbuf[1] = RFCOMM_UIH; // RFCOMM Control
while (stringLength) { // We will run this while loop until this variable is 0
if (stringLength > (sizeof (l2capoutbuf) - 4)) // Check if the string is larger that the outgoing buffer
length = sizeof (l2capoutbuf) - 4;
else
length = stringLength;
l2capoutbuf[2] = length << 1 | 1; // Length
uint8_t i = 0;
for (; i < length; i++)
l2capoutbuf[i + 3] = array[i + offset];
l2capoutbuf[i + 3] = calcFcs(l2capoutbuf); // Calculate checksum
RFCOMM_Command(l2capoutbuf, length + 4);
stringLength -= length;
offset += length; // Increment the offset
}
}
void SPP::println(const String &str) {
String output = str + "\r\n";
print(output);
}
void SPP::println(const char* str) {
char output[strlen(str) + 3];
strcpy(output, str);
strcat(output, "\r\n");
print(output);
}
void SPP::println(uint8_t data) {
uint8_t buf[3] = {data, '\r', '\n'};
print(buf, 3);
}
void SPP::println(uint8_t* array, uint8_t length) {
uint8_t buf[length + 2];
memcpy(buf, array, length);
buf[length] = '\r';
buf[length + 1] = '\n';
print(buf, length + 2);
}
void SPP::printFlashString(const __FlashStringHelper *ifsh, bool newline) {
const char PROGMEM *p = (const char PROGMEM *)ifsh;
uint8_t size = 0;
while (1) { // Calculate the size of the string
uint8_t c = pgm_read_byte(p + size);
if (c == 0)
break;
size++;
}
uint8_t buf[size + 2]; // Add two extra in case it needs to print a newline and carriage return
for (uint8_t i = 0; i < size; i++)
buf[i] = pgm_read_byte(p++);
if (newline) {
buf[size] = '\r';
buf[size + 1] = '\n';
print(buf, size + 2);
} else
print(buf, size);
}
void SPP::println(void) {
uint8_t buf[2] = {'\r', '\n'};
print(buf, 2);
}
/* These must be used to print numbers */
void SPP::printNumber(uint32_t n) {
char output[11];
intToString(n, output);
print(output);
}
void SPP::printNumberln(uint32_t n) {
char output[13];
intToString(n, output);
strcat(output, "\r\n");
print(output);
}
void SPP::printNumber(int32_t n) {
char output[12];
intToString(n, output);
print(output);
}
void SPP::printNumberln(int32_t n) {
char output[14];
intToString(n, output);
strcat(output, "\r\n");
print(output);
}
void SPP::intToString(int32_t input, char* output) {
if (input < 0) {
char buf[11];
intToString((uint32_t)(input*-1), buf);
strcpy(output, "-");
strcat(output, buf);
} else
intToString((uint32_t)input, output);
}
void SPP::intToString(uint32_t input, char* output) {
uint32_t temp = input;
uint8_t digits = 0;
while (temp) {
temp /= 10;
digits++;
}
if (digits == 0)
strcpy(output, "0");
else {
for (uint8_t i = 1; i <= digits; i++) {
output[digits - i] = input % 10 + '0'; // Get number and convert to ASCII Character
input /= 10;
}
output[digits] = '\0'; // Add null character
}
}
void SPP::printNumber(double n, uint8_t digits) {
char output[13 + digits];
doubleToString(n, output, digits);
print(output);
}
void SPP::printNumberln(double n, uint8_t digits) {
char output[15 + digits];
doubleToString(n, output, digits);
strcat(output, "\r\n");
print(output);
}
void SPP::doubleToString(double input, char* output, uint8_t digits) {
char buffer[13 + digits];
if (input < 0) {
strcpy(output, "-");
input = -input;
} else
strcpy(output, "");
// Round correctly
double rounding = 0.5;
for (uint8_t i = 0; i < digits; i++)
rounding /= 10.0;
input += rounding;
uint32_t intpart = (uint32_t)input;
intToString(intpart, buffer); // Convert to string
strcat(output, buffer);
strcat(output, ".");
double fractpart = (input - (double)intpart);
fractpart *= pow(10, digits);
for (uint8_t i = 1; i < digits; i++) { // Put zeros in front of number
if (fractpart < pow(10, digits - i)) {
strcat(output, "0");
}
}
intToString((uint32_t)fractpart, buffer); // Convert to string
strcat(output, buffer);
}
uint8_t SPP::read() {
if (rfcommAvailable == 0) // Don't read if there is nothing in the buffer
return 0;
uint8_t output = rfcommDataBuffer[0];
for (uint8_t i = 1; i < rfcommAvailable; i++)
rfcommDataBuffer[i - 1] = rfcommDataBuffer[i]; // Shift the buffer one left
rfcommAvailable--;
bytesRead++;
if (bytesRead > (sizeof (rfcommDataBuffer) - 5)) { // We will send the command just before it runs out of credit
bytesRead = 0;
sendRfcommCredit(rfcommChannelConnection, rfcommDirection, 0, RFCOMM_UIH, 0x10, sizeof (rfcommDataBuffer)); // Send more credit
#ifdef EXTRADEBUG
Notify(PSTR("\r\nSent "), 0x80);
Notify((uint8_t)sizeof (rfcommDataBuffer), 0x80);
Notify(PSTR(" more credit"), 0x80);
#endif
}
return output;
}