USB_Host_Shield_2.0/RFCOMM.cpp
Kristian Lauszus 8b7efc3ed6 Now sends credit, so the communication never terminates
The Arduino has to keep sending credit, so the other device knows that
it can keep sending bytes to the Arduino
2012-08-02 00:48:14 +02:00

1594 lines
63 KiB
C++

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#include "RFCOMM.h"
#define DEBUG // Uncomment to print data for debugging
//#define EXTRADEBUG // Uncomment to get even more debugging data
//#define PRINTREPORT // Uncomment to print the report sent to the Arduino
const uint8_t RFCOMM::BTD_EVENT_PIPE = 1;
const uint8_t RFCOMM::BTD_DATAIN_PIPE = 2;
const uint8_t RFCOMM::BTD_DATAOUT_PIPE = 3;
/*
* CRC (reversed crc) lookup table as calculated by the table generator in ETSI TS 101 369 V6.3.0.
*/
const uint8_t rfcomm_crc_table[256] PROGMEM = { /* reversed, 8-bit, poly=0x07 */
0x00, 0x91, 0xE3, 0x72, 0x07, 0x96, 0xE4, 0x75, 0x0E, 0x9F, 0xED, 0x7C, 0x09, 0x98, 0xEA, 0x7B,
0x1C, 0x8D, 0xFF, 0x6E, 0x1B, 0x8A, 0xF8, 0x69, 0x12, 0x83, 0xF1, 0x60, 0x15, 0x84, 0xF6, 0x67,
0x38, 0xA9, 0xDB, 0x4A, 0x3F, 0xAE, 0xDC, 0x4D, 0x36, 0xA7, 0xD5, 0x44, 0x31, 0xA0, 0xD2, 0x43,
0x24, 0xB5, 0xC7, 0x56, 0x23, 0xB2, 0xC0, 0x51, 0x2A, 0xBB, 0xC9, 0x58, 0x2D, 0xBC, 0xCE, 0x5F,
0x70, 0xE1, 0x93, 0x02, 0x77, 0xE6, 0x94, 0x05, 0x7E, 0xEF, 0x9D, 0x0C, 0x79, 0xE8, 0x9A, 0x0B,
0x6C, 0xFD, 0x8F, 0x1E, 0x6B, 0xFA, 0x88, 0x19, 0x62, 0xF3, 0x81, 0x10, 0x65, 0xF4, 0x86, 0x17,
0x48, 0xD9, 0xAB, 0x3A, 0x4F, 0xDE, 0xAC, 0x3D, 0x46, 0xD7, 0xA5, 0x34, 0x41, 0xD0, 0xA2, 0x33,
0x54, 0xC5, 0xB7, 0x26, 0x53, 0xC2, 0xB0, 0x21, 0x5A, 0xCB, 0xB9, 0x28, 0x5D, 0xCC, 0xBE, 0x2F,
0xE0, 0x71, 0x03, 0x92, 0xE7, 0x76, 0x04, 0x95, 0xEE, 0x7F, 0x0D, 0x9C, 0xE9, 0x78, 0x0A, 0x9B,
0xFC, 0x6D, 0x1F, 0x8E, 0xFB, 0x6A, 0x18, 0x89, 0xF2, 0x63, 0x11, 0x80, 0xF5, 0x64, 0x16, 0x87,
0xD8, 0x49, 0x3B, 0xAA, 0xDF, 0x4E, 0x3C, 0xAD, 0xD6, 0x47, 0x35, 0xA4, 0xD1, 0x40, 0x32, 0xA3,
0xC4, 0x55, 0x27, 0xB6, 0xC3, 0x52, 0x20, 0xB1, 0xCA, 0x5B, 0x29, 0xB8, 0xCD, 0x5C, 0x2E, 0xBF,
0x90, 0x01, 0x73, 0xE2, 0x97, 0x06, 0x74, 0xE5, 0x9E, 0x0F, 0x7D, 0xEC, 0x99, 0x08, 0x7A, 0xEB,
0x8C, 0x1D, 0x6F, 0xFE, 0x8B, 0x1A, 0x68, 0xF9, 0x82, 0x13, 0x61, 0xF0, 0x85, 0x14, 0x66, 0xF7,
0xA8, 0x39, 0x4B, 0xDA, 0xAF, 0x3E, 0x4C, 0xDD, 0xA6, 0x37, 0x45, 0xD4, 0xA1, 0x30, 0x42, 0xD3,
0xB4, 0x25, 0x57, 0xC6, 0xB3, 0x22, 0x50, 0xC1, 0xBA, 0x2B, 0x59, 0xC8, 0xBD, 0x2C, 0x5E, 0xCF
};
RFCOMM::RFCOMM(USB *p, const char* name, const char* pin):
pUsb(p), // pointer to USB class instance - mandatory
bAddress(0), // device address - mandatory
bNumEP(1), // if config descriptor needs to be parsed
qNextPollTime(0),
bPollEnable(false) // don't start polling before dongle is connected
{
for(uint8_t i=0; i<BTD_MAX_ENDPOINTS; i++)
{
epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0;
epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER;
}
if (pUsb) // register in USB subsystem
pUsb->RegisterDeviceClass(this); //set devConfig[] entry
btdName = name;
btdPin = pin;
}
uint8_t RFCOMM::Init(uint8_t parent, uint8_t port, bool lowspeed)
{
uint8_t buf[sizeof(USB_DEVICE_DESCRIPTOR)];
uint8_t rcode;
UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL;
uint8_t num_of_conf; // number of configurations
// get memory address of USB device address pool
AddressPool &addrPool = pUsb->GetAddressPool();
#ifdef EXTRADEBUG
Notify(PSTR("\r\nRFCOMM Init"));
#endif
// check if address has already been assigned to an instance
if (bAddress)
{
#ifdef DEBUG
Notify(PSTR("\r\nAddress in use"));
#endif
return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;
}
// Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0);
if (!p)
{
#ifdef DEBUG
Notify(PSTR("\r\nAddress not found"));
#endif
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
}
if (!p->epinfo)
{
#ifdef DEBUG
Notify(PSTR("\r\nepinfo is null"));
#endif
return USB_ERROR_EPINFO_IS_NULL;
}
// Save old pointer to EP_RECORD of address 0
oldep_ptr = p->epinfo;
// Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence
p->epinfo = epInfo;
p->lowspeed = lowspeed;
// Get device descriptor
rcode = pUsb->getDevDescr(0, 0, sizeof(USB_DEVICE_DESCRIPTOR), (uint8_t*)buf);// Get device descriptor - addr, ep, nbytes, data
// Restore p->epinfo
p->epinfo = oldep_ptr;
if(rcode)
goto FailGetDevDescr;
// Allocate new address according to device class
bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0;
// Assign new address to the device
rcode = pUsb->setAddr( 0, 0, bAddress );
if (rcode)
{
p->lowspeed = false;
addrPool.FreeAddress(bAddress);
bAddress = 0;
#ifdef DEBUG
Notify(PSTR("\r\nsetAddr: "));
#endif
PrintHex<uint8_t>(rcode);
return rcode;
}
#ifdef EXTRADEBUG
Notify(PSTR("\r\nAddr: "));
PrintHex<uint8_t>(bAddress);
#endif
p->lowspeed = false;
//get pointer to assigned address record
p = addrPool.GetUsbDevicePtr(bAddress);
if (!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed;
// Assign epInfo to epinfo pointer - only EP0 is known
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode)
goto FailSetDevTblEntry;
num_of_conf = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations;
// check if attached device is a Bluetooth dongle and fill endpoint data structure
// first interface in the configuration must have Bluetooth assigned Class/Subclass/Protocol
// and 3 endpoints - interrupt-IN, bulk-IN, bulk-OUT,
// not necessarily in this order
for (uint8_t i=0; i<num_of_conf; i++) {
ConfigDescParser<USB_CLASS_WIRELESS_CTRL, WI_SUBCLASS_RF, WI_PROTOCOL_BT, CP_MASK_COMPARE_ALL> confDescrParser(this);
rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
if(rcode)
goto FailGetConfDescr;
if(bNumEP > 3) //all endpoints extracted
break;
}
if (bNumEP < BTD_MAX_ENDPOINTS)
goto FailUnknownDevice;
// Assign epInfo to epinfo pointer - this time all 3 endpoins
rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo);
if(rcode)
goto FailSetDevTblEntry;
delay(200); // Give time for address change
// Set Configuration Value
rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bConfNum);
if(rcode)
goto FailSetConf;
/* Set device cid for the SDP and RFCOMM channelse */
sdp_dcid[0] = 0x50;//0x0050
sdp_dcid[1] = 0x00;
rfcomm_dcid[0] = 0x51;//0x0051
rfcomm_dcid[1] = 0x00;
hci_num_reset_loops = 100; // only loop 100 times before trying to send the hci reset command
hci_state = HCI_INIT_STATE;
hci_counter = 0;
l2cap_sdp_state = L2CAP_SDP_WAIT;
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
#ifdef DEBUG
Notify(PSTR("\r\nBluetooth Dongle Initialized"));
#endif
watingForConnection = false;
bPollEnable = true;
return 0; //successful configuration
/* diagnostic messages */
FailGetDevDescr:
#ifdef DEBUG
Notify(PSTR("\r\ngetDevDescr:"));
#endif
goto Fail;
FailSetDevTblEntry:
#ifdef DEBUG
Notify(PSTR("\r\nsetDevTblEn:"));
#endif
goto Fail;
FailGetConfDescr:
#ifdef DEBUG
Notify(PSTR("\r\ngetConf:"));
#endif
goto Fail;
FailSetConf:
#ifdef DEBUG
Notify(PSTR("\r\nsetConf:"));
#endif
goto Fail;
FailUnknownDevice:
#ifdef DEBUG
Notify(PSTR("\r\nUnknown Device Connected:"));
#endif
goto Fail;
Fail:
#ifdef DEBUG
Notify(PSTR("\r\nBTD Init Failed, error code: "));
Serial.print(rcode);
#endif
Release();
return rcode;
}
/* Extracts interrupt-IN, bulk-IN, bulk-OUT endpoint information from config descriptor */
void RFCOMM::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *pep) {
//ErrorMessage<uint8_t>(PSTR("Conf.Val"),conf);
//ErrorMessage<uint8_t>(PSTR("Iface Num"),iface);
//ErrorMessage<uint8_t>(PSTR("Alt.Set"),alt);
if(alt) // wrong interface - by BT spec, no alt setting
return;
bConfNum = conf;
uint8_t index;
if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) //Interrupt In endpoint found
index = BTD_EVENT_PIPE;
else {
if ((pep->bmAttributes & 0x02) == 2) //bulk endpoint found
index = ((pep->bEndpointAddress & 0x80) == 0x80) ? BTD_DATAIN_PIPE : BTD_DATAOUT_PIPE;
else
return;
}
//Fill the rest of endpoint data structure
epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F);
epInfo[index].maxPktSize = (uint8_t)pep->wMaxPacketSize;
#ifdef EXTRADEBUG
PrintEndpointDescriptor(pep);
#endif
if(pollInterval < pep->bInterval) // Set the polling interval as the largest polling interval obtained from endpoints
pollInterval = pep->bInterval;
bNumEP++;
return;
}
void RFCOMM::PrintEndpointDescriptor(const USB_ENDPOINT_DESCRIPTOR* ep_ptr) {
Notify(PSTR("\r\nEndpoint descriptor:"));
Notify(PSTR("\r\nLength:\t\t"));
PrintHex<uint8_t>(ep_ptr->bLength);
Notify(PSTR("\r\nType:\t\t"));
PrintHex<uint8_t>(ep_ptr->bDescriptorType);
Notify(PSTR("\r\nAddress:\t"));
PrintHex<uint8_t>(ep_ptr->bEndpointAddress);
Notify(PSTR("\r\nAttributes:\t"));
PrintHex<uint8_t>(ep_ptr->bmAttributes);
Notify(PSTR("\r\nMaxPktSize:\t"));
PrintHex<uint16_t>(ep_ptr->wMaxPacketSize);
Notify(PSTR("\r\nPoll Intrv:\t"));
PrintHex<uint8_t>(ep_ptr->bInterval);
}
/* Performs a cleanup after failed Init() attempt */
uint8_t RFCOMM::Release() {
connected = false;
pUsb->GetAddressPool().FreeAddress(bAddress);
bAddress = 0;
bPollEnable = false;
bNumEP = 1; // must have to be reset to 1
return 0;
}
uint8_t RFCOMM::Poll() {
if (!bPollEnable)
return 0;
if (qNextPollTime <= millis()) { // Don't poll if shorter than polling interval
qNextPollTime = millis() + pollInterval; // Set new poll time
HCI_event_task(); // poll the HCI event pipe
ACL_event_task(); // start polling the ACL input pipe too, though discard data until connected
}
return 0;
}
void RFCOMM::disconnect() { // Use this void to disconnect the RFCOMM Channel
connected = false;
// First the two L2CAP channels has to be disconencted and then the HCI connection
if(RFCOMMConnected)
l2cap_disconnection_request(0x0A, rfcomm_dcid, rfcomm_scid);
if(SDPConnected)
l2cap_disconnection_request(0x0B, sdp_dcid, sdp_scid);
l2cap_sdp_state = L2CAP_DISCONNECT_RESPONSE;
}
void RFCOMM::HCI_event_task() {
/* check the event pipe*/
uint16_t MAX_BUFFER_SIZE = BULK_MAXPKTSIZE; // Request more than 16 bytes anyway, the inTransfer routine will take care of this
uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_EVENT_PIPE ].epAddr, &MAX_BUFFER_SIZE, hcibuf); // input on endpoint 1
if(!rcode || rcode == hrNAK) // Check for errors
{
switch (hcibuf[0]) //switch on event type
{
case EV_COMMAND_COMPLETE:
hci_event_flag |= HCI_FLAG_CMD_COMPLETE; // set command complete flag
if (!hcibuf[5]) { // check if command succeeded
if((hcibuf[3] == 0x09) && (hcibuf[4] == 0x10)) { // parameters from read local bluetooth address
for (uint8_t i = 0; i < 6; i++)
my_bdaddr[i] = hcibuf[6 + i];
hci_event_flag |= HCI_FLAG_READ_BDADDR;
}
}
break;
case EV_COMMAND_STATUS:
if(hcibuf[2]) // show status on serial if not OK
{
#ifdef DEBUG
Notify(PSTR("\r\nHCI Command Failed: "));
PrintHex<uint8_t>(hcibuf[2]);
Notify(PSTR(" "));
PrintHex<uint8_t>(hcibuf[4]);
Notify(PSTR(" "));
PrintHex<uint8_t>(hcibuf[5]);
#endif
}
break;
case EV_CONNECT_COMPLETE:
if (!hcibuf[2]) { // check if connected OK
hci_handle = hcibuf[3] | hcibuf[4] << 8; //store the handle for the ACL connection
hci_event_flag |= HCI_FLAG_CONN_COMPLETE; // set connection complete flag
}
break;
case EV_DISCONNECT_COMPLETE:
if (!hcibuf[2]) { // check if disconnected OK
hci_event_flag |= HCI_FLAG_DISCONN_COMPLETE; //set disconnect commend complete flag
hci_event_flag &= ~HCI_FLAG_CONN_COMPLETE; // clear connection complete flag
}
break;
case EV_REMOTE_NAME_COMPLETE:
if (!hcibuf[2]) { // check if reading is OK
for (uint8_t i = 0; i < 30; i++)
remote_name[i] = hcibuf[9 + i]; //store first 30 bytes
hci_event_flag |= HCI_FLAG_REMOTE_NAME_COMPLETE;
}
break;
case EV_INCOMING_CONNECT:
disc_bdaddr[0] = hcibuf[2];
disc_bdaddr[1] = hcibuf[3];
disc_bdaddr[2] = hcibuf[4];
disc_bdaddr[3] = hcibuf[5];
disc_bdaddr[4] = hcibuf[6];
disc_bdaddr[5] = hcibuf[7];
hci_event_flag |= HCI_FLAG_INCOMING_REQUEST;
break;
case EV_PIN_CODE_REQUEST:
#ifdef DEBUG
Notify(PSTR("\r\nBluetooth pin is set too: "));
Serial.print(btdPin);
#endif
hci_pin_code_request_reply(btdPin);
break;
case EV_LINK_KEY_REQUEST:
#ifdef DEBUG
Notify(PSTR("\r\nReceived Key Request"));
#endif
hci_link_key_request_negative_reply();
break;
/* We will just ignore the following events */
case EV_NUM_COMPLETE_PKT:
case EV_ROLE_CHANGED:
case EV_PAGE_SCAN_REP_MODE:
case EV_LOOPBACK_COMMAND:
case EV_DATA_BUFFER_OVERFLOW:
case EV_CHANGE_CONNECTION_LINK:
case EV_AUTHENTICATION_COMPLETE:
case EV_MAX_SLOTS_CHANGE:
case EV_QOS_SETUP_COMPLETE:
case EV_LINK_KEY_NOTIFICATION:
case EV_ENCRYPTION_CHANGE:
case EV_READ_REMOTE_VERSION_INFORMATION_COMPLETE:
break;
default:
#ifdef EXTRADEBUG
if(hcibuf[0] != 0x00) {
Notify(PSTR("\r\nUnmanaged HCI Event: "));
PrintHex<uint8_t>(hcibuf[0]);
}
#endif
break;
} // switch
HCI_task();
}
else {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nHCI event error: "));
PrintHex<uint8_t>(rcode);
#endif
}
}
/* Poll Bluetooth and print result */
void RFCOMM::HCI_task() {
switch (hci_state){
case HCI_INIT_STATE:
hci_counter++;
if (hci_counter > hci_num_reset_loops) // wait until we have looped x times to clear any old events
{
hci_reset();
hci_state = HCI_RESET_STATE;
hci_counter = 0;
}
break;
case HCI_RESET_STATE:
hci_counter++;
if (hci_cmd_complete)
{
#ifdef DEBUG
Notify(PSTR("\r\nHCI Reset complete"));
#endif
hci_state = HCI_BDADDR_STATE;
hci_read_bdaddr();
}
else if (hci_counter > hci_num_reset_loops)
{
hci_num_reset_loops *= 10;
if(hci_num_reset_loops > 2000)
hci_num_reset_loops = 2000;
#ifdef DEBUG
Notify(PSTR("\r\nNo response to HCI Reset"));
#endif
hci_state = HCI_INIT_STATE;
hci_counter = 0;
}
break;
case HCI_BDADDR_STATE:
if (hci_read_bdaddr_complete)
{
#ifdef DEBUG
Notify(PSTR("\r\nLocal Bluetooth Address: "));
for(int8_t i = 5; i > 0;i--)
{
PrintHex<uint8_t>(my_bdaddr[i]);
Serial.print(":");
}
PrintHex<uint8_t>(my_bdaddr[0]);
#endif
hci_set_local_name(btdName);
hci_state = HCI_SET_NAME_STATE;
}
break;
case HCI_SET_NAME_STATE:
if (hci_cmd_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nThe name is set to: "));
Serial.print(btdName);
#endif
hci_state = HCI_SCANNING_STATE;
}
break;
case HCI_SCANNING_STATE:
#ifdef DEBUG
Notify(PSTR("\r\nWait For Incoming Connection Request"));
#endif
hci_write_scan_enable();
watingForConnection = true;
hci_state = HCI_CONNECT_IN_STATE;
break;
case HCI_CONNECT_IN_STATE:
if(hci_incoming_connect_request) {
watingForConnection = false;
#ifdef DEBUG
Notify(PSTR("\r\nIncoming Request"));
#endif
hci_remote_name();
hci_state = HCI_REMOTE_NAME_STATE;
}
break;
case HCI_REMOTE_NAME_STATE:
if(hci_remote_name_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nRemote Name: "));
for (uint8_t i = 0; i < 30; i++)
{
if(remote_name[i] == NULL)
break;
Serial.write(remote_name[i]);
}
#endif
hci_accept_connection();
hci_state = HCI_CONNECTED_STATE;
}
break;
case HCI_CONNECTED_STATE:
if (hci_connect_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nConnected to Device: "));
for(int8_t i = 5; i>0;i--)
{
PrintHex<uint8_t>(disc_bdaddr[i]);
Serial.print(":");
}
PrintHex<uint8_t>(disc_bdaddr[0]);
#endif
hci_write_scan_disable(); // Only allow one connection
hci_state = HCI_DISABLE_SCAN;
}
break;
case HCI_DISABLE_SCAN:
if (hci_cmd_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nScan Disabled"));
#endif
l2cap_event_flag = 0;
hci_state = HCI_DONE_STATE;
}
break;
case HCI_DONE_STATE:
if (hci_disconnect_complete)
hci_state = HCI_DISCONNECT_STATE;
break;
case HCI_DISCONNECT_STATE:
if (hci_disconnect_complete) {
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected from Device: "));
for(int8_t i = 5; i>0;i--)
{
PrintHex<uint8_t>(disc_bdaddr[i]);
Serial.print(":");
}
PrintHex<uint8_t>(disc_bdaddr[0]);
#endif
l2cap_event_flag = 0; // Clear all flags
hci_event_flag = 0; // Clear all flags
//Reset all buffers
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
hcibuf[i] = 0;
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
l2capinbuf[i] = 0;
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
l2capoutbuf[i] = 0;
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
rfcommbuf[i] = 0;
l2cap_sdp_state = L2CAP_SDP_WAIT;
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
hci_state = HCI_SCANNING_STATE;
}
break;
default:
break;
}
}
void RFCOMM::ACL_event_task()
{
uint16_t MAX_BUFFER_SIZE = BULK_MAXPKTSIZE;
uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_DATAIN_PIPE ].epAddr, &MAX_BUFFER_SIZE, l2capinbuf); // input on endpoint 2
if(!rcode) { // Check for errors
if (((l2capinbuf[0] | (l2capinbuf[1] << 8)) == (hci_handle | 0x2000))) { //acl_handle_ok
if ((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001) { //l2cap_control - Channel ID for ACL-U
/*
if (l2capinbuf[8] != 0x00)
{
Serial.print("\r\nL2CAP Signaling Command - 0x");
PrintHex<uint8_t>(l2capoutbuf[8]);
}
*/
if (l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) {
#ifdef DEBUG
Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "));
PrintHex<uint8_t>(l2capinbuf[13]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[12]);
Notify(PSTR(" Data: "));
PrintHex<uint8_t>(l2capinbuf[17]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[16]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[15]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[14]);
#endif
}
else if (l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nL2CAP Connection Request - PSM: "));
PrintHex<uint8_t>(l2capinbuf[13]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[12]);
Notify(PSTR(" "));
Notify(PSTR(" SCID: "));
PrintHex<uint8_t>(l2capinbuf[15]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[14]);
Notify(PSTR(" Identifier: "));
PrintHex<uint8_t>(l2capinbuf[9]);
#endif
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM) {
identifier = l2capinbuf[9];
sdp_scid[0] = l2capinbuf[14];
sdp_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_SDP_REQUEST;
}
if ((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM) {
identifier = l2capinbuf[9];
rfcomm_scid[0] = l2capinbuf[14];
rfcomm_scid[1] = l2capinbuf[15];
l2cap_event_flag |= L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST;
}
}
else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { //Success
//Serial.print("\r\nSDP Configuration Complete");
l2cap_event_flag |= L2CAP_FLAG_CONFIG_SDP_SUCCESS;
}
}
else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
if ((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { //Success
//Serial.print("\r\nRFCOMM Configuration Complete");
l2cap_event_flag |= L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS;
}
}
}
else if (l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
//Serial.print("\r\nSDP Configuration Request");
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_CONFIG_SDP_REQUEST;
}
else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
//Serial.print("\r\nRFCOMM Configuration Request");
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_CONFIG_RFCOMM_REQUEST;
}
}
else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) {
if (l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
//Notify(PSTR("\r\nDisconnect Request: SDP Channel"));
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_SDP_REQUEST;
}
else if (l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
//Notify(PSTR("\r\nDisconnect Request: RFCOMM Channel"));
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST;
}
}
else if (l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) {
if (l2capinbuf[12] == sdp_scid[0] && l2capinbuf[13] == sdp_scid[1]) {
//Serial.print("\r\nDisconnect Response: SDP Channel");
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RESPONSE;
}
else if (l2capinbuf[12] == rfcomm_scid[0] && l2capinbuf[13] == rfcomm_scid[1]) {
//Serial.print("\r\nDisconnect Response: RFCOMM Channel");
identifier = l2capinbuf[9];
l2cap_event_flag |= L2CAP_FLAG_DISCONNECT_RESPONSE;
}
}
else if (l2capinbuf[8] == L2CAP_CMD_INFORMATION_REQUEST) {
#ifdef DEBUG
Notify(PSTR("\r\nInformation request"));
#endif
identifier = l2capinbuf[9];
l2cap_information_response(identifier,l2capinbuf[12],l2capinbuf[13]);
}
else {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nL2CAP Unknown Command: "));
#endif
PrintHex<uint8_t>(l2capinbuf[8]);
}
}
else if (l2capinbuf[6] == sdp_dcid[0] && l2capinbuf[7] == sdp_dcid[1]) { // SDP
if(l2capinbuf[8] == SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST_PDU) {
/*
Serial.print("\r\nUUID: 0x");
Serial.print(l2capinbuf[16],HEX);
Serial.print(" ");
Serial.print(l2capinbuf[17],HEX);
*/
if ((l2capinbuf[16] << 8 | l2capinbuf[17]) == SERIALPORT_UUID) {
if(firstMessage) {
serialPortResponse1(l2capinbuf[9],l2capinbuf[10]);
firstMessage = false;
} else {
serialPortResponse2(l2capinbuf[9],l2capinbuf[10]); // Serialport continuation state
firstMessage = true;
}
} else if ((l2capinbuf[16] << 8 | l2capinbuf[17]) == L2CAP_UUID) {
if(firstMessage) {
l2capResponse1(l2capinbuf[9],l2capinbuf[10]);
firstMessage = false;
} else {
l2capResponse2(l2capinbuf[9],l2capinbuf[10]); // L2CAP continuation state
firstMessage = true;
}
} else
serviceNotSupported(l2capinbuf[9],l2capinbuf[10]); // The service is not supported
}
}
else if (l2capinbuf[6] == rfcomm_dcid[0] && l2capinbuf[7] == rfcomm_dcid[1]) { // RFCOMM
rfcommChannel = l2capinbuf[8] & 0xF8;
rfcommDirection = l2capinbuf[8] & 0x04;
rfcommCommandResponse = l2capinbuf[8] & 0x02;
rfcommChannelType = l2capinbuf[9] & 0xEF;
rfcommPfBit = l2capinbuf[9] & 0x10;
if(rfcommChannel>>3 != 0x00)
rfcommChannelPermanent = rfcommChannel;
#ifdef EXTRADEBUG
Notify(PSTR("\r\nRFCOMM Channel: "));
Serial.print(rfcommChannel>>3,HEX);
Notify(PSTR(" Direction: "));
Serial.print(rfcommDirection>>2,HEX);
Notify(PSTR(" CommandResponse: "));
Serial.print(rfcommCommandResponse>>1,HEX);
Notify(PSTR(" ChannelType: "));
Serial.print(rfcommChannelType,HEX);
Notify(PSTR(" PF_BIT: "));
Serial.print(rfcommPfBit,HEX);
#endif
if (rfcommChannelType == RFCOMM_DISC) {
#ifdef DEBUG
Notify(PSTR("\r\nReceived Disconnect RFCOMM Command on channel: "));
Serial.print(rfcommChannel>>3,HEX);
#endif
connected = false;
sendRfcomm(rfcommChannel,rfcommDirection,rfcommCommandResponse,RFCOMM_UA,rfcommPfBit,rfcommbuf,0x00); // UA Command
}
if(connected) {
readReport();
#ifdef PRINTREPORT
printReport(); //Uncomment "#define PRINTREPORT" to print the report send to the Arduino via Bluetooth
#endif
} else {
if(rfcommChannelType == RFCOMM_SABM) { // SABM Command - this is sent twice: once for channel 0 and then for the channel to establish
#ifdef DEBUG
Notify(PSTR("\r\nReceived SABM Command"));
#endif
sendRfcomm(rfcommChannel,rfcommDirection,rfcommCommandResponse,RFCOMM_UA,rfcommPfBit,rfcommbuf,0x00); // UA Command
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_PN_CMD) { // UIH Parameter Negotiation Command
#ifdef DEBUG
Notify(PSTR("\r\nReceived UIH Parameter Negotiation Command"));
#endif
rfcommbuf[0] = BT_RFCOMM_PN_RSP; // UIH Parameter Negotiation Response
rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1
rfcommbuf[3] = 0xE0; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
rfcommbuf[4] = 0x00; // Priority
rfcommbuf[5] = 0x00; // Timer
rfcommbuf[6] = 0x40; // Max Fram Size LSB - we will just set this to 64
rfcommbuf[7] = 0x00; // Max Fram Size MSB
rfcommbuf[8] = 0x00; // MaxRatransm.
rfcommbuf[9] = 0x00; // Number of Frames
sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x0A);
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command
#ifdef DEBUG
Notify(PSTR("\r\nSend UIH Modem Status Response"));
#endif
rfcommbuf[0] = BT_RFCOMM_MSC_RSP; // UIH Modem Status Response
rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3)
rfcommbuf[3] = l2capinbuf[14];
sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x04);
delay(1);
#ifdef DEBUG
Notify(PSTR("\r\nSend UIH Modem Status Command"));
#endif
rfcommbuf[0] = BT_RFCOMM_MSC_CMD; // UIH Modem Status Command
rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3)
rfcommbuf[3] = 0x8D; // Can receive frames (YES), Ready to Communicate (YES), Ready to Receive (YES), Incomig Call (NO), Data is Value (YES)
sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x04);
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_RSP) { // UIH Modem Status Response
if(!creditSent) {
#ifdef DEBUG
Notify(PSTR("\r\nSend UIH Command with credit"));
#endif
sendRfcommCredit(rfcommChannelPermanent,rfcommDirection,0,RFCOMM_UIH,0x10,0xFF); // 255 credit
creditSent = true;
timer = millis();
waitForLastCommand = true;
}
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[10] == 0x01) { // UIH Command with credit
#ifdef DEBUG
Notify(PSTR("\r\nReceived UIH Command with credit"));
#endif
} else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command
#ifdef DEBUG
Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command"));
#endif
rfcommbuf[0] = BT_RFCOMM_RPN_RSP; // Command
rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1
rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1
rfcommbuf[3] = l2capinbuf[14]; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
rfcommbuf[4] = l2capinbuf[15]; // Priority
rfcommbuf[5] = l2capinbuf[16]; // Timer
rfcommbuf[6] = l2capinbuf[17]; // Max Fram Size LSB
rfcommbuf[7] = l2capinbuf[18]; // Max Fram Size MSB
rfcommbuf[8] = l2capinbuf[19]; // MaxRatransm.
rfcommbuf[9] = l2capinbuf[20]; // Number of Frames
sendRfcomm(rfcommChannel,rfcommDirection,0,RFCOMM_UIH,rfcommPfBit,rfcommbuf,0x0A); // UIH Remote Port Negotiation Response
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Connection is now established\r\n"));
#endif
waitForLastCommand = false;
creditSent = false;
connected = true; // The RFCOMM channel is now established
} else if(rfcommChannelType != RFCOMM_DISC) {
#ifdef DEBUG
Notify(PSTR("\r\nUnsupported RFCOMM Data - ChannelType: "));
PrintHex<uint8_t>(rfcommChannelType);
Notify(PSTR(" Command: "));
PrintHex<uint8_t>(l2capinbuf[11]);
#endif
}
}
} else {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nUnsupported L2CAP Data - Channel ID: "));
PrintHex<uint8_t>(l2capinbuf[7]);
Notify(PSTR(" "));
PrintHex<uint8_t>(l2capinbuf[6]);
#endif
}
SDP_task();
RFCOMM_task();
}
}
else if (rcode != hrNAK) {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nACL data in error: "));
PrintHex<uint8_t>(rcode);
#endif
}
if((millis() - timer) > 100 && waitForLastCommand) { // We will only wait 100ms and see if the UIH Remote Port Negotiation Command is send, as some deviced don't send it
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Connection is now established - Automatic\r\n"));
#endif
creditSent = false;
waitForLastCommand = false;
connected = true; // The RFCOMM channel is now established
}
}
void RFCOMM::SDP_task() {
switch (l2cap_sdp_state)
{
case L2CAP_SDP_WAIT:
if (l2cap_connection_request_sdp_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nSDP Incoming Connection Request"));
#endif
l2cap_connection_response(identifier, sdp_dcid, sdp_scid, PENDING);
delay(1);
l2cap_connection_response(identifier, sdp_dcid, sdp_scid, SUCCESSFUL);
identifier++;
delay(1);
l2cap_config_request(identifier, sdp_scid);
l2cap_sdp_state = L2CAP_SDP_REQUEST;
}
break;
case L2CAP_SDP_REQUEST:
if (l2cap_config_request_sdp_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nSDP Configuration Request"));
#endif
l2cap_config_response(identifier, sdp_scid);
l2cap_sdp_state = L2CAP_SDP_SUCCESS;
}
break;
case L2CAP_SDP_SUCCESS:
if (l2cap_config_success_sdp_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nSDP Successfully Configured"));
#endif
firstMessage = true; // Reset bool
SDPConnected = true;
l2cap_sdp_state = L2CAP_SDP_DONE;
}
break;
case L2CAP_SDP_DONE:
if(l2cap_disconnect_request_sdp_flag) {
SDPConnected = false;
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected SDP Channel"));
#endif
l2cap_disconnection_response(identifier,sdp_dcid,sdp_scid);
l2cap_sdp_state = L2CAP_SDP_WAIT;
}
break;
case L2CAP_DISCONNECT_RESPONSE: // This is for both disconnection response from the RFCOMM and SDP channel if they were connected
if (l2cap_disconnect_response_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected L2CAP Connection"));
#endif
RFCOMMConnected = false;
SDPConnected = false;
hci_disconnect();
l2cap_sdp_state = L2CAP_SDP_WAIT;
l2cap_sdp_state = L2CAP_RFCOMM_WAIT;
hci_state = HCI_DISCONNECT_STATE;
}
break;
}
}
void RFCOMM::RFCOMM_task()
{
switch (l2cap_rfcomm_state)
{
case L2CAP_RFCOMM_WAIT:
if(l2cap_connection_request_rfcomm_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Incoming Connection Request"));
#endif
l2cap_connection_response(identifier, rfcomm_dcid, rfcomm_scid, PENDING);
delay(1);
l2cap_connection_response(identifier, rfcomm_dcid, rfcomm_scid, SUCCESSFUL);
identifier++;
delay(1);
l2cap_config_request(identifier, rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_REQUEST;
}
break;
case L2CAP_RFCOMM_REQUEST:
if (l2cap_config_request_rfcomm_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Configuration Request"));
#endif
l2cap_config_response(identifier, rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_SUCCESS;
}
break;
case L2CAP_RFCOMM_SUCCESS:
if (l2cap_config_success_rfcomm_flag) {
#ifdef DEBUG
Notify(PSTR("\r\nRFCOMM Successfully Configured"));
#endif
rfcommAvailable = 0; // Reset number of bytes available
bytesReceived = 0; // Reset number of bytes received
RFCOMMConnected = true;
l2cap_rfcomm_state = L2CAP_RFCOMM_DONE;
}
break;
case L2CAP_RFCOMM_DONE:
if(l2cap_disconnect_request_rfcomm_flag) {
RFCOMMConnected = false;
connected = false;
#ifdef DEBUG
Notify(PSTR("\r\nDisconnected RFCOMM Channel"));
#endif
l2cap_disconnection_response(identifier,rfcomm_dcid,rfcomm_scid);
l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
}
break;
}
}
/************************************************************/
/* RFCOMM Report */
/************************************************************/
void RFCOMM::readReport() {
if(rfcommChannelType != RFCOMM_UIH || rfcommChannel != rfcommChannelPermanent)
return;
uint8_t length = l2capinbuf[10] >> 1; // Get length
if(rfcommAvailable + length > 256)
return; // Return if the buffer would be full
uint8_t offset = l2capinbuf[4]-length-4; // See if there is credit
for(uint8_t i = 0; i < length; i++)
rfcommDataBuffer[rfcommAvailable+i] = l2capinbuf[11+i+offset];
rfcommAvailable += length;
bytesReceived += length;
if(bytesReceived > 200) {
bytesReceived = 0;
sendRfcommCredit(rfcommChannelPermanent,rfcommDirection,0,RFCOMM_UIH,0x10,0xFF); // Send 255 more credit
#ifdef EXTRADEBUG
Notify(PSTR("\r\nSent more credit"));
#endif
}
#ifdef EXTRADEBUG
Notify(PSTR("\r\nRFCOMM Data Available: "));
Serial.print(rfcommAvailable);
if (offset) {
Notify(PSTR(" - Credit: 0x"));
Serial.print(l2capinbuf[11],HEX);
}
#endif
}
void RFCOMM::printReport() { //Uncomment "#define PRINTREPORT" to print the report send to the Arduino
if(rfcommChannelType != RFCOMM_UIH || rfcommChannel != rfcommChannelPermanent)
return;
uint8_t length = l2capinbuf[10] >> 1; // Get length
uint8_t offset = l2capinbuf[4]-length-4; // See if there is credit
for(uint8_t i = 0; i < length; i++)
Serial.write(l2capinbuf[i+11+offset]);
}
/************************************************************/
/* HCI Commands */
/************************************************************/
void RFCOMM::HCI_Command(uint8_t* data, uint16_t nbytes) {
hci_event_flag &= ~HCI_FLAG_CMD_COMPLETE;
pUsb->ctrlReq(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bmREQ_HCI_OUT, 0x00, 0x00, 0x00 ,0x00, nbytes, nbytes, data, NULL);
}
void RFCOMM::hci_reset() {
hci_event_flag = 0; // clear all the flags
hcibuf[0] = 0x03; // HCI OCF = 3
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x00;
HCI_Command(hcibuf, 3);
}
void RFCOMM::hci_write_scan_enable() {
hci_event_flag &= ~HCI_FLAG_INCOMING_REQUEST;
hcibuf[0] = 0x1A; // HCI OCF = 1A
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x01; // parameter length = 1
hcibuf[3] = 0x03; // Inquiry Scan enabled. Page Scan enabled.
HCI_Command(hcibuf, 4);
}
void RFCOMM::hci_write_scan_disable() {
hcibuf[0] = 0x1A; // HCI OCF = 1A
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x01; // parameter length = 1
hcibuf[3] = 0x00; // Inquiry Scan disabled. Page Scan disabled.
HCI_Command(hcibuf, 4);
}
void RFCOMM::hci_read_bdaddr() {
hcibuf[0] = 0x09; // HCI OCF = 9
hcibuf[1] = 0x04 << 2; // HCI OGF = 4
hcibuf[2] = 0x00;
HCI_Command(hcibuf, 3);
}
void RFCOMM::hci_accept_connection() {
hcibuf[0] = 0x09; // HCI OCF = 9
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x07; // parameter length 7
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = 0x00; //switch role to master
HCI_Command(hcibuf, 10);
}
void RFCOMM::hci_remote_name() {
hci_event_flag &= ~HCI_FLAG_REMOTE_NAME_COMPLETE;
hcibuf[0] = 0x19; // HCI OCF = 19
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x0A; // parameter length = 10
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = 0x01; //Page Scan Repetition Mode
hcibuf[10] = 0x00; //Reserved
hcibuf[11] = 0x00; //Clock offset - low byte
hcibuf[12] = 0x00; //Clock offset - high byte
HCI_Command(hcibuf, 13);
}
void RFCOMM::hci_set_local_name(const char* name) {
hcibuf[0] = 0x13; // HCI OCF = 13
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = strlen(name)+1; // parameter length = the length of the string
uint8_t i;
for(i = 0; i < strlen(name); i++)
hcibuf[i+3] = name[i];
hcibuf[i+3] = 0x00; // End of string
HCI_Command(hcibuf, 4+strlen(name));
}
void RFCOMM::hci_pin_code_request_reply(const char* key) {
hcibuf[0] = 0x0D; // HCI OCF = 0D
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x17; // parameter length 23
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = strlen(key); // Length of key
uint8_t i;
for(i = 0; i < strlen(key); i++) // The maximum size of the key is 16
hcibuf[i+10] = key[i];
for(;i < 16; i++)
hcibuf[i+10] = 0x00; // The rest should be 0
HCI_Command(hcibuf, 26);
}
void RFCOMM::hci_link_key_request_negative_reply() {
hcibuf[0] = 0x0C; // HCI OCF = 0C
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x06; // parameter length 7
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
HCI_Command(hcibuf, 9);
}
void RFCOMM::hci_disconnect() {
hci_event_flag &= ~HCI_FLAG_DISCONN_COMPLETE;
hcibuf[0] = 0x06; // HCI OCF = 6
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x03; // parameter length = 3
hcibuf[3] = (uint8_t)(hci_handle & 0xFF);//connection handle - low byte
hcibuf[4] = (uint8_t)((hci_handle >> 8) & 0x0F);//connection handle - high byte
hcibuf[5] = 0x13; // reason
HCI_Command(hcibuf, 6);
}
/*******************************************************************
* *
* HCI ACL Data Packet *
* *
* buf[0] buf[1] buf[2] buf[3]
* 0 4 8 11 12 16 24 31 MSB
* .-+-+-+-+-+-+-+-|-+-+-+-|-+-|-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
* | HCI Handle |PB |BC | Data Total Length | HCI ACL Data Packet
* .-+-+-+-+-+-+-+-|-+-+-+-|-+-|-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
*
* buf[4] buf[5] buf[6] buf[7]
* 0 8 16 31 MSB
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
* | Length | Channel ID | Basic L2CAP header
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
*
* buf[8] buf[9] buf[10] buf[11]
* 0 8 16 31 MSB
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
* | Code | Identifier | Length | Control frame (C-frame)
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-. (signaling packet format)
*/
/************************************************************/
/* L2CAP Commands */
/************************************************************/
void RFCOMM::L2CAP_Command(uint8_t* data, uint8_t nbytes, uint8_t channelLow, uint8_t channelHigh) {
uint8_t buf[256];
buf[0] = (uint8_t)(hci_handle & 0xff); // HCI handle with PB,BC flag
buf[1] = (uint8_t)(((hci_handle >> 8) & 0x0f) | 0x20);
buf[2] = (uint8_t)((4 + nbytes) & 0xff); // HCI ACL total data length
buf[3] = (uint8_t)((4 + nbytes) >> 8);
buf[4] = (uint8_t)(nbytes & 0xff); // L2CAP header: Length
buf[5] = (uint8_t)(nbytes >> 8);
buf[6] = channelLow;
buf[7] = channelHigh;
for (uint16_t i = 0; i < nbytes; i++)//L2CAP C-frame
buf[8 + i] = data[i];
uint8_t rcode = pUsb->outTransfer(bAddress, epInfo[ BTD_DATAOUT_PIPE ].epAddr, (8 + nbytes), buf);
if(rcode) {
#ifdef DEBUG
Notify(PSTR("\r\nError sending L2CAP message: 0x"));
PrintHex<uint8_t>(rcode);
Notify(PSTR(" - Channel ID: "));
Serial.print(channelHigh);
Notify(PSTR(" "));
Serial.print(channelHigh);
#endif
}
}
void RFCOMM::l2cap_connection_response(uint8_t rxid, uint8_t* dcid, uint8_t* scid, uint8_t result) {
l2capoutbuf[0] = L2CAP_CMD_CONNECTION_RESPONSE;// Code
l2capoutbuf[1] = rxid;// Identifier
l2capoutbuf[2] = 0x08;// Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0];// Destination CID
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = scid[0];// Source CID
l2capoutbuf[7] = scid[1];
l2capoutbuf[8] = result;// Result: Pending or Success
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x00;// No further information
l2capoutbuf[11] = 0x00;
L2CAP_Command(l2capoutbuf, 12);
}
void RFCOMM::l2cap_config_request(uint8_t rxid, uint8_t* dcid) {
l2capoutbuf[0] = L2CAP_CMD_CONFIG_REQUEST;// Code
l2capoutbuf[1] = rxid;// Identifier
l2capoutbuf[2] = 0x08;// Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0];// Destination CID
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = 0x00;// Flags
l2capoutbuf[7] = 0x00;
l2capoutbuf[8] = 0x01;// Config Opt: type = MTU (Maximum Transmission Unit) - Hint
l2capoutbuf[9] = 0x02;// Config Opt: length
l2capoutbuf[10] = 0xFF;// MTU
l2capoutbuf[11] = 0xFF;
L2CAP_Command(l2capoutbuf, 12);
}
void RFCOMM::l2cap_config_response(uint8_t rxid, uint8_t* scid) {
l2capoutbuf[0] = L2CAP_CMD_CONFIG_RESPONSE;// Code
l2capoutbuf[1] = rxid;// Identifier
l2capoutbuf[2] = 0x0A;// Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = scid[0];// Source CID
l2capoutbuf[5] = scid[1];
l2capoutbuf[6] = 0x00;// Flag
l2capoutbuf[7] = 0x00;
l2capoutbuf[8] = 0x00;// Result
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x01;// Config
l2capoutbuf[11] = 0x02;
l2capoutbuf[12] = 0xA0;
l2capoutbuf[13] = 0x02;
L2CAP_Command(l2capoutbuf, 14);
}
void RFCOMM::l2cap_disconnection_request(uint8_t rxid, uint8_t* dcid, uint8_t* scid) {
l2cap_event_flag = 0; // Reset flags
l2capoutbuf[0] = L2CAP_CMD_DISCONNECT_REQUEST;// Code
l2capoutbuf[1] = rxid;// Identifier
l2capoutbuf[2] = 0x04;// Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = scid[0];// Really Destination CID
l2capoutbuf[5] = scid[1];
l2capoutbuf[6] = dcid[0];// Really Source CID
l2capoutbuf[7] = dcid[1];
L2CAP_Command(l2capoutbuf, 8);
}
void RFCOMM::l2cap_disconnection_response(uint8_t rxid, uint8_t* dcid, uint8_t* scid) {
l2cap_event_flag = 0; // Reset flags
l2capoutbuf[0] = L2CAP_CMD_DISCONNECT_RESPONSE;// Code
l2capoutbuf[1] = rxid;// Identifier
l2capoutbuf[2] = 0x04;// Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0];
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = scid[0];
l2capoutbuf[7] = scid[1];
L2CAP_Command(l2capoutbuf, 8);
}
void RFCOMM::l2cap_information_response(uint8_t rxid, uint8_t infoTypeLow, uint8_t infoTypeHigh) {
l2capoutbuf[0] = L2CAP_CMD_INFORMATION_RESPONSE;// Code
l2capoutbuf[1] = rxid;// Identifier
l2capoutbuf[2] = 0x08;// Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = infoTypeLow;
l2capoutbuf[5] = infoTypeHigh;
l2capoutbuf[6] = 0x00; // Result = success
l2capoutbuf[7] = 0x00; // Result = success
l2capoutbuf[8] = 0x00;
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x00;
l2capoutbuf[11] = 0x00;
L2CAP_Command(l2capoutbuf, 12);
}
/************************************************************/
/* SDP Commands */
/************************************************************/
void RFCOMM::SDP_Command(uint8_t* data, uint8_t nbytes) { // See page 223 in the Bluetooth specs
L2CAP_Command(data,nbytes,sdp_scid[0],sdp_scid[1]);
}
void RFCOMM::serviceNotSupported(uint8_t transactionIDHigh, uint8_t transactionIDLow) { // See page 235 in the Bluetooth specs
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length
l2capoutbuf[4] = 0x05; // Parameter Length
l2capoutbuf[5] = 0x00; // AttributeListsByteCount
l2capoutbuf[6] = 0x02; // AttributeListsByteCount
/* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x35;
l2capoutbuf[8] = 0x00;
l2capoutbuf[9] = 0x00;
SDP_Command(l2capoutbuf,10);
}
void RFCOMM::serialPortResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length
l2capoutbuf[4] = 0x2B; // Parameter Length
l2capoutbuf[5] = 0x00; // AttributeListsByteCount
l2capoutbuf[6] = 0x26; // AttributeListsByteCount
/* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x36;
l2capoutbuf[8] = 0x00;
l2capoutbuf[9] = 0x3C;
l2capoutbuf[10] = 0x36;
l2capoutbuf[11] = 0x00;
l2capoutbuf[12] = 0x39;
l2capoutbuf[13] = 0x09;
l2capoutbuf[14] = 0x00;
l2capoutbuf[15] = 0x00;
l2capoutbuf[16] = 0x0A;
l2capoutbuf[17] = 0x00;
l2capoutbuf[18] = 0x01;
l2capoutbuf[19] = 0x00;
l2capoutbuf[20] = 0x06;
l2capoutbuf[21] = 0x09;
l2capoutbuf[22] = 0x00;
l2capoutbuf[23] = 0x01;
l2capoutbuf[24] = 0x35;
l2capoutbuf[25] = 0x03;
l2capoutbuf[26] = 0x19;
l2capoutbuf[27] = 0x11;
l2capoutbuf[28] = 0x01;
l2capoutbuf[29] = 0x09;
l2capoutbuf[30] = 0x00;
l2capoutbuf[31] = 0x04;
l2capoutbuf[32] = 0x35;
l2capoutbuf[33] = 0x0C;
l2capoutbuf[34] = 0x35;
l2capoutbuf[35] = 0x03;
l2capoutbuf[36] = 0x19;
l2capoutbuf[37] = 0x01;
l2capoutbuf[38] = 0x00;
l2capoutbuf[39] = 0x35;
l2capoutbuf[40] = 0x05;
l2capoutbuf[41] = 0x19;
l2capoutbuf[42] = 0x00;
l2capoutbuf[43] = 0x03;
l2capoutbuf[44] = 0x08;
l2capoutbuf[45] = 0x02; // Two more bytes?
l2capoutbuf[46] = 0x00; // 19 more bytes to come
l2capoutbuf[47] = 0x19;
SDP_Command(l2capoutbuf,48);
}
void RFCOMM::serialPortResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
l2capoutbuf[1] = transactionIDHigh;
l2capoutbuf[2] = transactionIDLow;
l2capoutbuf[3] = 0x00; // Parameter Length
l2capoutbuf[4] = 0x1C; // Parameter Length
l2capoutbuf[5] = 0x00; // AttributeListsByteCount
l2capoutbuf[6] = 0x19; // AttributeListsByteCount
/* Attribute ID/Value Sequence: */
l2capoutbuf[7] = 0x01;
l2capoutbuf[8] = 0x09;
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x06;
l2capoutbuf[11] = 0x35;
l2capoutbuf[12] = 0x09;
l2capoutbuf[13] = 0x09;
l2capoutbuf[14] = 0x65;
l2capoutbuf[15] = 0x6E;
l2capoutbuf[16] = 0x09;
l2capoutbuf[17] = 0x00;
l2capoutbuf[18] = 0x6A;
l2capoutbuf[19] = 0x09;
l2capoutbuf[20] = 0x01;
l2capoutbuf[21] = 0x00;
l2capoutbuf[22] = 0x09;
l2capoutbuf[23] = 0x01;
l2capoutbuf[24] = 0x00;
l2capoutbuf[25] = 0x25;
l2capoutbuf[26] = 0x05; // Name length
l2capoutbuf[27] = 'T';
l2capoutbuf[28] = 'K';
l2capoutbuf[29] = 'J';
l2capoutbuf[30] = 'S';
l2capoutbuf[31] = 'P';
l2capoutbuf[32] = 0x00;
SDP_Command(l2capoutbuf,33);
}
void RFCOMM::l2capResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
serialPortResponse1(transactionIDHigh,transactionIDLow); // These has to send all the supported functions, since it only supports virtual serialport it just sends the message again
}
void RFCOMM::l2capResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
serialPortResponse2(transactionIDHigh,transactionIDLow); // Same data as serialPortResponse2
}
/************************************************************/
/* RFCOMM Commands */
/************************************************************/
void RFCOMM::RFCOMM_Command(uint8_t* data, uint8_t nbytes) {
L2CAP_Command(data,nbytes,rfcomm_scid[0],rfcomm_scid[1]);
}
void RFCOMM::sendRfcomm(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t* data, uint8_t length) {
l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address
l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control
l2capoutbuf[2] = length << 1 | 0x01; // Length and format (allways 0x01 bytes format)
uint8_t i = 0;
for(; i < length; i++)
l2capoutbuf[i+3] = data[i];
l2capoutbuf[i+3] = calcFcs(l2capoutbuf);
#ifdef EXTRADEBUG
Notify(PSTR(" - RFCOMM Data: "));
for(i = 0; i < length+4; i++) {
Serial.print(l2capoutbuf[i],HEX);
Notify(PSTR(" "));
}
#endif
RFCOMM_Command(l2capoutbuf,length+4);
}
void RFCOMM::sendRfcommCredit(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t credit) {
l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address
l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control
l2capoutbuf[2] = 0x01; // Length = 0
l2capoutbuf[3] = credit; // Credit
l2capoutbuf[4] = calcFcs(l2capoutbuf);
#ifdef EXTRADEBUG
Notify(PSTR(" - RFCOMM Credit Data: "));
for(uint8_t i = 0; i < 5; i++) {
Serial.print(l2capoutbuf[i],HEX);
Notify(PSTR(" "));
}
#endif
RFCOMM_Command(l2capoutbuf,5);
}
/* CRC on 2 bytes */
uint8_t RFCOMM::__crc(uint8_t* data) {
return(pgm_read_byte(&rfcomm_crc_table[pgm_read_byte(&rfcomm_crc_table[0xff ^ data[0]]) ^ data[1]]));
}
/* Calculate FCS - we never actually check if the host sends correct FCS to the Arduino */
uint8_t RFCOMM::calcFcs(uint8_t *data) {
if((data[1] & 0xEF) == RFCOMM_UIH)
return (0xff - __crc(data)); // FCS on 2 bytes
else
return (0xff - pgm_read_byte(&rfcomm_crc_table[__crc(data) ^ data[2]])); // FCS on 3 bytes
}
/* Serial commands */
void RFCOMM::print(const char* data) {
rfcommbuf[0] = rfcommChannelPermanent | 0 | 0 | extendAddress;; // RFCOMM Address
rfcommbuf[1] = RFCOMM_UIH; // RFCOMM Control
rfcommbuf[2] = strlen(data) << 1 | 1; // Length
uint8_t i = 0;
for(; i < strlen(data); i++)
rfcommbuf[i+3] = data[i];
rfcommbuf[i+3] = calcFcs(rfcommbuf);
RFCOMM_Command(rfcommbuf,strlen(data)+4);
}
void RFCOMM::print(uint8_t data) {
print(&data,1);
}
void RFCOMM::print(uint8_t* array, uint8_t length) {
rfcommbuf[0] = rfcommChannelPermanent | 0 | 0 | extendAddress;; // RFCOMM Address
rfcommbuf[1] = RFCOMM_UIH; // RFCOMM Control
rfcommbuf[2] = length << 1 | 1; // Length
uint8_t i = 0;
for(; i < length; i++)
rfcommbuf[i+3] = array[i];
rfcommbuf[i+3] = calcFcs(rfcommbuf);
RFCOMM_Command(rfcommbuf,length+4);
}
void RFCOMM::print(const __FlashStringHelper *ifsh) {
const char PROGMEM *p = (const char PROGMEM *)ifsh;
size_t size = 0;
while (1) { // Calculate the size of the string
uint8_t c = pgm_read_byte(p+size);
if (c == 0)
break;
size++;
}
uint8_t buf[size];
for(uint8_t i = 0; i < size; i++)
buf[i] = pgm_read_byte(p++);
print(buf,size);
}
void RFCOMM::println(const char* data) {
char output[strlen(data)+2];
strcpy(output,data);
strcat(output,"\r\n");
print(output);
}
void RFCOMM::println(uint8_t data) {
uint8_t buf[3] = {data, '\r', '\n'};
print(buf,3);
}
void RFCOMM::println(uint8_t* array, uint8_t length) {
uint8_t buf[length+2];
memcpy(buf,array,length);
buf[length] = '\r';
buf[length+1] = '\n';
print(buf,length+2);
}
void RFCOMM::println(const __FlashStringHelper *ifsh) {
const char PROGMEM *p = (const char PROGMEM *)ifsh;
size_t size = 0;
while (1) { // Calculate the size of the string
uint8_t c = pgm_read_byte(p+size);
if (c == 0)
break;
size++;
}
uint8_t buf[size+2];
for(uint8_t i = 0; i < size; i++)
buf[i] = pgm_read_byte(p++);
buf[size] = '\r';
buf[size+1] = '\n';
print(buf,size+2);
}
uint8_t RFCOMM::read() {
uint8_t output = rfcommDataBuffer[0];
for(uint8_t i = 1; i < rfcommAvailable; i++)
rfcommDataBuffer[i-1] = rfcommDataBuffer[i]; // Shift the buffer one left
rfcommAvailable--;
return output;
}